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Abstract

In this paper, we solve a type of shortest queue problem, which is related to multibeam

satellite systems. We assume that the packet interarrival times are independently distributed

according to an arbitrary distribution function, that the service times are Markovian with

possibly different service rates, that each of the servers has its own buffer for packet waiting,

and that jockeying among buffers is permitted. Packets always join the shortest buffer(s).

Jockeying takes place as soon as the difference between the longest and shortest buffers ex-

ceeds a pre-set number (not necessary 1). In this case, the last packet in a longest buffer

jockeys instantaneously to the shortest buffer(s). We prove that the equilibrium distribution

of packets in the system is modified vector-geometric. Expressions of main performance mea-

sures, including the average number of packets in the system, the average packet waiting time

in the system and the average number of jockeying, are given. Based on the above solutions,

numerical results are computed. By comparing the results for jockeying and non-jockeying

models, we show that a significant improvement of the system performance is achieved for the

jockeying model.



The performance study of a great number of satellite systems basically depends on the

analysis of the related queueing systems. The major interesting measures of such analysis

includes the system throughput, the average packet delay on the satellite, and the buffer

overflow probability for the case of finite buffer size. Multibeam satellite systems have been

studied extensively (for example, see Chlamtac and Ganz 1986, and Chang 1983), and it has

been shown that they provide a greater system flexibility and a better performance. In such a

system, all earth stations are organized into disjoint zones; packets generated from earth zones

arrive at the satellite by using different possible access techniques, one or several buffers are

provided at the satellite for the waiting packets to be processed or transmitted; and finally,

the packets are sent to their destinations by the multi-down-link beams.

When there is more than one buffer on board, introducing jockeying of the waiting packets

among the buffers seems to be a promising way to improve the performance of the systems.

For example, if we allow a packet waiting in the buffer with many waiting packets to move

to some other buffer with fewer waiting packets in it, then the average packet waiting time

is obviously reduced. But the analysis of such jockeying systems is more difficult because we

cannot deal with them by analysing only one specified input-output pair. Instead, we must

handle the system as a whole.

According to different assumptions made on the system, a variety of different jockeying

models could arise. In this paper, we consider a very general type of jockeying model, in

which the following assumptions are made. The arriving packets follow a general process;

that is, the time between any two successive arriving packets is described by an arbitrary

non-negative random variable, the interarrival time. All the interarrival times are identically

and independently distributed. There are several buffers in the system, each of them with

an infinite capacity. An arrival packet always joins the shortest waiting line if it cannot be

processed immediately. For any waiting line, the waiting packets are processed according to

first come first served (FIFO) discipline. The processing time for any packet is a Markovian,

that is, an exponential random variable. When the difference of the waiting packet numbers

between the longest waiting line and the shortest one exceeds a certain threshold value, the

last waiting packet is allowed to move (jockey) to the shortest waiting line.

Since Haight (1958) proposed and solved the shorter queue model (the shortest queue

model with only two servers), the jockeying problem has been studied extensively, in particular
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by Disney and Mitchell (1971), Elsayed and Bastani (1985), Kao and Lin (1990), Zhao and

Grassmann (1990), Zhao (1990), and Adan, Wessels and Zijm (1991). Except Zhao and

Grassmann, all authors considered only models with Markovian inputs. Among them, Kao

and Lin solved the problem of jockeying as soon as the difference between queues exceeds one.

They expressed their solution in terms of the eigenvalue of the rate matrix. Using the results

of Kao and Lin, Zhao and Grassmann (1990) developed an explicit solution to the problem.

They showed how to obtain certain initial probabilities for the system, and expressed the

joint distributions of the queue lengths in the vector-geometric form. Recently, Nelson and

Philips (1989) studied the response time for shortest queue routing by using approximations.

As stated in their paper, shortest queue routing is a natural way to balance the load of a

system across several processors and has been used as a load balancing mechanism as well as

a scheduling mechanism in an effort to minimize job response time.

In this paper, we consider the general input model with a very flexible jockeying rule, in

which the last packet in the longest queue jockeys to the shortest queue with an arbitrary

probability distribution as soon as the difference of the waiting packet numbers between the

longest queue and the shortest queue exceeds r, r ≥ 1. Some special cases of this model have

been considered by Zhao in his Ph.D thesis (Zhao 1990). After giving the definition of the

model in the next section, we first consider the imbedded Markov chain of the model. We

then obtain an explicit solution of the model, which also, as expected, has a vector-geometric

form. Other interesting system measures are given, based on the probability distribution of

the packet’s number in the system. Numerical results are presented and analyzed. It turns

out that significant improvements of the system performance can be achieved by allowing

jockeying among the queues.

1 The Model and the Imbedded Markov Chain

In this section, we give the definition of the r difference jockeying problem with a general

input, and point out some important properties of the transition probabilities.

