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Abstract

This paper describes and compares several methods for computing stationary
probability distributions of Markov chains. The main linear algebra problem con-
sists of computing an eigenvector of a sparse, usually non-symmetric, matrix asso-
ciated with a known eigenvalue. It can be also be cast as a problem of solving a
homogeneous. singular linear system. We present several methods based on combi-
nations of Krylov subspace techniques, single vector power iteration and relaxation
procedures, and acceleration techniques. We compare the performance of these
methods on some realistic problems.

Key words: Markov chain models; Homogeneous linear systems; Direct meth-
ods; Successive Overrelaxation; Preconditioned power iterations; Arnoldi’s method;

GMRES.

Résumé

Diverses méthodes, calculant la distribution des probabilités de 1’etat stationnaire
d’une chaine de Markov, sont décrites et comparées dans cet article. Le probleme
consiste & calculer le vecteur propre associé a une valeur propre connue d’une ma-
trice creuse et non symétrique. Il peut aussi étre vu comme la résolution d’un
systéme homogene singulier. Nous présentons plusieurs méthodes fondées sur des
combinaisons de techniques d’espaces de Krylov, d’itérations sur un seul vecteur,
de relaxations et de préconditionnements divers. Nous comparons les performances
de ces méthodes sur quelques problémes réels.

Mots clés : Modélisation par chaines de Markov; systémes linéaires homogeénes;
méthodes directes; méthode de sur-relaxation; méthode de la puissance avec pre-
conditionnement; méthode d’Arnoldi; GMRES.
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1 Introduction

It is often possible to represent the behavior of a physical system by describing all the
different states which the system can occupy and by indicating how the system moves from
one state to another in time. If the time spent in any state is exponentially distributed, or,
equivalently, if the probabilities of transition depend only on the state currently occupied
by the system and not on the length of time that the state is occupied nor on any
previously occupied state, then the system may be represented by a Markov process.
Even when the system does not possess this exponential property explicitly, it is usually
possible to construct a corresponding implicit representation. Examples of the use of
Markov processes may be found extensively throughout the biological, physical and social
sciences as well as in business and engineering.

A Markov process is characterized by a (possibly infinite) set of states. The system
being modelled by this process is assumed to occupy one and only one of these states at
any given time. The evolution of the system is represented by transitions of the Markov
process from one state to another. These transitions are assumed to occur instantaneously;
in other words, the action of moving from one state to another consumes zero time. The
fundamental property of a Markovian system, referred to as the Markov property, is that
the future evolution of the system depends only on the current state of the system and
not on the past history.

The information we would like to obtain from the system is a knowledge of the proba-
bilities of being in a given state or set of states at a certain time after the system becomes
operational. Often this time is taken to be sufficiently long that all influence of the initial
starting state has been erased. The probabilities thus obtained are referred to as the
long-run or stationary probabilities. We shall denote by m;(n) the probability that the
Markov chain is in state ¢ at step n, i.e. mi(n) = Prob{X, = ¢}. In vector notation we
let 7(n) = (m(n), m(n), ..., mi(n), ..., ). Note that the vector 7 is a row vector. We
shall adopt the convention that all probability vectors are row vectors. All other vectors
will be considered to be column vectors unless specifically stated otherwise.

Consider a system that is modelled by a continuous time Markov chain (CTMC).
Let m;(t) be the probability that the system is in state : at time t. Furthermore, let
gij»t =1---n;j =1,---n denote the rate of transition from state i to state . Then

mi(t + At) = mi(2) (1 - Z:q,-j(t)At) + (Z Qki(t)rk(t)) At. (1)
i#i ki
We may set gii(t) = — 3= ;4 ¢i;(t), which yields ' |

it + 80 = m0) + (Saultmo)) ot + o), 2)
and
. mi(t+ AL) —7i(t o( At
Jim DO (qu, (At)), 3)

d7r,(t

= Lt o (4)



In matrix notation, this gives
dr(t '
0 _ 2. 5
When the Markov chain is homogeneous, we may drop the dependence on time and
simply write,

dr(t)
) _ 2. 0

At steady state, the rate of change of x(t) is zero and therefore, for a homogeneous
CTMC,

Q@ = 0. (7

The vector 7 , (now written independent of t) is the stationary or long-run probability

vector (7; is the probability of being in state i at statistical equilibrium) and may be

obtained by applying equation solving techniques to the homogeneous system of equations
(7). Also, this equation may be written as

P =m, (8)

where P = QAt + I and the desired probability vector appears as the eigenvector corre-
sponding to a unit eigenvalue of P. If At is chosen sufficiently small then P is a stochastic
matrix. For irreducible Markov chains, the unit eigenvalue of P is the one with largest real
part. Matrix techniques may be applied to either (7) or (8) to determine the stationary
. probability vector. The matrix @ is called the transition rate matrix, or the infinitesimal
generator of the Markov chain, while the matrix P is called the transition probability
matrix.

One of the practical difficulties is the large size of the matrices involved. For small
dense matrices the method of choice for solving linear systems of equations is the LU
decomposition and for computing eigenvalues/eigenvectors, it is the well-known QR. al-
gorithm. However, as the problem sizes increase these standard methods, or any method
intended for dense problems, becomes uneconomical. Moreover, the standard methods do
not take advantage of the sparsity of P.

Before discussing the algorithms themselves, we would like to say a few words on the
potential difficulty inherent in the problems to be solved. Nonsymmetric eigenproblems
can be so sensitive to variations in the original data, namely the matrix P, that any pro-
cedure to approximate eigenvalues or eigenvectors of P may encounter serious difficulties.
We examine here the particular case of the unit eigenvalue of P. The sensitivity of a given
eigenvalue ); of P to perturbations is usually measured by its condition number which is
defined as the inverse of the cosine of the angle between its corresponding right and left
eigenvectors y; and z;, i.e., el

Zil|{1Ys
N = [l ©)
In practice this means that a small perturbation to P, of norm €, may disturb the eigen-
value ); by as much as ¢();)e. In the situation of interest to us, the right eigenvector is
known to be (1,1,...,1)T and the left eigenvector consists of non-negative components.
As a result we can show that ¢(X;) € v/n. The eigenvalue is therefore well-conditioned in
general.



The condition number for the eigenvector y; involves the reduced resolvent S()\;),
defined as the inverse of the restriction of P — ;1 to {#}*, the subspace orthogonal to
the left eigenspace associated with \;, see [7], p. 17:

o(3:) = [1SA)Il-

Though not apparent from the definition, the condition number for the eigenvector is
implicitly related to that for the elgenva.lues of P, see Wilkinson [28] Moreover, it is easy
to show from the definition that [7]

1
> m

A consequence of the above inequality is that a poor separation of the unit eigenvalue
from the other eigenvalues will cause poor conditioning for the associated eigenvectors.

Another difficulty caused by the poor separation of the unit eigenvalue is a slow rate of
convergence. In Markov chain models, there is often a cluster of eigenvalues very close to
the unit eigenvalue, a result of the near decomposability of the system. This may render
the eigenvalue methods untolerably slow. It is important to detect such cases and use
appropriate alternative decomposition methods when they arise.

2 Iterative and Direct Solution Methods

Iterative methods of one type or another are by far the most commonly used methods
for obtaining the stationary probability vector from either the stochastic transition prob-
ability matrix or from the infinitesimal generator. There are several important reasons
for this choice. First, an examination of the iterative methods usually employed shows
that the only operation in which the matrices are involved, are multiplications with one
or more vectors, or with preconditioners. These operations do not alter the form of the
matrix and thus compact storage schemes, which minimize the amount of memory re-
quired to store the matrix and which in addition are well suited to matrix multiplication,
may be conveniently implemented. Since the matrices involved are usually large and very
sparse, the savings made by such schemes can be considerable. One such sparse storage
scheme, and the one used in implementing the iterative procedures in this study, is the
compressed sparse row format format [9, 20]. In this scheme only the non-zero elements,
their column indices and an index to the beginning of each row is kept. With direct
equation solving methods, the elimination of one non-zero element of the matrix during
the reduction phase often results in the creation of several non-zero elements in positions
which previously contained zero. This is called fill-in and not only does it make the or-
ganization of a compact storage scheme more difficult, since provision must be made for
the deletion and the insertion of elements, but in addition, the amount of fill-in can often
be so extensive that available memory is quickly exhausted. A successful direct method
must incorporate a means of overcoming these difficulties.

Iterative methods have other advantages. Use may be made of good initial approx-
imations to the solution vector and this is especially beneficial when a series of related
experiments is being conducted. In such circumstances the parameters of one experiment

7



often differ only slightly from those of the previous; many will remain unchanged. Con-
sequently, it is to be expected that the solution to the new experiment will be close to
that of the previous and it is advantageous to use the previous result as the new initial
approximation. If indeed there is little change, we should expect to compute the new
result in relatively few iterations.

An iterative process may be halted once a prespecified tolerance criterion has been
satisfied, and this may be relatively lax. For example, it may be wasteful to compute the
solution of a mathematical model correct to full machine precision when the model itself
contains errors of the order of 5-10%. A direct method is obligated to continue until the
final specified operation has been carried out.

And lastly, with iterative methods, the matrix is never altered and hence the build-up
of rounding error is, to all intents and purposes, non-existent.

For these reasons, iterative methods have traditionally been preferred to direct meth-
ods. However, iterative methods have a major disadvantage in that often they require a
very long time to converge to the desired solution. More advanced iterative techniques
such as the method of Arnoldi, have helped to alleviate this problem but much research
still remains to be done, particularly in estimating a priori, the number of iterations, and
hence the time, required for convergence. Direct methods have the advantage that an
upper bound on the time required to obtain the solution may be determined before the
calculation is initiated. More important, for certain classes of problem, direct methods
often result in a much more accurate answer being obtained in less time. Since iterative
method will in general require less memory than direct methods, these latter can only be
recommended if they obtain the solution in less time. Unfortunately, it is often difficult
to predict when a direct solver will be more efficient than an iterative solver.

