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Abstract

We consider an inventory model in which the production technology is
not given but, instead, admits improvement through a sequential learning
process controiied by the firm. It is shown that in this framework some
salient characteristics of Just-in-Time {JIT) systems (sequential inventory
reduciion, emphasis in variability reduction, and suboptimal inventory
levels relative to the static optimum) emerge as profit maximizing policies.
Thus. the modei permits rationaiization of JIT systems within the standard
optimization paradigm.

Central to our approach is the learning process considered:; it is
characterized as an investment of optional intensity and random yield. The
probability of a successful investment is larger after a poor performance of
the production system so that the process can be seen as one of iearning

from mistakes.









1. Introduction

The purpose of this article is to deveiop a framework in which the new
inventory management techniques known as "just in time" (JIT) can be
reconciled with the standard inventory iiterature. The conventionali wisdom
on inventory management is seriously challenged in severai ways by the
widespread success of JIT impiementations. In the first place, the
"optimization" approach to inventory management suggests that the optimal
level of inventory be determined by balancing the costs of having too much
and too litile inventory. Typically., the optimal balance is achieved at
some positive level of inventory.1 JIT,. on the other hand, strives f{for the
systematic elimination of the costs associated with having too little
inventory. Thus the long term goal set by JIT is "zero inventories." To
study this process of sequential technological improvement and inventory
reauctions, an element of learning has to be introduced into the inventory
model. We refer to the particular learning process considered in this paper
as "learning tfrom mistakes."” In rough outline, the learning process is
initiated by observing a "mistake" or a quality "problem" occurring at the
production system; tracing the origins of the problem and eliminating them
improves the the overall quality of the system. Under some reasonabie
conditions, the result of thesc improvements is a gradual reduction in the
"optimal" level of inventory. But the JIT principles carry the reiationship
betwecn inventory reduction and learning one step further. Not only is the
"optimal" amount of inventory decreased as a result of learning; at each
point in time the system is operated deliiberately with "suboptimai" levels
of inventory (relative to the static optimum) in order to accelerate the

learning process. The popuiar "rocks hidden by water"2 analogy is a vivid



expression of this idea. Examining this phenomenon in the context of our
model shows that{ it can be the consequence of some "observability"”
constraint. 1 the latter can be eliminatea, then a system in which
learning and inventory decisions are decoupled (so that inventories are
adapted to the current technology)} will perform better than JIT.

The organization of the paper is as follows. 1In the next section we
cover some of the refated literature. In Section 3 we consider the basic
model without learning. This model serves as a convenient benchmark for the
results of the JIT model developed in the subsequent sections. In Section 4
the notion of improvement is introduced. We demonstrate the well known JIT
principie that a reduction in the variability of a production system can be
as useful in increasing profits as an increase in its "average" yield. In
Section 5 we develop the model with learning. Section 6 examines the
relation between technology improvements and inventory reduction. 1In
Section 7 we introduce the observability constraint and characterize its
effects on the production policy and the resuits are summarized in Section
8. We aiso argue in tnis conc.uding section that the ideas of JIT are not
limited To systems involiving physical inventory and briefly discuss how the
same principies can be applied to the service sector. We also note the
futiiity of implementing JIT within a static framework, i.e.. reducing
inventory beiow optimal levels without harnessing the learning process which

is an integral part of JIT.

2. A Review of The Literature

Tnis section briefiy discusses some of the previous literature on

learning and JIT. Our focus is on learning in a production environment
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which results in increased cost efficiency.”

The basic premise in the concept of learning is that technologies
improve with time and experience. This seems to be an empirical fact of
general validity. Muth (1986) gives an account of the empirical evidence.
summarized in the progress or experience curve relating accumulated
production to the per-unit production costs. He also develops a model of
search among unknown technological possibilities which replicates the
empirical relationship.

Learning processes can be separated into two broad categories. 0On the
onc hand. autonomous learning {or learning-by-doing) relates to the idea
that "practice makes perfect," i.e., that repetition of an acitivity tends
to reduce the cost of performing it. Fine (1986, 1988) considered thne
management. off quaiity in a iearning environment and showed that quality
control criteria should change over time as a consequence of learning. Suri
and de Treville (1986) analyzed the optimal management of inventories under
the assumption that learning takes time, so that the gains of inventory
reduction must be balanced against the temporary loss of efficiency that
results when the operators of a productive system are confronted with a new
production environment. As a consequence, they argued that inventory
reduction must occur gradualiy.

