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Abstract

Two medical applications of linear programming
are described in this paper. Specifically, linear-
programming-based machine learning techniques are
used to increase the accuracy and objectivity of breast
cancer diagnosis and prognosis. The first application
to breast cancer diagnosis utilizes characteristics of
individual cells, obtained from a minimally invasive
fine needle aspirate, to discriminate benign from ma-
lignant breast lumps. This allows an accurate diag-
nosis without the need for a surgical biopsy. The di-
agnostic system in current operation at University of
Wisconsin Hospitals was trained on samples from 569
patients and has had 100% chronological correctness
in diagnosing 131 subsequent patients. The second
application, recently put into clinical practice, is a
method that constructs a surface that predicts when
breast cancer is likely to recur in patients that have
had their cancers excised. This gives the physician
and the patient better information with which to plan
treatment, and may eliminate the need for a prog-
nostic surgical procedure. The novel feature of the
predictive approach is the ability to handle cases for
which cancer has not recurred (censored data) as well
as cases for which cancer has recurred at a specific
time. The prognostic system has an expected error of
13.9 to 18.3 months, which is better than prognosis

correctness by other available techniques.
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Despite a great deal of public awareness and scientific
research, breast cancer continues to be the most com-
mon cancer and the second largest cause of cancer deaths
among women [19]. Approximately 12% of U.S. women
will be diagnosed with breast cancer [21], and 3.5% will
die of it [23]. The annual mortality rate of approximately
28 deaths per 100,000 women has remained nearly con-
stant over the past 20 years [20]. A breast cancer victim’s
chances for long-term survival are improved by early de-
tection of the disease, and early detection is in turn en-
hanced by an accurate diagnosis. The choice of appropri-
ate treatments immediately following surgery is largely
influenced by prognosis, that is, the expected long-term
behavior of the disease.

Figure 1: A magnified image of a malignant breast fine
needle aspirate. Visible cell nuclei are outlined by a curve-
fitting program. The Xcyt system also computes various
features for each nucleus and accurately diagnoses the
sample. Interactive diagnosis takes about 5 minutes.

We will describe two significant applications of linear
programming in the field of breast cancer research, one in
diagnosis and one in prognosis. Both applications, cur-
rently in clinical practice, depend on the analysis of cellu-
lar images, accomplished with a computer program called



Xcyt, written by one of the authors [31], that we describe
in Section 1. The first application to breast cancer diag-
nosis has been described earlier [17, 18, 32, 34, 35] and
is outlined in Section 2. The details of the diagnosis pro-
cess in a clinical setting are described in Section 3. The
second application to breast cancer prognosis [31] has not
been published in the open literature and is described in
some detail in Section 4. Computational results concern-
ing the expected accuracy of the prognostic system are
contained in Section 5. Section 6 shows the clinical im-
portance of recurrence prediction, and Section 7 describes
some possible extensions to the prognostic research. Sec-
tion 8 concludes the paper and points to future work.

1 The Xcyt Image Analysis Pro-
gram

The results of all of this research have been incorporated
into an easy-to-use graphical computer program called
Xcyt. At the time of this writing, Xcyt performs the
following functions:

e Analysis of cytological (i.e., cellular) features based
on a digital scan;

e Diagnosis of the image as benign or malignant, along
with an estimated probability of malignancy;

e For cancerous samples, prediction of when the cancer
is likely to recur.

First, a sample of fluid is taken from the patient’s
breast. This outpatient procedure involves using a small-
gauge needle to take the fluid, known as a fine needle
aspirate (FNA), directly from a breast lump or mass, the
lump having been previously detected by self-examination
and/or mammography. The fluid from the FNA is placed
on a glass slide and stained to highlight the nuclei of the
constituent cells. An image from the FNA is transferred
to a workstation by a video camera mounted on a mi-
croscope. A portion of such an image is depicted in Fig-
ure 1.1

Xcyt uses a curve-fitting program to determine the
exact boundaries of the nuclei. The boundaries are ini-
tialized by an operator using a mouse pointer. See Fig-
ure 1. For a typical image containing between 10 and
40 nuclei, the image analysis process takes approximately
two to five minutes. Ten features are computed for each

!Twenty of these images are available by anonymous ftp or
via the World Wide Web from ftp.cs.wisc.edu/math-prog/cpo-
dataset/machine-learn/images.

nucleus: area, radius, perimeter, symmetry, number and
size of concavities, fractal dimension (of the boundary),
compactness, smoothness (local variation of radial seg-
ments), and texture (variance of gray levels inside the
boundary). The mean value, extreme value (i.e., largest
or worst value: biggest size, most irregular shape) and
standard error of each of these cellular features are com-
puted for each image, resulting in a total of 30 real-valued
features.

