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LOT-SIZING WITH RANDOM YIELDS:
A REVIEW

Abstract

This paper reviews the literature on quantitatively-oriented approaches for
determining lot sizes when production or procurement yields are random. We discuss
issues related to the modeling of costs, yield uncertainty, and performance in the context of
systems with random yields. We also present a taxonomy of lot-sizing problems with
random yields which provides a framework for our review. Finally, we give a brief
analysis of the existing literature and suggest directions for future research.



LOT-SIZING WITH RANDOM YIELDS:
A REVIEW
1. INTRODUCTION

The problem of determining production and procurement quantities and their
timing, also known as lot-sizing, is one that faces every pure inventory and production-
inventory system. A considerable amount of effort has been focused on solving these
problems when demands and production rates are known. Many sophisticated procedures
are now available to solve problems of this type for complex manufacturing systems
optimally or near-optimally (e.g., Afentakis and Gavish 1986, Muckstadt and Roundy
1987). Also, good heuristic procedures, too numerous to mention here, have been
developed and some have been tested extensively.

Much effort has also been spent on determining production and inventory policies
when demand is uncertain. Graves (1987) provides a survey of many of the analytical
models of these problems in manufacturing systems. Entire books have been written on
inventory problems (e.g., Arrow, Karlin, and Scarf 1960, Love 1979, and Banks and
Fabrycky 1987), with much of the focus on random demand.

Considerably less research has considered random yields in production or
procurement, and much of this has been done recently. The goals of this paper are to
classify and describe the research to date on lot-sizing in the presence of random yields.
Realizing the need to limit the scope of such a review, we have chosen to focus on
analytical models for pure inventory and production/inventory systems, and within those
areas, on those that consider lot-sizing decisions. Consequently, we do not discuss quality
control procedures for such systems, except as they relate to lot-sizing decisions. We also
do not include performance evaluation models based on queueing networks, except where
lot-sizing or inventory issues are of primary concern. It should also be noted that only a
few studies based entirely on simulation are reviewed.

Many of the application areas for random-yield lot sizing models are well known:
electronic fabrication and assembly, chemical processes, and procurement from suppliers
that produce imperfect products. There are, however, many traditional discrete parts
manufacturing processes that experience random yields. While the ultimate goal for yields
is to "make it right the first time," the literature reviewed here can be used in a variety of
ways. First, in the short term, the results can be used to help an operation run more
effectively so that effort can be focused on improving performance, including yields.
Second, process improvements and supplier selection decisions can be assessed more
accurately and effectively if the system-wide effects of these decisions on yields are



modeled appropriately and, where appropriate, optimized. Finally, these models can assist
in capacity planning decisions when the yield randomness is expected to be a long-range
concern, such as in industries with répidly changing technology and product mix.

In the remainder of this section we discuss some modeling issues that arise in the
context of systems with random yields. Section 2 presents our proposed taxonomy of lot
sizing problems with random yields. Sections 3, 4, and 5 contain reviews of general
literature, articles on continuous review models, and papers on periodic review models,
respectively. The paper concludes with a brief analysis of the existing literature and a
discussion of research directions.

1.1 Modeling Issues

Three important issues in modeling systems with random yields are:
1. The modeling of costs affected by the presence of random yields.
2. The modeling of yield uncertainty.
3. Measures of performance.

We will discuss each of these issues in turn.

1.1.1 Modeling of costs affected by random yields

The modeling of some costs, such as setup costs, shortage costs,.and salvage
values, usually are not affected by the presence of random yields. However, variable unit
costs and inventory holding costs must be modeled differently depending on the specific
application.

Normally, a variable unit cost is attributed to each unit of the production or
procurement quantity. When yields are random, the production output quantity may differ
from the production input quantity, and the quantity received from a supplier may differ
from the quantity ordered. Thus, one needs to be careful to define the variable cost as a
function of the appropriate quantity. In manufacturing settings, costs are usually related to
the production input quantity, whereas in pure inventory settings, the quantity received
might be more relevant, especially if one has the option of returning defective items for
replacement or refund.

The definition of variable costs may also be situation-specific. In manufacturing
environments, there may be a variable cost of (raw) materials per unit of production input,
as well as a variable cost per unit for processing. If a defective unit cannot be reworked
and must be disposed or sold as scrap, then both the materials and processing cost per unit
should be included. On the other hand, if it is possible to rework the part to make it
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acceptable, then the cost of initial processing and rework should be included, but the
materials cost is constant and therefore need not be included.

For both production and procurement situations, inventory holding costs often
depend upon the timing and nature of the inspection process. In procurement, one might
perform 100% inspection upon arrival of an order from a supplier, inspect a small sample
to accept or reject the lot, or not inspect at all. If 100% inspection is performed and if the
inspcctiori process is perfect, then defective units can be returned to the supplier or
disposed (as appropriate), and inventory holding costs should be charged on only the good
units. On the other hand, if the inspection process is imperfect, the modeling of inventory
holding costs is more complicated. If sampling is used to accept or reject the lot, or if no
inspection is done, then inventory holding costs are also charged on defective units while
they are in inventory. Here, it would be reasonable to assume that each defective unit is
identified soon after its sale or use in production, and is returned or disposed at that time.

Similar concepts apply to production environments, except that one cannot return a
defective unit, but may have the opportunity to rework it. In some instances, it is also
possible to inspect units one by one as they complete production and to control the input in
accordance with the outcome of inspection. Hence, it is possible to produce exactly the
required amount of good units if one chooses to operate the production facility in this way.
Note that such an operation would have random duration production runs.

In both production and procurement situations, accounting for inventory holding
costs can be further complicated by cost accounting rules and inventory valuation
procedures. Sometimes, the cost associated with produced or unreturnable defective parts
is considered a "period cost," which is charged immediately to cost of goods sold. In other
cases, the cost of these parts is capitalized, and the inventory is valued by determining the
average cost of a good unit. The tax ramifications differ between the two cases, and thus,
affect the cash flow, which in turn should affect the manner in which inventory holding
costs are modeled.

In some cases, the setup costs are affected by the presence of random yields. For
example, some machine setups require trial and error adjustments during which the
defective output must be scrapped. Here, most of the out-of-pocket cost attributable to
setups is the result of random yields, and the setup cost itself is random.



1.1.2 Modeling of Yield Uncertainty

Before we describe models of yield uncertainty, it is worthwhile to point out the
existence of circumstances where yields are random, but the randomness does not
complicate the lot-sizing decision, per se. Consider a system that produces one unit at a
time, and in which inspection is done immediately and instantaneously. Hence, immediate
feedback on the yield outcome is available. Here, as long as one does not need to plan for
raw material inputs or to allocate scarce capacity among several products, no alterations of
the lot sizing decisions need to be made. One can simply continue to produce until the
production target is met. In most circumstances, however, raw materials are required and
capacity is limited, so lot-sizing decisions that incorporate yield uncertainty must be made
somewhere in the organization.

Yield uncertainty has been modeled in several different ways in the literature. Itis
our opinion that each of these modeling approaches is applicable to certain classes of real
systems. Some, of course, are more general than others, but they also have the
disadvantage of being difficult to manipulate, both algebraically and numerically. Thus, the
modeler must trade off accuracy with tractability. Below we describe five different ways
of modeling yield uncertainty, and discuss some of their advantages and disadvantages.
We also give examples of where each might be a fairly accurate representation of the
underlying random process generating the yield distribution.