Arrow (1986). Spence (1981). Fuadenberg and Tirole (1982), and
Bhattacharya {1984), among others, have studied the consequences of learning
for the dynamic evoiution of markets. Learning effects, by reducing
production costs, result in prices decreasing over time and industry output
consequently increasing. Bhattacharya (1984) argued that an eariy entrant

in a new industry can obtain a cosit advantage by exploiting learning effects
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so thal experience acis as an entry barrier in the more mature phases of the
industry.

The other broad category of learning processes is labeiled as inducea.
Such learning occurs as a consequence of deliberate actions taken by the
firm. Induced learning is thus the consequence of an investment. There
seems to De general agreement that in practice learning is mostly induced,
so that models of autonomous icarning are justified only by their relative
simplicity.

A framework for the analysis of manufacturing systems in an induced
learning environment is provided in Fine and Porteus (1988). Their approach
to the design of production systems emphasized graduai process improvement
as tne source of cost efficiency. They provided conditions under which an
investment in process improvement is an optimal policy for the firm and
showed how this concept applies to several aspects of the firm's production
policy (inventories, set--up times, and so forth).

A related approach was taken in Jaikumar {(1988) and Bohn and Jaikumar
(1989). The first paper provides optimal rules for the management of
inventories and searches-for-problems in a production line subject to random
occurrences. The sc¢cond paper develops a detailed analysis of the different
elements involved in sequential process improvement and illustrates them in
the context of an exampie. Induced iearning in a competitive environment is
the subject of Flahertyv's (1980) study of investmenis in cost reduction and
Spence's (1982) anaiysis of R&D policies.

The optimal design of JIT systems in a static (non-iearning
environment) was considered, among others, by Porteus (1985, 1986), Karmakar

(1986), Bitran and Chang (1987), and Zangwilli {(1987). This literature



provides decision models characterizing the optimal inventory poiicy in
compiex production systems.

Finaily, the practice of JIT management is disussed in numerous books
and articles: for instance, Hali (1983) and Schonberger (1982) provide
detaiied comparisons of JIi1l and standard inventory management, as well as

some intuitive explanations on the rationale underlying JIT.

3. The Basic Inventory Model

The purpose of this section is to deveiop an inventory modei, without
learning, in which the production and inventory policies can be explicitily
characterized. These policies provide a benchmark against which the
performance of the learning version of the model can be compared.

-

<Insert Figure 1 about here>

We consider a simpie production system (see Figure 1) consisting of two
activity centers (machines, work stations, etc.)}, A and B, and an inventory
C. serving as a buffer between them. At each period t, the rate of
operation of the two machines can be changed. If the rate of A at time t is

a, then the output of A, in that period. is given by m, = a_x

t X, ., where 0 £ x_
“ “ “

< 1 is the random yield of machine A. Similarly, if the production rate of

center B at time t is set to b,_, and the inventory at C at the beginning of

this period is It~1 then the quantity out of C into B in period t 1s given
by qt = min{lt 1 + m,,.b,}. Finally, the output of B in period t is given by
T [ \.

T =g
"t Y

, where 0 £y, £ 1 is the random yield of machine B. We thus have:
“

4
o



(1) meo=a X (Output of A)
(2) q. = min{lt_1 F mi‘bt} (Cutput of C)
{(3) Poo= Ay, (Output of B)
(4) it = It-j + L max{it1 + mi ~ bt.o} (Inventory)
(5) $_=max{-i_, -m + b .0} (Shortage}

We assume that the rates a, and b, can be independently chosen each period
. ("

within some bounds A1 < a, < A2. B1 < b, 2 Bz. The yields XV, € [0,1] are

independent random variables with distributions X~ Ha(o).yt ~ G(+). The

cumulative distribution function Ha(o) is assumed to be continuous with a

density ha(x) > 0 on (0,1) so that the inverse, H&l(-), is well defined.

The parameter & represents the "state" of the system and its precise nature
will be discussed in the next section where the learning process is
introduced.

Let us denote the average values of yt and x_.C by yy and #x(a).
respectively. Let p be the value (price) of every final unit; let c, and c,
be the per-unit costs of the rates of centers A and B, respectively: and let
CI and Cq be the per-unit (per-period} costs of inventories and shortages.

