A MULTIPLIER ADJUSTMENT APPROACH
FOR THE SET PARTITIONING PROBLEM

Thomas Justin Chan
Solution Technoligies Consulting, Ltd.
Vancouver, B.C., Canada V5Z 1E9

and
Candace Arai Yano
Department of Industrial & Operations Engineering
University of Michigan
Ann Arbor, MI 48109-2117
Technical Report 87-12

Revised June 1990

A MULTIPLIER ADJUSTMENT APPROACH
FOR THE SET PARTITIONING PROBLEM

by
Thomas Justin Chan*

and
Candace Arai Yano**

*Solution Technologies Consulting, Ltd.
Vancouver, B.C., Canada V5Z 1E9 {

xkDepartment of Industrial and Operations Engineering
The University of Michigan
Ann Arbor, Michigan 48109-2117

December, 1988
Revised June 1990

t Part of this work was done while this author was in the Department of Computer Science and

Engineering at Southern Methodist University

Abstract

We introduce an effective branch-and-bound algorithm for solving the set partition-
ing problem. The new algorithm employs a new multiplier-adjustment-based bounding
procedure, and a complementary branching strategy which results in relatively small
search trees. Computational results based on 20 moderately sized crew scheduling
problems indicate that our new algorithm is on average 16.6 times faster than the pop-
ular code, SETPAR. The improvements are mainly due to the bounding procedure,
which is fast, easy to use, and provides tight lower bounds. On average, the bounds
are 97.6% of the optimal objective vaiue of the linear programming relaxation after
only five iterations, and 98.5% after ten iterations. Moreover, the lower bounds are
observed to be monotonically nondecreasing. We also apply the technique of variable
elimination, which is very effective in reducing the size of the problems. On average,

89% of the variables are eliminated from the problem at the root node.

The set partitioning problem (SPP) is a zero-one integer program formulated as follows:

n

(P) minimize Y Cjz;

Jj=1
s.t. Z a;z; =1 1€ (1)
J=1
z; = {0,1} J€J
where a;j € {0,1} 1€1,5€J
I={1,2,...,m}
J=1{1,2,...,n}.

The SPP has been the focus of study by many researchers because of its simple struc-
ture and numerous practical applications. Among the applications described in the litera-
ture are: crew scheduling (Marsten and Shepatdson 1981), truck scheduling (Balinski and
Quant 1964), information retrieval (Day 1965), circuit design (Root 1964), capacity bal-
ancing (Steinman and Schwinn 1969), capital investment (Valenta 1969), facility location
(Revelle, Marks and Liebman 1970), political districting (Garfinkel and Nemhauser 1970),
and radio communication planning (Thuve 1981). Other applications of the SPP are given
in the surveys by Garfinkel and Nemhauser (1972), and Salkin (1975).

The two most published approaches for the SPP are implicit enumeration and simplex-
based cutting planes. (A survey of these and other approaches is provided by Balas and
Padberg 1979.) Implicit enumeration is the more promising and widely used of the two
because it takes full advantage of the special structure of the SPP. Branching is usually
performed by either fizing a variable z; = 1 to satisfy a particular constraint (Pierce 1968,
Garfinkel and Nemhauser 1969, and Fisher and Kedia 1986) or restricting the set from which
a variable may be selected to satisfy a particular constraint (Marsten 1974).

One means of enhancing the performance of implicit enumeration is to reduce the size
of the search tree. This is usually achieved by calculating a lower bound on the cost of

completion for each partial solution. To accomplish this, linear programming (LP) relaxation

is often used (Michaud 1972). The reason for its popularity is that the solution of the LP
relaxation is frequently integral or provides a very tight lower bound (Balinski and Quandt
1964). However, solving a LP for each partial solution is computationally impractical for
most problems. Moreover, LPs derived from large SPPs are often extremely difficult to solve
because they are highly degenerate. (This difficulty has been reported by Marsten 1974 and
other researchers.) For these reasons, many researchers have resorted to non-LP methods to
obtain lower bounds.