The simplest model of random yields assumes that the creation of good units is a
Bernoulli process. Hence, the number of good units in a batch of size Q has a binomial
distribution with parameters Q and p, where p is the probability of generating a good output
from one unit of input. Implicit are the assumptions that the process is stationary and that
the generation of one unit is independent of the generation of other units (i.e., no
autocorrelation). One advantage of using this model is that one needs to specify only the
value of p. One disadvantage is that it does not permit the specification of other forms of
the variance of the fraction of good units. Indeed, in this modeling approach, the expected
value of the fraction of good units is invariant with Q, but the variance of that fraction
decreases with Q. This representation of yield uncertainty is appropriate for systems that
are in control (from the standpoint of statistical process control) for long durations.

A second relatively simple way to model yield uncertainty is to specify the
distribution of the fraction of good units (or yield rate). The main difference between this
modeling approach and the binomial model is that it permits specification of both the mean
and variance of the fraction good. On the other hand, it forces the distribution of the



fraction good to be independent of the batch size. This model applies when relatively large
batch sizes are used, or when the variation of the batch size from production run to
production run tends to be small. It also applies to circumstances where yield losses occur
because of limited capabilities of the production system to adapt to random environmental
changes or variations in materials, etc. Here, the yield loss might be relatively predictable
for any particular set of conditions, but the conditions are not predictable. Thus, the yield
rate distribution reflects the relative likelihoods of the various possible conditions. In most
cases the fraction of good units is bounded above by one. However, it is possible that this
"fraction" is unbounded. This is the case when the inputs and the outputs of the production
process are not measured in the same units.

A third modeling approach involves specifying the distribution of the time until a
repetitive process becomes "out of control” and starts to make defective parts. Here, it is
normally assumed that the process is in an "in control” state at the beginning of a
production run. In this context, if one views the production decision as how long to let the
process continue, then the fraction acceptable is stochastically decreasing with the length of
the production run for any increasing failure rate (IFR) distribution. Prime examples of
this are situations where the "failure” is the result of deterioration of the state of the
production system during a production run (e.g., tool wear or breakage).

Sometimes the fraction acceptable is stochastically increasing with the length of the
production run. This occurs when a startup of a process involves trial and error in setting
values that affect the quality of the output. For example, situating a die properly, or
choosing a temperature that is consistent with both environmental conditions and properties
of the substance being heated often require some trial and error. For these situations, it
might be possible to model the process in a similar fashion to the stochastically decreasing
case. For instance, one might specify the distribution of time until the first acceptable unit
is produced. Thus far, this has been done using a Bernoulli process where the process is
assumed to be out of control until the first good unit is observed, at which point the process
is assumed to be in control. Certainly, similar phenomena can be modeled using
generalizations of these ideas.

Finally, there are several more general modeling approaches for both batch and
repetitive processes, where independence, stationarity, and stochastically decreasing or
increasing patterns are inapplicable. For batch processes, the most general approach used
to date involves specifying for each possible batch size the probability that each possible
output quantity will occur. This approach requires much experimentation and data
collection, since it might be necessary to try batch sizes not ordinarily used. For each batch
size, a reasonable sample size is necessary to obtain a good estimate of the distribution. A
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variety of non-stationary stochastic processes can be used to model yields for repetitive
processes, but to the authors' knowledge, this has not been done in the context of making
lot sizing decisions.

1.1.3 Measures of Performance

Throughout the literature on lot sizing with random yields, minimization of
expected costs (or maximization of expected profit) is the stated criterion. The objective
functions for cost minimization problems contain a subset of: setup costs, variable
production or procurement costs, inventory holding costs (binary, per unit, and per unit per
unit time), shortage costs (per unit, and per unit per unit time), salvage values, and disposal
costs. |

Although minimization of expected costs is certainly a reasonable objective, it is
surprising that, with few exceptions, constraints on various measures of service have not
been considered in lieu of shortage costs, especially since customer service measures are so
popular in the literature on lot sizing with random demands. Perhaps these measures will
be considered as the literature on random yields grows and matures.

In addition, to date, the issue of robustness has received little attention in the
literature on random yields. We suspect the reason for this is that the random yield models
and the associated solution procedures are somewhat more complex, both analytically and
computationally, than models for random demands. This makes it difficult to analyze
robustness issues. Yet, such investigations are needed since the same parameter estimation
concerns exist in problems with random yields as well as those with random demands.

In the next section we present a taxonomy of lot sizing problems in the presence of
random yields.

2.0 TAXONOMY OF LOT SIZING PROBLEMS WITH RANDOM YIELDS

This section describes a taxonomy of problems which is based on existing
literature. We believe that the taxonomy is useful in identifying the characteristics of
problems that have been addressed, and in pointing out where further research is needed.
It will also be useful in organizing our review of the literature.

As with inventory models, the two major categories are continuous time models,
and discrete time models. Within each of these categories, the problems are distinguished
principally by the structure of the production or procurement system (e.g., single-stage,
facilities in series, assembly). The continuous time models to date are infinite horizon
models and assume that stationary policies are used. On the other hand, the discrete time



models deal with single period, multi-period (finite horizon) and infinite horizon situations,
and some permit non-stationary policies. There are also research efforts directed toward
modeling complex manufacturing systems Our proposed taxonomy of research to date
appears in Figure 1.

FIGURE 1

We now turn to a review of the literature. We have attempted to provide a complete review
and apologize for any inadvertent omissions.

3.0 GENERAL PAPERS

Whybark and Williams (1976) use simulation to study the efficacy of safety stock
and safety time as buffers against quantity and timing uncertainty of demand and supply in
single-stage, single-product systems. Their results suggest that safety stock is preferred
for quantity uncertainty and safety time is preferred for timing uncertainty.

Since random yields normally create quantity uncertainty rather than timing
uncertainty, we might construe that safety stock would be a better buffering mechanism
than safety time for the models considered in the next two sections. However, random
yields can cause timing uncertainty if one needs to wait until enough good units are
produced. Thus, there may be a role for safety time as well.

New and Mapes (1985) propose four different strategies to deal with random
yields. For continuous production, make-to-stock situations, they recommend adjusting
the production quantity for the average yield rate, and using fixed buffer stocks. For
continuous production, make-to-order situations, they suggest a modification to the above
policy to allow multiple production runs. They recommend the use of a service level
(probability of satisfying the order) for a single custom order or for products having
infrequent demand. Finally, for multiple-order custom products, they propose using safety
time so that the production can be divided into smaller batches. This would enable more
frequent inspection and monitoring of the number of good parts produced, reducing the
risk of and size of overruns.

We now turn to a review of analytical models in a continuous review framework.

4.0 CONTINUOUS TIME MODELS

In continuous time models, demand for the product and decisions to produce or
replenish the product can occur at any point in time. The literature on continuous time



models can be classified according to demand characteristics: demand modeled as
deterministic and constant; and demand modeled as a stochastic process.

