
The Delta-Wye Approximation Procedurefor Two-terminal ReliabilityManoj K. Chari1 Thomas A. Feo2J. Scott Provan3UNC/OR TR92-18October 5, 1992AbstractThe Delta-Wye Approximation Procedure (DWAP) is a procedure forestimating the two-terminal reliability of an undirected planar networkG = (V;E) by reducing the network to a single edge via a sequence oflocal graph transformations. It combines the probability equations ofLehman | whose solutions provide bounds and approximations of two-terminal reliability for the individual transformations | with theDelta-Wye Reduction Algorithm of the second two authors | which performsthe corresponding graph reduction in O(jV j2) time. A computationalstudy is made comparing the DWAP to one of the best currently knownmethods for approximating two-terminal reliability, and it is shown thatthe DWAP produces approximations that are between 10 and 80 timesas accurate. (Figures not included.)1Department of Mathematics, Louisiana State University, Baton Rouge,Louisiana. Work partially supported by LEQSF grant no. (92-94)-RD-A-09 fromthe Louisiana Board of Regents.2Operations Research Group, Department of Mechanical Engineering, Univer-sity of Texas at Austin, Austin, Texas3Department of Operations Research, University of North Carolina, ChapelHill, North Carolina. Work partially supported NSF Grant CCR-9200572.



Key words: reliability, connectedness, approximation, planar, network



1 IntroductionOf considerable concern to designers of communications, transportation, andelectrical/VLSI networks is the reliability of the network. The various com-ponents (vertices and edges) of a network are typically subject to degradationor failure, due to hardware/software faults, physical damage, or congestion.These occur unpredictably, and can render the component unable to carrythe required load. The network designer or user is concerned with the abilityof the network to maintain communications or travel between various pairsof vertices in the network in the face of this random failure.When one considers assessing reliability of a network subject to through-put, transmission speed, congestion, and timing constraints one is dealingwith the performability analysis problem, and the complexity of the problemusually requires simulating the network performance to get any reasonableassessment of reliability. This is cumbersome and somewhat unsatisfactoryfrom an analysis point of view, and the results are themselves subject toerror due to statistical variance in the simulation. A more e�ective approachwould be to produce bounds on the required reliability measure, so that oneis guaranteed a minimum (or maximum) reliability for the network, subjectof course to the accuracy of the input data.To apply powerful methodology to a complex performability analysisproblem, it is usually necessary to make one or both of the following re-strictions: (i) the performance measure of interest must be a fairly simpleone, and (ii) the class of problem instances considered must have a su�-cient amount of structure for the appropriate machinery to be used. It isimportant to choose these restrictions in such a way as to capture a measureof signi�cance to the network designer while still being able solve probleminstances similar to ones with which the designer is likely to be faced. Inthis paper we choose the two-terminal reliability of a network, that is, theprobability that a speci�ed pair of vertices can be connected by a path whenedges of the network fail at random. This measure has generally been con-sidered the central one underlying many performability analysis problems.We also restrict our attention to planar network instances, that is, instanceswhere the network is laid out in such a way that no two edges cross. This isfrequently the case with transportation and local communications networks,and the planarity structure is found extensively in global communicationsand VLSI networks as well. 1



This paper presents the delta-wye approximation technique for approxi-mating two-terminal reliability in a planar network, by iteratively simplifyingthe network while maintaining the most accurate possible approximation ofthe reliability after each simpli�cation. This method is both remarkablysimple and at the same time extremely accurate | in particular, the compu-tational studies in this paper show accuracy improvements of ten to eightytimes those of the best previous approximation techniques. It thus stands asone of the most promising tools in the area of performability analysis.The two-terminal reliability problem (TTRP) is described by instance(G;p); where G = (V;E; s; t) is a two-terminal undirected graph with vertexset V = fv1; � � � ; vng, edge set E = fe1; � � � ; emg; and terminal vertices sand t; and p = (p1; � � � ; pm) is the set of edge operating probabilities with0 < pj < 1; j = 1; � � � ;m: The vertices of G are assumed to be perfectlyreliable and each edge ej of G operates independently with probability pj,j = 1; � � � ;m: The measure of interest for this instance is the two-terminalreliability (or (s; t)-connectedness reliability) R(G;p), which is the probabilitythat the operating edges of G admit a path between s and t.Two-terminal reliability has been a notoriously di�cult measure to com-pute exactly for general graphs. This should not be surprising, as TTRP isknown to be in the computationally intractable class of #P-complete prob-lems [VAL79]. The most e�cient worse-case algorithm for TTRP [PRO84]can require as much as order 3n computations. Planar graphs have a slightlybetter worst-case algorithm (order 2pn computations [BIE86]) although TTRPon planar graphs is still #P-complete [PRO86]. There are a small number ofclasses of graph for which two-terminal reliability can be computed in poly-nomial time, the best-known being series-parallel graphs [WAL83], [SAT85].Since computation of exact solutions is intractable except for these very spe-cial cases, attention has turned to approximation schemes. The most success-ful of these to date appear to be variants of path- and cut-packing schemes,and more general inclusion-exclusion schemes which were empirically studiedby Brecht and Colbourn [BRE 88] and Colbourn [COL88] and Shier[SHI91](for a complete account of the schemes, see [COL87] Ch.6.)The purpose of this paper is to investigate an approximation scheme forTTRP on planar graphs which relies on the use of a delta-wye reduction forG. Speci�cally, suppose we are given instance (G;p) for TTRP, with G aplanar graph and s and t arbitrary vertices of G. An example is given inFigure 3a (the labels will be explained in Section 3). We will allow G to2