To avoid solving a LP for each partial solution, Pierce and Lasky (1973) and Lu (1970)
solve a knapsack problem obtained by adding up all the unsatisfied constraints, while
Christofides and Korman (1973) solve an auxiliary problem using dynamic programming
techniques. Etcheberry (1977) develops a more®successful bounding technique by using La-
grangian relaxation (Fisher 1981 and Geoffrion 1974) and subgradient optimization (Sandi
1979). Fisher and Kedia (1986) introduce a dual-based procedure applied to the LP relax-
ation. They use a greedy heuristic followed by an improvement heuristic, which is similar to
local exchange heuristics used in many combinatorial optimization problems.

In an airline crew scheduling application, Marsten and Shepardson (1981) combine
Marsten’s branching strategy with Etcheberry’s bounding strategy. This hybrid algorithm
is found to perform better than Marsten’s original algorithm (Gerbracht 1978). However,
SETPAR (Marsten, Muller and Killion 1979), a LP-based branch-and-bound computer code,
is still the most popular means of solving the SPP among practitioners.

In this paper, we introduce an effective branch-and-bound algorithm for solving the SPP.
New terms and notation are defined in section 1. We introduce a new bounding procedure
in section 2 and the branching strategy in section 3. In section 4, we summarize the overall
branch-and-bound algorithm and describe how the concept of variable elimination can be
applied to SPP. In section 5, we compare the computational results for the new algorithm

and SETPAR using actual data for a crew scheduling application.

1. Notation and Overview
F={jeJ: z;is fixed tobe 1 }
I' = {1 € I : constraint ¢ is a free constraint }
J'={j € J: variable j is a free variable }
L={iel:a;=1}
Ji={jeJ 1a;=1}
LIST = list of candidate problems to be investigated
U = (w,ug,...,un) = dual solution vector
LB = lower bound of current subproblem
SOL={jeJ':z;=1}
UB = upper bound (objective value of incumbent)
n; = |SOLN Ji
So={iel':n;=0}
Si={iel ni=1}
So={i€l': n; 22}

At each branching step of the branch-and-bound algorithm, certain variables are fized
to one or zero. When a variable is fixed to one, a new subproblem is created with fewer
variables and constraints than the subproblem from which it branches. These remaining

variables and constraints are referred to as the free variables and constraints, respectively.

The index set F represents the variables which are fixed to one for the current subproblem.
Sets I' and J' contain the indices of the free constraints and variables, respectively, for the
current subproblem. Subproblems corresponding to the unfathomed terminal nodes of the
search tree are referred to as candidate problems. Subproblems created during branching
are referred to as candidate subproblems. If a candidate subproblem is not fathomed, then
it is stored in LIST and may be investigated at a future branching. To store a subproblem,
only the values of F,J', and U need to be saved. (For computational efficiency, SOL is also
stored.) When a new subproblem is created, the values of F,J',U and SOL are reset to
their corresponding values in the parent candidate problem.

The bounding component is an iterative algorithm, which attempts to obtain a tight
lower bound to the candidate subproblems. At ®ach iteration, a feasible dual solution (U) is
obtained for the LP relaxation of the subproblem. This dual solution is used to determine the
corresponding lower bound (LB) and primal integer solution (SOL). If the integer solution
is feasible to the subproblem, then SOL U F represents a feasible solution to the original
problem P. The current best feasible solution of P is referred to as the incumbent. The
objective value of the incumbent provides the current upper bound, UB.

Ifi € I; and j € SOL, then we say constraint 1 is covered by variable j. The number of
variables covering constraint i is indicated by n;. Given an integer solution to a subproblem,
the free constraints can be classified into three groups: 1) those which are under-covered (i.e.,
not covered by any variable); 2) those which are tight (i.e., covered by exactly one variable);
and 3) those which are over-covered (i.e., covered by two or more variables). These three
groups of constraints are represented by the index sets So, S1 and S3, respectively.

For notational simplicity, we also assume the constraints are indexed such that |J;| <

|Ji,| V 41,12 € I :4; < i, at the beginning of the algorithm, where J' = J.

2. Bounding Strategy

Our goal is to develop a procedure which is fast, easy to apply, and provides a tight
lower bound. The result is the multiplier adjustment method, MAM. When applied to a
subproblem, MAM attempts to solve the dual of the LP relaxation:

maximize Zu;
i€l

s.t. Z a;ju; < Cj jeJ (2)
1€el’

u; unrestricted 1 €]

The objective value of any feasible solution to this LP dual provides a lower bound to
the subproblem.