We assume that p, C, ¢ c., and c¢_ are ail nonnegative. The profits

b’ I S

generated in each period are then given by:

> } _ . L . - —_ ~ —
(6) G(It—l'at'ot’xt'yt) = pr c. b c a c.1, c S,

where L :t and S, can be expressed in terms of the decision variables, a.
[

bt' the random yields X and Vo and the inventory level I using

t-1"

(1)-(5). Let P(It_j.at.bt}a) be the expectation of the profit in period t



with respect to XV and conaitional on the values i ,a,.b,.. It foilows
Vs ]

from (6) thac

7) P(I a_.b,la) = E(q.) - c.a_ - cb,_ - C.E(i_ ) - c E(S
(7) Py t—l’dt"’t‘a) puy (qt, C,2¢ A (IE(lt) Cq (bt)

where all the expectations are taken with respect to xt. We assume that

profits are discounted at a rate p,0 < p < 1, over the (infinite) time

horizon. Specifically, let A = {al,az....} and B = {bl'bg“"} be sequences
of production decisions. Then, total expected discounted profits are given
oy :
(8) (I . ABla) =¥ ot P(i. a b i)

(0 1,2, R Ve S v o
where 10 is the initial inventory. Let

Vilgia) = maxA‘BH(LU.A,B]a)
pe the optimal expected profits conditional on the initial level of
inventory, IO' As a benchmark for the results that follow, we compute
V(Ioia) and the associated optimai production strategies A* and B¥*.
Cleariy, the function V(I !a) must satisfy the optimaiity eguation of

0

dynamic programming:

(9) V(Ioia) = maxA1Su4SA2:B,SbffBz {ppyb(ql) - c ay - Cbbi -

- CIE(Il) - CSE(Sl) + pE(V(Il§a))}.



The solution of this equation is characterized as foilows:

Proposition 1: Assume that (a) B1 = 0; (b) 82 > 2A2. and (c) [0

the optimal production poiicy (A*,B*) is given by:

A, if F_(z*) 20

(i) a* - ¢ <«
’ A2' otherwise.
where
. (1 - o){ppe, - c.) + ¢
2% = H_ y L
(1 - P)puy Fopey + C. T oCg
and

-

X Y- -~ \ ;‘l Iz — - 1 -
ra(z ) (puy ct g xdha + p(Pyy Cb) fz* xaHOC .

(ii) b¥* - 1 | + a*z*,

L t-1 t
(iii) V(loia) = a*(Fa(Z*)/(l - p)) o+ (pﬂy - Cb)lo-
Proof: See Appendix 1. ]

According to part (i) of the proposition. center A operates at fuil

capacity as long as the system is generating profits for any initiai

condition. Otherwise, if Fa(z*) < 0, shooting down the operation wouid be
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optimal. The reader may recognize part (ii) of the proposition as the
solution of a dynamic version of the newsboy problem. Also, note that the
Jast term in (iii) gives the value of one unit of inventory. This value is
simply the expected revenue generated by transforming one unit of inventory
into one of the final product, pyy, minus its cost, c¢

b

4. The Model with Learning: Sources of Technology Improvement

JIT systems are characterized by sequential learning. We are
interested in examining the interaction between learning and production
decisions ana specifically the relation between quaiity improvements and
inventory leveis. To that end we introduce a notion of liearning which we
call "learning from mistakes." Specificaily, learning in our model means

. . . 4 -
modifying the (stochastic) performance of center A. Naturaily, we are
seeking modifications which improve the performance of the system as
measured by expected profits. We wiil not be concerned here with modeling
the technological and managerial details which are the essence of sequential
iearning. Rather, we abstract from these details and summarize the entire
relevant state of the system at any given time by a unique (and highly
muiti-dimensional) parameter a. Thus, o captures the entire set of
procedures and policies with respect to maintenance, training, quality
management, purchasing, etc., which collectively determine the stochastic
behavior of the output of center A. In general, each value of the parameter
« will be associated with a different distribution of the yield, Ha(')‘ The
static solution of the inventory problem intcoduced in the previous section
characterizes the optimal inventory given the state «. 1In contrast, JIT

approacnes are concerned with improvements resulting {rom the utilization of
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"better"” choices of the parameter . We refer to such improvements as
iearning. The learning process examinea here is sequential since, in
practice, the universe of possible parameter values a is so large., complex
and multi-dimensional that the only effective way to secarch over it is
incrementally, by a costly and slow process of trial and error. 1In contrast
to the standard "learning-by-doing" processes in which learning is
autonomous, the one considered here is a managed process; its rate and
intensity can be controlled by management. We call this process "learning
from mistakes" since the occurrence of bad instances (low yields) is assumed
to contain intormation which, if discovered, can expedite the learning rate.