have parallel edges, that is, edges with the same pair of endpoints. We willassume, however, that G does not have any irrelevant 2-component, that is,any subgraph of G that is attached to the remainder of G by a single vertexand that does not contain s or t except possibly as the attachment vertex.Irrelevant 2-components can be detected in linear time, and their removalwill have no e�ect on the reliability of G. The combinatorial framework ofour approximation algorithm is a procedure to reduce G to the single edge(s; t), using the following set of four transformations:T1. Series reduction: if e = (u; v) and f = (u;w) are edges with u anonterminal of degree two, then e, f and u are replaced by the singleedge (v;w):T2. Parallel reduction: if e and f are distinct edges with the same endpointsu and v, then e and f are replaced by the single edge (u; v):T3. Delta-wye transformation: if e = (v;w); f = (w; z) and g = (z; v) areedges, then e; f and g are replaced by the three edges e0 = (u; v); f 0 =(u;w) and g0 = (u; z); where u is nonterminal and has no other edgeincident to it.T4. Wye-delta transformation: the inverse of T3.These transformations are illustrated in Figure 1. Note that transformationsT1 and T2 decrease the number of edges in G (hence the label \reduction")whereas in transformations T3 and T4 the number of edges in G remains thesame.A sequence of these transformations which, when performed on G, reducesG to a single edge (s; t) is called a delta-wye reduction sequence for G. An ex-ample of a delta-wye reduction sequence is given in Figure 3b. The existenceof delta-wye reduction sequence for any arbitrary two-terminal planar graphwas conjectured by Akers [AKE60] and Lehman [LEH62], and later provedby Epifanov [EPI66]. Epifanov's proof is quite di�cult and does not lenditself to an algorithm for the reduction. Speci�c algorithms have been givenby Feo [FEO85] and Truemper [Tru89], but these are di�cult to implemente�ciently. Feo and Provan [FEO92] give a very simple O(jV j2) reductionalgorithm, and it is this algorithm which is the basis for our study.The primary questions addressed in this paper are the following:3



� How can a delta-wye reduction sequence such as one given by the Feoand Provan algorithm be used to approximate R(G;p)?� How accurate are these approximations in practice ?It is well-known that for the transformations T1 and T2, it is possibleto assign probabilities to the edges in the transformed subgraph in such away that its reliability is identical to that of the original graph. As indi-cated in the next section, it is impossible in general to construct reliabilitymaintaining transformations associated with the delta-wye and wye-deltatransformations | which is to be expected since the problem is known to be#P-complete. Lehman [LEH63], however, presents three sets of reliabilityapproximating transformations for T3 and T4, one of which is guaranteed tounderapproximate the actual reliability, one of which is guaranteed to over-approximate the actual reliability, and one of which lies between these two.Lehman goes on to show that these are the \best" possible underapproxima-tion, overapproximation, or intermediate approximation possible in a localsense.In this paper an approximation scheme is presented based on the Feo-Provan delta-wye reduction algorithm and the reliability approximating trans-formations of Lehman. The scheme performs a delta-wye reduction of G,while at each stage maintaining an edge probability vector which which cor-responds to either a lower bound, upper bound, or best approximation to thetrue reliability when evaluated on the graph at that stage. As each graphtransformation in the reduction sequence is performed, the edge probabilityvector is transformed according to the appropriate probability assignments,namely:� the reliability maintaining transformation if a T1 or T2 transformationis involved;� the appropriate underapproximation, overapproximation, or intermedi-ate approximation of Lehman if a T3 or T4 transformation is involved.This means that at each stage of the reduction algorithm the lower bound(upper bound) edge probability are guaranteed to produce a lower bound(upper bound) on the two-terminal reliability of the network, while the bestapproximation will lie between the two. When G is reduced to the single edge(s; t) then its reliability is simply the the probability of that edge, and hence4