Hereafter, we refer to the dual variables (u;s) as multipliers to avoid confusion with the
integer variables (z;s) The constraints in (1) will be referred to as the primal constraints,
while the constraints in (2) will be referred to as the dual constraints.

At each iteration, MAM increases certain multipliers to improve the lower bound, while
other multipliers may be decreased to maintain dual feasibility. The criteria for selecting the
multipliers will be described shortly. Before stating MAM formally, we need to introduce

the following additional notation, which is relevant to the discussion of MAM only:

t = current iteration number

T = maximum number of iterations allowed

SLACI(J = Cj - Zui
1€l;
SOL = {j € J': SLACK; = 0}

LB=Zui+ZCj

i€l JEF

MAM Algorithm

In the following statement of the algorithm, the variables SOL, Sy, S1, S2,nis and SLACK ;s
always contain their current values. Explicit statements of their updates are omitted for sim-
plicity. U is set initially to 0, and SOL, Sy, Sy, and S, are initialized accordingly.

When MAM is applied to a subproblem, the following steps are performed:
Step (0):

a) Set t=1.

b) If So = S2 =0, SOL is feasible.
Terminate MAM and go to step 5.

c) If So # 0, go to step 3.

Step (1): Increase selected multipliers.

a) Set UP = U LNnS
jesor’
where SOL' = {j € SOL: NS, #0,I; NS, = 0}.

b) If UP = 0, terminate MAM.
c) Set u; = u; + ie.%l\glOL{SLACKj/llj NUP|}, i€UP.
Step (2): Decrease selected multipliers in violated dual constraints.

a) For each j € SOL' in turn:
If SLACK; <0,
set u; = u; + (ni/ Z ni) SLACK;, 1€I;NS,.

i€l;nS,

b) If Sy = 0, go to step 4.

Step (3): Ensure all primal constraints are covered.

For each : € I’ in turn:

Ifi € So,
a) Set u; = u; + rJ,IéiJI}{SLACKJ-}.
b) Set So = So\I, where ¢ = argmin;; {SLACK;}.
c) If So =0, go to step 4.
Step (4): Check termination criteria.
a) LB > UB, terminate MAM and fathom subproblem.
b) If So = S, = 0, go to step 5.
c) Sett=t+1. Ift =T, terminate MAM.
d) Go to step 1.
Step (5): Check whether incumbent should be updated.
a) If LB < UB, set UB = LB and update incumbent.
b) Terminate MAM and fathom subproblem.

Further description of MAM

The basic idea of MAM is to adjust the multipliers to improve primal feasibility while
remaining dual feasible. Whenever SOL is feasible (i.e., So = Sz = @), it becomes optimal
to the subproblem because all complementary slackness conditions are satisfied. At each
iteration, certain multipliers corresponding to over-covered primal constraints are decreased,

while multipliers corresponding to under-covered primal constraints are increased.

The process of decreasing multipliers corresponding to over-covered primal constraints is
accomplished indirectly by first increasing the multipliers in UP. (See step la.) The rationale
for the selection is as follows. Each variable j € SOL' covers the tight primal constraints in
I; N S and the over-covered primal constraints in [; N S;. When the multipliers in I; N Sy
are increased, dual constraint j becomes violated. In step 2, this violation is corrected by
decreasing the multipliers in I; N S,.

When the multipliers are increased in step lc, only the dual constraints represented
by SOL' become violated and need to be examined in step 2a. We refer to the operation
described by step 2a as “coverage scaling”. The more a primal constraint is over-covered, the
more the corresponding multiplier is reduced. Each “scaling” operation causes a violated
dual constraint to be satisfied exactly. Other*methods of scaling are described by Chan
(1987).

In step 3, certain multipliers in Sy are increased to ensure that all primal constraints are
covered. Each time a multiplier is increased in step 3b, at least one under-covered primal
constraint becomes tight or over-covered. The amount of increase is chosen as the maximum
increase permitted without violating any dual constraints. Hence, the dual solution is guar-
anteed to be feasible at the end of each iteration. In addition, SOL is a feasible solution to
the corresponding set covering problem. This means that the objective value of this feasible
solution also provides a valid upper bound for many applications such as vehicle routing.
Unfortunately, this upper bound is not valid for our application.