3 Direct Methods and Markov Chains

We are concerned with obtaining the stationary probability vector 7 from the equations:

7@ =0,mr >0,me =1. (10)
Note that if we try to apply direct methods to the alternate formulation
7P =m, (11)
we need to first rewrite this as
n(l - P)=0, (12)

and in both cases we need to solve a homogeneous system of n linear equations in n
unknowns. A homogeneous system of n linear equations in n unknowns has a solution
other than the trivial solution (m; = 0, for all i) if and only if the determinant of the
coefficient matrix is zero, i.e. if and only if the coefficient matrix is singular.

Since the determinant of a matrix is equal to the product of its eigenvalues and since Q
and (I —P) both possess a zero eigenvalue, the singularity of Q (and I — P) and hence the
existence of a non-trivial solution, follows. It is known that if the matrix Q is irreducible,
there exists lower and upper triangular matrices L and U such that

QT = LU. (13)

8



Once an LU decomposition has been determined, a forward substitution step followed
by a backward substitution is usually sufficient to determine the solution of the system
of equations. For example, suppose we are required to solve Az = b with det(A) # 0 and
b # 0 and suppose further that the decomposition A = LU is available so that LUz = b.
By setting Uz = z, the vector z may be obtained by forward substitution on Lz = b, since
both L and b are known quantities. The solution x may subsequently be obtained from
Uz = z by backward substitution since by this time both U and z are known quantities.

However, in the case of the numerical solution of Markov chains, the system of equa-
tions, 7Q = 0, is homogeneous, i.e. b =0, and the coefficient matrix is singular. In this
case, the final row of U (if the Doolittle decomposition has been performed) is equal to
zero. Proceeding as indicated above for the non-homogeneous case, we have

QTz = (LU)z = 0. - (14)

If we now set Uz = z and attempt to solve Lz = 0 we find that, since L is non-singular,
we must have 2 = 0. Let us now proceed to the back substitution on Uz = z = 0 when
upn = 0. It is evident that we may assign any non-zero value to z,, say z, = 7, and
then determine, by simple back-substitution, the remaining elements of the vector z in
terms of n. We have z; = ¢;n for some constants ¢;,7 = 1,2, ...,n, and ¢, = 1. Thus the
solution obtained depends on the value of 5. There still remains one equation that the
elements of a probability vector must satisfy, namely that the sum of the probabilities
must be one. Consequently, normalizing the solution obtained from solving Uz = 0 so
that the conservation of probability condition holds, yields the desired unique stationary
probability vector 7 corresponding to the infinitesimal generator Q.

An alternative approach to this use of the normalization equation is to replace the last
equation of the original system with me = 1. If the Markov chain is irreducible, this will
ensure that the coefficient matrix is non-singular. Furthermore, the system of equations
will no longer be homogeneous (since the right hand side is now e, ), and so the solution
may be computed without problem.

Of course, it is not necessary to replace the last equation of the system by the nor-
malization equation. Indeed, any equation could be replaced. However, this is generally
undesirable, for it will entail more numerical computation. For example, if the first equa-
tion is replaced, the first row of the coefficient matrix will contain all ones and the right
hand side will be e;. The first consequence of this is that during the forward substitution
stage, the entire sequence of operations must be performed to obtain the vector z; whereas
if the last equation is replaced, it is simply possible to read off the solution immediately,
ie. 21 =23 = ...zp1 = 0 and 2z, = 1. The second and more damaging consequence is
that substantial fill-in will occur since a multiple of the first row which contains all ones
must be added to all remaining rows and a cascading effect will undoubtedly occur in
all subsequent reduction steps. The problem of fill-in, which plagues direct methods is
considered later. However, one should note that available packages such as. MA28, see
e.g. [9], will prevent this disastrous situation by.reordering the equations dynamically.
The strategy used in a package such as MA28 attempts to reach a compromise between
numerical stability and minimization of fill-in.



3.1 Inverse Iteration

Inverse iteration is the method of choice for the direct solution of 7Q = 0. Although
this may sound rather like a contradiction in terms, we shall see that inverse iteration,
when applied to an infinitesimal generator matrix @ to obtain the stationary probability
vector 7 requires only a single iteration to determine 7 at least as accurately as any of
the aforementioned direct methods. In fact, this method simply reduces to the standard
LU decomposition method with special treatment of the zero pivot and the right-hand
side vector.
Consider an iterative scheme based on the relation

z® = (QT — uI)7'a*-Y. (15)

Let z(© be an arbitrary column vector that can be written as a linear combination of the
right-hand eigenvectors of Q7; i.e.

z© = > o, (16)
=1

where the vectors v; are the right eigenvectors of the matrix QT corresponding to the
eigenvalues \;; i.e

Qv = M\v; 1=1,2,...,n. (17)
Then .
z® = (QT — puI)7*z® =¥ ai(\i — p) Fu; (18)
i=1
= (Ar = 1) Flavr + D ai(Ar — ) (i — p) " wi]. (19)
1#r

Consequently, if for all ¢ # r, [A, — u| << |\; — p| convergence to the eigenvector v, is
rapid since [(A, — u)/(\; — #)]F will rapidly tend to zero. If 4 = )., then the summation
in equation (19) is zero and the eigenvector v, will be obtained to full machine precision
in a single iteration.

Note that when implementing inverse iteration, there is no need to explicitly form the
inverse of the shifted matrix (Q7 — uI). Instead, the approach to be adopted is to solve
the set of linear equations

(QT _ uI)x(") — x(k—-l).

This is obviously identical to the original formulation in equation (15). If  is not an
eigenvalue of @, then (QT — pI) is non-singular and for z(*=1) # 0, an LU decomposition
approach can be implemented without further ado.

If 4 is an eigenvalue of Q (i.e. u = ),), then (QT — uI) is singular. In this case the
zero pivot which arises during the LU decomposition should be replaced by a small value
€. This should be chosen as the smallest representable number such that 1 4+ ¢ > 1 on
the particular computer being used. After one iteration, this approach results in a very
inaccurate solution to the set of equations, but a rigorous error analysis [28] will show
that since the elements in the solution vector possess errors in the same ratio, normalizing
this vector will yield a very accurate eigenvector.

10



In our particular case we are looking for the right eigenvector corresponding to the
zero eigenvalue of Q7. Therefore, letting # = 0 in the iteration formula, we get

(QT _ OI).'L‘(k) — QT(II(k) — x(k-l) (20)
and thus we are simply required to solve
QTzM = z(© (21)

Note that choosing z(® = e, reduces the amount of computation involved. The iteration
simply reduces to the back substitution step

Ux(l) = (22)

€y

An appropriate normalization of (") will yield the stationary probability vector, i.e.

T 1
—_ ¢)]
=T (23)

3.2 Compact Storage Schemes for Direct Methods

Frequently the matrices generated from Markov models are too large to permit regular
two-dimensional arrays to be used to store them in computer memory. Since these ma-
trices are usually very sparse, it is economical, and indeed necessary, to use some sort of
packing scheme whereby only the non-zero elements and their positions in the matrix are
stored. One of the most commonly used storage schemes for sparse matrices is the row
sparse compact storage, sometimes referred to as the a,ja,ia scheme [9]. This involves
the use of a real array A(1 : NZ) containing the non-zero elements of the matrix, stored
row-wise, an integer array JA(1 : NZ) containing the column positions of the correspond-
ing elements in the real array A, and finally a pointer integer array IA(1 : N + 1) the i-th
element of which points to the beginning in the arrays A and JA of the consecutive rows.

When a direct equation solving method is to be applied, provision usually must be
made to include elements which become non-zero during the reduction and somewhat
less important to remove elements which have been eliminated. If memory locations are
not urgently required, the easiest way of removing an element is to set it to zero without
trying to recuperate the words which were used to store the element and its location
pointers. To include an element into the storage scheme, either some means of appending
this element to the end of the storage arrays must be provided, or else sufficient space
must be left throughout the arrays so that fill-in can be accommodated as and when it
occurs. The first usually requires the use of link pointers and is most useful if the non-zero
elements are randomly dispersed throughout the matrix, while the second is more useful
if the pattern of non-zero elements is rather regular.

When applying direct equation solving methods such as Gaussian elimination, it is
usually assumed that the complete set of linear equations has already been derived and
that the entire coeflicient matrix is stored somewhere in the computer memory, albeit in a
compact form. The reduction phase begins by using the first equation to eliminate all non-
zero elements in the first column of the coefficient matrix from column position 2 through

11



n. More generally, during the i** reduction step, the i** equation is used to eliminate
all non-zero elements in the i column from positions (i + 1) through n. (Naturally, it
is assumed that the pivot elements are always non-zero, otherwise the reduction breaks
down).

However, since we are responsible for both the initial generation of the system of
equations and for its solution, it is possible to envisage an alternative approach, and one
which has several advantages over the traditional method outlined above. Assume, as is
usually the case, that the coefficient matrix can be derived row by row. Then, immediately
after the second row has been obtained, it is possible to eliminate the element in position
(2,1) by adding a multiple of the first row to it. This process may be continued so that
when the i-th row of the coefficient matrix is generated, rows 1 through (i — 1) have been
derived and are already reduced to upper triangular form. The first (: — 1) rows may
therefore be used to eliminate all non-zero elements in row ¢ from column positions (z,1)
through (2,2 — 1), thus putting it into the desired triangular form. Note that since this
reduction is performed on @7, it is the columns of the infinitesimal generator that are
required to be generated one at a time and not its rows.

This method has a distinct advantage in that once a row has been generated in this
fashion, no more fill-in will occur into this row. It is suggested that a separate storage area
be reserved to hold temporarily a single unreduced row. The reduction is performed in this
storage area. Once completed, the reduced row may be compacted into any convenient
form and appended to the rows which have already been reduced. In this way no storage
space 1s wasted holding subdiagonal elements which, due to elimination, have become
zero, nor in reserving space for the inclusion of additional elements. The storage scheme
should be chosen bearing in mind the fact that these rows will be used in the reduction
of further rows and also later in the algorithm during the back-substitution phase.

Since the form of the matrix will no longer be altered, the efficient storage schemes
which are used with many iterative methods can be adopted. Note that this approach can
not be used for solving general systems of linear equations because it inhibits a pivoting
strategy from being implemented. It is valid when solving irreducible Markov chains since
pivoting is not required in order that the LU decomposition of an infinitesimal generator
matrix Q7 be performed in a stable manner.