We will now formaliy characaterize the concept of learning. We begin
by expiicitly spelliing oul the natural notion of "improvement.” We use the
short cut "system " to refer to the inventory system in which the yield xt

is distributed according to Ha(o).

Definition 1: System a is better than system 8 if and only if for every
levei of initial inventory, I < A2,

Vilja) > Vv(1ig).

That is, for any level of initial inventory, system o yieids higher
optimal expected profits. 1In light of Proposition 1 we can omit the
dependence on tne inventory level from this definition and use instead a

direct critcerion: system a is better than system g iff

F o(z*) > _(z%).
o 7) > B glz®)



Although this definition is sufficient for the analysis that follows, it is
interesting to examine some specific situations which give rise to an
improvement. As it turns out, the concept of stochastic dominance plays a

critical role here:

Proposition 2: Assume that p(yyp - cb) > CI' Then system & is better than
system B8 if Ha(°) dominates Hﬁ(') in the sense of first order or second

order stochastic dominance ({F0OSD) and {SOSD). respectively).
Proof: See Appendix 1.

The assumption in the proposition simpiy requires the value of one unit
of inventory be available "tomorrow" to be at least as big as the cost of
nolding this unit in inventory for one period. If this condition does not

hold, it would be optimal to discard leftover inventory at each period.

The reader may recall that H,(+) dominates H (+) in the sense of FOSD

B

if Ha(x) < Hs(x) for every x € {0,1]. In our context this basicaily means

that the (typical) yield of center A is higher in the a system or, in other

words, that the productivity of system a is higher. Similarly, Ha(.)

s . X X
tes H_ (e : 'nse of SOSD if < !

dominates S( )} in the sense of SOSD if J“ Ha(y)dy < Uy HB

€ {0,1]. Roughly speaking, this means that the typical variability of the a

(y)dy for every x

system is smalier than that of the B system. We will refer to these changes
in the technology as quality improvements since they result in a more
reliable and predictable system. 1t is well known that both productivity

and quality improvements are major objectives of JIT systems. In the sequel
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we examine in detail the interaction between such improvements and inventory

reductions.

5. Learning From Mistakes: The Dynamics of Learning

As stated earlier, we model learning as the process of moving from a

given sysiem &, to a better system o We assume that the set of paramcters

X
a is discrete and can be indexed, ao.al.az,.... with higher indices
corresponding to better systems. Let N(a) be the system which foilows a in
this sequence (i.e., if o = & for some i = 0,1i,..., then N(a) = ai+1)'

Then our convention implies that for every a, the system N{a) is better than
the system a.

Learning occurs by sequentiaily moving {rom the current system a to the
improved subsequent system N{(a). The process of learning is modeied as an
investment problem with a random yield. Specifically, let 0 £ kt < K be the
effort or investment in learning made in period t. Then, with a certain
probability f the search is successful and we move in period t + 1 to the
improved system N(a). With probability (1 - f) the search fails. and the
system stays in state a. The probability f is assumed to depend on the
current state, &, on the effort k, and on the most recent random yield, x.
Formaily, f = {(k,x|a). The probability function f{e,e]a) is assumed to be
iwice continuously differentiable in its two first arguments, (weakly)
increasing in the first, and (weakly) decreasing in the second. The
requirement that { be increasing with k represents the fact that more effort
increases the probability of identifying the source of a given problem and

thus of improvement. In practice, one also would expect f to decrease with

X representing the "learning from mistakes” feature, namely, that the
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[ €M)

occurrence of a bigger "problem” is more informative about its underlying

causes and thus is more useful for the learning process. We believe that

this feature is an important part of JIT. However, it is not required for
the analysis presented here. In order to emphasize the induced natuve of
the learning process we add the requirement {(0,x|a) = 0. The cost of one

unit of effort is denoted by w.
The timing of events is as follows: at the beginning of each period, a

production decision is made which determines a_

¢ and bt' Depending on the

realized random yield, Xt‘ an investment decision, kt. which determines the
intensity of the search, is made. 1f the search is successful, the system
moves to state N(a). The shift to the new state materializes in time for
the production decisions due in period t + 1.

How does the learning process interact with the production policy
ai'bt? Let Vl(i.xia) pe the value of being in state a, with inventory I,
and the last realization of the yield being x, just before making an
investmment decision. Let V2(1|a) be the value of being in state o, with
inventory [, just before making a production decision. The optimality

principle of dynamic programming requires the optimal poiicy and the value

functions to satisfy:

(10) V. (I.x|a) = max {-wk + pf(k,x|a)V2(I|N(a))

+ p(1 - f(k.x;a))va(Ila)}

and

(11) VZ(I[a) = maXA15a5A2:815b582 {P{I,a,bja) +
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1 —
+ N Y . - 1
Y Vl(de{O,l + ax o}.x;a)dﬂa(x)}.