In order to give a formal definition of the shortest queue model with r difference jockeying,

we make the following assumptions:

a) The packets arrive singly with interarrival times identically and independently distributed
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according to an arbitrary distribution function A(t) with A(t) = 0 if t < 0, and they are

not allowed to renege or balk.

b) There are c (c ≥ 2) servers (for example, transponders or down-link beams), numbered

1, 2, . . . , c, in the system and each of them has its own buffer. In each buffer, service

is rendered according to FIFO (first come first served) discipline. The c servers have

independent exponential service times. The service times are independent of arrivals.

c) An arriving packet joins one of the shortest buffers with a pre-determined probability

distribution.

d) Jockeying among the buffers is permitted. The last packet in the longest buffer(s) instanta-

neously jockeys to the shortest buffer(s) with a pre-determined probability distribution

as soon as the difference of the packet numbers between the shortest buffer(s) and the

longest buffer(s) exceeds r, r ≥ 1.

A queueing system satisfying a) – c) is called the shortest queue model and denoted by

GI/(M/1)c. A shortest queue model satisfying d) is called the shortest queue model with r

difference jockeying. When r = 1, we simply call it the shortest queue model with jockeying.

When both the probability distributions mentioned in c) and d) are uniform, we call the

shortest queue model symmetric; otherwise non-symmetric.

Let Xk(t) represent the number of waiting packets in buffer k, k = 1, 2, . . . , c, at time t,

t ≥ 0, including the packet in service, then { ~X(t) = (X1(t), X2(t) , . . . , Xc(t)) ; t ≥ 0 } is a

stochastic process. The state space of this process can be described as

S = {~i = (i1, . . . , ic) | ij non-negative integer for j = 1, 2, . . . , c

and |ik − il| ≤ r for k, l = 1, 2, . . . , c } .

The main purpose of this paper is to determine the limiting probabilities

π~i
= lim

t→∞
P{ ~X(t) =~i } , ~i ∈ S ,

when they exist.

In general, the above process is neither Markovian nor semi-Markovian. In order to analyze

this model, we introduce the imbedded Markov chain for the system as follows. We obtain
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an explicit formula for the probability distribution of buffer lengths (including the packets

in service) for the imbedded Markov chain first. The probability distribution of the buffer

lengths at a random time can then be found from the connection between a semi-Markov

process and its imbedded Markov chain.

If tl is the time just prior to the arrival of the lth packet, then { ~Xl = (X1(tl), X2(tl),

. . . ,Xc(tl)) ; l = 1, 2, . . . } is Markovian. Let 1/λ be the mean time between two successive

arrivals, and let µ be the sum of all the service rates; that is, µ =
∑c

k=1 µk. The imbedded

Markov chain { ~Xl ; l = 1, 2, . . . } formed in this way is ergodic if, and only if, the traffic

intensity λ/µ is less than one. In the paper, we always assume that this is the case.

In the stable condition, the limiting or equilibrium probabilities

p~i = lim
l→∞

P{ ~Xl =~i} , ~i ∈ S ,

exist and they are the same as the stationary probabilities of the imbedded Markov chain.

For any two states~i, ~j ∈ S, the transition probability p~i~j can be found by conditioning on

the interarrival time Ul; that is,

p~i~j =

∫ ∞

0
P{ ~Xl+1 = ~j | Ul = t , ~Xl =~i } dA(t) .

An explicit determination of p~i~j can be obtained by using conditional probability arguments.

Since only elementary algebraic manipulations are involved for the derivation and the final

explicit expression of p~i~j is cumbersome, we will not produce it here. The readers, who

are interested in details of deriving the explicit expression of p~i~j , may refer to Zhao (1991),

in which the same technique was used for obtaining the expression of p~i~j for the case of

r = 1. Instead, we give the proofs, by using the same conditional probability argument, of the

following properties of the transition probabilities. These properties are essential for proving

our main results in this paper.

For a state ~i, define #~i to be the number of packets in the system; that is, if ~i =

(i1, i2, . . . , ic) then #~i =
∑c

k=1 ik, and define two functions l(·) and s(·) of states to be

the number of packets in the longest buffer and the shortest buffer respectively; that is,

l(~i) = max(i1, i2, . . . , ic) and s(~i) = min(i1, i2, . . . , ic). Define ~1 = (1, 1, . . . , 1).
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Proposition 1 Let ~i, ~j ∈ S be two states in the state space. If #~j > #~i + 1, then p~i~j = 0.

If #~j = #~i + 1 and s(~j) > 0, then p~i~j = p~i+~1 ~j+~1, and

∑

~j:

#~j=#~i+1

p~i~j = β0 , (1)

where

β0 =

∫ ∞

0
e−µtdA(t) . (2)

If #~j < #~i + 1 with l(~j) > r, define k to be (#~i + 1) − #~j. Then p~i~j = p~i+~1 ~j+~1, and

∑

~j:

#~j=#~i+1−k

p~i~j = βk , (3)

where

βk =

∫ ∞

0

(µt )k

k!
e−µt dA(t) . (4)

First, it is obvious that if #~j > #~i + 1, then p~i~j = 0.