Later in this paper, we report on our computational experience with a direct method
programmed according to the guidelines given above. Specifically, we implemented a
sparse inverse iteration algorithm called GE (for Gaussian Elimination). This program
accepts the transpose of a transition rate matrix which is stored in the usual row compact
form [9]. It extracts each row of QT one at a time, expands this row into a vector of length
n and performs reductions on it by adding multiples of previously reduced rows. When
the reduction is completed, the reduced row is compacted once again and appended to
previously reduced rows. The multipliers are not kept. As is shown later, this method
works extremely well for small and medium sized problems (less than 2,500 states), but it
requires too much memory when large problems are involved. We also experimented with ~
the software package MA28, but its performance was always inferior to that of GE. The
reason is that GE was designed uniquely for Markov chain problems, while MA28 was
designed as a general purpose sparse linear equation solver. We stress that GE should
not be used to solve systems of equations which require pivoting. In these, and in a wide

12



variety of other problems, MA28 has been used very .successfully [16].

4 Single vector iterations

4.1 The power method

The simplest iteration method for computing the dormnant eigenvector of a matrix A i is
the single vector iteration

m(k+1) = mAx(k)

where ¢(*) is a normalizing factor, typically the component of the vector Az(*) that has the
largest modulus. One problem with this simple scheme is that its rate of convergence can
be very slow. The convergence factor for the dominant eigenvalue ) is given by Ay/Aq,
where ), is the subdominant eigenvalue. In situations where the eigenvalues cluster around
A1, as is the case for nearly decomposable systems, the convergence can be unacceptably
slow.

For our situation the matrix of interest A is PT. Since we know that the matrix
has row sums equal to 1 and has 1 as the dominant eigenvalue, we can safely skip the
normalizing factor and the above iteration takes the form

k) — pT. (k) ' - (24)
' =z — QTz® (25)

4.2 Gauss-Seidel iteration and Successive Overrela_xation

Relaxation schemes are based on the decomposition
Q"=D-E-F

where D is the diagonal of QT, —E is the strict lower part of QT and —F its strict upper
part. The Gauss-Seidel iteration then takes the form

(D — E)a™+) = Fz®), | (26)

This corresponds to correcting the j-th component of the current approximate solution,
for 3 = 1,2,..n, i.e., from top to bottom, by making the j-th component of the residual
vector equal to zero. To denote specifically the direction of solution this is sometimes
referred to as forward Gauss-Seidel. A backward Gauss-Seidel iteration takes the form

(D — F)z*+) = E£® (27)

and corresponds to correcting the components from bottom to top.

Note that convergence of the above (forward) iteration is governed by the spectral
radius of (D — E)~!'F. Convergence may sometimes be improved by using the alternative
splitting :
wQT = (D —wE) — (wF + (1 - w)D)
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which leads to the iteration, called successive overrelaxation, (SOR)
(D ~wE)z* ) = (wF + (1 — wD)) z®. (28)

A backward SOR relaxation may also be written.

For many problems there exist some value of w which provides the best possible con-
vergence rate. The resulting optimal convergence rate can be a considerably improvement
over Gauss-Seidel. The choice of an optimal, or even a reasonable, value for w has been
the subject of much study, especially for problems arising in the numerical solution of
partial differential equations [27]. Some results have been obtained for certain classes of
matrices. Unfortunately, very little known at present for arbitrary non-symmetric linear
systems,

As a general rule, it is best to use a forward iterative method when the preponderance
of the elemental mass is to be found below the diagonal for in this case, the iterative
method essentially works with the inverse of the lower triangular portion of the matrix and
intuitively, the closer this is to the inverse of the entire matrix, the faster the convergence.
On the other hand, the backward iterative schemes work with the inverse of the upper
triangular portion and these methods work best when the non-zero mass lies above and
on the diagonal. We point out that some specialized counter examples exist which makes
the above recommendations only rules of thumb.

Little information is available on the effect of the ordering of the state space on the
convergence of these iterative methods. Examples are available in which Gauss-Seidel
works extremely well for one ordering but not at all for an opposing ordering, [15]. In
these examples the magnitude of the non-zero elements appears to have little effect on
the speed of convergence. It appears that an ordering that in some sense preserves the
direction of probability flow works best.

4.3 SSOR Iteration

The Symmetric Successive Overrelaxation method (SSOR) consists of following a relax-
ation sweep from top down by a relaxation sweep from bottom up. Thus, the case w = 1
corresponding to a SGS (Symmetric Gauss Seidel) scheme would be as follows:

(D - E)z*+1/2 = pg(k) (29)
(D _ F).’I}(H'l) = Ez(k+1/2) (30)
while for arbitrary w, it is:
(D —wE)e*1/?) = (wF + (1 -~ wD))z® (31)
(D ~wF)a™*) = (WE + (1 —wD))s*+/? (32)

The main attraction of SSOR schemes is that the iteration matrix is similar to a symmetric
matrix when the original matrix Q7 is symmetric. This situation rarely occurs in Markov
chain models. SSOR does however, help to reduce poor convergence behavior that results
from a badly ordered state space.
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4.4 Preconditioned power iterations

As was already mentioned the power method can be extremely slow to converge when
the subdominant eigenvalue is very close to one. The relaxation schemes described above
typically have a better convergence rate. This means that the iteration matrices corre-
sponding to these schemes have an eigenvalue A, farther away from 1 than the original
matrix.

Preconditioning is a technique whereby the original system of equations is modified in
such a way that the solution is unchanged but the distribution of the eigenvalues is better
suited for iterative methods. In a general context, a preconditioning technique consists
of replacing a system Az = b by a modified system such as M~1Az = M~1b. Here M
is a preconditioning matrix for which the solution of Mz = y is inexpensive. When the
coeflicient matrix is singular and the right hand side is zero, the method turns out to be
equivalent to the power method applied to the matrix (I — M~1A).

We have seen that for the numerical solution of Markov chain problems, the power
method may be written as

gt = () _ QT;(k) (33)

(I-Q")e® (34)

Here preconditioning involves premultiplying the matrix QT with a matrix M1, generally
chosen so that M approximates Q7 but is such that its LU decomposition can be efficiently
determined. In this case, the iteration matrix, (I — M~'QT) has one unit eigenvalue and
the remaining eigenvalues are (hopefully) all close to zero, leading to a rapidly converging

. iterative procedure. In this paper we refer to such methods as preconditioned power
iterations, or fixed point iterations.

4.5 Gauss-Seidel, SOR and SSOR preconditionings

A look at (26) reveals an interesting connection with the power method. We can rewrite
(26) as ~
e*+D = (D - E)1Fe®
= D-E*((D-E)-Q")2®
= 20 (D= E)1QTW

Comparing this with equation (25), we observe that the above iteration is simply the
power method applied to the matrix

I—(D—-E)'qQ7. | (35)

Thus (D — E) performs the role of the preconditioning matrix M. As a result we may
view the Gauss-Seidel method as a preconditioned power iteration. It is an attempt to
reduce Ay, without changing the eigenvector.

The solution to the above system is identical with that of the original one. Its rate
of convergence, on the other hand, may be substantially faster than that of the original
problem. For this reason we will refer to the system (35) as the Gauss-Seidel precon-
ditioned version of @Tz = 0. Similarly one can define an SOR preconditioning and an
SSOR preconditioning.
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4.6 ILU preconditioning

By far the most popular preconditioning techniques are the incomplete LU factorization
techniques. These are sometimes also referred to as “combined direct-iterative” methods.
Such methods are composed of two phases. First we start out by initiating an LU decom-
position of Q7. At various points in the computation, non-zero elements may be omitted
according to various rules. Some possibilities are discussed in the following paragraphs.
In all cases, instead of arriving at an exact LU decomposition, what we obtain is of the
form
QT =LU - E

where E, called the remainder, is expected to be small in some sense. When this has been

achieved, the “direct” phase of the computation is completed. In the second phase, this
(incomplete) factorization is incorporated into an iterative procedure by writing

QT.’D =(LU-E)z=0

and then using
LUz*+Y) = Egk)

or equivalently
x(k-*-l) — w(k) _ (LU)_IQT.'E(k)

as the iteration scheme. Note that this is the same as solving the preconditioned (from
the left) system of equations .
UL 1QTz =0

by the power method. _

In this paper we report on the numerical results obtained with three different in-
complete factorizations. The first has been widely discussed and found to be successful
especially when applied to systems of equations that arise in the solution of elliptic partial
differential equations. Given the matrix Q7, this ILU factorization consists of performing
the usual Gaussian Elimination factorization and dropping any fill-in during the process.
In other words,

QT =ILU+E (36)
where L is unit lower triangular, U is upper triangular, and L + U has the same zero
structure as the matrix Q. This is referred to as ILU(0) or IC(0), for Incomplete Choleski,
in the symmetric case.

If we denote by NZ(Q) the set of all pairs (7,5) for which ¢;; # 0, then a formal
description of the ILU(0) algorithm applied to a matrix Q is as follows. Note that the
diagonal elements of U are not stored since they are known implicitly to be unity.

Algorithm: ILU(0)

Doi=1,n
DO ] = l,n
I (,7) € NZ(Q) then
* Compute s = g;; — :i';(i’j)—l Ligug;

* If (Z 2 ]) then l,'j =S8
* If (¢<j) then uy; = s/l
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ILU(0) is known to exist for non-singular M-matrices [14]. It may also be shown to
exist for the matrix @ (and QT), by trivially extending the results in [2], page 42.

The second incomplete factorization that we studied is a threshold based scheme. Here
the decomposition proceeds in a manner similar to that described for the GE method of
section 3.2. However, after a row of the matrix has been reduced and before that row
is recompacted and stored, each non-zero element is examined. If the absolute value of
any element in the row is less than a prespecified threshold, then it is replaced by zero.
Similarly, if any of the multipliers formed during the reduction are less than the threshold,
they are dropped from further consideration. The only exception to this drop threshold
are the diagonal elements which are kept no matter how small they become. We refer to
this incomplete factorization technique as ILUTH.