4.1 Continuous Time Models with Constant Demand Rates

The Economic Order Quantity (EOQ) model is a classic example of an inventory
model with constant demand rates. Although this assumption seems quite restrictive, it
has been found that models such as the EOQ are quite robust with respect to the model
parameters, and that sometimes the results obtained from these simple models are good
starting solutions for more complex models.

Several papers have been written on models that incorporate the effect of yield
uncertainty under the basic EOQ framework. The basic premise is that the amount
received from an order is uncertain. Results differ depending on how the yield
uncertainty is modeled.

One of the earliest papers on this topic was written by Silver (1976). In his
model, randomness of the number of defective units is only one of the many sources of
uncertainty affecting the quantity received. The other sources include human
administrative errors, good production runs leading to larger than the required quantity,
convenience in operations, and pilferage and damage. Hence, it is possible that the
amount received is greater than the amount ordered. Silver considers two cases: one in
which the standard deviation of the amount received is independent of the lot size, and
another in which it is proportional to the lot size. The ratio of the expected amount
received to the lot size is assumed to be constant, i.e., the expected yield rate is
independent of the lot size. He refers to this ratio as the "bias factor." In both cases, it is
shown that the optimal lot size is a slight modification of the EOQ.

Shih (1980) focuses on the case where yield uncertainty is caused by defective
units. The yield rate is thus between 0 and 1, and is assumed to be invariant with the lot
size. Such a representation of the yield rate also satisfies the assumption that the bias
factor (cf. Silver 1976) is independent of the lot size. The resulting expression for the
optimal lot size is again a simple modification of the EOQ formula. The modification
involves only the first two moments of the yield rate distribution, and as expected, the
optimal lot size is larger than the conventional EOQ.

Kalro and Gohil (1982) extend Silver's model to include complete and partial
backlogging of demands. In the partial backlogging case, it is assumed that a known,
constant fraction of demand is lost during a stockout period. Of course, since demands
are deterministic and constant, the stockout period is also known and constant, and can



be viewed as a decision variable itself. Mak (1985) extends this model even further by
assuming that the fraction of demand lost during a stockout period is itself a random
variable. He uses Shih's model of the yield rate distribution. Again, the optimal lot size
and the optimal length of the stockout period are shown to be functions of the first two
moments of the yield rate and the fraction of demand lost during a stockout.

In the above models, defective items received from the supplier are assumed to be
identified and discarded (or returned for replacement) immediately after they arrive. In
other words, a complete and perfect inspection mechanism is assumed to exist. Another
line of research attacks the problem of whether inspection should be performed
immediately upon arrival of an order, or when they are actually shipped to customers.
The tradeoffs involve inspection and holding costs. Lee and Rosenblatt (1985) first
explore this problem using the EOQ model under the assumption of a constant yield rate.
Zhang and Gerchak (1988) extend the model to the case where the yield rate is not
constant. Specifically they assume that each individual unit has a fixed probability of
being defective.

Some recent research has attempted to model the production process from which
defective products are produced. Porteus (1986) and Rosenblatt and Lee (1986a) have
independently incorporated the effects of imperfect production processes into the basic
EOQ model. In these papers, it is assumed that an order initiates the production of a
batch of units. The production process is characterized by an in-control state under
which defect-free units are produced, and an out-of-control state under which some or all
of the units produced are defective. The production process begins in the in-control state
after a setup is performed. At some point in time, the process goes out of control and
remains in that state until the next setup, which puts the process back into control.
Defective items are reworkable instantaneously at a cost. Porteus assumes that there is a
constant probability that the process goes out of control while produbing each unit (which
gives a geometric distribution of the "time to failure"), whereas Rosenblatt and Lee
assume that the time to failure is exponentially distributed. In the former paper, once the
process is out of control, all of the items are assumed to be defective, whereas in the
latter, only a fraction of the items produced is assumed to be defective. Both papers
develop approximate formulae for the optimal lot size, which are shown to be smaller
than the conventional EOQ. Thus, the presence of defective products motivates smaller
lot sizes here. '

It should be noted that the dichotomy of in-control and out-of-control states is a
standard one in the quality control literature (see Juran and Gryna 1980 and Grant and
Leavenworth 1988). Porteus's model of the shift from the in-control state to the out-of-
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control state is actually identical to that in an earlier work by Vachani (1969) on a
production problem to meet a one-time demand. The assumption of an exponential time
to failure is, of course, a classic one in the statistical process control literature (see
Duncan 1956). Porteus's assumption of a geometric time to failure might be viewed as a
discrete approximation of the exponential time to failure assumption. Lin et al. (1988)
relax the exponential assumption to a general distribution. The cost function can be
specified explicitly only for special cases, such as the uniform or Weibull distribution.
Consequently, numerical optimization procedures are used to solve their problem.
Extensions of the model of Rosenblatt and Lee (1986a) to include multiple out-of-control
states, and the case where defective units may be produced even during the in-control
state, are straightforward.

The possibility of intermediate ("process") inspections during a production run is
considered in Lee and Rosenblatt (1987) using an approach in which the optimal
production lot size and inspection intervals are jointly determined. They observe that,
with the use of process inspections, the optimal production lot size can be larger than that
without, as in Rosenblatt and Lee (1986a). Rosenblatt and Lee (1986b) compare the use
of continuous process inspection and periodic process inspections under the same
framework. In a later paper they (Lee and Rosenblatt 1988) allow for shortages, and
consider the cost of restoring the process from an out-of-control state back into control as
a function of detection delay.

In the model of Lee and Rosenblatt (1987) where inspections are allowed, if one
assumes that the number of inspections within a production cycle and the lot sizes can be
fractional, then the optimal solution can be obtained by treating the two problems
separately and independently. Porteus (1988) shows that this is indeed the case, and
attributes it to the assumption that inspections are instantaneous, i.e., the outcome of an
inspection is known without delay. When there is a time lag between the inspection and
its outcome, Porteus shows that the two problems are no longer separable, and
determination of the optimal lot size and inspection intervals is much more complicated.

In the above EOQ-type models with imperfect yields, the yield distribution itself
is assumed to be known and given. Investments to improve the production process can
have an impact on this distribution. Cheng (1989) assumes that there is a constant yield
rate, and the unit production cost of the item increases with the yield rate. For a specific
form of the relationship of the yield rate to the unit production cost, a closed-form
expression for the economic production quantity is obtained. Gerchak and Parlar (1988)
consider the problem of jointly determining yield variability and lot sizes when yield
variability can be reduced through appropriate investments. The approach of Silver
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(1976) to model yields is used, where the "bias factor" is assumed to be constant.
Gerchak and Parlar model a situation in which yield variability can be changed through
appropriate investments. Closed form solutions for the optimal investment level and lot
size can be obtained only for special cases of the investment function, where the
investment function reflects the amount of investment needed as a function of the yield
variability

The basic EOQ model framework also can be used to analyze the problem of
diversification of suppliers (see Gerchak and Parlar 1988). Diversification will reduce
the effects of yield variability. Consider two suppliers that have yield rates with different
means and variances The problem is to determine the optimal lot sizes for both suppliers
s0 as to meet demand and minimize costs. Gerchak and Parlar show that if the mean
yield rates for the two suppliers are the same, then the optimal lot sizes should be
proportional to the product of the ratio of the mean yield rates and the reciprocal of the
ratio of the respective yield variances. Hence, the result is similar to one on portfolio
optimization in the finance literature. Gerchak and Parlar also develop a condition under
which diversification is worthwhile.