In the following we define ~X ′
l to be the state immediately after the arrival of the lth packet.

If #~j = #~i + 1 and s(~j) > 0, then

p~i~j =

∫ ∞

0
P{ ~X ′

l = ~j | ~Xl =~i }P{ ~Xl+1 = ~j | Ul = t , ~X ′
l = ~j } dA(t)

=

∫ ∞

0
P{ ~X ′

l = ~j | ~Xl =~i }P{ no packets served | Ul = t , all servers busy at tl }dA(t)

=

∫ ∞

0
P{ ~X ′

l = ~j +~1 | ~Xl =~i +~1 }e−µt dA(t)

= p~i+~1 ,~j+~1 , (5)

where ~1 = (1, 1, . . . , 1). Notice that whether p~i~j > 0 or p~i~j = 0 depends on whether P{ ~X ′
l =

~j | ~Xl =~i } is greater 0 or equal to 0. Also notice that the condition s(~j) > 0 is weaker than

s(~i) > 0. It follows from (5) and
∑

~j
P{ ~X ′

l = ~j | ~Xl =~i } = 1 that

∑

~j:

#~j=#~i+1

p~i~j =

∫ ∞

0
e−µt dA(t) = β0 . (6)
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If #~j < #~i + 1 with l(~j) > r, define k = (#~i + 1) − #~j. If → ~i1 → ~i2 · · · → ~ik is defined

as the event that the system is in state ~i1 after the first packet served, in state ~i2 after the

second packet served, ... , and in state ~ik after the kth packet served, then, by using l(~j) > r,

p~i~j becomes

p~i~j =

∫ ∞

0

∑

~i1,...,~ik:E

P{→~i1 · · · →~ik = ~Xl+1 = ~j | Ul = t , ~Xl =~i } dA(t)

=

∫ ∞

0

∑

~i1,...,~ik:E

P{→~i1 +~1 · · · →~ik +~1 = ~Xl+1 = ~j +~1 | Ul = t , ~Xl =~i +~1 } dA(t)

= p~i+~1 ,~j+~1 , (7)

where E denotes the event {#~i1 = #~i, #~i2 = #~i − 1, . . . , #~ik = #~i − k = #~j}, and ~1 =

(1, 1, . . . , 1).

It follows from (7) that

∑

~j:

#~j=(#~i+1)−k

p~i~j =

∫ ∞

0

∑

~i1,...,~ik:E

P{ →~i1 →~i2 · · · →~ik | Ul = t , ~Xl =~i }dA(t)

=

∫ ∞

0
P{ k customers served | Ul = t , all servers busy at tl }dA(t)

=

∫ ∞

0

(µt )k

k!
e−µt dA(t)

= βk . (8)

Notice that l(~j) > 0 is only a sufficient condition for the above property. One may prove

(8) under a weaker condition.

2 Solution of the Imbedded Markov Chain

This section shows that the equilibrium probabilities of packet lengths for the imbedded

Markov chain of the model under consideration obey a distribution which we call vector-

geometric. By this, we mean that there is a constant, say ω, such that every state, except

for boundary states, is related to exactly one other state in the sense that the ratio between

their probabilities is ω. To do the proof, we introduce the concept of blocks of states, and the

concept of groups of states. The proof exploits the special structure of the transition matrix.
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Specifically, some states cannot be reached by an arrival. Moreover, after an arrival, the states

in block k + 1 can be reached from block k only through state (k, k, . . . , k). The proof also

exploits the connection between the imbedded Markov chain of the GI/(M/1)c model with r

difference jockeying and the imbedded Markov chain of the GI/M/1 model.

In order to state our main result, we need to partition the state space S into blocks

according to the maximal number of packets in the buffers. Let

B<r = {~i ∈ S | l(~i) < r} , (9)

where r is the maximal allowable difference between the longest buffer and the shortest buffer,

and

Bm = {~i ∈ S | l(~i) = m} , m = r, r + 1, . . . . (10)

The state space can be written as the union of the blocks:

S = B<r ∪ (∪∞
m=rBm) . (11)

B<r and Bm are called blocks of states. It can be proved that the number of the states in B<r

is rc and that in Bm for all m = r, r +1, . . . is (r +1)c − rc. It follows from Proposition 1 that

the transition matrix P of the imbedded Markov chain { ~Xl , l = 1, 2, . . . } can be partitioned

by blocks as follows.

P =















































A0 0 A0 1

A1 0 A1 1 A0

A2 0 A2 1 A1 A0

A3 0 A3 1 A2 A1 A0

A4 0 A4 1 A3 A2 A1 A0

...
...

...
...

...
...

. . .

...
...

...
...

...
...

. . .















































. (12)

Here, A0 0 is a submatrix of size rc × rc, A0 1 of size rc × [(r + 1)c − rc], Am 0, m = 1, 2, . . ., of

size [(r + 1)c − rc]× rc, and Am 1 for all m = 1, 2, . . . and Am for all m = 0, 1, 2, . . . are of size

[(r + 1)c − rc] × [(r + 1)c − rc].
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The stationary equations can be written, according to blocks, as system I.