the appropriate upper bound, lower bound, or intermediate approximationcan be read o� immediately.In Section 2 of the paper we outline, on an implementational level, theanalysis of Lehman. In Section 3, we give the Delta-Wye Reduction Proce-dure of [FEO92] and the incorporation of Lehman's approximations into thisalgorithm. Section 4 gives a computational study of the resulting bounds,comparing them to some of the best known bounds for two-terminal reliabil-ity. These studies indicate that the given scheme produces approximationsthat are dramatically better than the best known polynomial-time approxi-mation techniques.2 Lehman's approximation scheme for delta-wye transformationsThe graph transformations T1{T4 given above are examples of local replace-ments, that is, the current graph G is transformed into graph G0 by removinga subgraph S of some speci�ed type from G and replacing it with a subgraphS0 of speci�ed replacement type. The associated reliability transformationswe consider will likewise be local, in that the only changes in the probabilityvector p occur only on the edges of S 0. The associated two-terminal relia-bility R(G0;p0) of this instance should be as close to R(G;p) as possible, ina sense that is independent of the values of the nonreplaced edges. That is,it should minimize the worst-case error in the resulting probability over allpossible probability values of the nonreplaced edges, as given by�(p0;p) = maxfjR(G0; �0)�R(G; �)jgthe maximum being taken over all pairs of edge probability vectors � and�0 with �e = pe; e 2 S, �0e = p0e; e 2 S 0, and �e = �0e on the remainingedges.1 The goal is choose the edge probabilities for edges of the replacementsubgraph so as to minimize �(p0;p).1Lehman's analysis assumes nothing about the structure of G outside of S, as it mustapply in every instance in which a T3 or T4 transformation occurs. As a technical matter,then, this maximum is also taken over all possible graphs G nS. Unless S is situated veryclose to s or t, however, the structure of the remaining graph will be su�cient so that theabove de�nition applies. 5



We now look at the probability assignments that go with the four trans-formations given in Figure 1. The series and parallel replacements have well-known associated edge probability assignments, which are given in Figure2. These assignments comprise exact reliability transformations, since whenthe replacement edge is given the probability indicated, we have R(G0;p0) =R(G;p); i.e. �(p0;p) = 0: For the delta-wye and wye-delta replacements it isknown that except in very special cases there can exist no assignment of edgeprobabilities making either of these transformations exact. Lehman [LEH63]has performed a thorough analysis of just how good such a replacement canbe, in terms of the measure �(p0;p). The purpose of this section is to give apractical summary of Lehman's analysis.2.1 The open- and short-circuit equationsThe two sets of equations which play a key role in Lehman's analysis are calledthe open-circuit and short-circuit equations. Referring to Figure 2, theyrelate the edge probabilities (pde ; pdf ; pdg) of the delta to the edge probabilities(pye0 ; pyf 0; pyg0) of the wye.open circuit equations (O):pyf 0pyg0 = pde + pdfpdg � pdepdfpdgpye0pyg0 = pdf + pdepdg � pdepdfpdgpye0pyf 0 = pdg + pdepdf � pdepdfpdg:short circuit equations (S):pye0(pyf 0 + pyg0 � pyf 0pyg0) = pdf + pdg � pdfpdgpyf 0(pye0 + pyg0 � pye0pyg0) = pde + pdg � pdepdgpyg0(pye0 + pyf 0 � pye0pyf 0) = pde + pdf � pdepdf :The probabilistic interpretation of these two sets of equations is as fol-lows: system (O) equates the probabilities that each speci�ed pair amongthe vertices v, w, and z are connected through the subgraph, and system (S)equates the probabilities that a speci�ed vertex of v, w or z is connected toat least one other vertex through the subgraph. These six equations are suf-�cient to completely specify the probabilistic behavior of one subgraph from6



that of the other. Unfortunately they are inconsistent in general, and so thisprobabilistic behavior can only be approximated. We devote the remainderof the section to giving the approximation analysis of Lehman. The readersare referred to [LEH63] for proofs.2.2 Solving the open-and short-circuit equations(A) For (O) or (S) taken separately, if the set of probability values for eitherpye0 ; pyf 0; pyg0 or pde; pdf ; pdg is speci�ed, then the other set of probabilityvalues is determined uniquely.(B) The values of pye0 ; pyf 0; pyg0 are determined from those of pde ; pdf ; pdg through(O) by the following formulae:pye0 = qrfrg=re; pyf 0 = qrerg=rf ; pyg0 = qrerf=rg;where re; rf ; rg are the values of the right-hand sides of (O), respectively.(C) The values of pye0 ; pyf 0; pyg0 are determined from those of pde ; pdf ; pdg through(S) by �nding the unique root 0 < z < 1 in the following cubic equa-tions:pye0 : ��ez3 � (�2�f�g + (1 + �)�e)z2 + �(�g�g � �f�f )z + �f�g = 0pyf 0 : ��f z3 � (�2�e�g + (1 + �)�f )z2 + �(�e�e � �g�g)z + �e�g = 0pyg0 : ��gz3 � (�2�e�f + (1 + �)�g)z2 + �(�f�f � �e�e)z + �e�f = 0where �e = pde + (1� pde)pdfpdg + �pde(1 � pdf )(1� pdg)�f = pdf + (1� pdf )pdepdg + �pdf (1 � pde)(1� pdg)�g = pdg + (1� pdg)pdepdf + �pdg(1 � pde)(1 � pdf )�e = (1� pde)(pdf � pdg)�f = (1� pdf )(pdg � pde)�g = (1� pdg)(pde � pdf )� = 1 7



