Shake-and-bake algorithms for generating
uniform points
on the boundary of bounded polyhedra

C.G.E. Boender, R.J. Caron, A.H.G. Rinnooy Kan, J.F. McDonald,

H. Edwin Romeijn, Robert L. Smith, J. Telgen, and, A.C.F. Vorst

Technical Report 89-24

July 1989

Shake-and-bake algorithms for generating uniform points
on the boundary of bounded polyhedra

C.G.E. Boender! R.J. Caron® J.F. McDonald?
A.H.G. Rinnooy Kan! = H.E. Romeijn® R.L. Smith® J. Telgen*
A.C.F. Vorst®

July 28, 1989

Abstract

We present a class of shake-and-bake algorithms for generating (asymptotically)
uniform points on the boundary of full-dimensional bounded polyhedra. We
also report chi-square goodness-of-fit tests, and the results of simulations for
some elementary testproblems.

!Department of Ogexations Research, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR
Rotterdam, The Netherlands.

2Department of Mathematics and Statistics, University of Windsor, 401 Sunset Avenue, Wind-
sor, Ontario N9B 3P4, Canada.

®Department of Industrial and Operations Engineering, The University of Michigan, Ann Arbor,

Michigan 48109-2117, U.S.A.

*Department of Applied Mathematics, Twente University, P.O. Box 217, 7500 AE Enschede,

The Netherlands.

*Department of Mathematical Economics and Department of Mathematics, Erasmus University

Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands.

1 Introduction 1

1 Introduction

In this paper we study the so-called shake-and-bake algorithms which, as far as we
know, provide the only practical way of generating (asymptotically) uniform points
on the boundary § of a full-dimensional polytope S. The fact that the points are
uniformly distributed means that, in the long run, all subsets of § of equal size
will be visited equally often, and subsets with positive measure will be visited with
probability one. Part of the material which we present in this paper can be found
in more detail in the technical reports Boender et al. [1988a,b]. For the so-called
hit-and-run algorithms which generate asymptotically uniform points on the interior
of § we refer to Smith (1984) and Berbee et al. [1987).

The relevance of generating points on 5, and the name shake-and-bake for this class
of algorithms were mentioned earlier in Smith & Telgen [1981] in the context of
detecting necessary constraints. Note that the shake-and-bake algorithms can also
be used for the problem of optimizing functions which attain their optimal value on
S, such as, for example, the minimization of a concave function over § (see e.g. Patel
& Smith [1983)).

Smith [1982] suggested the first shake-and-bake algorithm, referred to here as orig-
inal SB, which generates a sequence of points which are asymptotically uniformly
distributed on 5. Given an iteration point z° € 5, a random search vector v is
generated from the uniform distribution on the surface of the unit hypersphere with
centre z° The intersection point y° of the line passing through z° with direc-
tion vector v with § is accepted as a move point (i.e. 2! = y°) with probability
€08 ¢,0/(co8 @g0 + cO8 @0), Where ¢,0 and ¢ are the (acute) angles of the search
vector v with the inward unit normals to S at z° and y°, respectively; else z! = z°.
The intersection point y° is referred to as hit point. Hence, if the hit point y° is
accepted as a move point, then the next iteration point z! is equal to y°, else the
next iteration point 2! is equal to the current one z°.

In the next SB algorithm, limping SB, the move probability is equal to cos¢,0,
while the search vector v is drawn from the same distribution as for original SB.
The limiting,distribution of the sequence of iteration points, as well as the sequence
of move points, generated by limping SB is proven to be uniform on §. The third
algorithm, running SB, chooses the search vector from a distribution such that the hit
point is always accepted as a move point, while maintaining the important property
that the distribution of the iteration points is asymptotically uniform on §. (See

figures 1 and 2.)

In this paper we give a proof for the uniform limiting distribution of the iteration
points which applies to a complete class of shake-and-bake algorithms, including the
three algorithms mentioned above.

1 Introduction 2

The outline of this paper is as follows: in section 2 we will describe the general class
of shake-and-bake algorithms and discuss the above special cases in more detail.
Section 3 contains a proof that the limiting distribution of the sequence of iteration
points generated by the algorithms is uniform on the boundary of S. Results of the
chi-square goodness-of-fit test are given in section 4, and in section 5 we present
some experimental results.