The final type of incomplete factorization which we examined, is based on a realization
that only a fixed amount of memory may be available to store the incomplete factors, L
and U, so only a fixed number of non-zero elements are kept in each row. These are
usually chosen to be the largest in magnitude. The algorithm proceeds in the same way
as ILUTH. When a row has been reduced, a search is conducted to find the K largest
elements in absolute value. This search is conducted over both the multipliers and the
non-zero elements to the right of the diagonal element. As before, the diagonal elements
are kept regardless of their magnitude. In our experiments, this incomplete factorization
is referred to as ILUK.

Although the above three ILU factorizations are the only ones we considered, there
are other possibilities. For example, some ILU-based methods make use of the symmetric
zero structure of a matrix [11]. In other words, LU is the exact decomposition of the
symmetric non-zero portion of the matrix. W = LU is chosen as

wij = ¢ if gjgi #0,
w;; = 0 otherwise,

- and now standard symmetric ordering schemes, such as those available in SPARSPAK,
can be modified and used quite effectively. However, we believe that ILUO, ILUTH and
ILUK will be the most effective for Markov chain problems.

5 Projection Techniques

5.1 General projection processes

An idea that is basic to sparse linear systems and eigenvalue problems is that of projection
processes [23]. Given a subspace K spanned by a system of m vectors V = [V15 -3 V)
a projection process onto K = span {V} finds an approximation to the original problem
from the subspace K. For a linear system Az = b, this is done by writing z = Vy
and requiring that the residual vector b — AVy be orthogonal to some subspace L , not
necessarily equal to K. If a basis for L is W = span{w,, ws, ..., w,} then this yields the
condition:

WT(b—-AVy)=0
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or

&= V[WTAV]"'WTh (37)

For an eigenvalue problem Az = Az, we seek an approximate eigenvalue A € IC and
an approximate eigenvector Z € K such that the residual vector Az — Az is orthogonal
to the subspace L. Writing again z = Vy and translating this Petrov-Galerkin condition
yields, '

WT(AVy —AVy) =0

or

WTAVy = \WWTvy (38)

which is a generalized eigenvalue problem of dimension m. The minimum assumptions
that must be made in order for these projection processes to be feasible are that W7 AV
be non-singular for linear systems and that W7V be non-singular for eigenvalue problems.
Clearly this will provide m approximate eigenpairs );, ;. In most algorithms, the matrix
WTV is the identity matrix, in which case the approximate eigenvalues of A are the eigen-
values of the m x m matrix C = WTAV. The corresponding approximate eigenvectors
are the vectors Vy; where y; are the eigenvectors of C. Similarly the approximate Schur
vectors are the vector columns of VU, where U = [u;, us,. . ., un} are the Schur vectors of
C, i.e., UHCU is quasi-upper triangular. A common particular case is when K = L and
V = W is an orthogonal basis of K. This is then referred to as an orthogonal projection
process.

Note that we can adopt either of the two view points eigenvalue problem or linear
systems. The only possible difficulty is that for the linear systems approach, the original
problem is homogeneous (b = 0) and the projected problem is not necessarily singular.

We next describe a few of these approaches and describe how preconditioning can be
incorporated.

5.2 Subspace Iteration

One of the simplest methods for computing invariant subspaces is the so-called subspace
iteration methods well-known to the structural engineers. In its simplest form the sub-
space iteration can be described as follows, see [13, 26] for details.
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Subspace Iteration

1. Choose an initial orthonormal system Vp = [vy,v,...,v,:] and an integer k;
2. Compute X = A*V; and orthonormalize X to get V. | |
3. Perform an orthogonal projection process onto span{V}.

4. Test for convergence. If satisfied then exit else continue.

5. Take Vo = VU, the set of approximate Schur vectors, (alternatively take Vo = VY,
the set of approximate eigenvectors), choose a new k and go to 2.

The above algorithm utilizes the matrix A only to compute successive matrix by
vector products w = Awv, so sparsity can be exploited. However, it is known to be a
slow method, often much slower than some of the alternatives to be described next. In
fact a more satisfactory alternative is to use a Chebyshev-Subspace iteration: step 2 is
replaced by X = t;(A)Voh, where ¢; is obtained from the Chebyshev polynomial of the
first kind of degree k, by a linear change of variables. The three-term recurrence of
Chebyshev polynomial allows to compute a vector w = t;(A)v at almost the same cost as -
AFy. Performance can be dramatically improved. Details- on implementation and some
experiments are described in [22].

5.3 Arnoldi’s method

A second technique used in the literature is Arnoldi’s method [1, 24] which is an orthogonal
projection process onto K,, = span{v;, Av,,..., A™ v, }. The algorithm starts with some
non-zero vector v; and generates the sequence of vectors v; from the following algorithm,
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Algorithm: Arnoldi

1. Initialize:

Choose an initial vector v; of norm unity.
2. Iterate: Do 3 =1,2,....m

1. Compute w := Av;

2. Compute a set of j coefficients h;; so that

J
wi=w-— Zh;j'vg (39)

i=1
is orthogonal to all previous v;’s.

3. Compute hjyy,; = ||lw]; and vjyy = w/hjy ;.

By construction, the above algorithm produces an orthonormal basis of the Krylov
subspace K, = span{vy, Avy,...,A™ 1v;}. The m x m upper Hessenberg matrix H,,
consisting of the coefficients h;; computed by the algorithm represents the restriction of
the linear transformation A to the subspace K,,, with respect to this basis, i.e., we have
H,, = V,Z' AV,,, where V,, = [v,v,,...,v,]. Approximations to some of the eigenvalues of -
A can be obtained from the eigenvalues of H,,. This is Arnoldi’s method in its simplest
form.

Note the useful relation

where H,, is the (m + 1) x m upper Hessenberg matrix whose non-zero elements are the
hi; defined in the above algorithm. In other words H,, is obtained from H,, by appending
to it the row [0,0,...,0, hppi1,m]-

As m increases, the eigenvalues of H,, that are located in the outmost part of the
spectrum start converging towards corresponding eigenvalues of A. In practice, however,
one difficulty with the above algorithm is that as m increases cost and storage increase
rapidly. One solution is to use the method iteratively: m is fixed and the initial vector v,
is taken at each new iteration as a linear combination of some of the approximate eigen-
vectors. Moreover, there are several ways of accelerating convergence by preprocessing v,
by a Chebyshev iteration before restarting, i.e., by taking v, = t;(A)z where z is again a
linear combination of eigenvectors.

A technique related to Arnoldi’s method is the non-symmetric Lanczos algorithm
(17, 8] which delivers a non-symmetric tridiagonal matrix instead of a Hessenberg matrix.
Unlike Arnoldi’s process, this method requires multiplications by both A and AT at every
step. On the other hand it has the big advantage of requiring little storage (5 vectors).
Although no comparisons of the performances of the Lanczos and the Arnoldi type al-
gorithms have been made, the Lanczos methods are usually recommended whenever the
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number of eigenvalues to be computed is large which does not correspond to the situation
under consideration.

5.4 Preconditioned GMRES for singular systems

In this section we adopt the viewpoint that we are trying to solve the homogeneous system
Az =0 (41)

The case of interest to us is when there is a non-trivial solution to (41), i.e., when A is
singular. Then the solution is clearly non-unique and one may wonder whether or not
this can cause the corresponding iterative schemes to fail. The answer is usually no and
we will illustrate in this section how standard Krylov subspace methods can be used to
solve (41). We start by describing the GMRES algorithm for solving the more common
linear system

Az =b. (42)

in which A is non-singular. GMRES is a least squares procedure for solving (42) on the
Krylov subspace K,,. More precisely, assume that we are given an initial guess zo to (42)
with residual ro = b — Azo. Let us take v; = ro/||ro||; and perform m steps of Arnoldi’s
method as described earlier. We seek an approximation to (42) of the form z,, = zo + 6,
where 6, belongs to K,,. Moreover, we need this approximation to minimize the residual

norm over K,,. Writing é,, = V,,y,» we see that y,, must minimize the following function
of y,
J(y) = b= A(zo+ Vamy)ll2
= ”'FO - Avmy“2
= |lllrollex — AVamyll2 (43)

Using the relation (40) and letting 3 = ||rol|, this becomes

J(y) = |Vins1[Ber — Huylll2 = [|Ber ~ Huyll (44)

by the orthogonality of V., ;. As a result the vector y,, can be obtained inexpensively by
solving a (m + 1) x m least squares problem. We should point out that this procedure
is also a projection process. More precisely, as is well-known the minimization of J(y) is
equivalent to imposing the Gram condition that

ro— AV,y Lv Vv € span{AV,}
which means that we are solving Aé = r¢ with a projection process with
K = span{ro, Arg,- -+, A™ 110}

and L = AK. :
A brief description of the GMRES algorithm follows. Details can be found in [25].
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Algorithm: Preconditioned GMRES
1. Start: Choose o and a dimension m of the Krylov subspaces.

2. Arnoldi process:

e Compute ro = b— Azg, # = ||ry||z and v, = ro/B.

e For j=1,2,..,m do:

'h'i,j = (A'Uj,v,'), i=1’22"'aj, (45)
J

big1 = Av; =) hiv;
=1

hivii = |Djsll2s

Visr = Ojp1/hjp,;

Define H,, as the (m +1) x m matrix whose non-zero entries are the coefficients h;;.

3. Form the approzimate solution:

¢ Find the vector y,, which minimizes the function J(y) = ||Be; — H,,y||; where
e1 = [1,0,...0]T, among all vectors of R™.

o Compute z,, = To + Vi ym

4. Restart: If satisfied stop, else set zo « z,, and goto 2.

Each outer loop of the above algorithm, i.e., the loop consisting of steps 2, 3, and 4,
is divided in two main stages. The first stage is an Arnoldi step and consists of building
a basis of the Krylov subspace K.,,. The second consists of finding in the affine space
zo + Ky, the approximate solution z,, which minimizes the residual norm. This is found
by solving the least squares problem of size m + 1 of step 3, whose coefficient matrix is
the upper Hessenberg matrix H,,.

Note that in practice one computes progressively the least squares solution y,, in
the successive steps j = 1,...m of stage 2. This allows to obtain at every step and at
virtually no additional cost, the residual norm of the corresponding approximate solution
zj without having to actually compute it, see [25]. As a result one can stop as soon as
the desired accuracy is achieved.