(D) The values of pde; pdf ; pdg are determined from those of pye0 ; pyf 0; pyg0 through(O) and (S), respectively, as follows:(i) substitute the variables qde , qdf , qdg, qye0 , qyf 0, qyg0 for pye0 , pyf 0 , pyg0, pde,pdf , pdg; respectively, in the opposite set of equations (S) and (O),respectively;(ii) using the values qye0 = 1 � pye0 , qyf 0 = 1 � pyf 0 and qyg0 = 1 � pye0 ,determine qde ; qdf and qdg via either (B) or (C);(iii) set pde = 1� qde , pdf = 1 � qdf , pdg = 1� qdg .(Note that this is simply the \dualization" of the problem solved in(C).)2.3 Approximation analysisLet G0 be obtained from G by making a delta-wye or wye-delta transforma-tion, and let pO and pS be obtained from p by using the solutions of (O) and(S), respectively, as the subgraph replacement probabilities. Let p0 be anyset of edge probabilities for G0 which agrees with p outside of the replacementsubgraph.(E) The extreme values of R(G0;p0) occur when p0 = pO and p0 = pS:(F) For a delta-wye transformation, the sign of the error R(G0;p0)�R(G;p)is the same as that of �d = pdepdfpdg � (pde + pdf + pdg) + 1 when p0 = pO;and opposite that of �d when p0 = pS : Thus pO and pS provide upperand lower bounds for R(G;p); respectively, when �d is positive, andlower and upper bounds, respectively, when �d is negative.(G) For a wye-delta transformation, the sign of R(G0;p0) �R(G;p) is thesame as that of �y = pye0pyf 0pyg0�(pye0pyf 0+pye0pyg0+pyf 0pyg0)+1 when p0 = pO,and the opposite of �y when p0 = pS: The assignment of lower or upperbounds is, therefore, as above.(H) For the transformations given in (F) or (G), the appropriate error�(pO;p) or �(pS;p) corresponding to the lower (upper) bound is thesmallest possible for any p0 guaranteed to produce a lower (upper)bound for R(G;p), and is bounded above by .0089.8



(I) When the approximation is not required to be an upper or lower bound,the minimum worst case error �(p0;p) for a delta-wye transformationoccurs when pye0 , pyf 0 and pyg0 , are assigned to be the unique roots 0 < z <1 of the cubic equations given in (C), with � now set to 12. The resultingerror here is �(p0;p) < :0037:, but the sign of the error R(G;p0) �R(G;p) cannot be determined independently of the structure of therest of the graph, and hence it cannot be determined whether R(G0;p0)is a lower or upper bound on R(G;p). It is always the case, however,that R(G0;p0) is between R(G0;pO) and R(G0;pS).(J) For a wye-delta transformation, the associated minimum worst-caseerror is achieved by substituting 1� pye0 , 1� pyf 0, 1� pyg0 ; for pde ; pdf ; andpdg in de�ning the cubic equations given in (I), �nding the appropriateroots ze, zf and zg, respectively, and then setting pde = 1�ze, pdf = 1�zf ,and pdg = 1 � zg. Again, �(p0;p) < :0037: (Again, this is simply the\dualization" of the problem solved in (I).)Note that while the \local" error value �(p0;p) was used in Lehman's worst-case analysis, the actual error from any of the T3-T4 transformations givenabove will depend upon the probabilistic structure of the remainder of thenetwork. Thus the optimizing values of p0 given above may not minimizethe actual error (and cannot be expected to, as they depend only on localinformation). The actual error, however, is always bounded above by �(p0;p),regardless of the structure of the rest of the graph. Further, the given values.0089 and .0037 are (approximately) the smallest possible, in that there existprobability values that can be assigned to the edges of the delta or wye forwhich the appropriate best approximation actually attains an error of (about).0089 or .0037.We proceed to use the appropriate values found in (F) and (G) for thelower and upper bounds in our delta-wye approximation procedure, and thevalues found in (I) and (J) as the best estimates. We note that the compu-tation of values for the cubic equations given in (C) or (I) could be solvedin closed form by classical techniques, although the precise closed form willdepend upon the values of the original edge probabilities. In practice, a moree�cient method is to simply apply Newton's method starting anywhere inthe interval (0,1). 9



3 The delta-wye reduction of planar graphsIn this section we outline the Delta-Wye Reduction Procedure given in [FEO92],which reduces a two-terminal planar graph to the single edge (s; t) by meansof a polynomial number of transformations of type T1{T4. By applying theappropriate edge reliability assignments given in Section 2 for each trans-formation, we will have a valid approximation scheme for the two-terminalreliability problem.We assume that G has been laid out on the plane with no crossing edges,and more speci�cally, that the appropriate data structures have been pro-duced which can, in constant time per operation, (i) determine the two facesof G incident to a given edge, (ii) determine the degree (number of adjacentedges) of any face or vertex, and (iii) traverse the edges incident to a givenface or vertex in clockwise order. (The noncrossing layout of G can be con-structed in linear time using [HOP74], and the appropriate data structurescan be produced in linear time using [WHI90].) The Delta-Wye ReductionProcedure consists of two phases, a labeling phase and a reduction phase. Thelabeling phase assigns to each edge and vertex of G a label indicating in acertain sense how far that edge or vertex lies from the terminal s: It consistsof the following iterative procedure:
10