4.2 Continuous Time Models with Random Demands

Relatively little research has been done on continuous time models with random
demands as well as random yields. For the case of random demands with backlogging,
the model is tractable when one assumes that there is at most one replenishment order
outstanding at all times, and when the backlog costs are a function of the number of units
short. For such a case, Noori and Keller (1986a) consider the standard Reorder-
Point/Reorder Quantity (r, Q) model (cf. Hadley and Whitin 1963), and use an approach
similar to that of Silver (1976). Explicit results are developed when the bias factor is
independent of the order quantity, and when the standard deviation of the amount
received is linearly related to the order quantity. The optimal r and Q values are obtained
using an iterative procedure.

For the general case where backlog costs are defined on a per unit per unit time
basis, and where more than one replenishment order may be outstanding, Moinzadeh and
Lee (1987) provide an exact analysis of the steady state operating characteristics for a
(r, Q) inventory system with Poisson demands and constant replenishment leadtimes.
There is no restriction on the form of the yield rate distribution in this analysis.

However, the derivation of the steady state operating characteristics requires the solution
of the limiting distribution of a Markov chain, and hence, it is difficult to determine the



optimal r and Q. When the amount received is binomially distributed, Moinzadeh and
Lee (1987) develop an effective approximation that involves adjusting the mean demand
rate in the conventional (r, Q) model. Consequently, the optimal values of (r, Q) can be
obtained easily.

All the papers reviewed in this section so far have assumed either that defective
items are discarded upon arrival of an order, or can be repaired at a cost. In reality, it is
possible that the defective items can be returned to the supplier, who would then replace
these items with a new batch of items equal in size to the amount of defective items detected
in the initial shipment. There is, of course, no guarantee that all the items in the second
shipment are defect-free (which means there can be a third shipment, and so on). Suppose
that the second shipment contains no defective items, which is a reasonable assumption if
the second shipment is very small, or if the supplier pays special attention and care in this
shipment. One can then think of such a situation as an inventory system where a
replenishment order would arrive in two shipments, with the amount in the first shipment
being a random variable. One can also think of such a model as equivalent to a case where
defective items in an incoming lot can be repaired with a given repair leadtime, in which
case the second shipment leadtime equals the first shipment leadtime plus the repair time.
Moinzadeh and Lee (1989) develop exact expressions for the operating characteristics of an
(r, Q) inventory system where the two shipment leadtimes are constant, and the intervals
between successive demands form a sequence of independent identically distributed
random variables. An approximate cost function for such a system is also developed based
on the assumption of a negligible probability that more than one order is outstanding.

5.0 DISCRETE TIME MODELS

Most of the research on discrete time models has focused on models with a single
period or a single stage (or both). We first review the literature on single-stage problems,
beginning with the simplest of them, involving a single time period.

5.1 Single Stage Models

5.1.1 Single Period Models
5.1.1.1 Single procurement order or production run

The prototypical single-stage, single period model involves choosing a single lot
size to procure or to produce to meet a single (known or random) demand, to minimize the



sum of expected variable costs, inventory holding costs, and shortage costs. This problem
was first addressed by Karlin (1958a). He considers two different models.

In the first model, it is assumed that the only decision available is whether to order
(or produce), and that if an order is placed, a random quantity (with a known, continuous
distribution) is delivered. The inventory holding costs and shortage cost are assumed to be
continuous, increasing functions of the excess and shortage, respectively. Karlin shows
that if the inventory holding and shortage cost functions are convex increasing in their
respective arguments, then there is a single critical number (of initial on-hand inventory)
below which one should place an order. Otherwise it is optimal not to order. He also
shows that conditions on the holding and shortage cost functions can be relaxed with
additional conditions on the distribution of the delivery quantity.

Karlin's second model permits a choice from among a finite number (n) of
production levels, where each has an associated output quantity distribution. The holding
and shortage costs are assumed to be convex increasing functions of their respective
arguments. Karlin shows that if the distributions of the delivery quantities have a
monotone likelihood ratio, then for any pair of production levels, there is at most one non-
negative "breakeven" initial inventory value. (That is, below this value, one production
level is preferred, and above this value, the other is preferred.) Therefore, there are
intervals (of initial inventory values) for which a particular production level is dominant,
and each production level is dominant in at most one interval.

Giffler (1960) considers a slightly different problem in which a binary, rather than a
per unit penalty is assessed for shortages. He formulates the problem as one of finding a
reject allowance which maximizes the savings relative to the alternative of no reject
allowance. The proposed solution procedure is marginal analysis, and Giffler gives a
condition for which marginal analysis is guaranteed to be optimal (i.e., a condition for
concavity of his objective), and indicates that binomial and Poisson probabilities satisfy this
condition. Levitan (1967) formally provides sufficient conditions for Giffler's procedure
to be optimal and derives properties that reduce the number of first difference calculations
required.

Gregory and Beged-Dov (1967) consider applications where almost all of the
defective parts are produced during the setup process, and that no defectives are produced
after a correct setup has been achieved. To model this phenomenon, they assume that the
number of parts spoiled during a setup is geometric. In other words, there is a specified
probability of achieving a correct setup for each part produced. Their objective function
includes the cost of scrapping excess good units, and the cost of a single extra setup if
demand is not satisfied by the first production run. They show that the objective function
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is unimodal and develop a closed-form expression for the shrinkage allowance. They also
suggest that the approach can be extended to multiple production stages in series.

A profit maximization version of a problem with a single known demand and one
production run is addressed by White (1970). He includes linear revenue, expected
variable production costs, salvage values, and shortage costs. He shows that the objective
function is concave and uses first differences to derive an expression which can be used to
find the optimal solution.

To the authors' knowledge, no further research on the problem was published until
the paper by Panda (1978). His single-period model is similar to Karlin's second model,
except the production levels are not restricted and demand is permitted to be random. Also,
linear holding, shortage, production, and salvage costs are assumed. For a situation in
which the order quantity represents the location parameter for the supply distribution, he
shows that the optimal policy has a single critical number which is the breakeven point
between ordering and not ordering. He also derives additional conditions in which it is
always or never optimal to order. In a closely related paper, Shih (1980) assumes that
inventory holding costs and shortage costs are linear in their respective arguments and that
the distribution of the fraction defective is invariant with the production level. Shih shows
that the optimal production (input) quantity can be found using a variation of the newsboy
model.

Gerchak, Parlar and Vickson (1986) obtain the same result for the profit
maximization objective, and generalize the result to permit initial inventory. In a later
paper, Henig and Gerchak (1987) prove the existence of an order point (for initial
inventory) below which an order should be placed. They also show that the value of this
order point does not depend upon the yield variability under very general conditions in a
single period setting. |

For the problem considered by Shih (1980), Noori and Keller (1986b) obtain
closed form solutions for the optimal procurement quantity for uniform and exponential
demand distributions and for various distributions of the quantity received. For a few
specific cases, they derive expressions for the relative error that results from using the
newsboy solution adjusted for average yield losses.