There are five termination criteria. The first appears in step 0b. When a new subproblem
is created, J' is reduced by the branching process. (See section 3.) As a result, the updated
SOL may be feasible to the subproblem. This condition is checked in step Ob. The second
criterion is found in step 1b and is satisfied when UP = (. This condition occurs either
when the dual solution is optimal, or when the algorithm cycles. (A cycle-prevention method

which is applicable to the coverage scaling technique is discussed in Chan 1987.) From our

experience, cycling occurs infrequently and only after many iterations (i.e., greater than
50), when LB is close to the optimal LP objective value. Furthermore, we have found that
it is more than adequate to apply MAM for at most five iterations to each subproblem.
Hence, cycling does not pose any serious problems, especially since MAM is being used as a
bounding procedure.

The other three termination criteria are found in step 4. Step 4a is a global criterion
which allows the subproblem to be fathomed. The feasibility criterion in step 4b is the
same as that in step Ob. When a “duality gap” exists, this criterion cannot be satisfied.
The maximum iterations criterion in step 4c is necessary because MAM is not an optimal
procedure. In our implementation, we apply MAM for a maximum of ten iterations at the
root node and a maximum of five iterations for all subproblems. After MAM terminates, if

the subproblem has not been fathomed, then it is stored in LIST.

3. Branching Strategy

Our branching strategy was developed to complement MAM. It is similar to the one
used by Martello and Toth (1981) for the generalized assignment problem. The branching
strategy was motivated by the following observations. When MAM is applied, the variables
which cover only tight primal constraints usually equal one in the optimal solution, even
after only one iteration. Moreover, for each ¢ € S, j; (the variable which covers constraint 1
in the optimal solution) is often contained in SOL, and is an element of SOL; = SOL N J;.
If j; is not in SOL;, then it usually becomes an element of SOL when MAM is applied to
the subproblem with SOL; deleted from J'.

During the branching process, the algorithm first identifies the primal constraint having
the smallest value of |J;| among the least over-covered constraints. (For computational
efficiency, we use the cardinality at the beginning of the algorithm instead, as indicated in

the formal statement below.) Indexing this constraint by p, the algorithm next creates ¢ +1

candidate subproblems, where ¢ = |SOL,|. The first ¢ candidate subproblems are created
by fixing a unique variable in SOL, to one. Fixing variable z; to one reduces a candidate
subproblem by |I;| constraints and |U;ey, Ji| variables. Candidate subproblem g+1 is created
by fixing all variables in SOL, to zero. A formal statement of the branching process is given

below:

Step B1.
a) Let p= min {¢: n; = q} where ¢ = min {n:}.
b) Let SOL, = {j1,72,J3,-++»Jq}

Step B2. For candidate subproblem k € {1,2,3,...,q}:

A

a) Set I',J', F,SOL and U to the corresponding values in the parent candidate problem.

b) Set F = FU {ji},I' = I'\;, and Jt = J\(User,, J:)-

For candidate subproblem ¢ + 1:
a) Set I',J', F,SOL and U to the corresponding values in the parent candidate problem.

b) Set J' = J\SOL,.

4. The Branch-and-Bound Algorithm

The new algorithm consists of the following five steps:

Step 0. LIST = {}.
Stepl. a)Set I'=1,J'=J,F =0, and UB = co.
b) i. Set u; = rjréxjrll {C;}, i€l
ii. For each 7 € J in turn:

If SLACK; <0, set u; = u; + SLACK;/|I;|, 1 € 1.

10

¢) Apply MAM.
d) If SOL is feasible, terminate.
Otherwise, go to step 3.
Step 2. a) If LIST is empty, terminate.
Otherwise, retrieve candidate problem with smallest LB.
b) If LB > UB, terminate.
Step 3. Determine branching parameters. (See step Bl in section 3.)
Step 4. Create new candidate subproblems. (See step B2 in section 3.)
Step 5. a) For each candidate subproblem:
i. Apply feasibility and reduction tests.
ii. Apply MAM.
iii. If subproblem is not fathomed during i or ii,
then store it in LIST.
b) Go to step 2.