~p<r = ~p<rA0 0 +
∑∞

k=1 ~pk+r−1Ak 0 (a)

~pr = ~p<rA0 1 +
∑∞

k=1 ~pk+r−1Ak 1 (b)

~pm =
∑∞

k=0 ~pk+m−1Ak , m = r + 1, r + 2, . . . . (c)































I

The equations given in I(a) and I(b) are called boundary equations, and those in I(c) queue

equations.

Main result: The solution of the stationary probabilities of the imbedded Markov chain

has a modified vector-geometric form. Specifically,

~pm+1 = σc~pm , m = r + 1, r + 2, . . . , (13)

and (~p<r, ~pr, ~pr+1) can be obtained by solving the following equations

(~p<r, ~pr, ~pr+1)

















A0 0 A0 1 0

A1 0 A1 1 A0

∑∞
k=2 σ(k−2)cAk 0

∑∞
k=2 σ(k−2)cAk 1

∑∞
k=1 σ(k−1)cAk

















= (~p<r, ~pr, ~pr+1) .

(14)

Here σ is the unique solution for x, inside the unit circle, of the equation

x =
∑

k≥0

xkβk . (15)

The proof of the main result consists of three parts. In part one, we prove that the queue

equations have a vector-geometric solution. In part two, we prove that this vector-geometric

solution for the queue equations is also satisfied by the boundary equations. In part three, we

show that such a geometric parameter ω is unique and equal to σc.

Part one of the proof: The queue equations in I(c) have a vector-geometric solution

~pm+1 = ω~pm , m = r, r + 1, r + 2, . . . . (16)

This is true due to the following Lemma and Theorem.
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Lemma 1 The queue equations in I(c) have a vector-geometric solution in the form of (16)

if, and only if, det(ωI −
∑∞

k=0 ωkAk) = 0.

Replacing ~pk+m−1 for all k = 1, 2, . . . in the queue equations by ωk~pm−1 leads to

ω~pm−1 =
∞
∑

k=0

ωk~pm−1Ak . (17)

Since this is a non-trivial solution, the determinant in question must be zero.

The imbedded Markov chain of the GI/(M/1)c queueing model with r difference jockeying,

whose transition matrix is partitioned according to blocks, is a Markov chain of the GI/M/1

type defined in Neuts (1981). It follows from Lemma 1.2.4 by Neuts (1981) and the ergodicity

assumption of the model that the rate matrix R has at least one positive eigenvalue ω0

satisfying 0 < ω0 < 1.

Theorem 1 Let ω be an eigenvalue of the rate matrix R, then ω is a zero of the determinant

det(ωI −
∑∞

k=0 ωkAk).

Proof: It follows from R −
∑∞

k=0 RkAk = 0 and det(ωI − R) = 0 that

det

(

ωI −
∞
∑

k=0

ωkAk

)

= det

[(

ωI −
∞
∑

k=0

ωkAk

)

−

(

R −
∞
∑

k=0

RkAk

)]

= det

[

(ωI − R) −
∞
∑

k=0

(ωkI − Rk)Ak

]

= det

[

(ωI − R) −
∞
∑

k=1

(ωkI − Rk)Ak

]

= det

[

(ωI − R) −
∞
∑

k=1

(ωI − R)(ωk−1I + ωk−2R + · · · + ωRk−2 + Rk−1)Ak

]

= det

{

(ωI − R)

[

I −
∞
∑

k=1

(ωk−1I + ωk−2R + · · · + ωRk−2 + Rk−1)Ak

]}

= det(ωI − R) det

[

I −
∞
∑

k=1

(ωk−1I + ωk−2R + · · · + ωRk−2 + Rk−1)Ak

]

= 0 .

The above Lemma and Theorem guarantee that the determinant det(ωI −
∑∞

k=0 ωkAk)

has at least one zero ω0 satisfying 0 < ω0 < 1. This means that there is at least one ω = ω0
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such that the queue equations have a vector-geometric solution in the form of that given in

(16).

Part two of the proof: The vector-geometric solution for the queue equations is not

necessarily satisfied by the boundary equations. In this part, we show that starting from

the last element p(r,r,...,r) in ~pr, the solution given in (16) can be satisfied by the boundary

equations. Specifically, we prove that

p(r+1,r+1,...,r+1) = ωp(r,r,...,r) , (18)

~pm+1 = ω~pm , m = r + 1, r + 2, . . . , (19)

also satisfy the boundary equations. Replacing the above two expressions into the stationary

equations given in system I gives us system II with X# = rc + [(r + 1)c − rc] + [(r + 1)c − rc]

unknowns and E# = X# + [(r + 1)c − rc] + 1 equations.