The optimal production and invesiment policies in the learning scenario

are characterized as follows:

Proposition 3: Under the assumptions of Proposition 1:

(i) The optimal production poiicy, for any given «, is the same
as in the no-learning scenario.
(ii) The optimal investment poiicy does not depend on the current
inventory level.
(iii) Supose that [V(0,N(a)) - V(0,o}i(8f(0,x|a)/8k) > w for some

N 1
X. Then k*(xl) > 0 for some x~ in {0,17.

Proof: Consider (11). Arguing as in Proposition 1, it follows that V2 must
be linear in 1, as long as the bounds on b are not effective; and in this
case, the coefficient of I in V2 does not depend on o«. But then, from (i0),
_. RPN : — * ' |
VI{I,xla) = (p/x‘y Lb)l + maxOSkSK {-wk + pf(k.x,a)V2(0|N(a))

+ p(1l - f(k.x[a))Vl(O]a)}.

This proves (ii). Part (i) now follows as in Proposition 1.

To prove (iii), suppose that k*(x)

0. Then Vl(I,xla) = sz(Ila) for
every x and Vz(lla) = V(Ila}. Now, since Vz(IlN(a)) > V(I|N(at)), it follows
that VZ(I;N(a)) - V2(Ila) > V(1|N(a)) - V(ija) = V(O|N(a)} - V(0O|la). Hence,

for some x, [V {1|N(x)) - V, (l|a)](ef(0,xla)/8k > w which implies k*(x) > O.

(
2

2
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But this coniradicts k*(x) = 6. We conclude that there exists x1 such that

k*(x') > 0. 1

The first and second parts of the proposition state that in the absence

of other constraints, it is optimali to separate learning and production

decisions. Prodaduction is made at the profit-maximizing level given the
current state of the technology, and changes in the production policy are
made only after improvements have materialized. This separability is not
commonly observed in a JIT system. In fact, JIT principles seem to advocate
for inventory levels below the profit-maximizing level. Later on it will be
seen how the separation of learning and production decisions is affected by
the introduction of observability constraints.

The last part of the proposition shows that the optimal investment is
strictiy positive under some reasonable circumstances. Specifically, the
inequality stipulated in part (iii) is satisfied if N(o) is strictly better
than o and 1jmk40 of (kx|a)}/3k = . The latter condition will hoid in
practice if there are some learning options capable of generating
improvements with a "very small investment." As an example, consider the
suggestion box and other similar methods that aliow worker participation in
the adjustment of technoiogy. These methods are utilized extensively by JIT
systems.

Since the investment policy is unaffected by the inventory ievel, Fine
and Porteus' (1988) characterizations of optimal investment policies are
aiso vaiid in our model. Thus, we wiil not pursue a detailed study of the
dynamic pattern of the investment policy. The reader is referred to Fine

and Porteus (1988) for this analiysis.
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6. Inventory Reductions

A common characteristic of JIT systems is the gradual reduction of
inventories as the learning process evolves. In this section we examine the
conditions under wnhich these reductions are predicted by the model. The
result, roughly stated, is that the implication holds true as iong as the
improvements are relatively more effective in "bad" states of nature than in
"good" ones. 1In order to derive this result in a way which is readiily
interpretabic, it is convenient to separate the factors determining x into
an underiying random effect, denoted y, and the deterministic response x of

system a to the shock y. Specifically, we define the primitive random shock

of the system, y, as the random variable satisfying x = ga(y), for some

increasing continuous function ga(-) with the property y ~ F(y) (independent

of a).5 Thus y can be interpreted as the randomness built into the system,
which does not change with a. The function ga(o) is the production
function, relating, for a given state of the system, each value of the
primitive random shock to the effective rate of production. With this
notation, the function ga(~) captures the current state of the system.

A technological improvement from 8 to a will be said to be a uniform

loss reduction if the increase in productivity is higher in bad states of

nature than in better ones. Formally, if

> s 2 i 3 Yoo < -
y > X and o better than 8 imply ga(y, gB(y) < ga(x) gB(x).