In step 1, all variables are initialized and MAM is applied to problem P. The multipliers
are initialized at step 1b. Step 1bii is a variation of “scaling” (see section 2) which performs
better than coverage scaling for the root node. If the primal integer solution obtained by
MAM is feasible, it is also optimal and the algorithm terminates. Otherwise, the algorithm
goes to step 3 to begin the branching process. The algorithm retrieves the next candidate
problem using the “breadth-first” strategy. When the algorithm terminates, if an incumbent
exists, then it is optimal; otherwise, P is infeasible .

For each new candidate subproblem, problem feasibility and reduction tests are applied.
These tests basically check the cardinalities of the Jis. If |J;| = 0 for any z € I', then the
subproblem is infeasible and fathomed. If |J;| = 1 for any ¢ € I, then the “singleton” variable

is fixed to one and I’ and J' must be further reduced. In the latter case, the feasibility test

11

must be repeated. When these tests are completed, it is possible that SOL becomes feasible.
If the subproblem is not fathomed, then MAM is applied to obtain a tighter lower bound.

Variable Elimination

To further improve the efficiency of the algorithm, we have also extended the concept of
variable elimination to SPP. Variable elimination was formally presented by Sweeney and
Murphy (1979) for the Multiple Choice Integer Program and implemented within a branch-
and-bound framework for the multi-item scheduling problem (Sweeney and Murphy 1981).
It has also been used in many reduction procedures for other combinatorial optimization
problems.

To apply variable elimination, we use the following theorem: If SLACK; > UB — LB,
then z; = 0 in any optimal solution. The proof is obvious from LP duality theory. If the
multipliers are dual feasible, SLACK; (which equals C; — > _a;ju;) is the “reduced cost”
and represents the minimum increase of the current objectit\fé value (LB = Y ;) if z; is
fixed to one. Hence, if LB + SLACK; > UB, z; must be zero in the optima.liiglution.

Although variable elimination can be applied to any subproblem, our experience indicates
that it is sufficient to apply it to the root node only. After any iteration of MAM, all
j€J': SLACK; > UB — LB can be deleted. If an initial feasible solution is not available,
then the UB can be estimated by LB + 4. (See Chan 1987 for a detailed discussion on how
7 may be determined using a statistical method, based on solutions of historical problems
for a specific application.)

If the value of 7 is chosen appropriately, a significant fraction of the variables can be
eliminated without loss of optimality. This can result in a significant reduction in the size
of the search tree and the computation time for the MAM. However, if 7 is too large, only

a few variables are eliminated and the effect on the algorithm is negligible; if 7 is too small,

the optimal solution may be eliminated. (See Chan 1987 for a discussion on how to deal

12

with the latter case.)

In our implementation, we apply variable elimination within MAM at the root node. At
the end of iteration 5, we estimate UB to be LB/0.9 and reduce the problem accordingly.
If the reduced problem contains fewer than 1000 columns, then we terminate MAM. At the
end of iteration 10, we estimate UB to be LB/0.95 and reduce the problem further. These
estimates were chosen conservatively enough so that the optimal solution is not eliminated

in our test problems. The values can be selected to suit the particular application.

5. Computational Results and Discussion

Computational results are reported for a set of twenty crew scheduling problems provided
by American Airlines, Inc. The size, density and optimal objective value of each problem
are given in Table I. For all problems, the maximum value for |I;| is 17. These problems are
available to any researcher interested in obtaining them.

Our computational experiment is performed on the Sequent Symmetry (S81) multipro-
cessor computer using only one of the twelve CPUs, each of which is rated at three million
operations per second (or approximately four times faster than a VAX 750). We implemented
our new algorithm in FORTRAN and refer to the computer code as MASP (Multiplier Ad-
justment for Set Partitioning) hereafter. We believe that the most accurate way to compare
any algorithms is to test them simultaneously in the same environment. Hence, we compiled
both SETPAR and MASP with the Balance FORTRAN Compiler, and solved the problems
using each algorithm when the computer is otherwise completely idle. The results are shown
in Table II. (For better readability, all real numbers are rounded to the nearest decimal point
in Table IL.)