GMRES is theoretically equivalent to GCR [10] and to ORTHODIR [12] but is less
costly both in terms of storage and arithmetic [25]. Moreover, it can be shown that, in
exact arithmetic, the method cannot break down although it may be very slow or even
stagnate in cases when the matrix is not positive real.
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We now go back to the situation of singular systems of the form (41). In the case
where the right-hand side b is zero and the matrix A is singular, the above algorithm
can be used as is to compute the approximate solution of (41). The only condition is
to take zo # 0 to avoid a break down in the first step. From what was said earlier, the
algorithm will compute an approximate solution by attempting to minimize ||Az||, over
the affine subspace zo + span{ro, Aro, ..., A"~1r,} which is typically of dimension m when
ro = Az is non-zero. Thus whenever z; # 0 one can expect the method to work without
any difference with the non-homogeneous case. It is subject to the same conditions of
breakdown as the usual GMRES algorithm for general linear systems: the only possible
cases of break-down is when the inital vector ro has minimal degree not exceeding m — 1
with respect to A. In this case K,, becomes invariant under A and the algorithm stops
prematurely delivering the exact solution. However, this happens very rarely in practice.

5.5 Preconditioned Arnoldi and GMRES Algorithms

Preconditioning techniques can also be used to improve the convergence rates of Arnoldi’s
method and GMRES. This typically amounts to replacing the original system (41) by, for
example, the system,

M 1Az =0 (46)

where M is a matrix such that M~'w is inexpensive to compute for any vector w.

Thus in both the Arnoldi and the GMRES case, we only need to replace the original
matrix A in the corresponding algorithm by the preconditioned matrix M~*A. We may
also precondition from the right, i.e., we may replace A by AM~!. In this situation if
AM~'z = 0 we should note that the solution to the original problem is M~1z, which
require one additional solve with M. If M = LU then the preconditioning can also be
split between left and right, by replacing the original matrix by the preconditioned matrix
LYAU.

6 Numerical tests

In this section we report on some numerical tests to compare the methods described in this
paper. We consider three realistic test problems arising from three different applications.
The tables at the end of this paper present the results obtained when different numerical
solution procedures were used to solve these queueing models. The tests were conducted
on a Ardent Titan superworskation with two processors using double precision. The
compiler optimization option used was always -03, i.e., the highest. Before examining
the examples and the results, we would like to comment on the accuracy of the results
obtained. Observe that in table 1, the residual norm is not always less than 10710 the
tolerance requested of the method. For example, using SOR with w = 1.5, the residual
after the maximum number of iteration permitted (1000) is 0.140E-03. This should not
be taken to mean that the computed solution is correct to three decimal places. In fact, in
this particular example, an examination of the queue length distributions shows that the
computed probability vector has no decimal places of accuracy. The reason is that this
problem is somewhat ill-conditioned, and a small residual does not necessarily indicate a
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small error in the solution. We cross-validated all our results and it was found that in the
tables that follow, the answers obtained are indeed correct when the method converges in
less than the maximum number of iterations. No conclusions should be drawn about the
accuracy of the solution in other cases. Note that this does not exclude the possibility
of having some decimal digits correct when the maximum number is reached, as indeed
is the case of example 1 using SOR with w = 1.9. However, the reader is urged to use
caution in interpreting results in instances in which the maximum number of iterations

was reached.

6.1 Example 1: An Interactive Computer System.

The model described in Figure 1 below represents the system architecture of a time-shared,
multiprogrammed, paged, virtual memory computer.

Terminals -4

SM
()

Figure 1: Illustration for example 1

The system consists of

o a set of N terminals from which N users generate commands

¢ a central processing unit, (CPU)

e a secondary memory device, (SM)

o a filing device, (FD).

A queue of requests is associated with each device and the scheduling is assumed
‘to be FCFS (First Come First Served). When a command is generated, the user at
the terminal remains inactive until the system responds. Symbolically, a user having
generated a command enters the CPU queue. The behavior of the process in the system
is characterized by a compute time followed either by a page fault, after which the process
enters the SM queue, or an input/output (file request) in which case the process enters
the FD queue. Processes which terminate their service at the SM or FD queue return to
the CPU queue. Symbolically, completion of a command is represented by a departure of
the process from the CPU to the terminals.
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The degree of multiprogramming at any time is given by n = ng + ny + nz, where
no,n; and ng are respectively the number of processes in the CPU, SM and FD queues
at that moment. If (o(n))~? is the mean service time at the CPU when the degree of
multiprogramming is 7, then the probabilities that a process leaving the CPU will direct
itself to the SM device or to the FD device are respectively given by p;(n) = (#og(n)) ™" and
p2(n) = (por(n))~", where g(n) is the mean compute time between page faults, and r(7) is
the mean compute time between i/o requests. The probability that the process will depart
from the CPU queue to the terminals is given by po(n) = (roc(n))™! = 1 — p1(n) — p2(n),
where ¢(7) is the mean compute time of a process. ‘

The parameter ¢ may be represented as the Belady-Kuehner lifetime function, [4],
which for a process executing in memory space m is given by ¢ = a(m)*, where o depends
on the processing speed as well as on program characteristics, and k depends both on
program locality and on the memory management strategy. If it is assumed that the total .
primary memory available is of size M and that it is equally shared among processes
currently executing in the system, then g(n) = (M/n)*.

In order to perform the numerical analysis the model parameters were assigned specific
values. The mean compute time between page faults q(n), was obtained by setting a =
0.01, M = 128, and k = 1.5 so that p,puo = (g¢(n))™* = 100(n/128)!°. The mean compute
time between two i/o requests r(n), was taken as 20 msec. so that popuo = 0.05, and the
mean compute time of a process, ¢(n) was taken equal to 500 msec giving popo = 0.002.
The mean think time of a user at a terminal was estima.ted to be of the order of A\™! = 10
secs, the mean service time of the SM was taken as u;' = 5 msec and that of the FD to
be pz! = 30 msec. :

The model was solved for 20 users in the system, yielding a stochastlc matrix of order
1,771 with 11,011 non-zero elements and also for the case of 50 users, yielding a matrix
of order 23,426 with 156,026 non-zero elements.

It should be noted that this model is not amenable to solution by analytic techniques,
since the CPU service time distribution depends on the degree of multiprogramming 7,
i.e. on the sum of the number of processes in three distinct queues.

6.1.1 Results for Example 1

We now begin our examination of the results of example 1. The GE method requires
the least amount of time, but the largest amount of additional memory. This is what we
should expect.

The SOR and SSOR methods do not perform satisfactorily at all. This is because the
matrix is nearly completely decomposable into 21 components, yielding 21 eigenvalues
pathologically close to unity.

The only fixed point iteration scheme that is successful is when a threshold based
preconditioner is used, with a threshold value of 7 = 10~*. Here the time is about four
times as long as GE but the additional memory requirement is 20 percent that of GE.

The method of Arnoldi fails completely to converge. However, PCARN (Precondi-
tioned Arnoldi) works rather well for all preconditioners and, at least for this example,
appears to provide the best processing time/memory trade-off. In fact, in all of the tests,
this method is the only one that never failed to yield satisfactory results. We shall see
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that in one case it had not quite converged in the maximum number of iterations, but
even here, the method was in the process of converging.

Preconditioned GMRES performs satisfactory for all but a few cases. Its performance
using the ILUK preconditioner is very similar to that of PCARN. In other cases it performs
less well than PCARN.

Finally, GMRES preconditioned with SOR fails completely.

Only a selected few methods were applied to the solution of the larger instance of this
model, (with 50 customers and a stochastic matrix of order 23,426 with 156,026 non-zero
elements). In this case, the parameters of PCARN and GMRES were chosen so that the
additionally memory is roughly equivalent for all preconditioners. PCARN with either
ILUO or ILUK appear to be the winners.

We were interested in finding out how the methods would compare when this example
was not NCD. So we artificially adjusted the parameters of the model to ensure this would
not happen, (by setting the mean think time, A = .01 and pypo = 1). Tables 3 and 4 give
the results obtained under these circumstances. Note that all the methods now work, for.
all cases, and it becomes extremely difficult to choose a best method.

6.2 Example 2: A Telecommunications Model.

The model in the figure below has been used to determine the effect of impatient telephone
customers on a computerized telephone exchange [5]. In this model a request is made by
a customer for service. The customer is prepared to wait for a certain period of time to
get a reply. If at the end of that period, the reply has not arrived, the customer may
either give up and leave the network or else wait for some period of time before trying
again.

Station S2 represents a node dedicated to a special processing task and required by
all customers. These customers are processed by a single server according to a processor
sharing discipline. Each customer possesses a limited amount of patience which is defined
as an upper bound on its service duration; when his patience is exhausted, the customer
simply gives up processing.

This impatient customer may simply quit the network (with a fixed probability, 1 — A;
otherwise it joins an infinite server station S1 where it remains for a certain period, called
the thinking time, and then re-joins station S2 for another attempt.

A state of this network may be described by the pair (7, j ) where 7, (respectively j) is
the number of customers in station S1, (respectively S2)

When j > 1, the probability of

® a service completion in S2 between t and ¢ + dt is udt

® a departure due to impatience between t and ¢ + dt is jrdt.

When ¢ > 1, the probability of a departure from S1 between ¢ and ¢ 4 dt is i \dt.

External arrivals to S2 are assumed to be Poisson at rate A
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To obtain a finite Markov chain, we assume that K1 is the maximum number of
customers permitted in station S1 and K2 is the maximum permitted in S2. Customers
arriving to a full station are lost. In the model, it is important to choose values of K1 and
K2 large enough so that the probability of saturation is negligible, say less than 10-1°,
This truncation of the state space will therefore have little effect and the resulting steady
state probabilities may be taken as an accurate approximation of those of the infinite
capacity network. , ' o

The following are realistic values as taken from the various reports of Boyer and his
colleagues.

A=06;p=1.0;7 = 0.05;h = 0.85 and A = 5.0. : :

They are the values which we used in our experiments. The values of K1 and K2-
were varied to obtain matrices of different order. First we set K1 = 10 and K2 = 220
which gave a stochastic matrix of order 2,431 with 11,681 non-zero elements and secondly
we used the values 30 and 550 respectively, which resulted in 17,081 states and 84,211
non-zero elements.