1 Introduction

Pee'ngang? ’
Figure 1: Shake-and-bake algorithms original/limping SB

Iteration 0: Hitpoint y° accepted — iteration point z! := y°, 2! is a move point.
Iteration 1: Hitpoint y! rejected — iteration point z? := z!.
Iteration 2: Hitpoint y? rejected — iteration point 23 := z3.
Iteration 3: Hitpoint y® accepted — iteration point z* := y3, z* is a move point.
Iteration 4: Hitpoint y* rejected — iteration point z°* := z*.
Iteration 5: Hitpoint y® accepted — iteration point z% := y®, z® is a move point.
Iteration 6: Hitpoint y® accepted — iteration point 27 := y%, 27 is a move point.

Figure 2: Shake-and-bake algorithm running SB

2 The shake-and-bake algorithms 4

2 The shake-and-bake algorithms

2.1 Introduction

Consider a feasible region S C R? (d > 2) defined by the following system of linear
inequalities:

45'”55.' (i=11"°’m) (1)

where we have normalized the coefficients of the inequalities by choosing ||a;|| = 1.
Assume that S is bounded, nonempty and of full dimension. Then S is a polytope
that containts interior points, i.e. points for which the inequalities (1) are all satisfied
as strict inequalities. We assume, without loss of generality, that all of the constraints
are nonredundant, i.e. none of them can be dropped from the system (1) without

changing S.

Let 5° be the set of points in S for which exactly one constraint is binding, that is,

3= U{w:aﬁw:b,-;a",-w<b,-,j#i}.

=1

The shake-and-bake algorithms are based on a search from some point z € 5° in a
feasible direction v, i.e. if constraint k is binding at z, then ajv < 0. The intersection
point y with the constraint hit first in the direction v is referred to as a hit point
and becomes a move point with probability A(y|z).

The hit point y is computed as follows. Let V; be the bounding hyperplane of the
half-space
Vi :={w:alw < b} (i=1,...,m).

To determine y we compute all intersection points of the straight line passing through
z with direction vector v, denoted by

z+ v A€ER

with the hyperplanes V;, (i = 1,...,m). It is easy to show that the intersection
points correspond to the following values of A:

5 - aiz

']
a;v

A=

(§=1,...,m).

Clearly the intersection point corresponding to the smallest positive value of X is
the hitpoint, which, for the algorithms described below, is an element of 5° with
probability one.

2 The shake-and-bake algorithms 5

2.2 The class of shake-and-bake algorithms

The class of shake-and-bake algorithms for polyhedral sets can be described as follows
(see figure 1):

Step 0: Find some point z° € 5°. Define k as the index corresponding to the
constraint that is binding at z°. Set n:=0.

Step 1: Generate a direction vector v as follows: Select a random point z from
an absolutely continuous probability distribution over the intersection of V, with the
surface of the d-dimensional unit hypersphere with centre z". Set v := z - z".

Step 2: Determine the hit point y* as follows:

= bi-ae” (=
A o= P (i=1,...,m)
ro= arslrsr}xsnm{ldloo}

" = "+ A

Go to Step 4 with probability A(y"|z").

Step 3: Set z"t! := 2™, i.e. the next iteration point is equal to the current one.
Go to Step §.

Step 4: Set z"*! := y™ and k := r, i.e. y" becomes a move point.

Step 5: Set n:=n+ 1 and go to Step 1.

Note that from the description of the algorithms it can be concluded that the se-
quence of iteration points defines a Markov chain with a stationary transition density
function and continuous state space ?o, which will be useful in the subsequent anal-
ysis of the algorithms.

Because of our assumptions on the set 5, there is a one-to-one correspondence be-
tween a feasible direction from a particular point in 3° and a hit point. We will
define our class of algorithms by imposing conditions on the distribution of the
search directions and on the move probability function A(y|z).