Labeling PhaseAssign the label 0 to s, and declare all other vertices and edges unlabeled.Set l = 0 [l = current level]do while there are unlabeled vertices or edges:1. To each unlabeled edge incident to a labeled vertex, assign the labell + 1:2. To each unlabeled edge sharing a face with a labeled vertex, assignthe label l+ 2.3. To each unlabeled vertex incident to a newly labeled edge, assignthe label l+ 2:4. Set l := l+ 2:end do whileThe example graph given in Figure 3a illustrates the labeling. With theassociated data structure given with the plane layout, the labeling phaserequires O(jV j) steps.The reduction phase amounts to the identi�cation and processing of aspecial class of the transformations T1{T4, called positive transformations,as given in Figure 4. These transformations depend precisely on the labelsof the associated edges, and result in a change of labels of edges of thetransformed subgraph. It is easy to see that resultant labeling is consistentwith one obtained if the labeling algorithm were applied directly to the newgraph.The procedure can thus be given as follows:Reduction Phasedo while G is not the single edge (s; t)Find and perform a positive transformation as given in Figure 4,with the priority that T1 and T2 transformations are always chosenbefore T3 and T4 transformations.end do while 11



Figure 3b gives a possible positive reduction sequence with respect to thelabeling given in Figure 3a. It should be noted that the terminal t canappear as a pendant (degree 1) vertex lying inside one of the regions requiredto be empty in a positive transformation. In this case the pendant edgeshould be moved to another region so that the transformation can proceedas given.In [FEO92] the following two facts are established:1. If G is not the single edge (s; t); there always exists a positive transfor-mation which can be applied to G:2. The reduction phase reduces G to a single edge after at most 3jV j2such transformations.As it is given in [FEO92] the Delta-Wye Reduction Procedure actually usestwo additional transformations, one that removes a pendant edge whose de-gree 1 vertex is a nonterminal, and the other that removes a loop (edgehaving identical endpoints). The following lemma alleviates the necessity ofusing these reductions.Lemma 1 Let G be a two-terminal planar graph with no irrelevant 2-components.Then the reduction phase given above never creates a loop or nonterminalpendant edge.Proof Since G has no irrelevant 2-components, then it initially can haveno loops or nonterminal pendant edges. We now prove that when transfor-mations are performed using the priorities given in the Reduction Procedure,there will be no irrelevant 2-components created, and hence no loops or non-terminal pendant edges created. Proceeding by contradiction, consider the�rst transformation which creates an irrelevant 2-component, and let G0 bethe graph occurring immediately before this transformation. Now the onlypossible transformation for G0 which can create a new irrelevant 2-componentis the delta-wye transformation T3, and the only new irrelevant componentthat can be created is an nonterminal pendant edge attached to the vertex uof the wye. But this means that the original delta had to have had a degree2 nonterminal vertex, and so the reduction phase would have chosen this T1reduction �rst. Thus such a transformation can never occur, and the lemmafollows. 2 12



The data structures of the plane layout can also be used to identify andperform positive transformations in constant time. This is done by keepingtrack of the set of potential positive transformations at each step of the graphreduction. Since the degree of each face and vertex is part of the input data ofthe planar layout, it is easy to run through the initial labeled graph and testeach vertex and face of degree 2 or 3 for admitting one of the four positivetransformations. If so, the candidate is put into one of two stacks holding,respectively, the candidate T1 and T2 transformations and the candidate T3and T4 transformations, and the stacks are queried according to the prioritygiven by the reduction procedure. When a transformation is performed, the(at most six) adjacent regions and vertices a�ected by the transformationare updated, and if a new face or vertex of degree 2 or 3 is detected, thenthe labeling is checked to see if the associated transformation is a positivetransformation. If so, the candidate transformation is added to the appro-priate stack. It may be that some stack items no longer correspond to validtransformations, due to the intervening modi�cations which have been madeto the graph. In this case the transformation is simply discarded when itcomes to the top of the stack. Note that since a performed transformationcan a�ect at most six other faces and vertices, it can a�ect at most six stackelements. Thus the number of discarded transformations is no more that sixtimes the total number of transformations (and in practice is nowhere nearthis number). It follows that the entire delta-wye-reduction algorithm canbe implemented in time O(jV j2) as promised.It is now a straightforward matter to combine the approximation tech-nique of Section 2 with the Delta-Wye Reduction Procedure. Letting (G0;p0)be the initial instance of TTRP, we apply the reduction phase to G0: At eachstage of the procedure we maintain the current graph G, together with threeassociated edge-probability vectors pl, pu and p�, for which the value ofR(G;p) at each of these three vectors is a lower bound, upper bound and bestestimate for R(G0;p0); respectively. As transformations are performed on G;the three associated probability vectors are transformed accordingly, until Gis reduced to a single edge, at which point the upper bound, lower bound,and best estimate for R(G0;p0) are simply pust, plst, and p�st, respectively. Thecomplete procedure is outlined below. The computations of the upper andlower bounds on the example graph of Figure 3, with p0uv = :5 for all edges,are illustrated in Figures 5a and 5b. 13