2 The Diagnostic System

Most breast cancers are detected by the patient as a lump
in the breast. The majority of breast lumps are benign
so it is the physician’s responsibility to diagnose breast
caner, that is, to distinguish benign lumps from malignant
ones. There are three available methods for diagnosing
breast cancer: mammography, FNA with visual interpre-
tation, and surgical biopsy. The reported sensitivity (i.e.,
ability to correctly diagnose cancer when the disease is
present) of mammography varies from 68% to 79% [7], of
FNA with visual interpretation from 65% to 98% [8], and
of surgical biopsy close to 100%. Therefore, mammogra-
phy lacks sensitivity, FNA sensitivity varies widely, and
surgical biopsy, although accurate, is invasive, time con-
suming, and costly. The goal of the diagnostic aspect of
our research is to develop a relatively objective system
that diagnoses FNAs with an accuracy that approaches
the best achieved visually.

In contrast to previous work [17, 33] where cytologi-
cal features were subjectively evaluated by the attending
physician, the diagnostic system in current use at Uni-
versity of Wisconsin Hospitals uses the Xcyt system de-
scribed above to generate a 30-dimensional feature vector
for each patient. This analysis was performed for each of
569 patients for which the actual diagnostic outcome is
known. Malignant cases were confirmed by biopsy, while
benign cases were confirmed either by biopsy or by subse-
quent periodic medical examinations. These 569 vectors,
along with the known outcomes, represent a training set
with which a classifier can be constructed to diagnose
future examples. These examples were used to train a
linear programming-based diagnostic system by a variant
of the multisurface method (MSM) [14, 15] called MSM-
Tree (MSM-T) [1, 2] which we briefly describe now.

Let m malignant n-dimensional vectors be stored in the
m x n matrix A, and k benign n-dimensional vectors be
stored in the k x n matrix B. The points in A and B
are strictly separable by a plane in the n-dimensional real



space R" represented by
(1) zTw =7,
if and only if

(2)
Here w € R™ is the normal to the separating plane,
1l r is the distance of the plane to the origin in R",

(wTw)z

and e is a vector of ones of appropriate dimension. In
general, the two sets will not be strictly linearly separa-
ble and the inequalities (2) will not be satisfied. Hence we
attempt to satisfy them approximately by minimizing the
average sum of their violations by solving the following
linear program:

Aw > evy+e, Bw<ey—e.

el

. ely z
minimize — + —
w,Y,Y,2 m k
(3) Aw+y > ey+e
subject to Bw—2z < ey—e
Y,z > 0.

The linear program will generate a strict separating
plane (1) satisfying (2) if such a plane exists, in which case
y =0,z = 0. Otherwise it will minimize the average sum
of the violations y and z of the inequalities (2). This in-
tuitively plausible linear program has significant theoreti-
cal and computational consequences [2], such as naturally
eliminating the null point w = 0 from being a solution,
a difficulty that other linear programming formulations
exclude in an ad hoc manner [9, 10, 14]. Once the plane
27w = 7 has been obtained, the same procedure can be
applied recursively to one or both of the newly created
halfspaces 7w > ~ and 27w < =, if warranted by the
presence of an unacceptable mixture of benign and malig-
nant points in the halfspace. Figure 2 shows an example
of the types of planes generated by MSM-T. MSM-T has
been shown [1] to learn concepts as well or better than
more well-known decision tree learning methods such as
C4.5 [26] and CART [3]. In our implementation, the solv-
ing of the linear programs is carried out using the MINOS
numerical optimization software [22].