Without loss of generality we write the density of the absolutely continuous compo-
nent of the distribution of hit points in the form:

WP,]
P(’lz) f(»’) ":_y”‘

where V, := {w: a}w = b,} is the hyperplane that is binding at y € 5°. Note that
b, - alz is equal to the distance from z to V.. Also note that (b, - ayz)/||z -yl =
cos ¢, where cos ¢, is as described in section 1. The move probability function will
be written in the form

be — agy

B(ylz) = 9(2.y) m

2 The shake-and-bake algorithms 6

where V, is the hyperplane that is binding at z € 5°. Denote the density of the
absolutely continuous component of the distribution of the v-step transition proba-
bility of moving from z € Ptoa neighborhood of y € 5 by p™)(y|z). The 1-step
transition density function p(y|z) = p“)(y|z) is then given by:

p(ylz) B(ylz) o(ylz)

ba' lt b, - a,

where

h(z,y) = f(z,y) 9(z,y)

The class of shake-and-bake algorithms we discuss in this paper is defined by impos-
ing the following conditions on the function hA:

1. h(z,y) is symmetric in z and y, i.e. h(z,y) = h(y,2) forall 2,y € 3°.

2. h(z,y) is uniformly bounded from below by zero, i.e. there exists a constant
6x > 0 such that h(z,y) > 6, forall 2,y € :9-0, z#y.

Of course we also require 0 < f(y|z) < 1 forallz,y € PoItis easily shown that the
first condition implies that p(*)(y|z) = p)(z|y) for all z,y € 3°, where v = 1,2, ...
The class of shake-and-bake algorithms which satisfy conditions 1 and 2 will be
referred to as SB algorithms.

2.3 Some special cases
In this section we will describe three specific SB algorithms.

Original SB

In this algorithm, the direction vector v has a uniform distribution over the feasible
directions. The distribution of hit points is given by

_ 2(b, - alz)
po(ylz) = mﬁw

where
2ré/?

Cd:mj

is the surface area of a d-dimensional hypersphere with unit radius.

The move probability function is given by

2 The shake-and-bake algorithms 7

(bs = agy)
be = agy) + (by - aj2z)’
So for this algorithm we have

2)|2 - vl
C‘ [(bl - G"y) + (bv - a;vz)] 2 6’.0

Bo(ylz) = (

h’O(z ’ V) =
with
1
550 = E,-‘- >0
and the 1-step transition density function is equal to:

oo 2(5, - auy)(b, - 4j2)
po(ylz) = Callz - yll¢ [(bs - aty) + (8, - a}2)]

Limping SB

In this algorithm the direction vector has the same distribution as for original SB,
i.e. pr(y|z) = po(y|z). The move probability function is given by

Bulslz) = 7= = -,

Note that A (y|z) does not depend explicitly on y. Thus, the hit point need not be
computed unless it is accepted as a move point. For this algorithm we have

2
hi(z,y) = =
L(z V) c‘
so that
2
5;"‘ = ‘CT‘ >0
and
_ 200 -)by - aj2)
PL(V")}‘ Callz - '"“.1 .
Running SB

A drawback to original and limping SB is the fact that not every hit point is a
move point. This means that, in general, several random directions may have to
be considered before a move point is generated. It also means that the rate of
convergence of the iteration points to being independently and uniformly distributed
will be slow, since successive iteration points will be highly correlated. The algorithm
running SB solves this problem by taking

2 The shake-and-bake algorithms 8

Br(ylz) = 1.

The distribution of the direction vector is then chosen with the goal of obtaining
a uniform limiting distribution. In particular, the random direction vector v is
obtained as follows: Draw a point u from a uniform distribution on the (relative)
interior of the intersection of the d-dimensional unit hypersphere centered at the
origin and the hyperplane {w : a,w = 0}. The search vector v is defined as the
vector with Euclidean norm 1 whose projection on the hyperplane {w : ajw = 0} is
equal to u, under the condition that ajv < 0. We will describe this in more detail
below. This choice of distribution of the direction vector leads to the following
transition density function:

(by = agy)(b, — a;(z)
B4y ||z - y||9+?

pr(ylz) =

where

£4/2
R (T

is the volume of a d-dimensional hypersphere with unit radius. Note that for this
algorithm

1
hr(z,y) = Bas

so that

1
5hn=-B:I>0.