Computational times for SETPAR and MASP are given in seconds in columns 2 and 4,
respectively. These times exclude the time required to read the data and to initialize the

variables. The input and initialization times are not reported; but on average, SETPAR takes

13

11% longer than MASP for these steps. For our application, the results indicate that MASP
is significantly faster than SETPAR in all cases. The CPU time ratio (SETPAR/MASP) for
each problem is given in column 5. On average, MASP is 16.6 times faster than SETPAR.
This translates into a tremendous savings in computing time, since tens of thousands of
similar problems are being solved on a daily basis at American Airlines.

The total number of pivots required by SETPAR for each problem is given in column 3.
For MASP, the total number of nodes examined, the node at which the optimal solution is
found, and the maximum depth of the search tree for each problem are shown in columns
6, 7, and 8, respectively. (Node 0 refers to the root node.) The total number of iterations
executed for each problem is indicated in column 9. The results indicate that both the
branching strategy and MAM are very effective!

Considering that the average number of constraints for the problem set is 159, the resul-
tant search trees are fairly small. For all cases, only three subproblems are created during
each branching step. Moreover, the optimal solutions are generally found very quickly, and
the maximum depth of the search trees is only seven. Of the twenty problems, only problem
7 has a duality gap. Its LP optimal objective value v(P) is 11170. The maximum depth of
the search tree for problem 7 is 44 for SETPAR and only 4 for MASP. Unfortunately, we are
not able to obtain any additional problems with a positive duality gap.

In addition, MAM is able to find the optimal solution within ten iterations for five of
the problems. In fact, the optimal solution is found at iteration 3 for problem 14 and
iteration 4 for problem 16. In general, the lower bounds obtained by MAM converge very
quickly to v(P). Although the lower bounds obtained by MAM can theoretically decrease,
all but two of the iterations required to solve the twenty problems provide a lower bound
with a positive improvement. The lower bounds from the remaining two iterations have
zero improvement. (See Chan 1987 for a variation of MAM which is guaranteed to be

monotonically nondecreasing.)

14

Columns 10 and 11 indicate how close the lower bound is to v(P) (in terms of percentage
of v(P) after five and ten iterations, respectively. The dashes for problems 10, 14, 16, 19
and 20 indicate that the optimal solution are found before iteration 5 or 10, respectively.
For problem 7, MAM terminates after five iterations at the root node because the reduced
problem contains only 773 columns. On average, the lower bounds are within 2.4% of v(P)
after five iterations and within 1.5% after ten iterations.

Variable elimination was also very effective for our application. As revealed by columns
12 and 13, the average percentages of variables left are 28.1% and 11.0% at the end of
iteration 5 and 10, respectively. (Again, the dashes indicate that MAM is terminated before
reaching iteration 5 or 10.) The reductions in the sizes of the problems are significant in
view of the observation that our estimates for ! B are rather conservative. In our estimates,
we assume the lower bounds are within 10% of v(P) at the end of iteration 5 and within 5%
at the end of iteration 10. However, columns 10 and 11 show that the lower bounds are at
most 5% less than v(P) at the end of iteration 5 and at most 3.6% at the end of iteration
10.

An alternate variable elimination approach is to apply it only when LB improves by at
least a threshold amount during an iteration. For large-scale problems, applying variable
elimination to all subproblems would result in improved performance. Chan (1987) describes
several acceleration techniques which may reduce the computation time of MASP on large
problems. When dealing with large-scale real-life applications, these strategies should be
considered.

In this study, we have shown the practical effectiveness of variable elimination and the
potential of specialized multiplier adjustment methods. In addition to providing tight lower
bounds quickly, our new bounding procedure, MAM, is also easily applied. Unlike more
general methods such as subgradient optimization, MAM does not have any parameters to

fine tune.

15

Acknowledgment

We sincerely thank the three referees for their thorough and insightful reviews; the two
associate editors for their thoughtful and constructive comments; American Airlines Decision
Technologies for providing us with the problem set for this study; and XMP Software, Inc.,
for permitting us to compare SETPAR with MASP on the Sequent computer at Southern
Methodist University.