A key issue in machine learning is to avoid “overtrain-
ing” the classifier, that is, memorizing details of the train-
ing data at the expense of good generalization to unseen
data. Even a single plane can be considered an over-
trained classifier if the dimensionality of the feature space
is high. In our case, better generalization was achieved by
reducing the number of input features considered. Tak-
ing advantage of the training speed of MSM-T, we built
classifiers using all subsets of one, two, three or four fea-
tures and one or two separating planes. Combinations

Figure 2: MSM-T separating planes.

that resulted in classifiers that separated the training set
well, were evaluated using cross-validation [30] % to esti-
mate their true accuracy, that is, how they would per-
form in actual practice. The best results were obtained
with one plane and three features: Extreme area, extreme
smoothness and mean texture. The predicted accuracy,
estimated with cross-validation, was 97.5%. This level of
accuracy is as good as the best results achieved at spe-
cialized cancer institutions.

Xcyt also uses the Parzen window density estimation
technique [24, 25] to estimate the probability of malig-
nancy for new patients. All of the points used to gener-
ate the separating plane z7w = 4 in the 3-dimensional
space of extreme area, extreme smoothness and mean tex-
ture, were projected on the normal w to the separating
plane. Using the Parzen window kernel technique, we
then ’count’ the number of benign and malignant points
at each position along the normal, thus associating a num-
ber of malignant and a number of benign points with each
point along this normal. Figure 3 depicts densities ob-
tained in this fashion using the 357 benign points and
212 malignant projected on the normal w to the plane
zTw = 4. Note that + is close, but not identical, to the
location along the normal to the separating plane where
the two density functions intersect.

The probability of malignancy for a new case can be
computed with a simple Bayesian computation, taking
the height of the malignant density divided by the sum
of the two densities at that point. This assumes that the
prior probability of each outcome is 0.5. This was thought
to be preferable to using the observed prior probability

2In particular, ten-fold cross-validation was used. The predictive
model is trained using 90% of the training examples and tested on
the remaining 10%. This is done ten times, each time testing on a
different 10%. The average performance on the testing sets gives
an accurate, unbiased estimate of real-world performance.



(more than 60% benign) in order to avoid overly opti-
mistic probabilities.
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Figure 3: Densities of benign and malignant points along

the normal w to the separating plane 7w = 7.

3 Clinical Usage of Xcyt

As mentioned earlier, the Xcyt system has been used by
one of the authors (WHW, a surgical oncologist) in his
clinical practice since 1993. In that period, the classi-
fier has achieved 100% correctness on the 131 consecutive
new cases that it has diagnosed (94 benign, 37 malig-
nant). Analysis and diagnosis of the fine needle aspi-
rate for a new patient can be performed in a few minutes
by the attending physician using Xcyt. Once the FNA
slide from a new patient has been analyzed, the patient is
shown a density diagram similar to Figure 3 along with
the value of 27w for the sample. The patient can then
easily appraise the diagnosis in relation to hundreds of
other cases, in much the same way that an experienced
physician takes advantage of years of experience. Thus
the patient has a better basis on which to base a treat-
ment decision. For instance, a value of 7 w falling in the
region of Figure 3 where the densities overlap would cor-
respond to a “suspicious” diagnosis. In particular, when
the probability of malignancy (computed as described in
the previous paragraph) is between 0.3 and 0.7, it is con-
sidered to be indeterminate and a biopsy is recommended.
This is a rare case, as only eight of the 131 new cases have
fallen into this suspicious region while 103 been assigned
probabilities either less than 0.1 or greater than 0.9. Still,
different patients may have very different reactions to the

same readings. Masses from patients who opt for surgical
biopsy have their diagnosis histologically confirmed. Pa-
tients who choose not to have the biopsy done are followed
for a year at three-month intervals to check for changes
in the mass.

We have successfully tested Xcyt on slides and images
from researchers at other institutions who used the same
preparation methodology. Through collaborative studies,
Xcyt will soon be made available for clinical use at these
institutions. Our research will also benefit from these col-
laborations by gaining new training cases, resulting in a
more robust classification system. Further, there is some
evidence that the classification system built into Xcyt
may be applicable to other forms of cancer, even without
modification. Twenty slides of FNA’s taken from thyroid
tumors at UCLA hospitals were successfully diagnosed,
indicating that there may be significant structural simi-
larities between the two types of cancers.