When this property holds, the model replicates JIT behavior as shown in

the following:
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Proposition 4: Suppose a is better than g and a*{a) = a*(g). 1f a is a

uniform loss reduction with respect to B, then E{l{al < E[I]|B].
Proof: Denote by y* the solution of F{y) = Ha(z*).6 Notice that y* does
not depend on the state a. Also, E(I|a) = a*fz* (ga(y) - ga(y*))dF(y).

Therefore:

ii

{Ijej ~ EITIB] a*fj* {lga(y) - g ly¥) ] - [gB(y) - gs(y*)]}dF(y) =

= @il (g (v) - gg 1 - Lg (v = gy DAF(Y)

A

0 L]

A final remark. The reader may note that the properties of stochastic
dominance and uniform loss reduction are independent statements about the
nature of the learning process. As an exampie, notice that first order

stochastic dominance is equivalent to the property ga(y) (y) for every

z gB

v, and this last reiation is independent of the uniform loss property

ga(y) - gs(y) < ga(X) - gB(X)-

6. Observability Constraints

Up to this point we have shown that the inventory reduction obtained by
JIT systems can be the consequence of an ongoing learning process. We
address now the question of why, in practice, inventory reductions seem to

precede, rather than follow, process improvement. Our answer rests on the

observation that some minor alterations on the performance of a production

unit are hardly observable while major failures are more likely to be
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noticed and investigated.

Specifically, we consider a system in which only those disturbances
generating a shortage. and therefore forcing the system to a halt, would
trigger a search for the causes of the problem. Thus. as long as the system
keeps going on, no investment in learning will occur. 7This we label the

observability constraint. The zero inventory level, at which the constraint

becomes binding, has been chosen arbitrarily and our results would apply
similariy to any other arbitrarily chosen levei as long as, in some states
of nature, learning is not possible due to an exogenous constraint.
However, the zero inventory level is particuliarly significant since, in
practice, shortages are typically highly visible and are aiso a standard
trigger activating the search and review procedures characteristic of JIT.
When the constraint is binding, improvement opportunities may be lost.
A way around this is fo decrease the average inventory level so that
learning opportunities become more frequent. Hence, to some degree,
shortages are artificial. This expianation rationaiizes the parable about
the water hiding the rocks cited in the introduction: smaller inventories
permit more "problems" to be identified. We will formaliize this agrument.

We define

1 if S, > ¢
t
a(sy) = {
0 otherwise

and let us denote the value of being in state a, with inventory [, shortage
S, and the last value of the yield equal to x, just before making an

investment decision, by Wl(l.c(S),x\a). Similarly, W2(I|a) is the value,



given the state a, of

optimality conditions

(12) W (1,0,x|a)

1 ¢

since $ = 0 implies k

(13) W (0,1.x]a)
+
(14) Wz([ia) : ma
{P(I.,a,
+
Let (at,bz

constrained problem.

follows:

Proposition 5: Under

solution then

+

(i) a < a*

+
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being just before a production decision.

require in this case:

i

oW, (1]a)

= maXg o ox {-wk + pi(k,x‘a)wz(olN(a))

p(1l - f(k,xia))wz(o.a)}

X
<< - O0<pHh<
A1 a<A, ;0<b BE

bja) + | (O.l.xja)dﬁa(x)

0. (b-1)/a) M1

j[(b—l)/a,l] W (1 + ax - b,0,xix)dB_(x)}.

S

The

) be the optimal production rates in the informationally

The change in inventory policy is characterized as

the assumptions of Proposition 1, if b'

. +
and a € {AI'AZ}

(ii) (b" - [)/a' > (b* - I)/a*

(iii) Eflia .b &l < E[I|la*,b¥,a]

is an interior
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(iv) V{iIja) < Wollja) < V2(1Qa).
Proof: Let k+{x) be optimal in the constrained problem. Then

W, (I[fa) = max {P(I.a.bix)

<a< <b<
Al_a_Az.O__b__H2

+ pf[o’lj W,(max{0, I + ax - b}|a)dH_

n . + Nk s
"0 (bo1)/ad {pIW,(0[N(t)) - W,(0la) If(k (x).xja) - wk (x)}dH

if b < BZ' We can write as in Proposition 1, wz(lla) = (p;ty - cb)I + G(a),

and defining b' = (b - I)/a, it follows that

0 - a+F&(b'+) + {p[W,(0[N(@)) - w2(0|a)1f(k*(b'+).b'*la)

+ ot t
- wk (b )}ha(b )

The second term on the right side is nonnegative since k+ is optimal.
+
Therefore F&(b' ) < O.F&(b‘*) = 0, and Fa(-) is concave; this implies

b’ > b'*. Also notice that Fa(b'+) < Fa(b'*) impiies (i).