In this algorithm, we need to generate a point u from the uniform distribution on
the (relative) interior of a (d — 1)-dimensional unit hypersphere contained in some
hyperplane, say {w : ¢w = 0} (with ||¢|| = 1). This point can be obtained in the
following way: First, draw a point @ from the uniform distribution on the surface of
a d-dimensional unit hypersphere centered at the origin. The point

(I-¢d)i/||({~)|, which is the projection of & on the hyperplane {w : c'w = 0},
rescaled to have norm equal to 1, is uniformly distributed on the surface of the (d-1)-
dimensional unit hypersphere centered at the origin contained in that hyperplane.
This point is now rescaled to have norm r, where r is chosen such that the resulting
point u has the required distribution, which means that r¢-! has to be drawn from
the uniform distribution on (0, 1.

So we have:

_r(I-cd)a _ r(I-cd)i

CTI=edl T A ey

2 The shake-and-bake algorithms 9

and the corresponding direction vector is given by:

v=u-vV1l-ric= I - r(c4) vi-r .
e e (\71-(&)”1)

2.4 Limping and running SB reexamined

Given that the present iteration point is 2, the conditional probability that the next
hit point is also a move point is given by

P(e) = [B(vlz) vie)dy = [plole)dy.

Since for all z, p(y|z) > 0 for all y in a subset of 3° of measure greater than 0,
it follows that for all SB algorithms P(z) > 0 for all 2. Since the expected value
of a random variable having a geometric distribution with parameter ¢ is equal to
(1-4q)/q, the expected number of iterations required to generate a move point from
z is equal to 1/ P(z), so that this expected value is always finite.

For any shake-and-bake algorithm, say A, with transition density function p(y|z)
we can define another algorithm A generating only the move points corresponding
to A. (Obviously, when P(z) = 1 for all z (e.g. when A = running SB) the two
algorithms are the same.) The transition density function §(y|z) of algorithm A can
be expressed in terms of p(y|z) and P(z):

p(ylz) + (1 - P(2)) plylz) + (1 - P(2))*p(yl2) + ...
Y (1= P(2))p(ylz)

1=0

Py P

It follows that A(z,y) = h(z,y)/P(2). Of course, if the function h satisfies conditions
1 and 2 in section 2.2 then algorithm 4 is an SB algorithm. If A is an SB algorithm,
then so is A if and only if P(z) is independent of 2.

#(ylz)

For limping SB the move probability Pz(z) is equal to:

2B,
PL()"%

This move probability is independent of z, so the algorithm generating the move
points of limping SB is also an SB algorithm. Comparing the transition density
functions of limping and running SB we observe that limping SB = running SB (see
figures 1 and 2).

2 The shake-and-bake algorithms 10

2.5 Computational efficiency

To determine a next iteration point all shake-and-bake algorithms have to generate
a search vector. If the acceptance probability function of an algorithm depends
explicitly on y, then the hit point corresponding to the search vector has to be
computed. If this is not the case, then the hit point only needs to be computed if it
is accepted as a move point.

For the three algorithms described above, we have that the generation of a search
vector requires O(d) time. Due to the 2d multiplications for each inequality of 5 the
computation of the intersection points requires O(md) time. This implies that for
original and running SB the computation of an iteration point requires O(md) time.
For limping SB the acceptance probability does not depend explicitly on y, so the
expected computation time per iteration point depends on the probability that a hit
point is also a move point. Since 1/Py(z) = /x(d + 1)/2 for large d, we have that
this probability is O(1/ \/Z), so the expected computation time per iteration point is

O(mv4d).

The foregoing analysis seems to suggest that, in some sense, limping SB is “better”
than original or running SB. However, there will be a difference among SB algo-
rithms in the rate of convergence to the uniform distribution. As noted before, the
convergence rate of algorithms for which not every iteration point is a move point
(e.g. original and limping SB) may well be much lower than for algorithms generat-
ing only move points, such as running SB. This issue will be addressed in some more
detail in the next section.

3 The uniform limiting distribution 11

3 The uniform limiting distribution

In this section we prove that for all SB algorithms the random sequence {X ‘}‘:o of
iteration points converges to the uniform distribution on -S'o, independently of the
starting point in the set 3.

We use the following theorem:

Theorem 1 If

(a) there ezists a scalar § > 0 and a v > 1 such that p™)(y|z) > 6 for all z,y € 5°,
and

(5) plylz) = plzly) for all 2,y € 3°,

then the sequence {X i}‘-o of points has a uniform limiting distribution on 3.