~p<r = ~p<rA0 0 + ~prA1 0 + ~pr+1
∑∞

k=2 ωk−2Ak 0 (a)

~pr = ~p<rA0 1 + ~prA1 1 + ~pr+1
∑∞

k=2 ωk−2Ak 1 (b)

~pr+1 = ~prA0 + ~pr+1
∑∞

k=1 ωk−1Ak (c)

ω~pr+1 = ~pr+1
∑∞

k=0 ωkAk (d)

p(r+1,r+1,...,r+1) = ωp(r,r,...,r) . (e)



























































II

Our aim is to prove that system II has a non-trivial solution for ~p<r, ~pr and ~pr+1. If we can

prove that there are [(r + 1)c − rc] + 1 equations in system II which are redundant, then we

are done.

First, we prove that all equations in II(d) are redundant. Since only the last row of A0 is

non-zero, ~pr+1A0 can be written as ω~prA0 due to equation II(e). Therefore, II(d), which is

II(c) multiplied by ω, is redundant. Next, we prove that II(e) is redundant. In order to do

so, add all boundary equations in II(a) and II(b) together to form one equation, and notice

the property of the stochastic matrix P ; that is,

A0 0~e + A0 1~e = I~e , (20)

(Ak 0 + Ak 1)~e = I~e − (A0 + A1 + · · · + Ak−1)~e , k = 1, 2, . . . , (21)
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where the transpose of ~e is (1, 1, . . . , 1) with a proper size. This leads to

~prA0~e = ~pr+1

∞
∑

k=2

ωk−2(I − A0 − A1 − · · · − Ak−1)~e . (22)

Add all equations corresponding to block Br+1 or all equations in II(c) together, which gives

~pr+1~e = ~prA0~e + ~pr+1

∞
∑

k=1

ωk−1Ak~e . (23)

Now, combining (22) and (23) gives

~pr+1A0~e = ~pr+1

∞
∑

k=2

ωk−1(I − A0 − A1 − · · · − Ak−1)~e . (24)

And (22) and (24) lead to

(~pr+1 − ω~pr)A0~e = 0 . (25)

Since only the last row of A0 is non-zero, the sum of which equals β0, (25) becomes

(p(r+1,...,r+1) − ωp(r,...,r))β0 = 0 . (26)

This gives p(r+1,...,r+1) = ωp(r,...,r). Hence, equation II(e) is redundant.

Part three of the proof: It is clear, according to the proof in part two, that ω is unique.

Otherwise, for each ω we have a solution for the system, which contradicts the uniqueness of

the solution of the system. The only thing left now is to prove that ω = σc where σ is the

unique solution, inside of the unit circle, of equation (15). For this purpose, we define groups

Gk of states as follows:

Gk = {~i ∈ S | #~i = k} , k = 0, 1, 2, . . . . (27)

Therefore, group Gk consists of all states ~i, which contain the same number k of packets.

Add up all stationary equations corresponding to groups G0, G1, . . . , Grc−1 to form one

equation, and add up all equations corresponding to group Grc+k to form one equation for

each k = 0, 1, 2, . . .. Denoted by pk the sum of all stationary probabilities over group Gk:
∑

#~i=k
p~i and notice the property of the transition probabilities given in Proposition 1; that

is, the sum of all transition probabilities over a group is the constant βk, the resulting equations

are given as

prc =
∞
∑

k=0

prc+k(1 − β0 − β1 − · · · − βk) (28)

prc+m =
∞
∑

k=0

prc+m+k−1βk , m = 1, 2, . . . . (29)
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This is a GI/M/1 queueing system. Therefore

pm+rc+1 = σpm+rc , m = 0, 1, 2, . . . . (30)

On the other hand, it follows from

~pm+1 = ω~pm , m = r + 1, r + 2, . . . , (31)

that

pm+(r+1)c = ωpm+rc (32)

at least for m = 1, 2, . . .. In fact, it is valid also for m = 0 due to the equation II(e). For our

purpose here, it is enough to know that there is an m0 such that (32) is valid for all m ≥ m0.

Combining (30) and (32) gives that

σcpm+rc = ωpm+rc (33)

for all m = m0, m0 + 1, . . .. The only possibility is that ω = σc. This completes the whole

proof of our main result.

3 Solution of the Model

In the previous section, we have seen that the solution of the imbedded Markov chain has a

modified vector-geometric solution. We now show that this is also the case for the solution of

the equilibrium probabilities of the buffer lengths at a random time.

If Xi(t), i = 1, 2, . . . , c, represents the lengths of buffers at time t ≥ 0, then { ~X(t) =

(X1(t), X2(t), . . . , Xc(t) ) ; t ≥ 0 } describes a stochastic process. Generally speaking, this

process is neither Markovian nor semi-Markovian. In this section, we show that the equilibrium

probabilities of the buffer lengths at a random time

π~i
= lim

t→∞
P{ ~X(t) =~i } , ~i ∈ S ,

also have a modified vector-geometric solution with the same parameter ω = σc. For a

proof, we use the fact that the equilibrium probabilities of the imbedded Markov chain

are the same as that of the imbedded semi-Markov chain. Define X∗
i (t), i = 1, 2, . . . , c,

to be the lengths of buffers just prior to the last arrival before time t, then { ~X∗(t) =

12



(X∗
1 (t), X∗

2 (t), . . . , X∗
c (t) ) , t ≥ 0 } is a semi-Markov chain which is called the imbedded

semi-Markov chain of the GI/(M/1)c model with r difference jockeying.