Ehrhardt and Taube (1987) consider a slightly more general problem in which the
expected holding and shortage cost function is assumed to be convex, and ordering costs
are linear in the replenishment quantity (not the quantity ordered). They demonstrate that
for the case of zero setup cost, there is a single critical number (for on hand inventory)
above which is it optimal not to order. Otherwise, there is an optimal order quantity which
depends upon initial inventory. They also show that the form of the policy is similar when
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the setup cost is positive, but the setup cost must be accounted for in the determination of
the smaller critical number.

Using a discrete uniform replenishment distribution and a negative binomial
demand distribution , they evaluate three heuristic policies: (i) standard newsboys; (ii)
newsboy solution divided by the expected fraction good; and (iii) solutions derived from
the expression for the optimal policy when demand is uniformly distributed and certain
other conditions are satisfied. The last heuristic uses the first two moments of the
replenishment distribution. A computational study suggests that the second heuristic
performs quite well.

Ehrhardt and McClelland (1987) analyze the single-period problem with linear
purchase, shortage (lost revenue), and salvage costs, and permit positive setup cost. They
assume that demand is random (with a known distribution), and that the distribution of the
fraction defective is invariant with the order quantity. For the case of no setup cost and a
continuous demand distribution, they evaluate two heuristic policies: (1) the standard
newsboy solution, and (2) the newsboy solution adjusted for the average fraction defective.
Their computational study shows that for shortage to holding cost ratios greater than
approximately 2, the second heuristic performs very well. They introduce another heuristic
which incorporates the effect of the variance of the fraction defective for situations in which
demand takes on only discrete values. A computational study shows that the second
heuristic performs better than the more complicated one.

For the objective of maximizing the minimum expected profit, Basu (1987)
considers a class of single-period problems in which the demand distribution is unknown
and the yield quantity has a distribution which is NBUE (new better than used in
expectation) with mean a + bQ, b > 0, where Q is the production or procurement quantity.
He shows that the optimal solution to the problem in which the yield quantity has an
exponential distribution with the same mean as the original distribution is the unique
optimal solution to the original problem. He also shows that as the number of observations
of demand increases, the estimator of the optimal solution (obtained by using the empirical
demand distribution) almost surely converges to the optimal solution.

5.1.1.2 Multiple production runs

Several papers have been written on a similar problem where one has the option of
making several production runs to satisfy a single demand. A series of papers in the late
1950's and early 1960's addresses the problem of determining reject allowances for
custom-ordered job lots. The reject allowance is defined as the extra quantity processed to



allow for possible defective units. In all but one of these papers, it is assumed that the
manufacturing process is in statistical control. so that the production of good parts can be
represented as a Bernoulli process. Thus, the number of good parts in a batch has a
binomial distribution.

Bowman and Fetter (1961) discuss a reject allowance model in which the yield
losses are described in terms of a (discrete) probability distribution of the reciprocal of the
fraction good. (This is equivalent to specifying the distribution of the fraction good.) A
variable cost per unit is charged on each unit of input, and a setup cost (for an additional
production run) is charged if the output does not satisfy demand. The optimal policy has a
critical ratio of consecutive cumulative distribution values.

Using the Normal and Poisson approximations to the binomial distribution,
Llewllyn (1959) finds reject allowances that ensure satisfaction of an order, or to ensure
that the capacity of the subsequent process is not exceeded, with a specified probability.
The latter problem is motivated by situations where excess units must be scrapped if not
used immediately. He also considers approximate cost minimization models where
additional production runs with positive setup costs can be used to satisfy deficits from
previous runs. His objective is to minimize expected unit production and setup costs. In
the first model, he assumes that the second production run incurs a setup cost, but the
variable costs in the second run and the costs associated with all subsequent runs are
negligible. Using an example, he shows that increasing the setup cost results in larger
reject allowances. In the second model, he also considers variable costs in the second
production run and a setup cost for the third production run. From (only) one example, he
concludes that the optimal decision does not change, so the second and higher order effects
can be ignored.

Goode and Saltzman (1961) generalize Llewellyn's model by permitting an infinite
number of setups, and incorporating salvage values (for excess good units) into the
objective function. They describe an optimal procedure which is simply a dynamic
programming algorithm for the problem (although they did not recognize it as such). For
the same model, Hillier (1963) shows that under certain conditions, the expected cost
functions are convex, so computations can be simplified by using first differences (rather
than the more complex expected total cost function) to find optimal solutions. He also
shows that the conditions are satisfied by the Normal approximation to the binomial
distribution. v

The model is further generalized by Wadsworth and Chang (1964) who include the
scrap value of defective units in the objective function. They use incremental analysis and
attempt to balance the marginal expected shortage cost and the marginal unit cost of an
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(additional) allowance. They develop a simple solution procedure which is based upon
approximations to the marginal costs, and the assumption that the expected number of units
short after the first production run is less than one.

White (1965) studies a version of this problem in which production runs are made
until the order is satisfied. The objective is to minimize the total expected setup and
variable production costs. Excess good units are assumed to be scrapped, but he suggests
that the model can be generalized to incorporate salvage values. He gives a dynamic
programming formulation for the case of a completely general yield probability mass
function. White then formulates and analyzes a related problem in which the yield rate
distribution is continuous, stationary over time, and independent of the input quantity. He
establishes that Bellman's method of successive approximations (1957) converges under
certain conditions on the yield rate distribution.

Further work on this problem was done by Delfausse and Saltzman (1966), who
develop an exact (recursive) cost expression for total expected setup, variable production,
and salvage costs for an order quantity as a function of the input quantity. They suggest
that search procedures can be used to find the best input quantity for each order quantity.
For various setup to variable cost to salvage cost ratios, they present optimal input
quantities for a range of order quantities in the case of binomial yield quantities. Their
numerical results suggest that the total expected cost function is relatively flat near the
optimal solution.

Some subsequent work on the problem of satisfying a single known demand
focuses on incorporating capacity constraints and other realistic considerations. Klein
(1966) uses a Markovian decision framework to analyze two different problems. In the
first, exactly N independent production runs are made to meet a future demand, and there is
a capacity constraint on the number of units in each run. In the second, N is random
because production can be terminated when the demand has been satisfied, and some
dependence between production runs (such as learning effects) are permitted. The cost
function in the first model includes production and inspection costs, holding costs, and
shortage costs. They are permitted to be time dependent (i.e., varying with the index of the
production run). The probability mass function of the number of good parts from a
production run is allowed to vary with the production quantity and with the index of the
production run. One unusual and interesting aspect of the models is that quantity tolerances
are allowed, so shortage and overage costs are incurred only when the final quantity of
good units lies outside a specified interval.