Proof

It follows from (Doob [1953), p. 197) that (a) implies the existence of an asymptotic
stationary distribution. Analogous to the proof given in (Smith [1984], p. 1300)
it follows that (b) implies that the uniform distribution is the unique stationary
distribution. o

As was noted in section 2.2, condition (b) is satisfied. What remains is to find a
§ > 0 and a v > 1 such that condition (a) is satisfied. Theorem 2 proves that (a) is
satisfied with v = 4.

Theorem 2 There ezists a scalar § > 0 such that p(*)(y|z) > § for allz,y € 3°.
The proof will be given after the following two lemmas.

Lemma 1 Thmeziat:anéo>0mchthatforeveryz€§'° there ezists an indez
j such that b; — ajz > &.

Proof
Suppose such an ¢, does not exist. This means that for all £ > 0 there exists an

2, € 3° such that b; - a;z, < ceforallj. Soforalln =1,2,... there exists an
)
zn € 3° such that bj - ai2, < L for all 5. Since S is compact, we know that the

<n
sequence {2}, has a limiting point z € § for which b; - @}z = 0 for all j. Now
suppose y is an interior point of S, i.e. b; - a’y > 0 for all j. Then 2o + a(y - zo) is
an interior point for every a > 0 since b; - a’(zo + a(y - 2)) = a(b; — ajy) > 0 for

all j. This implies that S is unbounded. Contradiction. 0

Lemma 2 I"oreveryithmezimane‘.->0mchth¢tth¢:etﬁ" ={z2eV;:
bj - ajz > & Vj # i} has positive (d — 1)-dimensional Lebesgue measure. (See figure
3.)

3 The uniform limiting distribution 12

7ind

Figure 3: V3

Proof
Choose an arbitrary constraint i. We know that constraint s is nonredundant, so

there exists an z, for which
b; - alzg = po <0
b; - ajzg 20 (7 #19).
Suppose z, is an interior point of 5, so
bi—aizy=py >0
b; - ajzy >0 (7 #9).

Choose
2" = HB1Z0 — HoZ)
K1 = Ko
which is a convex combination of 2, and z;. So we have

o Ho [
b - alz™= b - —5)+ ho - bi) = 0
it & i R ‘)

b; - ajz*>0 (7 #9).
So b; — a{z® = 0 and b; - ajz" > 2¢; for all j # i, where

€= mip(b,- -a;z%)/2>0.
It

For all z € V; for which ||z - 2°|| < é; we have

3 The uniform limiting distribution 13

b;-dél:O
b; - ajz =b; - ajz" +aj(z° - 2) > 2; - £ = §; (7 #19)

which implies that z € V¥. Hence, the set V7' has positive (d — 1)-dimensional
Lebesgue measure. o

Corollary
If we define ¢ := min{éy, min; ¢;} > 0 then for all 0 < £ < and for all i the set V;
has positive (d — 1)-dimensional Lebesgue measure. Corollary

If we define ¢ := min{éy, min; ¢;} > 0 then for all 0 < ¢ < ¢ and for all { the set V;
has positive (d — 1)-dimensional Lebesgue measure.

Proof of Theorem 2
Forall z,y € 3°

PO0ie) 2 [[, [oale)psaln) paslza) ooiis) dsa doy ds

Suppose z € V; and y € V;. Choose some 0 < ¢ < é. It follows from lemma 1 that
there exists a k # i and an | # j such that b, — alz > ¢ and b - ajy > €. Choose
some index ¢t # k,[(see figure 4). Define rg as the maximal distance between two

points in §:

rs:= max_|m - ml.
Mm.meES

3 The uniform limiting distribution 14

* 4 V‘IV’

Figure 4: From z to y in { steps

Then:
b; - alz,)(bs - a2 ¢3
1. p(zfz) = h(zﬂl)(. “z'_l),(llfaﬂ) bn e
for all z, € V, satisfying b; — @iz, > ¢.
(& - ajy)(b; - ajz3) e
2. p(ylz3) = h(zs, 1> 64—
(yl 3) (3 y) “23 _ y“4+1 h r;.n

for all z3 € V; satisfying b; - aiz3 > €.