Our research into diagnosis from FNA has resulted in
a system that delivers results (estimated 97.5% accurate,
observed 100%) which are at least as reliable as any pro-
cedure for diagnosis short of a more invasive histological
examination of the removed tumor. Further, FNA diag-
nosis can be performed quickly (about 15 minutes total)
on an outpatient basis, which is not true of other types
of diagnostic procedures. Our current collaborative ef-
forts will expand the use of Xcyt to other specialized
cancer centers; however, we foresee a time in the near
future when the Internet will carry this type of medical
expertise almost instantly to patients regardless of their
community.

4 Prognosis: Recurrence Surface
Approximation

Our second research area concerns the more difficult prob-
lem of prognosis, that is, the long-term outlook for the
disease for patients whose cancer has been surgically re-
moved. This problem does not fit into the usual classi-
fication paradigm of discriminating between two classes.
While a patient can be classified as a 'recur’ if the dis-
ease 1s observed at some subsequent time to tumor ex-
cision, a patient for whom cancer has not recurred and
may never recur, has an unknown or censored [13] time to
recur (TTR). For the latter patients, all that is known is
the disease-free survival (DFS) time of their last checkup.

We approach the prediction of TTR as a function esti-
mation problem, a mapping of an n-dimensional input of
input features to a one-dimensional output which repre-
sents the expected time of recurrence. Our solution to this



estimation problem is by a linear programming-based Re-
currence Surface Approximation (RSA) technique. RSA
determines a linear combination of the input features that
approximates TTR. However, prognostic prediction is not
a simple functional estimation problem, since the end-
point (time to recur) is known for only a fraction of the
cases. The intuitive motivation for the RSA approach is
that:

e Recurrence actually takes place at some point in time
previous to its detection. However, the difference
between the time a recurrence is detectable (actual
TTR) and the time it is actually detected (observed
TTR) is probably small.

e Observed DFS time is a lower bound on the recur-
rence time of that patient.

The RSA linear program is based on the idea of con-
structing a surface which bounds from above the DFS
times for the non-recurring training cases and closely
bounds from below the TTR times of the recurrent train-
ing cases as follows:

minimize ieTy + leTz + ieTv
W,Y,0,Y,2 m k m
(4) —v < Mw+rye—-t <y
subject to —Nw—~ve+r < z
v, Y, 2 > 0

The purpose of this linear program is to learn the
weight vector w and the constant term 5. These pa-
rameters determine a recurrence surface s = 27w + 7,
where z is the n-dimensional vector of measured features
and s is the surface (in this case, a plane defined on the
feature space) which fits the observed recurrence times
and overestimates the DFS times. Here, M is an m x n
matrix of the m recurrent points, with recurrence times
given by the m-dimensional vector t. Similarly, the &
non-recurrent points are collected in the k& x n matrix N,
and their last known disease-free survival times in the
k-dimensional vector r. The vectors y and z represent
the errors for recurrent and non-recurrent points, respec-
tively; overestimating the TTR of recurrences is consid-
ered an error, while predicting a TTR which is shorter
than an observed DFS is also an error. The objective
averages the errors over their respective classes.

Underestimated recurrent points are not considered to
be as serious of an error as overestimated ones. To reflect
this, the v term in the objective is weighed by an appropri-
ately small positive parameter §, forcing underestimated

recurrent points closer to the surface. Based on a per-
turbation theorem [16], for a sufficiently small positive d,
that is 0 < § < § for some 4, the objective minimizes the
weighted term conditionally, i.e., of those possible vari-
able values which minimize the first two terms of the ob-
jective, those values which minimize the third term are
chosen. In this work, the “sufficiently small” value of §
was chosen empirically, by lowering it until further reduc-
tions had no effect on the training objective.