Klein models the first system (with N production runs) using a cyclic Markov chain
where, after every sequence of N transitions, the system returns to its starting state. The
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cost function in the last of each of these N cycles represents the expected cost of excesses
or shortages. Other costs are permitted to be completely general, but one must specify the
expected cost of being in each state. Klein shows that this problem can be transformed into
a linear program, which can then admit additional constraints. The problem with a random
number (but no greater than N) production runs is modeled in a similar fashion, but with an
absorbing state which is reached when demand has been satisfied or when N production
runs have been completed, whichever occurs earlier. This solution procedure leads to
randomize solutions, where the solution specifies the probability with which a particular
action should be selected. Thus, the solution differs considerably from characteristics of
most other solutions. -

White (1967) examines situations in which the production of good units is a
Bernoulli process, but the parameter p is unknown. He studies two cases: (1) total
number of units processed is constrained (for example, because of raw material
availability), and (2) the maximum production quantity in each production run is
constrained. The solution procedure for the first case involves updating the distribution of
p using standard Bayesian methods at the end of each production run. Then the optimal
size for the next sublot is found using a linear program resulting from a cyclic Markov
chain model. For the second case, White shows that the problem can be formulated as one
(large) linear program, and suggests methods to reduce the state space so the linear
program can be solved.

Possibly because of the generality of Klein's approach and the extensions of it by
White, there appears to be a gap of nearly 10 years until the next paper on this problem was
published. Beja (1977) examines systems having "constant marginal efficiency of
production,” which means that the unit cost of production divided by the probability of a
good unit is constant over time. For constant unit production costs, the model is identical
to a Bernoulli process. Using an objective function that includes unit production costs and
setup cost, he presents a Markovian formulation where the decision at each stage is whether
to produce another unit or to inspect the current output and re-setup if necessary. He
proves some useful properties: (i) the optimal production quantity (in a production run) is
monotonically increasing with the unsatisfied demand; and (ii) the objective function at
every stage is a unimodal function of the production quantity. Beja then gives some
conditions in which improved quality (with constant marginal efficiency) reduces costs, but
also gives an example in which improved quality leads to increased costs.

Again, there appears to be a large time gap until the next article on this subject
appeared. Sepehri, Silver, and New (1986) consider the Goode and Saltzman model
(infinite number of production runs with setup costs) and formally formulate it as a
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dynamic program. They also consider the case of a finite number of setups, which is
similar to Klein's model, but with stationary costs. Finally, they incorporate holding costs
for good units produced "early” (i.e., before the final setup) into the finite setup model.
They develop heuristics based upon incremental analysis, using Normal approximations to
the Binomial distribution. A limited computation study suggests that the heuristics perform
well, and that a simple rule-of-thumb policy of adjusting the production quantity to account
for average yield losses performs poorly.

The Sepehri et al. heuristic is improved by Pentico (1988), who notes that there are
two possible roots that solve a particular equation, and that in some cases Sepehri et al.
choose the incorrect root. In a study of 360 different sets of problems, Pentico shows that
the improved heuristic outperforms the rule-of-thumb policy tested by Sepehri et al., the
marginal approaches of Bowman and Fetter (1961) and Wadsworth and Chang (1964), and
a square root formula proposed by Orlicky (1973). This formula takes the lot size as the
sum of demand and a constant multiplied by the square root of demand, where the
multiplicative constant depends upon the probability of a defective unit and the setup and
unit production costs.

Ilan and Yadin (1985) consider a single-period problem in which a known demand
must be met, but lot splitting among different suppliers with random yields is allowed.
This problem is similar to the one addressed by Gerchak and Parlar (1988) in an EOQ
framework. The number of suppliers to be used, and their respective lot sizes are the
decision variables of interest. This problem is extremely complex, and hence it is difficult
to obtain structural results.

5.1.2 Multi-period Models

Relatively little research has been done on multi-period problems. All of the papers
include assumptions of one production run per period, and linear holding and shortage
costs, complete backlogging, and with one exception, zero lead times. Karlin (1958b)
considers infinite horizon (steady state) problems where the objective is to minimize the
average cost per period. Attention is restricted to policies having a single critical number
representing the breakeven point of on-hand inventory between ordering and not ordering.
He derives solutions for cases of demands having exponential and gamma distributions,
and general continuous yield distributions that are permitted to depend upon the production
quantity.

Gerchak, Vickson, and Parlar (1988) analyze a finite horizon problem with constant
costs under the assumptions that the distribution of the fraction good is invariant with the



production quantity and stationary in time, and that demand is stationary. Using a profit
maximization objective, they show that myopic policies are not generally optimal, and that
order-up-to policies are not optimal (i.e., the optimal production quantity is not necessarily
a linear function of beginning-of-period inventory).

Henig and Gerchak (1987) further show that under similar assumption on the
yield rate distribution, there exist critical order points for both the finite and infinite
horizon problems. These critical order points are such that no order should be placed if
the on-hand inventory level is above the critical order point; otherwise, an order should
be placed. However, the order size is a complicated function of the system parameters.

For the infinite horizon problem with stationary demand and costs, the critical order point
is also stationary. Moreover, it is shown that this critical order point is greater than or
equal to the one obtained when the yield is always 100%, i.e., the conventional model
with no yield loss.

Yano (1986b) investigates both finite and infinite horizon problems in which
demand is deterministic and the distribution of the yield rate is invariant with the input
quantity. It is shown that under certain conditions the optimal policy is multiplicative. That
is, the optimal input quantity is a real-valued multiple of net demand in a period. The
conditions are essentially: (1) no speculative motive for holding inventory; (2) maximum
yield rate is less than two times the minimum yield rate; and (3) the product is profitable to
produce.

Mazzola, McCoy, and Wagner (1987) develop several heuristic policies for finite
horizon problems with setup costs and deterministic demand. They permit completely
general (discrete) yield quantity distributions in their formulations, but the computational
study is based upon binomial yields. The better-performing heuristics in the first
experiments involve finding a lot sizing solution using the Wagner-Whitin (1958) or Silver-
Meal (1960) algorithm, then scaling up the lot sizes by multiplying by the reciprocal of the
average yield rate. They also test modified heuristics based upon service level concepts
(probability of satisfying demand) and report that the average cost error is 2.8%.

A heuristic procedure for the stationary finite horizon problem with setup costs, and
with positive lead times is proposed by Ehrhardt and McClelland (1987). They suggest a
method in which one first computes the two critical numbers (s and S) ignoring yield losses
using standard techniques. Then, an approximate inventory position, y, is computed as the
sum of on-hand plus the expected good in-transit inventory. If this value is less than s, an
order is placed for a quantity equal to (S - y)/[1 - E(P)], where P is the random variable
representing the fraction defective. They compare this heuristic with the best solution



found from a search using simulation and the results indicate that the heuristic performs

quite well.

5.2 Facilities in Series

Most of the papers on facilities in series consider single-period problems, and to
date, only heuristic procedures are available for multi-period versions of the problem.
Vachani (1970) considers a single period model of a serial production system in which all
demand must be satisfied. He assumes that all of the good output of one stage is processed
by the succeeding stage. Consequently, the only decision is the initial input quantity. At
each stage a setup cost, and linear variable production and salvage costs are incurred. The
yield distributions are assumed to have the characteristic that the expected fraction of units
good is invariant with the batch size. For tractability, he makes the assumption that the
total setup cost up through stage n is much larger than the variable production cost through
stage n. This permits him to assume that there is at most one supplementary production
run. He also assumes that the input quantity to the supplementary run is the shortage
amount divided by the average yield rate. Under these assumptions, Vachani shows that
the objective function is unimodal in the initial input quantity.

Vachani then considers a situation where more than one production run can be made
at a stage before proceeding with the subsequent stage. Again, all good output of a stage is
processed at the succeeding stage. He shows that under certain assumptions and
conditions, the cost function is convex in the initial input quantity in the case of binomial
yield quantities. He also points out difficulties in establishing convexity and monotonicity
of various key functions in general.