Delta-Wye Approximation ProcedureInput: TTRP instance (G0;p0).Apply the labeling phase to G0.Set G = G0, pl = pu = p� = p0do while G is not the single edge (s; t):1. Identify positive transformation T on G obtained in the reductionphase and modify G accordingly.2. If T is a series or parallel transformation, then make the asso-ciated exact edge-probability replacements in each of pl;pu and p�as given in Figure 2.3. If T is a delta-wye or wye-delta transformation, then:a. Using (F) or (G) in Section 2.3, �nd the edge probabilitieson the replacement subgraph which give the lower bound forR(G;pl), and make the appropriate replacement in pl:b. Again using (F) and (G) in Section 2.3, �nd the edge prob-abilities for the replacement subgraph which give the upperbound for R(G;pu), and and make the appropriate replace inpu:c. Using (I) or (J) in Section 2.3, �nd the edge probabilitieswhich give the minimum worst-case error on R(G;p�), andmake the appropriate replacement in p�.end do whileOutput: lower bound plst, upper bound pust and a best estimate p�st
14



Main result The Delta-Wye Approximation Procedure has a running timeof O(jV j2) and gives valid lower and upper bounds for R(G0;p0). All threeoutput values are the best possible respective values for the given sequence oftransformations, in the sense that for each transformation the smallest errorof �(p;p0) is obtained.Applying the DWAP to nonplanar graphsAlthough the DWAP depends critically on the planar structure of the graph,it can be modi�ed to apply to \nearly planar" graphs to give a partial delta-wye reduction of the graph. The procedure is as follows:Nonplanar Delta-Wye Approximation Heuristic1. Find a layout of G in the plane having a small number of crossing edges.2. Remove these edges, declaring the endpoints to be terminals, so thatthey are not allowed to be removed in a T1 or T4 transformation.3. Apply the DWAP to the resulting planar graph with the modi�cationthat whenever two endpoints of a removed edge appear on the sameface of some intermediate graph, the edge is put back into the graphwith its original edge probability.It is easy to see that Nonplanar Delta-Wye Approximation Heuristic will�nd and perform valid transformations as does the Delta Wye Approxima-tion Procedure, and hence if G is reduced to a single edge then the resultingprobabilities are valid lower bounds, upper bounds, and best estimates forR(G;p). (An important example of this given in Section 4.) The NonplanarDelta-Wye Approximation Heuristic may, of course, fail to �nd any transfor-mations at some point before G becomes a single edge (one such graph canbe constructed from the four-terminal example given in [FEO92]).The reliability approximation technique given here can in fact be appliedto any delta-wye reduction sequence, whether or not it is obtained from theDelta-Wye Reduction Procedure. Thus its e�ciency could be improved by�nding a more e�cient method of delta-wye reducing a planar graph. What ismore, there are nonplanar graphs which are nevertheless delta-wye reducible15



(for example, the complete bipartite graph on six points). Thus there couldexist e�cient methods for delta-wye reducing a larger class of graphs thanthat of planar graphs, and hence the Delta-Wye Approximation Procedurecould also be applied to this larger class. This applies as well to the Nonpla-nar Delta-Wye Approximation Procedure, if a delta-wye reduction sequencecould be found which avoided the extra created terminals whenever possible.A recent algorithm of Gitler [GIT91] states that three terminal planar graphsare delta-wye reducible to the complete graph on three terminals. Thus theNonplanar Delta-Wye Approximation Heuristic can be successfully appliedto any graph that can be made planar by removing an edge adjacent to oneof the two terminals (so that exactly one extra terminal is created). Evenwhen it is not possible to perform a delta-wye reduction directly as statedabove, the reduction could be used in conjunction with other methods suchas a factoring to complete the approximation procedure. In view of the im-pressive computational results given in this paper, such an extension wouldbe quite signi�cant.4 Computational ResultsThis section gives results of a computational study of the procedures de-scribed in Section 3. All computations were performed on an IBM-PS/2-286machine with a 387 math coprocessor. The major portion of the study wasperformed on a special class of grid graphs. Speci�cally, for positive integersm and n de�ne the m � n grid graph Gm;n as follows. The vertices of Gm;nare represented by the rectilinear grid of of points (i; j), i = 1; : : : ; n � 1,j = 1; : : : ;m, together with the two additional terminal points s, t. Theedges of Gm;n consist of the edges between each pair of vertically and hori-zontally adjacent grid points, together with the set of edges from s to eachof the points (1; j), j = 1; : : : ;m and from each of the points (n� 1; j) to t,j = 1; : : : ;m. Figure 6a shows the graph G4;4. The graphs Gm;n represent acollection planar graphs which become intractable to all of the known exactalgorithms for TTRP's as m and n grow large. Another valuable feature ofthese graphs is that when m = n, they are self-dual, which means in this con-text that R(G; (0:5; 0:5; � � � ; 0:5)) = 0:5: Since midrange estimates of R(G;p)are particularly poor for all approximation schemes (see e.g. [COL88]), thisprovides a good benchmark for testing the accuracy of the approximation in16