16

References

Balas, E. and M.W. Padberg (1979), “Set Partitioning - A Survey,” in N. Christofides,

A. Mingozzi, P. Toth, and C. Sandi (editors), Combinatorial Optimization, Wiley,
Chichester, England .

Balinski, M.L. and R.E. Quandt (1964), “On and Integer Program for a Delivery Problem,”
Operations Research, 12, 300-304.

Chan, T.J. (1987), “A Multiplier-Adjustment-Based Branch-and-Bound Algorithm for Solv-
ing the Set Partitioning Problem,” Ph.D. Dissertation, The University of Michigan.

Christofides, N. and S. Korman (1973), “A Computational Survey of Methods for the Set
Covering Problem,” Report No. 73/2, Imperial College of Science and Technology,
April 1973.

Day, R.H. (1965), “On Optimal Extracting from a Multiple File Data Storage System: An
Application of Integer Programming,” Operations Research, 13, 3, 489-494.

Etcheberry, J. (1977), “The Set Covering Problem: A New Implicit Enumeration Algo-
rithm,” Operations Research, 25, 760-772.

Fisher, M.L. (1981), “The Lagrangian Relaxation Method for Solving Integer Programming
Problems”, Management Science, 27, 1, 1-18.

Fisher, M.L. and P. Kedia (1986), “A Dual Algorithm for Large Scale Set Partitioning,”
Purdue University, Krannert Graduate School of Management, Working Paper No.
894.

Garfinkel, R.S. and G.L. Nemhauser (1969), “The Set Partitioning Problem: Set Covering
with Equality Constraints,” Operations Research, 17, 848-856.

Garfinkel, R.S. and G.L. Nemhauser (1970), “Optimal Political Districting by Implicit
Enumeration Techniques,” Management Science, 16, B495-B508.

Garfinkel, R.S. and G.L. Nemhauser (1972), “Optimal Set Covering: A Survey,” in A. Geof-
frion (editor), Perspectives on Optimization, Addison-Wesley, Reading, Massachusetts.

Geoffrion, A.M. (1974), “Lagrangian Relaxation for Integer Programming,” Mathematical
Programming Study, 2, 82-114.

Gerbracht, R. (1978), “A New Algorithm for Very Large Crew Pairing Problems,” 18th
AGIFORS Symposium, Vancouver, British Columbia, Canada, September, 1978.

Lu, Ming-Te (1970), “A Computerized Airline Crew Scheduling System,” Ph.D. Thess,
University of Minnesota.

Marsten, R.E. (1974), “An Algorithm for Large Set Partitioning Problems,” Management
Science, 20, 779-787.

Marsten, R.E., M.R. Muller and C.L. Killion (1979), “Crew Planning at Flying Tiger: A
Successful Application of Integer Programming,” Management Science, 25, 12, 1175-
1183.

Marsten, R.E. and F. Shepardson (1981), “Exact Solution of Crew Scheduling Problems
Using the Set Partitioning Mode: Recent Successful Applications,” Networks, 11, 165-
177.

Martello S. and P. Toth (1981), “An Algorithm for the Generalized Assignment Problem,”
in J.P. Brans (editor), Operational Research ’81, North-Holland, Amsterdam, 589-603.

Michaud, P. (1972), “Exact Implicit Enumeration Method for Solving the Set Partitioning
Problem,” IBM Journal of Research and Development, 16, 573-578.

Pierce, J.F. (1968), “Application of Combinatorial Programming to a Class of All-Zero-One
Integer Programming Problems,” Management Science, 14, 191-209.

Pierce, J.F. and J.S. Lasky (1973), “Improved Combinational Programming Algorithms for

a Class of All Zero-One Integer Programming Problems,” Management Science, 19,
528-543.

Revelle, C., D. Marks and J.C. Liebman (1970), “An Analysis of Private and Public Sector
Location Models,” Management Science, 16, 12, 692-707.

Root, J.G. (1964), “An Application of Symbolic Logic to a Selection Problem,” Operations
Research, 12, 4, 519-526.

Salkin, H.M. (1975), Integer Programming, Addison-Wesley, Reading, Massachusetts.

Sandi, C. (1979), “Subgradient Optimization”, in N. Christofides, A. Mingozzi, P. Toth and
C. Sandi (editors), Combinatorial Optimization, Wiley, Chichester, England.