As in classification, it is important to choose the right
subset of features to get the best generalization. We chose
an appropriate feature set in the following automatic fash-
ion. A tuning set — one tenth of the training cases — was
first set aside. The RSA linear program was then solved
using all of the input features, and the resulting surface
was tested on the tuning set. Features were then removed,
one by one, by setting the smallest element (in magni-
tude) of the coefficient vector w to zero. 3 Each new
problem was solved and the result tested on the tuning
set, until only one feature remained. * Using the fea-
tures which showed the best performance on the tuning
set, we then re-optimized using all the training data (i.e.,
restored the tuning set). In this manner, we can use the
tuning set to select the complexity of the model without
paying the penalty of losing some of the training set.

5 Computational Results for the
Prognostic System

The RSA procedure was tested with leave-one-out test-
ing [12] to evaluate its accuracy in predicting future out-
The leave-one-out method is a special case of
cross-validation in which the predictive model is built us-
ing all but one of the examples and tested on the left-
out case; this is repeated using each example, in turn,
as the test case. Of the 569 patients from the diagnosis
study, the 187 malignant cases with follow-up data (44
of which have recurred) were used. The input consists of
the thirty nuclear features computed by Xcyt together
with with two traditional prognostic predictors: tumor
size and number of involved lymph nodes. As with MSM-

comes.

3 All feature values were previously scaled to be zero mean and
unit standard deviation, so that the magnitude of the weight vector
component correlates roughly with the relative importance of the
corresponding feature.

4These subsequent linear programs are easily formulated by plac-
ing explicit upper and lower bounds of zero on the appropriate el-
ements of w. A ’hot start’ can then be used to solve the new LP
starting from the solution to the previous one. These solutions are
found very quickly, often in one or two orders of magnitude fewer
simplex iterations than the original problem.



T, the linear program is implemented using MINOS 5.4.

Table 1 shows the mean generalization errors of the
RSA formulation compared with the following prediction
methods:

e Pooled RSA: This method is identical to RSA ex-
cept that all the points are weighted equally in the
objective function, rather than the recurrent and
non-recurrent cases being averaged separately. The
resulting objective function is

()

1 T 1 T b
m—i—ke y+m+k6 Z+m+ke v

e Least l-norm Error on Recurs: An obvious
method for predicting recurrence is to construct the
predictive surface by a least-error fit on those cases
for which the outcome is known, in our case, those
with an observed recurrence time. We chose the 1-
norm error, minimizing the average error on the re-
current cases but testing on all the examples. For
compatibility, this test was run using the greedy fea-
ture selection method described earlier.

All Points | Non-recur | Recur
RSA (4) 18.3 19.9 13.0
Pooled RSA (5) 13.9 6.1 39.3
Least 1-norm Error 21.8 25.8 9.0

Table 1: Average error (in months) of various prognostic
formulations on Wisconsin prognostic data using leave-
one-out testing.

Comparative results on all points, recurrent cases only
and non-recurrent cases only are shown in Table 1 for the
various prediction methods. We emphasize that these are
estimates of the method’s real-world performance, and
measure only those cases known to be in error: overes-
timated recurrences (prediction was late) and underesti-
mated non-recurrent cases (prediction was early). Both
RSA approaches significantly lower the mean prediction
error compared to a simple fit. We note that the original
RSA formulation performs comparably on both recurrent
and non-recurrent cases, while the pooled error method
greatly favors the majority non-recurrent class, thereby
lowering the mean error. However, since our goal is to
predict all cases as accurately as possible, the original for-
mulation is considered superior. As expected, the recur-
rent results for the least 1-norm estimation are best, while
that method does worst on the non-recurs and has the
worst overall mean error. This is attributable to the fact
that most of the observed recurrences were at relatively

short times (the mean recurrence time was 24 months),
therefore a regression method which uses only the recur-
rent cases skews the predictions downward, matching the
bias of this particular data set.

While others have applied machine learning techniques
to the prognosis problem [4, 29] we are unaware of any
other prognostic system that is capable of predicting can-
cer recurrence with an average error of 24 months. The
most widespread statistical method of Cox proportional
hazards regression [5] is unable to predict time of recur-
rence for this data. We plan to perform comparisons with
the Cox method by randomly censoring other prognostic
data sets.

6 Clinical
Method

Usage of the RSA

Both medical and personal decisions hinge on the pro-
jected future course of the breast cancer. Decisions
whether or not chemotherapy is needed and the intensity
of such therapy are based on the anticipated course of the
cancer. The mental state of the patient, and personal and
career plans are greatly affected by the anticipated course
of the disease. Hence, improved prognostic prediction is
an important goal for cancer treatment.