= (b — ajza)(be — ar21) e
3. p(zl21) = h(z1, 23) 7 — za]|9*1 > & rgd-l

for all 2, € V,, satisfying b;—a’z, > ¢ and for all z; € V, satisfying by—a}z; > €.

_ (be = ae23)(b — a122) !
4. p(2sl23) = h(z3, 23) 22 = 2[5+ > & r§+1

for all z; € V, satisfying b;—ajz; > ¢ and for all 23 € V, satisfying b —aiz3 > €.

8
5 = dzadzyd
/?,/V:A} hr;‘“ 236202

8
5 ;gz; Mg (V) - ma-1(V3) - mgr(V3)

So we have

PM(ylz)

v

v

v

. ‘.) 3
8 Tl (mfn mg-x(‘_’:)) =4

3 The uniform limiting distribution 15

where my(-) denotes the d-dimensional Lebesgue measure of a set. Using ¢ > 0,
rs < 00, 85 > 0, and the corollary of lemma 2 we know that § > 0. m)

The value of § can be used to compare the convergence rate of the SB algorithms
using the following theorem from Doob [1953]:

Theorem 3 If there ezists a § > 0 and a v > 1 such that pV)(y|z) > § for all
z2,y€ ?o, then

Pr {Xm € AIX" = z°} - —-—_.,_:::1%;)) < (1 - sm‘-l(g))?-l

forall A C 5° with positive (d — 1)-dimensional Lebesgue measure, and for all
el

Clearly, a larger value for § corresponds with a faster rate of convergence to the
uniform distribution. We now rewrite the expression for § given above as follows:

5 =884
where
¢ . 3
bs = —gm (rmn md-x(Vz))
s ‘

only depends on the region S, and not on the particular algorithm used. This means
that we can compare the convergence rates of the SB algorithms by comparing the
values of §,. Recall from section 2 that

1 1

2
5;.0 = a:, 5).,_ = E;, and 5}.‘ = -é-‘—:l-

It is easily seen that, for d > 2, the following holds:
ro < 5;, < Spp.

Moreover, as the function hr(z,y) is a constant, and the move probability equals
one for this algorithm, we have

6’! S 5hg

for all SB algorithms, since f5 p(y|z)dy < 1 for all SB algorithms. Thus, taking into
account that we are discussing lower bounds, we may conjecture that the sequence of
iteration points generated by running SB converges faster to the uniform distribution
than the sequence of points generated by limping SB, which in turn converges faster
to the uniform distribution than the sequence generated by original SB. Furthermore,

3 The uniform limiting distribution 16

running SB has the fastest rate of convergence of all SB algorithms. It should however
be noted that for a specific region S it might be possible to obtain a better lower
bound than the one given in theorem 2, specifically for algorithms having a non-
constant function h associated with them (like for instance original SB). Therefore,
we should be careful in drawing strong conclusions from only the comparison of
values for §,, when A is not equal to a constant, at least until some empirical results
are taken into account.

4 Chi-square tests 17

4 Chi-square tests

In this section we will compare the performance of the three algorithms original,
limping and running SB, measured by the rate of convergence to the uniform distri-
bution. The three algorithms were run on two hyperrectangles, of dimension 5 and
10 respectively, of the following form:

0<z; < (i=1,...,d).

We have chosen to test the algorithms on hyperrectangles because the area of the
facets of these polytopes can be calculated analytically.

Any two iteration points are correlated, but the serial correlation bet ween two points
X' and X**+¥ goes to sero as N goes to infinity. So, to avoid serial correlation effects,
we only sample one of every N iteration points, for different values of N. If N is large
enough we can assume that the random variables X, X2V, ... arei.i.d. uniform. In
that case we can use a chi-square goodness-of-fit test to test uniformity. We divided
the hyperrectangles into a number of cells, according to the formula of Mann &
Wald (see Mann & Wald [1942]). Each facet was divided into a number of exactly
equal-sized cells, and the number of cells per facet was chosen such that the sizes of
cells in different facets were almost equal.

For the first testproblem (of dimension d = 5) we chose N = 10, and we generated
samples of different lengths n. For every sample size, we generated § different samples
and performed the chi-square test at a significance level of 5%. The number of times
a chi-square test was rejected is reported in table 1.

n || original SB | limping SB | running SB
200 2 2 0
400 1 1 1
600 0 1 1
800 0 1 0

1000 1 2 0

Table1: d=5,N =10

For the second testproblem (of dimension d = 10) we used N = 10,25 and 50. Again,
the number of times a chi-square test was rejected is reported. See table 2.