Lee and Yano (1988) address a single-period problem for a serial system with
deterministic demand and no setup costs. The distribution of the yield rate at each
production stage is assumed to be invariant with the input quantity and independent of the
yield rate distributions at the other stages. They assume that processing, holding and
shortage costs are linear, that it is profitable to product the product, and that it is less
expensive to hold inventory at one stage than to process it and hold the expected good
output at the following stage. Under these bonditions, they show that there is a single
critical number representing the optimal target input quantity at each stage. These values
can be determined in a sequential fashion, starting with the last production stage. The
optimal policy is to input the target quantity if enough is available; otherwise, one should
input whatever is available. These structural results are extended to the case of random
demand in Yano (1986a).
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Yano (1986c) generalizes the model of Lee and Yano by incorporating positive
setup costs. The optimal policy for the one-stage problem is shown to have two critical
numbers. The larger critical number is the optimal target input quantity, and the smaller
critical number is the value of on-hand inventory below which it is preferable not to
produce. If on-hand inventory lies between the two critical numbers, it is optimal to input
everything. For two stages, the optimal policy has the same form, but only under certain
restrictive conditions.

In the above papers, it is assumed that defective items at any production stage are
scrapped. Spence (1988) extends the model of Lee and Yano to allow rework of the
defective items at some production stages, at a cost. She assumes that all defective items
are acceptable after being reworked. Her work is motivated by the wafer fabrication
process for Application-Specific Integrated Circuits. There are multiple production stages
in such a process, and the goal is to meet a target output level. Observing that the yield
density function of the photolithography workcell of such a process is U-shaped in the lot
size, Spence proposes a yield density function for each production stage which is a
general polynomial function of the input quantity. Even with this complicated yield
representation, the property of constant bias factor is preserved in this formulation.
Moreover, the standard deviation of the yield is still a linear function of the input
quantity. Hence, although very different in appearance, the polynomial representation of
the yield density function has structural properties similar to those used by other
researchers.

In Spence's model, after any given production stage n where rework is
permissible, it is assumed that the number of items that have been processed at this stage,
Qp, and the number of "good" items among them, yp, are known. The Qp-yp items can
be reworked. The basic result is that the input quantity to the next stage is characterized
by two threshold quantities, ap and by. If yy falls below the lower threshold aj, then the
input quantity should be the minimum of Q, and a,,. Rework is used as necessary to
arrive at this input quantity. If y,, is above the lower threshold ap, then the input quantity
should be the minimum of yj, and by,. In this case, no rework is necessary.

Another model that is similar to a production system in series is described by
Bassok and Akella (1988). It consists of two stages, one corresponding to raw material
procurement, and the other to actual production. The yield uncertainty is represented by
the quality of raw material supply, which is random. The problem is to simultaneously
determine the amount of raw materials to purchase and the amount of machine capacity to
reserve for production of multiple parts on the same machine, to satisfy demand for a
single period. Given the amount of raw materials ordered, the amount that actually



arrives is a random variable. The cost function for such a problem can be quite complex.

As an approximation, Bassok and Akella assume that the decision variables
should be set such that the probability of material shortage for production is close to zero.
(Implicit in this is the assumption that underutilization of capacity is very undesirable.) In
this way, a simpler and tractable model results. Of interest is that Bassok and Akella
show that their model results in producing smaller quantities than those obtained by
solving the two decision problems separately. Hence, yield uncertainties in raw material
supply appear to result in less production.

A recent study by Tang (1988) models three types of uncertainty in a multi-stage
production line: yield, production rate, and demand. Buffer stocks are allowed between
the stages, and the system operates as a "pull” system. The decision in each period is the
production level. The proposed production rule starts with some target values for the
buffer stocks at the various stages, and at the beginning of each period, restores the
buffer stock at each stage to its target value in expectation. It thus minimizes the expected
deviation of the buffer stock levels from their targets. However, the determination of
target values is not explored.

5.3 Assembly Systems

Even less research has been done on assembly systems. Here, the amount of end-
product that can be assembled is the minimum of the yields (in terms of quantity) of all the
components. Thus far, only single period problems have been considered. Yano and
Chan (1989) consider a situation in which simultaneous procurement decisions must be
made for several assembly components with mutually independent random yield rates,
where the yield rate distributions are independent of the lot sizes. They investigate
properties of optimal solutions for the two-component case and develop heuristic
procedures based on these properties. One heuristic policy which involves a search over a
single parameter and has a newsboy-type form, is shown to perform quite well.

Versions of this problem with no salvage values for excess unassembled
components are considered by Gerchak and Yano (1989). This assumption regarding
salvage values permits them to retain concavity of the expected profit function while
including random demand, positive assembly costs, and random assembly yields.
Optimality conditions for various versions of the problem are derived.

A related problem with a different objective is considered by Yao (1988). The
production or procurement cost for a component is assumed to be increasing convex in
the input quantity of that component. The problem is to minimize total production costs,



subject to the constraint on the probability that a target demand level is met. Yao makes
the common assumption that the yield rate, p, is independent of the input batch size.
Moreover, he also assumes that this yield rate for each component has the increasing
failure rate (IFR) property, i.e., the hazard rate, defined as g(p)/[1 - G(p)], where g(p)
and G(p) are the p.d.f. and c.d.f. of p respectively, is increasing in p. Under such
assumptions, the problem becomes a convex program, and a standard Lagrange
multiplier approach can be used to solve it. Another performance measure, the expected
yield, which Yao defines as the number of end-products that can be assembled, is usually
very difficult to derive analytically. Yao considers the special case where the component
yields follow shifted exponential distributions, and obtains the expected yield in closed
form. The rationale for the use of shifted exponential distributions is that IFR random
variables have coefficients of variation less than one, and can thus be approximated by
shifted exponential random variable using a two-moment fit.

Lee (1987) considers a similar problem in which the procurement decisions are
made sequentially. Again, the yield rates of the individual components are mutually
independent and the yield rate distributions are independent of their respective lot sizes. A
dynamic programming procedure is used to find optimal solutions, taking into account the
actual yield rates associated with components already procured. The optimal sequence in
which to make the procurement decisions can be found efficiently using a dynamic
program. The solution procedures can be extended to include random demand, and
random yields in the assembly process.

Singh et al. (1988) describe a problem in semiconductor wafer fabrication where
the yield characterization is quite complicated because of the nature of the manufacturing
process. Sites on wafers must be allocated to various chips and individual chips or entire
wafers may be defective. The problem is to maximize the probability of meeting a set of
orders while considering the wafer processing costs. The two types of decisions that must
be made are: (i) how to allocate sites on wafers to the various types of chips and (ii) how
many wafers should constitute a job. The first problem is formulated as one of maximizing
the probability that the required chips are acceptable given a constraint on the number of
sites. This nonlinear program is solved for various values of the number of sites. The
second problem considers the impact of entire wafers being defective. Here, the problem is
to choose the minimum number of wafers consistent with meeting demand for the set of
orders. This problem is solved by iteratively increasing the number of wafers (thereby
increasing the number of available sites) until the desired probability is attained.
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6. COMPLEX MANUFACTURING SYSTEMS

In this section, we review modeling effort for more complex manufacturing
systems. These complexities include real time dispatching capabilities, imperfect
inspection, rework, and capacity-constrained production systems.