The best predictive model using the RSA formulation
(Equation 4) has been added to the Xcyt program. We
determined (using cross-validation) that five input fea-
tures were needed for this prediction task. We then used
the above feature-selection scheme to pare down the origi-
nal set of 32 features to five: mean value of radius, perime-
ter, and fractal dimension, and extreme value of perime-
ter and area. Using this model, we now predict a time of
recurrence for patients who have been diagnosed with a
malignant tumor, to aid the choice of treatment. Further,
Xcyt provides estimates of the patient’s probability of
disease-free survival in the form of a Kaplan-Meier curve
[11] (Figure 4). The disease-free-survival curve for the in-
dividual patient is based on those training cases that had
a similar predicted time of recurrence as determined by
the RSA (4).

In current traditional medical practice, the strongest
available prognostic feature is the extent to which can-
cer is present in the lymph nodes, which is determined
by microscopic examination of lymph nodes that must be
surgically removed from the patient’s armpit. This pro-
cedure leaves the patient more susceptible to infection
and the arm frequently develops lymphedema, a poten-
tially severe swelling of the arm. Additionally, prognostic
determinations based on lymph node involvement are in-
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Figure 4: Estimated probability of disease-free survival,
up to ten years following surgery, for all patients in the
study and for the particular case shown in Figure 1.

accurate: 10% of patients in the most favorable category
will die of breast cancer and 40% of those in the most
unfavorable category will survive. Therefore, one of the
most important findings of this research is that the best
predictive models are found using just the nuclear fea-
tures, and are not improved by the traditional medical
prognostic factors of tumor size and lymph node status.
If further studies confirm these findings, the routine and
potentially hazardous removal of lymph nodes from the
armpit of breast cancer patients for prognostic purposes
can be avoided.

7 Extensions to the Recurrence
Surface Approximation

Experiments have been performed with a number of ex-
tensions and variations of the RSA idea, some of that
address the limitation of building a linear predictive sur-
face. One of these, termed implicit RSA (IRSA), builds
on the data preprocessing used by Ravdin and colleagues
[6, 27, 28]. Time is added as an input feature, and given
values along the range of follow-up times in the study.
Each case thus produces a number of new training exam-
ples which are identical except for the time feature. In
our implementation, a new training example is created for
each six month interval, producing points with time equal
to 6 months, 12 months, etc. For any particular time, the
training case can be given a classification of recur (R)

or non-recur (N), based on the patient’s status at that
point in time. A single separating plane (the “implicit”
recurrence surface) is constructed between R and N cases
in the features x time space. For a new case, TTR is
predicted by holding all features fixed and varying time.
The point at which this line meets the separating plane is
the value of time for which this particular case would go
from being classified “non-recur” to being classified “re-
cur”. Hence, that time can be interpreted as a predicted
TTR. Specifically, for a separating plane 7w = = in the
n + 1 dimensional space, we solve the equation

Y = Dl Wili
Wn+1

(6) TTR =
The implicit RSA procedure can be given further predic-
tive power by adding nonlinear functions of time as new
input variables. We have added time?, tirlne’ T
and observed predictive accuracy similar to that of RSA.

8 Conclusion and Future Work

We have shown how linear programming is used in actual
clinical diagnosis and prognosis of breast cancer. By ap-
plying a linear-programming-based classification method,
we have constructed a diagnostic system that performs
at an accuracy level at or above any procedure short
of surgery. The system also gives a probability of ma-
lignancy that allows the patient to compare the specific
diagnosis with hundreds of previous cases. Through col-
laborative studies, this methodology will be employed by
other researchers and applied to different types of cancer.
We have also developed and applied a method for prog-
nostic prediction, that provides accurate, patient-specific
predictions of when a cancer is likely to recur. Because it
used censored data to build a predictive survival model,
this method is applicable to many different fields. The
potential for applying these same approaches to other
medical decision making, prediction and machine learn-
ing problems appears to be extremely promising and is
worthy of further investigation and testing.
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