The main theorem in the section that the equilibrium probabilities of the buffer lengths

at a random time have a modified vector-geometric solution is proved by using the formula

π~j
=
∑

~i

p~i

∫ ∞

0
P{ ~X(tn + t) = ~j | Un > t , ~X(tn) =~i }λ[ 1 − A(t) ]dt

=
∑

~i

p~i

∫ ∞

0
P{ ~X(tn+1) = ~j | Un = t , ~X(tn) =~i }λ[ 1 − A(t) ]dt .

For a proof of the first equality, use fact (iv) on page 351 of Gross and Harris and the fact

that the limiting probability distribution of the imbedded semi-Markov chain is the same as

that of the imbedded Markov chain since the mean time spent in every state during a visit is

the same equal to 1/λ. The proof of the second equality is based on the memorylessness of

the service times and the independence of the service times and the interarrival times. Under

these conditions, the transition probability from ~i at the previous imbedded epoch to ~j is

independent of t the length of the time.

Partition the equilibrium probability vector ~π according to blocks defined on the state

space: ~π = ( ~π<r, ~πr, ~πr+1, . . . . . . ).

Theorem 2 For the shortest queue model GI/(M/1)c with r difference jockeying, the equi-

librium probability vectors ~πm, m ≥ r + 1, have a solution in the modified vector-geometric

form,

~πm+1 = ~πmσc , m = r + 1, r + 2, . . . ,

where σ is the unique solution for x, inside the unit circle, of equation (15).

Proof: Since

P{ ~X(tn+1) = ~j +~1 | Un = t , ~X(tn) =~i +~1 }

= P{ ~X(tn+1) = ~j | Un = t , ~X(tn) =~i }

and

p~i+~1 = p~iσ
c
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for ~i ∈ Bm and ~j ∈ Bm with m ≥ r + 1,

π~j+~1 =
∑

~i+~1

p~i+~1

∫ ∞

0
P{ ~X(tn+1) = ~j +~1 | Un = t , ~X(tn) =~i +~1 }λ[ 1 − A(t) ]dt

=
∑

~i+~1

σcp~i

∫ ∞

0
P{ ~X(tn+1) = ~j | Un = t , ~X(tn) =~i }λ[ 1 − A(t) ]dt

= σc
∑

~i

p~i

∫ ∞

0
P{ ~X(tn+1) = ~j | Un = t , ~X(tn) =~i }λ[ 1 − A(t) ]dt

= σcπ~j
.

4 The Model with Markovian Input

If the arrivals are Markovian, the stochastic process ~X(t) defined in Section 1 is also Marko-

vian. Instead of considering the imbedded Markov chain, we can directly work with the

continuous time Markov chain ~X(t).

Let Q be the generator of the Markov chain ~X(t), and let the stationary probability vector

~p be partitioned according to blocks. Then

Q =







































R0 0 R0 1

R1 0 R1 1 Q0

Q2 Q1 Q0

Q2 Q1 Q0

...
... · · · · · ·







































, (34)

and the stationary equations can be written as

0 = ~p0R0 0 + ~p1R1 0 , (35)

0 = ~p0R0 1 + ~p1R1 1 + ~p2Q2 , (36)

0 = ~pj−1Q0 + ~pjQ1 + ~pj+1Q2 , j ≥ 2 . (37)

If we repeat what we did in Section 3, then we have the following main result.
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Main result: The solution of the stationary probabilities for the M/(M/1)c queueing

model with r difference jockeying has a modified vector-geometric form. Specifically,

~pm+1 = ρc~pm , m ≥ r + 1 (38)

and (~p<r, ~pr, ~pr+1) is determined by solving the following equations

(~p<r, ~pr, ~pr+1)

















R0 0 R0 1 0

R1 0 R1 1 Q0

0 Q2 Q1 + ρcQ2

















= 0 , (39)

where ρ = λ/µ is the traffic intensity of the system.