6.2.1 Results for Example 2

Tables 5 and 6 below show the results obtained for this example.

On both the large and the small example, the method of Gaussian elimination performs
exceptionally well from the point of view of computation time. More surprisingly, the
amount of additional memory required was smaller that that needed by the preconditioned
Arnoldi and GMRES for the smaller case. It was less than twice that needed by these
methods for the larger case. For this example, GE must be considered the method of
choice. A close investigation of the transition matrix shows that it has a rather narrow
bandwidth structure which, as we have already discussed, is ideal for the GE method.

Once again the SOR methods are not very successful. An examination of the results
does however show that some small number of digits of accuracy have been obtained
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which indicates that given sufficient iterations these methods might indeed converge.

The fixed point iterations succeed, by and large, in obtaining the correct solution in
under the maximum number of iterations permitted, but the time taken is very long when
compared to GE. ,

The method of Arnoldi fails complete. However the preconditioned Arnoldi provides
the only competition for GE. In an about face for iterative methods, they require more
additional memory than GE.

For two sets of parameters, the preconditioned GMRES methods are comparable with
PCARN. However, in the other cases they fail. PCARN must be considered to the more
robust. GMRES preconditioned with SOR and SSOR is not any more successful.

The same type of comments can be made about the results obtained for the larger
model. The only modification is that in two cases, the fixed point iterations become more
competitive with the preconditioned Arnoldi.

6.3 Example 3: A Multi-Class, Finite Buffer, Priority System.

This model, like model number 2, is also taken from the telecommunications literature.
The model consists of a single service center at which two identical servers provide service
to two different classes of customer. The service rates may differ for each class (#1 and
p2, but both are exponentially distributed. The arrival processes of the two classes is not
exponential. It has often been observed that teletraffic is rather bursty in nature and to
take this into effect, hyper-exponential interarrival times with large coefficients of variance
have been associated with these arrival processes.

Class-one customers are assumed to have a high priority. An arriving class-one cus-
tomer is inserted in the queue before all class-two customers. An idle server will only
serve a class-two customer if there are no class-one customers waiting. However, once
a server begins to provide service to a class-two customer, it will continue to serve that
customer even if a class-one customers arrives and is forced to wait; in other words, the
service is non-preemptive.

The effect of the limited capacity buffer is to restrict the number of customers that can
enter the system. Class-two customers that arrive to a full buffer are simply lost. If the
buffer is full and contains both class-one and class-two customers, an arriving class-one
customer will displace a class two-customer. This class two-customer is therefore lost. A
class-one customer that arrives to a system that is full of class one-customers is lost.

Figure 3 represents, schematically, this model.

A six-component vector is required to represent any state of the Markov chain which
underlies this model. Components 1 and 2 may be used to denote the phase of the arrival
process for each of the two classes respectively. Similarly, components 3 and 4 may be
used to represent the number of customers of class 1 and class 2 that are already in the
system. Components 5 and 6 may be used to indicate the condition of the two servers
(viz: idle, serving a class 1 customer, serving a class 2 customer). Since the buffer is
finite, only a finite number of states will be generated. As in the other two examples, we
generated two different sizes of Markov chains from this model. First we set the bufer
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size to 16, which generated 1,940 states and 12,824 non-zero elements. Second we set the
buffer size to 50 and obtained a matrix of order 19,620 with 131,620 non-zero elements.
The following values for the parameters indicated on the figure were obtained from
Perros, [19], and are representative of values currently used by teletraffic specialists.
v, = .00138; v, = .0000000076; p = .9999, v; = .00396; v, = .000000018; ¢ = .999995,
i = 0.002222; p; = 0.002222. :

6.3.1 Results for Example 3

Tables 7 and 8 below show the results obtained for this example.

This example shows the GE method in its worst light. The time is greater than
that of most of the preconditioned Arnoldi and GMRES methods. Worse than that, its
additional memory requirements are an order of magnitude greater. This matrix is not as
well structured as that of example 2 and consequently a lot of fill-in occurs. Once again
the (S)SOR methods fail to converge. The same thing happens when they are used as
preconditioners for GMRES. Preconditioned Arnoldi and GMRES perform best, with the
sole exception of the ILUO preconditioner and GMRES. The fixed point iteration method
also fails when this preconditioner is used. It also fails when the preconditioner used if
that obtained when only the largest five elements per row are kept.

In the larger example, the fixed point iteration method performs well. Observe how-
ever, the rather large amount of additional memory needed when a threshold of 1073 is
used in ILUTH. We would like to point out that although PCARN failed to satisfy the
tolerance criteria in less that 1000 iterations, it had in fact almost converged.

An interesting observation may be made about preconditioners based on the results
presented in tables 7 and 8. When the ILUTH preconditioner is used with PCARN or
GMRES (see table 7) or with FXPTIT (see table 8) a “better” preconditioner obtained
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using 7 = 0.001 performs less well than the preconditioner obtained with r = 0.01. With
the smaller threshold value we normally expect that, in the incomplete decomposition of
QT into LU + E, E will be smaller. However, because this example is ill-conditioned,
U-'L-! is not necessarily closer to the inverse of Q7 than the decomposition obtained
with the larger threshold. We conclude that, for NCD problems, a smaller remainder in
an incomplete factorization does not necessarily yield a better preconditioner. We have
observed that in cases like this, when a very small threshold is specified, the residual will
drop steeply after the first iteration but will not improve substantially beyond that. Most
often the residual oscillates around the value it acquires after the first iteration.

This example, like example 1, is also nearly completely decomposable. If we proceed as
we did with example 1 and modify the parameters to make it non-NCD, we get the results
that are in tables 9 and 10. In this case all of the iterative methods behave satisfactorily.

7 Conclusion

In this paper we explored a wide variety of methods for the numerical solution of Markov
chains. We tested these methods on three realistic problems. The question now arises
as to which method is to be recommended to our readers? Unfortunately our results
do not support the hypothesis that a single “black box” method is available. When the
state space is small, or even for moderately sized problems in which the non-zero elements
lie close to the diagonal, then a direct method such as Gaussian elimination should be
chosen. However, in other cases, the issue is not so clear. When the matrix is reasonably
well conditioned all of the methods perform more or less satisfactorily. When the matrix
becomes NCD then there is a smaller choice. If forced to make a recommendation, the
most robust method appears to be Preconditioned Arnoldi. It is often the fastest, and in
all cases tested either converged within the specified number of iterations or was at least
close to converging when the maximum was reached. None of the other methods can make
this claim. Moreover, note that for the large problems, the preprocessing time to compute
the ILUK and ILUTH incomplete factorizations can be high and even often far exceeds
. the time required in the iteration phase. It is possible that our implementations of the
ILUK and ILUTH preprocessing phase could be improved. In obtaining these incomplete
factorizations, a full vector is used to reduce each row. The threshold operations and the
search for the k maximum elements are performed over this vector from the first to the
last non-zero position. If the reduced row contains many zeros, some savings could result
by first compacting the row.

We did not cover every possible solution method in this paper. Simultaneous iteration
methods were not included because our experience over several years indicates that this
is inferior to Arnoldi. The Bi-Conjugate Gradient method and the Conjugate gradient
squared method, methods which have had much success in other domains, [21]. were not
included. In fact in our initial study, we programmed both these methods but found them
unsatisfactory. Both failed to converge when applied to NCD problems and in other cases
they performed less well than the methods examined in this report. Potentially com-
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petitive alternatives include the techniques based on polynomial acceleration of Arnoldi’s
method such as a hybrid Chebyshev-Arnoldi algorithm [22]. As a general rule however, we
observe that the preconditioner makes a bigger difference than the acceleration procedure
itself. Thus, in many cases there is hardly any difference between the performance of GM-
RES and PCARN when ILUTH is used with a small tolerance. When the preconditioner
is excellent then the number of iterations required for convergence is very small and we
expect that whichever iterative procedure is used, it will remain small.

Finally, we have not discussed domain decomposition type methods which typically go
under the name of aggregation/disaggregation methods, or iterative aggregation methods,
[6]. These methods are particularly well suited to matrices that are NCD. However, at
each step of these methods we need to find the stationary probability vector of a stochastic
matrix and to solve several systems of equations in which the coefficient matrix is almost
stochastic and the right-hand side is small. These solutions must be obtained by the
methods discussed in this paper.
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NOTATION FOR TABLES

METHODS:
e GE Gaussian elimination (section 3)
¢ SOR Successive overrelaxation (Section 4.2)
¢ SSOR Symmetric SOR (Section 4.3)

¢ FXPTIT  Fixed point iteration (Section 4.4)

e ARNOLDI Arnoldi’s method (Section 5.3)

e PCARN Preconditioned Arnoldi (Section 5.5)
e GMRES Preconditioned GMRES (Section 5.4)

PRECONDITIONERS: (See section 4.6)

e ILUO Incomplete factorization with zerb fill-in
¢ ILUK  Incomplete factorization keeping KMAX elements/row Il
e ILUTH Incomplete factorization with threshold

METHOD PARAMETERS:

e w Relaxation parameter for SOR based methods
e m Subspace size for projection methods
¢ K Maximum number of non-zero elements permitted per row

e 7 Threshold for ILUTH preconditioners

TIMES:

¢ TOTAL TIME: Total running time for method on Ardent-Titan computer.
oSET-UP TIME: Time taken to compute preconditioner, if applicable.
o/TER. TIME:  Time to perform "ITERS” iterations of the method.

FLOPS: The number of floating point operations performed by method.

ADDITIONAL The amount of memory required by the algorithm in excess of the

MEMORY: original matrix and a single vector.

ITERS: The number of iterations performed by the method. An asterisk be-
‘ fore this number means that it is the maximum number of iterations

permitted.
RESIDUAL The two norm of the product of the computed solution and transi-
NORM: tion rate matrix.