An observation drawn from these tables is that in almost all cases the number of
rejections of the null hypothesis is minimal for running SB. This means that the
convergence of the distribution of the points generated by running SB to the uniform

4 Chi-square tests 18

n original SB || limping SB || running SB
N|{10]25]50110(25]|50) 10| 25|50
200 40|05 |]2|1)2|]0/0O
400 3 ({111 3111}1 21111
600 5 (3|1 5(1]1 1 (111
800 4131 S{212|2!1}1
1000 41210 4 (510132 (1
Table2: d =10

distribution is faster than the convergence of points generated by original or limping
SB. This confirms our theoretical analysis of convergence rates in section 3. The
convergence rate of original and limping SB appears to be almost equal. Numerical
experiments (Caron & McDonald [1987)) have suggested that the average number of
iteration points required to generate a move point grows faster (as a function of the
dimension d) for limping SB than for original SB. Thus, the value of N necessary to
eliminate serial correlation effects will also grow faster with growing d for limping SB.
This could mean that, for growing d, original SB will perform better than limping
SB, at least for smaller values of N. Thus the performance of original SB as opposed
to limping SB still remains an open question, as our experiments fail to confirm the
conjecture of section 3.

To summarise, we can conclude that running SB outperforms both limping SB and
original SB.

5 Experimental results 19

5 Experimental results

We conclude the paper with some additional experimental results of the algorithm
running SB. We let the figures speak for themselves.

r K = @ a0 mean ocem o+ o ceee e e ¢ e @s @ o
! |
l H
H
I '
.
..""'°J @™o o 0 e .o ® o et - -
-
eat®
ove o0°°
L1 -
.o
: .-
]
. -'
.’
.] ".
‘ne e P

' . GRS S tam e o q
L4 L]
!
H '
DO GIIPG CHURD @ GEENEESEE (00 S 000 @ L1 J O.CJ
- o
—.0—"'—'——‘- .’
e — ”~
”' f'..
Y 7
Cd /
-
i o
H ”
e -’

Figure 8: 500 iteration points

UNIVERSITY

IR

90150

Il

References 20

References

(1] H.C.P. Berbee, C.G.E. Boender, A.H.G. Rinnooy Kan, C.L. Scheffer, R.L.
Smith, and J. Telgen. Hit-and-run algorithms for the identification of nonre-
dundant linear inequalities. Mathematical Programming, 37:184~207, 1987.

(2] C.G.E. Boender, R.J. Caron, J.F. McDonald, R.L. Smith, and J. Telgen. A
class of shake-and-bake algorithms for generating random points on the surface
of a bounded region. Technical Report WMR 88-08, Department of Mathematics
and Statistics, University of Windsor, 1988a.

(3] C.G.E. Boender, A.H.G. Rinnooy Kan, H.E. Romeijn, and A.C.F. Vorst. Shake-
and-bake algorithms for generating uniform points on the boundary of bounded
polyhedra. Technical Report 8826/A, Econometric Institute, Erasmus University
Rotterdam, 1988b.

(4] R.J. Caron and J.F. McDonald. Private communication, 1987.
(5] J.L. Doob. Stochastic Processes. Wiley, New York, 1953.

(6] H.B. Mann and A. Wald. On the choice of the number of class intervals in
the application of the chi-square test. The Annals of Mathematical Statistics,
13:306-317, 1942.

(7] N.R. Patel and R.L. Smith. The asymptotic extreme value distribution of the
sample munimum of a concave function under linear constraints. Operations
Research, 31:789-794, 1983.

(8] R.L. Smith. Private communication, 1982.

(9] R.L. Smith. Efficient Monte Carlo procedures for generating random feasible
points uniformly over bounded regions. Operations Research, 32:1296-1308,
1984.

(10] R.L. Smith and J. Telgen. Random methods for identifying nonredundant con-
straints. Technical Report 81-4, Department of Industrial and Operations Engi-
neering, College of Engineering, The University of Michigan, Ann Arbor, 1981.