Example: The symmetric M/(M/1)2 model with r = 2 difference jockeying. In this

case,

B<2 = {(0, 0), (1, 0), (0, 1), (1, 1)}, (40)

B2 = {(2, 0), (2, 1), (0, 2), (1, 2), (2, 2)} (41)

and

Bm+1 = {~i + (1, 1) | ~i ∈ Bm} , m = 2, 3, 4, . . . . (42)

The generator of the Markov chain is partitioned according to blocks as that in (34) with

R0 0 =

























−λ λ/2 λ/2 0

µ1 −(λ + µ1) 0 λ

µ2 0 −(λ + µ2) λ

0 µ2 µ1 −(λ + µ)

























, (43)

R0 1 =

























0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 λ/2 0 λ/2 0

























, (44)
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R1 0 =































0 µ1 0 0

0 0 0 µ1

0 0 µ2 0

0 0 0 µ2

0 0 0 0































, (45)

R1 1 =































−(λ + µ1) λ 0 0 0

µ2 −(λ + µ) 0 0 λ

0 0 −(λ + µ2) λ 0

0 0 µ1 −(λ + µ) λ

0 µ2 0 µ1 −(λ + µ)































, (46)

Q0 =































0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 λ/2 0 λ/2 0































, (47)

Q1 =































−(λ + µ) λ 0 0 0

µ2 −(λ + µ) 0 0 λ

0 0 −(λ + µ) λ 0

0 0 µ1 −(λ + µ) λ

0 µ2 0 µ1 −(λ + µ)































, (48)
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and

Q2 =































0 µ 0 0 0

0 0 0 0 µ1

0 0 0 µ 0

0 0 0 0 µ2

0 0 0 0 0































. (49)

According to the main result,

~pm+1 = ρc~pm , m ≥ 3 , (50)

and (~p<2, ~p2, ~p3) is obtained by solving the equations given in (39). A numerical example is

given in Figure 2.

For the example here, we can further express all stationary probabilities p~i for~i ∈ ∪∞
m=1B2+m

in terms of only the probability p(2,2,...,2). To show that, let us examine the first one and the

third one of the queue equations in any block. They are corresponding to the states, which

cannot be reached by an arrival. These two equations give the relationships between p3 1 and

p3 2, and p1 3 and p2 3 respectively. This makes it easy to solve the first four equations explicitly

and to express all p3 1, p3 2, p1 3 and p2 3 in terms of p2 2. The probabilities p~i for ~i ∈ ∪m≥3Bm

can then be expressed in terms of only p(2,2,...,2):

pk+3 k+3 = ρ2(k+1)p2 2 , (51)

pk+1 k+3 = ρ2kC1p2 2 , (52)

pk+2 k+3 = ρ2k

(

λ + µ

µ2

)

C1p2 2 , (53)

pk+3 k+1 = ρ2kC2p2 2 , (54)

pk+3 k+2 = ρ2k

(

λ + µ

µ1

)

C2p2 2 , (55)

k = 0, 1, 2, . . ., where

C1 =
(λ/2) + µ1ρ

2

[

(λ+µ)2

µ1
− (λ + µρ2)

] (56)

and

C2 =
(λ/2) + µ2ρ

2

[

(λ+µ)2

µ2
− (λ + µρ2)

] . (57)
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Our results agree with the ones obtained by Adan et al. (1991). Our proof could be potentially

used to generalize the above expressions to the GI/(M/1)c model with r difference jockeying.

5 Numerical Results and Performance Analysis

The numerical results given in this section show that the introduction of jockeying can signif-

icantly improve the system performance. The performance measures used are L, the average

number of packets in the system, and W , the average time a packet spends in the system.

The results of section 3 allow us to find these measures as follows.

Consequence 1 Let pk =
∑

~i:#~i=k
p~i for k ≥ 1. Then

L =
rc−1
∑

k=1

kpk +
1

(1 − σc)

(r+1)c−1
∑

k=rc

(

k +
cσc

1 − σc

)

pk , and

W =
L

λ
.

Therefore, the average number L of packets in the system and the average waiting time W

of a packet in the system depend on σ and the probability vectors ~p<r, ~pr and ~pr+1. Since σ ,

the root of the characteristic equation of the GI/M/c model, is easy to find (see for example

Chaudhry, Agarwal and Templeton (1992)), the only problem left is the determination of the

probability vectors ~p<r, ~pr and ~pr+1. One may use different numerical methods to compute

these vectors. Here, we use the GTH-algorithm given in Grassmann Taksar and Heyman

(1985) to obtain numerical results.

As we mentioned in the introduction, jockeying shortens the average packet waiting time

in the system. This improvement is significant when service rates are uneven. Since the

average number of packets in the system is proportional to the average packet waiting time

in the system, jockeying also decreases this number. For brevity, we restrict the discussion to

Markovian input models with two servers.

For all values of the traffic intensity ρ, the average packet waiting time will be shortened

when jockeying is allowed. A significant improvement of the average packet waiting time

would be expected if service times are uneven (see Table 1 to Table 3). But, under very
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light or heavy traffic conditions, the improvement of the average packet waiting time would

be offsetted by the cost of jockeying. Therefore, the system performance may not be actually

improved. Generally speaking, for almost all interesting traffic intensities ρ, say 0.25 to 0.95,

the performance of the system would be improved when jockeying is allowed (see Table 4 and

Table 5). If the ratio between service rates is 9 to 1, the average waiting time in the system is

shortened by more than 20 %. Table 1 gives the average waiting time W for ρ = 0.7, for r = 1,

2, and the non-jockeying model, and for a ratio between service times which is 9 to 1, The

percentages of the improvement of the average waiting time for jockeying models compared

to the non-jockeying model are also given.