a worst-case scenario.Two other speci�c graphs were tested for historical purposes. The graphGDO is the edge graph of the dodecahedron, as shown in Figure 6b. It was�rst studied in [FIS86] and has shown up frequently as a test case for reli-ability approximations. Our approximation for GDO can be compared withexact results obtained by Shier [SHI88]. The other example is the popularARPANET, denoted by GAR and shown in Figure 6c. This nonplanar graphhas typically been used to compute all-terminal reliability (see [COL87]),but it provides a good example to demonstrate the application of the non-planar procedure given at the end of the last section. Speci�cally, considerthe computation of (s; t)-connectedness reliability between points DTI andCMU in GAR. Removal of any edge between these two points, say the onebetween DTI and ANL, turns out to cause the remaining graph to be pla-nar. It is therefore possible to make the point ANL a third terminal andthe delta-wye reduction procedure will reduce the resulting graph to the 3-edge graph consisting of edges (DTI,CMU), (CMU,WPA), and (WPA,ANL).Since the vertices DTI and ANL are clearly on the same face of this graph,then the edge between them can be added back into the graph, and the �nalthree series reductions will reduce the graph to a single edge, for which the(s; t)-connectedness reliability estimates for GAR can be computed.4.1 Equal ProbabilitiesA major portion of our testing was carried out for the case of equal operatingprobability p on all edges. This allows for a good measure of overall qualityof estimates, in that we can consider R(G;p) as a function of the singlevariable p, which we will henceforth denote simply by R(G; p). We can thencompare graph plots of the various estimator functions of R(G; p) as p rangesfrom 0 to 1. The quality of a pair Rl(G; p) and Ru(G; p) of lower and upperbounding functions for R(G; p) can be compared using the p-norm measurede�ned Z 10 [Ru(G; p) �Rl(G; p)]dp:We compared our bounds to the a set of bounds obtained by two path-and cut-based approximations for two-terminal reliability. For any subsetP1; : : : ; Pq of (s; t)-paths and C1; : : : ; Cr of (s; t)-paths, if Pj is the event that17



all edges of Pj operate and Ci is the event that all edges of Ci fail, thenPrf[qi=jPjg � R(G; p) � 1� Prf[ri=1CigIn particular, if the Pj's are edge-disjoint, each of cardinality �j, and the Ci'sare edge-disjoint, each of cardinality 
i then we have the edge packing boundsstudied in [BRE88] and [COL88]:1� qYj=1(1� p�j ) � R(G; p) � rYi=1[1� (1� p)
i ] (�)Despite their apparent simplicity, the edge-packing bounds have been shownto be one of the most e�ective bounding technique available for the twoterminal reliability problem.We compared these edge-packing bounds to our bounds for the the do-decahedron graph (GDO), the ARPANET (GAR), and the 4 � 4 grid graph(G4;4). The packing bounds for GDO used the three disjoint (shortest) pathsand �ve disjoint (s; t)-cutsets, which are indicated in Figure 6b by thickenededges and dashes, respectively. The bounds for this case are1 � (1� p5)3 � R(GDO; p) � [1 � (1� p)3]2[1� (1 � p)6]3:The packing bounds for GAR used the three paths of length 3, 7, and 17indicated in Figure 6c by thickened edges, and by the three 3-edge (s; t)-cutsof edges adjacent to DTI, edges adjacent to CMU, and edges one-removedfrom CMU. The bounds for this case are1 � (1 � p3)(1� p8)(1 � p17) � R(GAR; p) � [1� (1 � p)3]3:The packing bounds for G4;4 used the four horizontal paths and the fourvertical cuts, all of length 4. The bounds for this case are1� (1� p4)4 � R(G4;4; p) � [1� (1� p)4]4:These packing collections o�er the best possible edge packing bounds formost reasonable probability assignments. The edge-packing bounds werecomputed and compared to the delta-wye bounds, using the p-norm, andthe results are given in Table 1. The delta-wye bounds were 20 to 80 timestighter than the edge packing bounds for these three graphs.18