Consider Ellla,b'.a] = af1

0 max{0.,x - b'}dHa. This is an increasing

function of a and it is decreasing on b'; thus (i) and (ii) jointly imply
(iii). The inequalities in (iv) are trivial. (]

Intuitively, the proposition states that it may be optimal to increase
the probability of a shortage so that fearning opportunities arise more

often. It remains to be seen that the proposition is not trivial, i.e.



that the inequalities are strict under some reasonable assumptions.

Corollary: If lim . 8f(k,x(a)/8k = o, then (ii) ana (iii) hold as strict

inequalities.

Proof: Otherwise, it would be the case that wz(OIN(a)} = wz(ota), which
implies k(x) = 0. Hence, w2(0|a) = V{(0(a} but V(0|a) < V(O|N(x))

< wz(UiN(a)). contradicting wz(olN(a)) = w2(0|a). {1

The condition given in the coroliary was discussed in Section 5.

7. Conciuding Remarks

Finally, we discuss some limitations inherent to our model as well as
some policy implications. The analysis has emphasized the technoliogical
aspects in the management of inventories and process improvement. Two other
aspects of the problem are the motivational properties often attributed to
JIT, and the relationship between production policy and the competitive
position of the firm.

Incentives and information enter in our model without explicit
modeling, subsumed in the obsevrvability constraint. A possible extension of
the model would derive the constraint from the maximizing behavior of
individuals, given the impossibility of complete monitoring of their
actions.

Another extension concerns competition. The choice of production
policy is an important determinant of the firm's market share and profits.

it is possibie that competition among firms is one of the causes in the
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adoption of aggressive cost reduction poiicies beyond what is justified on
the grounds of efficiency (De Groote (1989) modeled this possibility in the
context of the firm's inventory poiicy).

It is important to remark that our results regarding process
improvement apply whether or not the firm carries inventories. Thus, some
of our findings could be applied to the management of operations in the
service sector as well. First, the model suggests that performance criteria
should change with time. Second, failures in providing adequate service may
be the source of improvements if the adequate review procedures are in
place.

As an exampie demonstrating these two points in a4 non-inventory
setting, consider the problem of missing price tags on items in a department
store. Such "defects" represent an obvious loss in productivity for the
cash register operators and support personnel. They are also a major source
of irritation to customers "stuck" in a line waiting for the price of an
item to be determined. The standard approach is to "buffer" against the
second probiem by providing a support system that can react fast whenever a
price is missing. The "optimal" investment in such a support system is
determined by balancing its costs and benefits much as the optimal inventory
in the static model of Section 2 is obtained by balancing the costs of
inventory and of shortages. The sequential improvement approach would use
each occasion in which a price tag is discovered as missing to find the
causes of such an event, then try to eliminate them in the future. Such a
policy would result in a gradual reduction in both the frequency of missing
tags and the required "buffer.” 1In analogy to the effects of the

"observability" constraints of JIT, we may wish to operate the support
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system at "suboptimal" levels. In the short run this will increase the
irritation and costs caused by missing tags as the system will not be as
efficient at handling them as they occur. However, this increased
irritation and cost will increase the visibility of such problems. 1f used
to trigger improvements, the overall effects over the long run may be far
superior service at lower overall cost.

Finally, if the causal relationship between process improvement and
inventory reduction is accepted as central to understanding JIT, three
important policy implications follow. First, there is some evidence that
firms sometimes adopt inventory policies mimicking JIT without, at the same
time, developing the required programs to support sequential improvement.
Our analysis suggests that such imitation strategies may be even less
effective than standard policies. In our model, inventory reduction is
justified in the context of learning and should not be adopted in isoilation.

Second, there are some claims in the literature about the intrinsic
superiority of JIT techniques over conventional inventory management. We
have found, however, that the JIT pattern in which inventory reduction
anticipates learning is a second-best phenomenon. Specifically, if the
informational constraint could be relaxed (using better supervision methods,
an improved incentive poiicy, etc.), then a more classical pattern in which
inventories adjust to the current available technology, will obtain.