The caption under each table indicates the order of the matrix N, and the number NZ of
non-zero elements that it contains.
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Method Total | Set-up | Iter. | Flops | Additional | Iters | Residual
Method Parameters Time | Time | Time Memory Norm
GE 3.3 4.7 111,989 0.219E-16
SOR w=1 79.4 1,771 | *1000 | 0.494E-04
w=1.5 79.4 1,771 { *1000 | 0.140E-03
w=1.9 79.3 1,771 | *1000 | 0.105E-05
w=1.95 57.7 9.3 1,771 726 | 0.739E-11
SSOR w=1.0 78.0 1,771 | *500 | 0.509E-04
w=1.5 95.9 1,771 | *500 | 0.360E-04
w=1.9 93.7 1,771 | *500 | 0.140E-03
FXPTIT /
+ILUO 175.1 0.3 14,553 | *1000 | 0.926E-07
+ILUK K=5 65.7 34| 622 9.4 12,330 404 | 0.982E-10
K=10 177.0 5.0 21,116 { *1000 | 0.226E-08
+ILUTH T =.01 124 .4 1.5 8,494 | *1000 | 0.273E-07
T = .001 774 1.7 75.5 11.2 14,413 441 | 0.997E-10
r=10"* 12.5 201 75.5 1.9 21,302 59 | 0.840E-10
ARNOLDI | m=10 51.4 32.9 17,971 | *1010 | 0.121E-04
m=20 46.5 51.5 36,341 | *1020 | 0.131E-03
m=25 83.1 96.8 45,676 | ¥1625 | 0.184E-03
PCARN/
+ILUO m=>5 19.8 0.3 19.3 4.8 23,408 160 | 0.324E-10
m=10 15.7 03} 15.2 5.6 32,263 150 1 0.811E-10
+ILUK m=10, K=5 9.1 3.3 5.6 2.5 30,050 70 | 0.291E-10
m=10, K=10, 5.9 43| 14| o5 38,735 10 | 0.409E-11
+ILUTH m=10, 7 = .01 15.1 16| 134 7.1 26,104 230 | 0.543E-10
m=10, 7 = .001 11.6 1.8 9.7 3.0 32,142 80 | 0.205E-10
GMRES /
+ILUO m=>5 149.1 0.3 ]148.6 23,408 | *1600 | 0.210E-06
m=10 16.4 03| 15.9 5.2 32,263 140 | 0.632E-10
m=20 16.5 0.3]| 16.0 8.7 49,973 160 | 0.715E-10
+ILUK m=10, K=5 7.5 3.3 4.1 1.8 30,050 50 | 0.922E-10
m=10, K=10 5.8 4.2 1.4 0.5 38,735 10 | 0.438E-11
+ILUTH m=10, 7 =.01 13.0 1.6 11.2 5.5 26,104 180 | 0.579E-10
m=5, 7 =.001 924 1.7 90.5 23,287 | *1000 | 0.298E-06
m=10, 7 =.001 97.2 1.8 95.2 32,142 | *1000 | 0.204E-06
m=20, 7 =.001 9.9 1.8 8.0 4.3 49,852 80 | 0.746E-10
GMRES /
+SOR m=10,w=1.0 | 945 37.3 17,710 | *1000 | 0.529E-06
m=10, w=1.95]| 49.8 18.7 17,710 | *500 | 0.416E-03

Table 1: Performance Results for Example 1. N=1,771; NZ=11,011. NCD Case.

36




Method Total | Set-up | Iter. | Flops | Additional | Iters | Residual
Method Parameters Time | Time | Time Memory Norm
FXPTIT/
+ILUK K=16 2,632.0 | 230.6 420,896 | *1000 | 0.587E-07
+ILUTH | 7= .01 1,584.5 96.3 92,375 | *1000 | 0.177E-05
T =.001 830.5 99.2 731.1 ] 114.5 201,550 320 | 0.998E-10
PCARN/ '
+ILUO m=10 159.1 3.2 154.5 | 66.1 437,138 130 | 0.750E-10
+ILUK m=10, K=7 212.8 1 198.1 13.3 5.9 444,790 10 | 0.887E-11
+ILUTH | m=10, 7 = .01 670.3 96.0 672.8 326,635 | *1000 | 0.918E-09
GMRES /
+ILUO m=10 1,184.0 3.1 1,179.5 437,138 | *1000 | 0.201E-05
+ILUK m=10, K=7 213.3 | 198.5 13.4 5.9 444,790 10 | 0.105E-10
+ILUTH | m=10, 7=.01 | 761.0 96.8 | 662.8 326,635 | *1000 | 0.461E-07

Table 2: Performance Results for Example 1. N=23,426; NZ=156,026. NCD Case.
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Method Total | Set-up | Iter. | Flops [ Additional | Iters | Residual
Method Parameters ;Time T;me Ti___m—e &4_«3_1_nory i Norm

fﬁ_— 4.3 7.2 111,989 0.139E-16
SOR w=1 57.0 9.1 1,771 | 711 | 0.981E-10
w=1.2 37.3 6.0 1,771 | 464 | 0.995E-10
w=1.3 31.2 5.0 1,771 | 387 | 0.999E-10
SSOR w= 92.9 14.1 1,771 | 591 | 0.986E-10
w=1.2 95.1 144 1,771 | 605 0.984E-10

FXPTIT /
+ILUO 43.0 0.3 | 42.7 6.5 14,553 | 254 | 0.989E-10
+ILUK K=5 14.6 32| 114 1.8 12,325 | 75| 0.988E-10
K=10 12.6 4.6 8.0 1.6 21,206 47 { 0.724E-10
+ILUTH T=.01 34.5 1.8 32.6 54 17,385 | 191 | 0.953E-10
T = .001 13.3 2.2 109 24 28,198 61 | 0.807E-10
T=10"* 13.6 26| 109 29 36,750 | 59 | 0.775E-10
ARNOLDI | m=10 18.5 16.6 17,971 | 510 | 0.278E-10
m=20 219 28.3 36,341 | 560 | 0.138E-10
m=25 18.8 26.8 45,676 | 450 | 0.875E-10

PCARN /
+ILUO m=35 5.3 0.2 4.9 1.5 23,408 50 | 0.559E-10
m=10 5.0 0.3 4.6 1.9 32,263 50 | 0.637E-11
+ILUK m=10, K=5 5.3 3.4 1.7 0.7 30,080 20 | 0.556E-10
m=10, K=10 7.9 6.3 1.5 0.8 38,920 10 | 0.561E-16
+ILUTH m=10, 7 = .01 4.1 1.7 2.3 0.8 35,113 20 | 0.101E-11
m=10, 7 =.001 5.6 2.2 3.2 1.1 45,908 20 | 0.599E-12

GMRES /
+ILUO m=>5 5.4 0.3 4.9 1.5 23,408 50 | 0.622E-10
m=10 5.0 0.3 4.6 1.9 32,263 50 |1 0.470E-10
m=20 4.2 0.3 3.8 2.2 49,973 40 | 0.240E-12
+ILUK m=10, K=5 5.4 3.5 1.8 0.7 30,080 20 | 0.531E-10
m=10, K=10 7.8 6.3 1.4 0.7 38,920 10 | 0.698E-16
+ILUTH m=10, 7= .01 4.2 1.8 2.2 0.8 35,113 20 | 0.427E-12
m=5, 7 =.001 5.7 2.2 3.4 1.0 37,053 20 | 0.281E-11
m=10, 7 = .001 5.6 2.2 3.2 1.1 45,908 20 | 0.478E-12
m=20, 7 =.001 5.6 2.2 3.3 1.5 63,618 20 | 0.515E-14

GMRES /
+SOR m=10, w=1.0 16.2 6.4 17,710 | 170 | 0.101E-13
+SSOR m=10, w=1.0 34.2 94 17,710 | 190 | 0.835E-14

Table 3: Performance Results for Example 1. N=1,771; NZ=11,011 Non-NCD Case




Method Total | Set-up | Iter. | Flops | Additional | Iters { Residual
Method Parameters Time | Time | Time Memory Norm

GE Failed
FXPTIT / :
+ILUO 477.5 3.3 |473.9 75.0 202,878 | 206 | 0.964E-10
+ILUK K=16 479.3 | 264.9 | 214.2 59.3 421,518 90 | 0.952E-10
+ILUTH 7 =.01 493.9 100.8 | 392.8 68.1 245,705 169 | 0.915E-10

' T = .001 364.3 107.5 | 256.5 61.5 413,483 106 | 0.780E-10
PCARN/
+ILUO0 m=10 158.3 3.2 | 153.7 66.1 437,138 130 { 0.166E-10
+ILUK m=10, K=T7 239.6 188.9 | 494 21.4 444,978 40 | 0.821E-12
+ILUTH | m=10, 7 =.01| 143.0 99.6 | 42.0| 17.1 480,013 30 | 0.622E-10
GMRES /
+ILUO m=10 404.2 3.2(399.6 | 171.7 437,138 | 340 | 0.180E-10
+ILUK m=10, K=7 2275 1889 | 372 16.1 444978 30 | 0.867E-11
+ILUTH m=10, 7 =.01 | 143.0 99.6 | 42.1 17.0 480,013 30 | 0.341E-10

Table 4: Performance Results for Example 1. N=23,426; NZ=156,026. Non-NCD Case

39




Method Total | Set-up | Iter. | Flops | Additional | Iters | Residual
Method Parameters Time | Time | Time Memory Norm

GE 1.3 3 28,554 0.404E-17
SOR w=1.0 108.5 2,431 | *1000 | 0.910E-04
w=12 108.4 2,431 | *1000 | 0.342E-06
w=13 104.3 13.6 2,431 962 | 0.946E-10
SSOR w=1.0 107.9 2,431 | *500 | 0.321E-03
w=1.2 109.0 2,431 | *500 | 0.896E-03

FXPTIT /
+ILUO 83.0 03] 825 9.6 16,543 342 | 0.992E-10
+ILUK K=5 93.5 14| 920 | 12.6 16,999 440 | 0.943E-10
K=10 28.8 25| 26.2 4.6 29,066 112 | 0.927E-10
+ILUTH 7=.01 85.7 0.6 | 84.9 11.0 15,051 411 | 0.947E-10
7 = .001 8.6 1.2 7.3 1.2 30,571 28 | 0.856E-10
ARNOLDI { m=10 45.6 41.6 24,571 | *1010 | 0.334E-03