White (1970) shows how absorbing Markov chains can be used to determine the
expected variable production cost per unit for some systems that can include multiple stages
of production and rework. The expected variable production cost per unit is then used as a
cost parameter in a single-period profit optimization model in which only the initial input
quantity can be decided. In an example, he applies these concepts to a system with two
production stages and the possibility of rework.

Akella and Rajagopalan (1987) study the problem of dispatching and batch sizing
for a facility that produces multiple parts. The reason for batching in this context is the
presence of positive setup times for the test equipment. Defective parts are reworked
offline, and are sent through the testing stage again. Using a control theoretic framework,
they attempt to minimize the sum of the cost of deviations of production from demand
(which indirectly minimizes inventory holding and shortage costs) and the cost of resource
over- and underutilization (which indirectly minimizes overtime costs). The cost function
is assumed to be convex (quadratic), and this leads to optimal linear decision rules. Similar
approaches are used for a facility consisting of a flexible assembly or manufacturing
system. The production of printed circuit boards is used as an example (see Akella, Singh,
and Bassok 1988).

Yano (1989) considers a finite horizon model with no setups costs where in each
period, a "normal” and a "rework" production run are allowed (in that sequence). The
variable cost for reworking a part is assumed to be less than the cost of producing one in a
normal run. It is shown that the optimal production policy for the normal production run
depends heavily upon the number of good and reworkable units on hand. Consequently,
the optimal production quantity for the normal production run may be positive even when
there are many reworkable parts on hand. Sufficient conditions are derived for optimality
of "no rework"” and "rework all" policies.

Motivated by imperfections of the wafer probe operation in semiconductor
manufacturing, Lee (1989) incorporates the time required for rework explicitly in
determining the optimal lot size for wafer fabrication. Both fixed setup and variable
processing times for rework are included. It is assumed that the wafer probe process starts
in the "in control” state and that the time until it becomes out-of-control has a geometric
distribution. There is random self-detection of out-of-control problems during the



production run. For the objective of minimizing the average total processing time per
wafer, closed-form expressions for the optimal batch size are derived. Of interest is that
the fixed rework times tend to favor large lots, while the variable rework times tend to
favor large lots. The optimal lot size trades off these two effects.

Relatively little work has been done on more complicated systems. Meal (1979)
suggests a heuristic for setting safety stock levels in Material Requirements Planning
systems. He recommends that the variance of the usage of each part (resulting from both
demand fluctuations and supply or yield fluctuations) be used in a single-stage inventory
model to compute a safety stock level for that part.

Karmarkar and Lin (1986) consider a multi-period production planning problem in
which demands and yields are random. The objective is to allocate resources (both
consumable and renewable) to N products to minimize the sum of expected variable
production, inventory holding, shortage, regular time, overtime, capacity acquisition, and
capacity retirement costs. A linear cost structure is assumed. They develop methods to
compute upper and lower bounds on the objective value. Computational tests indicate that
the lower bounds are fairly tight. The lower bounds are based upon a Lagrangian
relaxation which decomposes the problem into independent single-period convex
programs, with multipliers linking the periods. Karmarkar and Lin suggest that the
procedures on which the lower bounds are based might provide effective heuristic
solutions.

Yano (1987) addresses the product cycling problem for products with random
yields. Two aspects of the problem are considered. In the first, the concem is one of
finding the optimal cycle duration for a planned rotation schedule. An approximate cost
function is used, which is shown to be convex in the cycle duration, provided the optimal
production quantities are used for the corresponding cycle duration. The solution is
obtained using fixed point methods. A method to allocate capacity to the products during
the current cycle is also presented.

Extensions of the continuous time models of section 4 to multiple items are
complicated. Based on the model of Lee and Rosenblatt (1988) in which the time until
the system goes out of control has an exponential distribution, Muckstadt (1988)
considers the joint problem of determining lot sizes and inspection intervals with multiple
items processed on the same machine. Here, it is assumed that the inspection process is
perfect. An additional constraint is included to ensure that the total setup and processing
time does not exceed the time available for production. The basic results of the problem
are very similar to those of Lee and Rosenblatt. The various products, however, may
have very different production cycles. Muckstadt treats the sequencing and scheduling



problems heuristically, and assumes that a power-of-two policy is used for both the
production cycles and inspection intervals. This leads to very tractable solution
procedures for these two decision variables.

Muckstadt also extends this model framework to the case where the inspection
process is imperfect. When the production process is out of control, it is assumed that the
detection time is exponentially distributed. Such an assumption essentially is equivalent to
the assumption of a constant probability that an out-of-control process is detected.

We note here that the paper by Spence (1988) described in section 5.2 also falls
into this category.

6.0 ANALYSIS AND DISCUSSION

The literature review makes evident the sparsity of research on realistic discrete time
models with multiple time periods, multiple production stages, capacity constraints and the
resulting production lead times, and multiple production runs at a stage within a single time
period. The discrete time models have the advantage of being able to incorporate non-
stationarity of yields, demand, and costs. This can be especially important during the early
portion of a process (and product) life cycle.

The main drawbacks of existing models of continuous time systems are the
assumptions of stationary demand, unlimited capacity, and zero or constant lead times.

The models are, however, more tractable analytically and computationally than discrete time
models, and so it may be easier to extend them to more general settings.

The issue of variable yields in multi-stage systems (specifically MRP systems) was
pointed out by Wagner (1980), but it is only in the last few years that progress has been
made in this area. We believe that the reason for this is that problems with random yields
become enormously complex, both theoretically and computationally, as the size and
complexity of the underlying manufacturing system increase. This is true partly because
input and output quantities are different, whereas they are the same when only demand is
uncertain.

Because of problem complexity, much of the research in the past two years has
focused on heuristics that have their foundations in simple optimization models. We
believe that most realistic problems cannot be solved optimally, and often, it will even be
difficult to derive the form of the optimal policy. Thus, there is a need for heuristic
solution procedures that are computationally inexpensive, and easy to implement.
Moreover, existing heuristics need to be tested over wider ranges of parameter values and
especially over a greater variety of yield rate and demand distributions.



There is also a need for appropriate performance measures for heuristics. Several
papers report heuristic solutions that give costs within a few percentage points of the
minimum cost solution. It is important to realize that because of the nature of the problem,
variable production or procurement costs must be included in the objective function either
explicitly or implicitly. In most cases, the unavoidable variable production costs constitute
a major portion of total costs. Thus, although a heuristic procedure may provide a solution
within a few percentage points of the minimum total cost, it may provide poor performance
relative to minimizing controllable costs. Consequently, questions must be raised about
appropriate performance measures for heuristics.

Finally, there is still a great deal of controversy about how randomness of yields
should be modeled. We believe that there is not one correct way of modeling yield
variances, but that each of the modeling approaches described in Section 2 is applicable to a
class of applications. Further empirical work is needed to describe commonly observed
yield distributions, and additional computational work is needed to test the robustness of
existing solution procedures to misspecification of the form of the yield distribution.
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