Steinman, H. and R. Schwinn (1969), “Computational Experience with a Zero-One Pro-
gramming Problem,” Operations Research, 17, 5, 917-920.

Sweeney, D.J. and R.A. Murphy (1979), “A Method of Decomposition for Integer Pro-
grams,” Operations Research, 27, 1128-1141.

Sweeney, D.J. and R.A. Murphy (1981), “Branch and Bound Methods for Multi-item
Scheduling,” Operations Research, 29, 853-864.

Thuve, H. (1981), “Frequency Planning as a Set Partitioning Problem,” European Journal
of Operational Research, 6, 29-37.

Valenta, J.R. (1969), “Capital Equipment Decisions: A Model for Optimal Systems Inter-
facing,” M.S. Thesis, M.I.T., June 1969.

TABLE I. Description of Data Set.

Problem | # of rows | # of columns | density | v(P)
#| (m) (n) (%)
1 162 5218 5.47 | 10348
2 167 5014 5.47 | 10976
3 162 9612 5.79 9965
4 155 6803 5.87 | 10233
5 157 4691 6.26 9052
6 156 7496 5.49 | 10104
7 124 6313 6.26 | 11250
8 150 4292 5.80 9484
9 166 7005 5.70 | 11274
10 157 7199 5.53 8540
11 173 4706 5.69 | 11156
12 171 8406 5.18 | 11061
13 173 3874 5.57 | 11247
14 150 7107 5.56 9681
15 158 4127 5.44 | 12119
16 17 7256 5.31 | 12528
17 165 6786 5.41 | 10129
18 153 8223 5.89 9480
19 159 7957 537 | 10739
20 159 9238 5.59 8821

— L 61 - 9°66 8 0 0 0 8'v1 A ort 8°vTT 0t

- L'yl - 8°66 9 0 0 0 0°9¢ 601 91 8°¥8T 61
be 'yl 1°66 6°L6 1T € L 6 0°'1¢ 0Lt 19T 092§ 81
€11 £°6C ¥'96 0°S6 6¢1 L 6¢ LS 8°91 L'0¢ rot 8°¢IS L1

- - - - 14 0 0 0 p1e '8 SST 7192 91
(A 60V 0°'L6 ¥'96 SL S 144 0¢ y'Ct 0'8T £ee 6°'1C¢ St

- - - - € 0 0 0 9°S1 1A 4 143 8°L9 14!
T8I 19 44 v'86 0°'L6 9L 9 81 0ot Syl b'81 897 7°99¢ £l
€8 T'8¢C v'86 m.ho. L6 S 61 6t LTt S'1C 14! §°TsT (A
1A 19 8°66 8°'86 | 4! 1 | € 9°S1 1A LLt 8°€CT 11

- €St - 0°00T L 0 0 0 9°'b1 [ARY 66 £€97 01
1°91 L'vy 8°96 9°S6 o1 9 |43 123 9°C1 v'LYy 8Tt S'L6S 6
€6 LSt v'L6 8°96 v [4 14 6 0'el s'or (44! 8°9¢€T 8

- (At - ¥'96 69 14 €l 81 "1z p'St Lot L'STe L
LS 1) v'96 T'S6 (4] S (41 0t 191 LT €91 T°9LT 9
66 St L'66 0°66 (4! I T € 6’8 't 6 8°L6 S
T'el S'S¢ 96 ¥'96 8¢S 9 11 144 96 | A 44 (4 T'eet 14
6t eIt 1°86 696 €9 S 1T LT vl €61 0zr T'TLe €
861 6°6% L'Lé L'S6 9b 14 L ST 8'vI c'ee 9s¢ 9°'8T¢ [4
L'L $°0¢ £'86 VL6 SS 14 S ve 0°'81 0'ST 01¢ 2°697 1
19 B E] E] | I3 N yydap apou sapou oney (*998) syoard (*2938) #
o1 ® S ® o1 @ S® # ‘xew "1do # dwil NdD dSVIN # dVdLIS |wajqoid

(% u) (rl/l.cDh (d)A Jo %

synsay [euoneindwo) ‘11 Aqel