PCARN /
+ILUO m=10 22.1 03] 21.6 7.6 40,853 160 | 0.536E-11
+ILUK m=10, K=5 12.0 14 104 4.8 41,258 100 | 0.306E-10
m=10, K=10 4.7 2.6 1.9 0.7 53,382 10 | 0.195E-12
+ILUTH m=10, 7 = .01 16.4 0.7 155 6.0 39,371 130 | 0.252E-10
m=10, 7 =.001 8.0 1.2 6.6 1.9 54,924 30 | 0.138E-11

GMRES /
+ILUO m=10 101.8 0.3 101.3 40,853 | *1000 | 0.151E-05
+ILUK m=10, K=5 102.9 1.51101.3 41,258 | *1000 | 0.233E-07
m=10, K=10 4.4 24 1.8 0.7 53,382 10 | 0.177E-12
+ILUTH m=10, 7 = .01 99.3 0.71 984 39,371 | *1000 | 0.666E-05
m=10, 7 =.001 6.6 1.2 5.2 1.9 54,924 30 | 0.200E-12

GMRES /
+SOR m=10, w=1.0 | 131.2 47.4 24,310 | *1000 | 0.486E-01
+SSOR m=10, w=1.0 | 246.4 60.3 24,310 | *1000 | 0.202E-03

Table 5: Performance Results for Example 2. N=2,431; NZ=11,681
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Method Total | Set-up | Iter. | Flops | Additional | Iters | Residual
Method Parameters Time | Time { Time Memory Norm
GE 16.0 12.9 532,059 0.699E-18
FXPTIT /
+ILUO 1,008.9 1.9 | 1,006.8 | 128.6 118,373 635 | 0.932E-10
+ILUK K=16 113.8 33.2 804 | 18.0 305,460 47 | 0.768E-10
+ILUTH | r=.01 1,372.7 8.3 100,853 | *1000 | 0.259E-09
T =.001 144.0 10.7 133.2 ] 21.8 180,126 82 | 0.613E-10
PCARN/:
+ILUO m=10 237.6 1.9 2348 | 111.3 289,183 330 { 0.129E-10
+ILUK m=10, K=5 160.9 16.8 143.3 | 67.8 290,108 200 | 0.904E-11
+ILUTH | m=10, 7= .01 229.2 8.5 219.8 | 111.3 271,684 350 | 0.961E-10
GMRES/
+ILUO m=10 710.2 1.9 707.4 289,183 | *1000 | 0.375E-06
+ILUK m=10, K=5 729.8 16.8 712.2 290,108 | *1000 | 0.952E-08
+ILUTH | m=10, 7 =.01 636.4 8.5 627.1 271,684 | *1000 | 0.502E-06

Table 6: Performance Results for Example 2. N=17,081; NZ = 84,211
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Method Total | Set-up | Iter. | Flops | Additional | Iters | Residual
Method Parameters Time | Time | Time Memory Norm
GE 25.0 71.8 411,823 0.115E-16
SOR w=1 87.9 1,940 | *1000 | 0.312E-05
w=1.2 90.0 1,940 | *1000 | 0.465E-05
w=1.3 92.8 1,940 | *1000 | 0.104E+402
SSOR w=1.0 178.0 1,940 | *1000 | 0.293E-05
w=1.2 174.6 1,940 | *1000 | 0.857E-05
FXPTIT /
+ILUO 171.2 0.3 16,604 | *1000 | 0.241E-05
+ILUK K=5 172.4 8.5 13,525 | *1000 [ 0.596E-06
K=10 30.6 10.8 | 19.7 4.1 23,228 1071 0.965E-10
+ILUTH T=.01 34.5 451 30.0 7.4 28,218 1791 0.994E-10
7 = .001 27.7 6.6 21.0 8.7 68,076 108 | 0.980E-10
ARNOLDI | m=10 39.2 36.8 19,661 | *1010 | 0.337E-04
PCARN/
+ILUO m=10 51.3 0.3 ]| 50.9 21.8 36,104 520 | 0.754E-10
+ILUK m=10, K=5 19.3 8.9 10.2 4.6 32,990 120 | 0.206E-10
m=10, K=10 18.5 10.5 7.9 3.1 42,646 60 | 0.246E-10
+ILUTH m=10, 7 = 0.01 11.3 5.0 6.1 2.1 46,597 40 | 0.238E-11
m=10, 7 = 0.001 21.5 6.0 | 153 5.2 62,546 70 | 0.584E-10
GMRES /
+ILUO m=10 98.8 03] 98.3 36,104 | *1000 | 0.108E-06
+ILUK m=10, K=5 19.5 941 10.0 3.9 32,990 100 | 0.168E-11
m=10, K=10 18.5 10.5 7.8 3.1 42,646 60 | 0.692E-10
+ILUTH m=10, 7 = 0.01 11.4 5.0 6.2 2.1 46,597 40 | 0.119E-11
m=10, 7 = 0.001 194 6.0 13.2 4.5 62,510 60 | 0.917E-11
GMRES /
+SOR m=10, w=1.0 101.6 41.7 19,400 | *1000 | 0.192E-08
+SSOR m=10, w=1.0 194.4 55.9 19,400 | *1000 | 0.484E-09

Table 7: Performance Results for Example 3

i
N

. N=1,940; NZ=12,824. NCD Case.




Method Total | Set-up | Iter. | Flops | Additional | Iters | Residual
Method Parameters Time | Time | Time Memory Norm

GE Failed
FXPTIT/
+ILUK K=16 804.7 | 296.3 508.0 | 110.2 328,701 231 | 0.952E-10
+ILUTH | r = .01 562.1 135.0 427.0 99.5 290,948 234 | 0.996E-10

7 =.001 957.7 | 173.6 | . 784.0 | 360.0 872,623 . 351 | 0.977E-10
PCARN/ _
+ILUO m=10 1,023.8 2.4 11,020.2 367,060 | *1000 | 0.524E-08
+ILUK m=10, K=7 514.2 305.4 207.7 88.8 372,770 200 | 0.968E-10
+ILUTH | m=10, 7 =.01 231.6 | 152.3 78.2 28.8 484,133 50 | 0.252E-10
GMRES/ :
+ILUO m=10 1,013.6 2.4 1 1,010.0 367,060 | *1000 | 0.150E-06
+ILUK m=10, K=7 1,336.8 | 305.4 | 1,030.2 372,770 | ¥1000 | 0.156E-06
+ILUTH | m=10, 7 =.01 232.7 152.2 79.3 28.5 484,148 50 | 0.852E-11

Table 8: Performance Results for Example 3. N=19,620; NZ=131,620. NCD Case.
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Method Total | Set-up | Iter. | Flops | Additional [ Iters | Residual
Method Parameters Time | Time | Time Memory Norm

GE 25.8 74.5 411,823 0.159E-16
SOR w=1 124 2.1 1,940 | 139 { 0.913E-10
w=1.2 8.4 1.4 1,940 93 | 0.801E-10
w=1.3 9.6 1.6 1,940 | 107 | 0.828E-10
SSOR w = 13.5 2.1 1,940 77 ] 0.856E-10
w=1.2 9.9 1.6 1,940 56 | 0.979E-10

FXPTIT /
+ILUO 11.0 0.3 10.7 1.8 16,704 63 | 0.959E-10
+ILUK K=5 214 8.1] 13.2 2.2 13,486 83 | 0.790E-10
K=10 18.8 9.8 8.9 1.9 23,257 49 | 0.835E-10
+ILUTH T=.01 10.3 4.8 5.5 1.6 36,937 29 | 0.859E-10
T =.001 16.6 12.8. 3.8 3.0 128,199 16 | 0.640E-10
ARNOLDI | m=10 4.8 4.4 19,661 120 | 0.411E-10

PCARN /
+ILUO m=10 3.5 0.3 3.1 1.3 36,104 30 | 0.420E-12
+ILUK m=10, K=5 11.6 8.8 2.7 1.2 32,990 30 | 0.369E-10
m=10, K=10 16.5 13.7 2.7 1.4 42,640 20 | 0.154E-10
+ILUTH m=10, 7= .01 9.5 5.4 4.0 1.4 56,178 20 | 0.217E-10
m=10, 7=.001| 23.6 12.21 11.2 4.7 139,185 20 | 0.889E-13

GMRES /
+ILUO m=10 3.5 0.2 3.1 1.3 36,104 30 | 0.502E-12
+ILUK m=10, K=5 11.5 8.8 2.6 1.2 32,990 30 | 0.217E-10
m=10, K=10 16.6 13.8 2.7 1.4 42,640 20 | 0.133E-10
+ILUTH m=10, 7= .01 9.4 5.4 3.9 1.4 56,178 20 | 0.861E-11
m=10, 7 = .001 23.6 123 11.2 4.7 139,189 20 | 0.650E-13

GMRES /
+SOR m=10, w=1.0 17.4 7.0 19,400 | 168 | 0.707E-14
+SSOR m=10, w=1.0 8.2 2.3 19,400 40 | 0.974E-14

Table 9: Performance Results for Example 3. N=1,940; N 7Z=12,824. Non-NCD Case
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Method Total | Set-up | Iter. | Flops | Additional | Iters | Residual
Method Parameters Time | Time | Time Memory Norm

GE Failed
FXPTIT / :
+ILUO 179.9 3.11176.6 314 170,860 104 { 0.848E-10
+ILUK K=16 398.7 | 293.6 | 104.9 29.7 329,692 55 | 0.648E-10
+ILUTH T=.01 219.3 | 137.9| 81.2 23.0 376,620 43 | 0.726E-10
PCARN /
+ILUO m=10 74.7 241 T1.0 29.9 367,060 70 | 0.650E-10
+ILUK m=10, K=7 3713 317.8| 52.2 25.1 372,774 50 | 0.332E-11
+ILUTH m=10, 7 =.01| 215.8 155.1 59.5 21.1 572,967 30 | 0.252E-10
GMRES /
+ILUO m=10 105.3 2.4 101.7 425 367,060 | 100 | 0.827E-11
+ILUK m=10, K=7 391.8| 317.9| 728 33.6 372,774 70 | 0.159E-10
+ILUTH | m=10, 7=.01| 215.8| 155.1| 594 | 21.0 572,966 30 | 0.844E-11

Table 10: Performance Results for Example 3. N=19,620; NZ=131,620. Non-NCD Case.
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