Finally, it is important to emphasizc the premium piaced by our model
on variability reduction. It justifies the frequent claim that improved
predictability can be a major factor in allowing for inventory reduction.
Furthermore, it suggests that, in evaluating investments in technology,

variability measures and not only average yields, should be considered. It
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seems to be a common practice, however, to ignore the former.
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Appendix 1

Proof of Proposition 1: The functional equation (9) can be written as:

Vi = me : fmin{. IS
Ola) mdxA1Sa5A2;05bSBz {pyykx[mln{Io + ax.,b}}

- C hX[max{O,I + ax - b}l - cSEmeax{O,h - I, - ax}]

I 0 0

sc.a - cpb o+ pEX[V(max{O,IO + ax - b}la)l}.

b

Define b' = (b - IO)/a. Then

la) = maxAISaSAq:"IO/aSbS(Bz+IO)/a {apyynxlmln(x,b H

- ac_.E imax{0,x - b'}] - ac E [max{0, b' - x}}
17x s X

- a(ca . cbb') + (p,uy - cb)IO + pEx{V(a max{0,x - b'}|la)]}.

Suppose that the bounds on b' are not effective. Then the choice of (a.b')

does not depend on IO and the value function can be written as

V(lola) = (Quy - cb)i0 + G,

where G is a constant to be determined and b' must be chosen to

max F (b') = max, {pﬂyEX[min{x.b'}] +



+ — . — » “m - - i
(Ppﬂy pCy cl)LX[mdx{O,x b'}]
- cSEx[max{O.b - x}} - c cbb }

a*, which appears linearly in the functional equation, with coefficient
F(b'*), musti satisfy

Al if F(b'*) 0

a* == |

A2 otherwise.
The optimal rate z* must satisfy F&(z*) = (. (Notice that F&(b') < 0);
1 = - 1 - _ - i _ [s
nence, 0 (1 Ha(b ))((1 p)p#y topey o+ cl) cSHa(b ) Cy- The
solution of this equation yields part (ii) in the proposition, and

[ 1
I k) N _ i _
e ) (puy + cs) JO dea + p(p/.zy Cb) I % XdHa .

Solving the functional equation for these values of b and a, it follows that

V(I|x) = a*Fa(z*)/(l - p) + (p}.ty - Cb”o'

1t only rests to show that the bounds on b are indeed not effective.

Consider

0 < b* = 1 + a¥*z* < 1 + g¥ (since 0 £z £1)



A
-

A
[\>
>

1A
o

So, b* satisfies the conditions.

T

= a* max{0,x -~ z*}

= — X
Az(l z¥) < A

Hence, b, = b* when It < A

S Ay

. fes 1 - b .
implie Dy b [

Proof of Proposition 2:

us define u(x|b) as

u(xib') = ppy min{x,b'} 4 (pp;_ty —- pcC,

- C
S

Then, Fa(b ) = ExiaLu(x'b 1.

x. Furthermore

DU+ C

du(xjb)/dx = {

,O(p;ty - C,

A, max{0,x -

2°

3 R <
and this implies It+ A

Consider Fa(b‘) for any arbitrarily chosen b'.

max{0.b' - x} - cbb' - C

30
(since a* < A,)
(since 1 £ A,)

(by assumption).

Furthermore,

%k - _ *
9 z¥} < A2 max{0,1 z¥}

which in turn

1 -2

Let

. CI) max{0.,x - b'}

a’

Clearliy, u(x|b) is an increasing function of

if x < b’

C if x > b
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and since pyy tcg > p(pyy - cb) - ¢,, we conciude that u(x|b'} is a concave
1

function of x. Both definitions of stochastic dominance imply,

Exla (u(x]b')) 2 Exig (u(xfb'))

(since u(x|b') is increasing and concave) whenever Ha dominates H Hence

g
P'B(b'*(B)) = E (u(x{b'*(B))) < Exla (u(x[b"*(B)))

XiB

< Ex'a (u(x|{b'*(a}))) = Fa(b'*(a))' [l
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Notes

For an interesting exception, see Bielecki and Kumar {1988).

JIT practitioners often claim that inventories hide production problems
and compare this to sea water hiding the rocks at the bottom of the sea.

The term iearning is aiso applied to processes which reveal information
about the demand faced by a firm. Alpern and Snower (1987, 1988),
Reyniers (1987), and Milgrom and Roberts (1988) have characterized
inventory policies and search procedures in the presence of an
uncertain demand.

Which is the one setting the 1limit to the overail performance of the
system.

The pair (g_,F) is not uniqgue since, for every strictly increasing
function r(e), the pair (g r,Fr) also satisfies the definition. The
property discussed below, %owever. is not affected by the particular
representation chosen.

Notice that, by comstruction, Ha(ga(y)) = F(y).



g*min{l+m,b}

r-qy

FIGURE 1: The Production System