Table 1: The average packet waiting time W and the improvement for jockeying models.

W

9:1 3:1 1:1

r=1 2.210 2.051 1.961

improvement (%) 38.3 17.6 7.0

r = 2 2.667 2.273 2.062

improvement (%) 25.6 8.7 2.2

non-jockeying 3.582 2.489 2.108

In Table 2 and Table 3, the percentages of the improvement of the average packet waiting

time W and the average number of packets in the system L for jockeying models compared to

non-jockeying models are given for different values of the traffic intensity ρ, different maximal

values r between buffer lengths, and different ratios of service rates.

Table 2: The performance improvement when the ratio of the service rates is 9 to 1.

ρ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

r = 1 (%) 22.9 29.4 34.1 37.1 38.3 37.0 30.5 21.7

r = 2 (%) 4.67 9.77 15.58 21.12 25.57 27.88 25.25 18.71

r = 3 (%) 0.63 2.38 5.78 10.55 15.81 20.15 20.53 15.94
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Table 3: The performance improvement when the ratio of the service rates is 3 to 1.

ρ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

r = 1 (%) 9.1 12.6 15.3 17.0 17.6 16.3 11.9 7.4

r = 2 (%) 1.13 2.61 4.60 6.78 8.67 9.53 7.95 5.29

r = 3 (%) 0.11 0.42 1.14 2.32 3.83 5.17 5.09 3.64

The improvement of the system performance due to jockeying is particularly pronounced

in models with uneven service rates. In our numerical experiments, different situations with

ratios of service rates µ1 to µ2 being 9 and 3 to 1 respectively, are compared. The average

packet waiting time is decreased by more than 38% for highly uneven service rates with service

ratio 9 to 1 and a moderate traffic intensity ρ = 0.7. In contrast to the cases with uneven

service rates, the average packet waiting time in the system with equal service rates can only

be decreased by a maximum 7.2% (see Figure 4). Since the average number of the packets

in the system is linearly proportional to the average packet waiting time in the system, this

number is be decreased by the same percentages.

Another interesting performance measure is the average times of jockeying of a packet

or the average times that a packet changes buffers, which is denoted by JN . This number

decreases as r increases. It is not difficult to derive a formula for JN by using the main result

and conditioning on the system states. Notice that only for those states ~i = (i1, i2) with

min(i1, i2) ≥ 1 and |i1 − i2| = r, a service completion from the shorter queue contributes to

JN . Specifically,

JN =
1

λ

∞
∑

k=1

(µ1pk, k+r + µ2pk+r, k) (58)

=

(

1

λ

)(

1

1 − ρc

)

(µ1p1, 1+r + µ2p1+r, 1) . (59)

In Table 4 and 5, where ρ = 0.7, the average times of jockeying of a packet and the

improvement of the average waiting time of a packet for jockeying models compared to non-

jockeying models are given and compared for different values of r with the ratio of service
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rates 9 to 1 and 3 to 1 respectively.

Table 4: JN and the improvement of W for a ratio of 9 to 1 between service rates.

r 1 2 3 4 5 ∞

JN .2414 .0860 .0369 .0163 .0073 0

ImpW (%) 38.3 25.6 15.8 9.2 5.0 0

Table 5: JN and the improvement of W for a ratio of 3 to 1 between service rates.

r 1 2 3 4 5 ∞

JN .1957 .0459 .0136 .0044 .0015 0

ImpW (%) 17.6 8.7 3.8 1.6 0.6 0

In the above tables, we can see that the improvement of the average waiting time of a

packet for a jockeying model compared to a non-jockeying model is as large as 38.3 percent

and the mean number of a packet jockeys is below 0.25.

6 Conclusions

In this paper, we analyzed the GI/(M/1)c jockeying model and obtained a modified vector-

geometric solution for the equilibrium probabilities of the number of packets in the system.

The expressions of the average number of packets in the system, the average packet waiting

time in the system and the average times of jockeying of a packet are also given. Numerical

solutions of the model only depend on the root of the characteristic equation of the model

and the probability vectors ~p<r, ~pr and ~pr+1. The root can be found by using root finding

method and the probability vectors ~p<r, ~pr and ~pr+1 can be numerically obtained by using

different methods. Significant improvements of the average number of packets in the system,

and the average packet waiting time in the system are shown for the jockeying models with

uneven service rates.
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Figure 1: The equilibrium probabilities of the number of packets in the system for the shortest

queue model M/(M/1)2 with the traffic intensity ρ = 0.5 and equal service rates.
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Figure 2: The average packet waiting time in the system for the shortest queue model

M/(M/1)2 with the ratio of the service rates 9 to 1.
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Figure 3: The average packet waiting time in the system for the shortest queue model

M/(M/1)2 with the ratio of the service rates 3 to 1.
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Figure 4: The average packet waiting time in the system for the shortest queue model

M/(M/1)2 with the equal service rates.
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