We also compared the delta-wye bounds for the m � n grid graphs to astronger set of path- and cut-based bounds | which we will refer to as latticebounds | introduced by Shier [SHI88]. In particular, we applied (�) to thefollowing collection of paths and cuts for Gm;n:Qm;n: The m horizontal paths P1; : : : ; Pm, together with the (m � 1)(n �1) paths Pm+1; : : : ; Pm+(m�1)(n�1) formed, for j = 1; : : : ;m � 1, i =1; : : : ; n�1 by combining the leftmost i edges of Pj with the rightmostn� i edges of Pj+1, together with the edge ((i; j); (i; j + 1)).Rm;n: The n vertical cuts C1; : : : ; Cn, together with the (n� 1)(m� 1) cutsCn+1; : : : ; Cn+(n�1)(m�1) formed, for i = 1; : : : ; n � 1, j = 1; : : : ;m � 1by combining the top j edges of Ci with the bottom m � j edges ofCi+1, together with the edge ((i; j); (i+ 1; j)). (The elements of Rm;nare in fact \dual" to the elements of Qn;m).The collections Qm;n and Rm;n include maximal collections of disjoint pathsand cuts such as those given for G4;4, and so (�) will necessarily give tighterbounds than the edge-packing bounds. We �rst indicate how to compute theleft-hand value in (�). Note that no two paths in Qm;n cross, so that for anypair Pi and Pj we have either that Pi lies \below" Pj | which we denote byPi � Pj | or vice versa. Thus if we de�ne Fi to be the event that the pathPi is the \lowest" operating path in Qm;n, then the events Fi are well-de�nedand clearly mutually exclusive. Hence if we set L(m;n; p) = Pj PrfFjg, wehave that L(m;n; p) = Prf[jFjg = Prf[jEjgand thus L(m;n; p) provides the correct left-hand-side value for (�). Tocompute the PrfFjg terms in L(m;n; p), we use the special structure of thiscollection of paths to produce the following recursive formula (for the caseof equal operating probabilities) whose derivation can be found in [SHI88].PrfFjg = PrfEjg � XPi�Pj PrfFigpjPjnPijThus the PrfFjg values can be computed in increasing order of �, and soL(m;n; p) can be computed in polynomial time. The upper bound for (�)can be shown by a completely analagous \dual" argument to be equal to1� L(n;m; 1� p), and so (�) can be written asL(m;n; p) � R(Gm;n; p) � 1� L(n;m; 1� p)19



The lattice bounds for seven grid graphs were computed, and their p-normswere compared to those derived for the delta-wye approximation. (This wasdone by computing 50 point evaluations the bounds, and averaging the di�er-ences between the respective upper and lower bound values. For the delta-wye algorithm the the point evaluations were computed simultaneously inone pass of the reduction routine.) The results are shown in Table 2. As isto be expected, the p-norms of the approximations are directly related to thenumber of delta-wye reductions that are required by the reduction algorithm.It is evident, however that the delta-wye bounds again o�er a dramatic im-provement over the lattice bounds, with p-norms 10{15 times smaller. Figure7a{7c shows the plots of the reliability bounds for the examples given in Fig-ures 6a{6c, and the associated p-norm values are given in Table 1. Figure7d shows an almost perfect �t of the delta-wye best estimate to the exactvalues of the reliability for the graph GDO. Figure 7e shows plots of the threebounds on G15;15, which are also remarkably accurate considering the size ofthe graph.Table 3 compares the point-values of the delta-wye upper bound, lowerbound, and best estimate to those of using the lattice bounds on 4 self-dualgrid graphs at the point p = 0:5. (Recall that the exact reliability valuefor these examples is always 0.5.) Again notice the dramatic improvement.It is interesting to note that while the delta-wye upper and lower boundsdeteriorate as the graphs get large, the best estimates, surprisingly, appearto converge to the correct value.4.2 Unequal probabilitiesWe also computed the delta-wye bound for GDO, G5;5 and G5;6 using indi-vidually and randomly generated probabilities on each edge, chosen withina variety of ranges. We compared our output with exact values which werecomputed on a Macintosh Quadra 660 using a factoring algorithm codedPASCAL by Page and Perry [PAGE88]. We thank Lavon Page for providingus with a copy of the source code and his permission to include the computa-tions obtained with it. Table 4 shows the computational results for the threegraphs. We also list in each case the spread (the di�erence between the up-per and lower bounds) and the error in the point estimate, and compare thetwo. Again, the estimates were remarkably accurate | with errors between.00001 and .00025 and spreads between .0001 and .04.20



It is important to point out that each reliability evaluation using thefactoring algorithm required roughly 30 seconds for the dodecahedron, 15minutes for the 5� 5 grid graph, and 6 hours for the 5� 6 grid graph (hencethe small number of examples shown). Clearly, the factoring algorithm or anyother algorithm would not be able to compute the two-terminal reliabilityfor graphs much larger than our examples.Our empirical results suggest that the spread in the bounds for a partic-ular graph varies signi�cantly over varying edge probabilities even when theoverall reliabilities are similar and the same set of transformations is used.(This can be seen by comparing the second set of estimates for G5;5 in Table4 with the estimates for this graph in Table 3.) Several empirical results seemto emerge, however. One is that for the same combinatorial framework andtwo di�erent edges probability vectors, the vector with smaller variation overthe edges tends to result in greater spread. Further, amongst the instanceswith equal probabilities, the maximum spread tends to occur around the�xed point of the polynomial R(G; p). This is consistent with what has beenobserved empirically with other bounding methods as well (See [COL88]).Thus Table 3 gives upper and lower bounds for what is probably the worstcase error scenario for the self-dual grids. The dominant factor in determin-ing the accuracy in the delta-wye bounds, however, seems to be the number ofdelta-wye transformations made on the graph rather than either the topologyof the graph or the precise distribution of edge probabilities.4.3 ConclusionThe delta-wye approximation procedure given in this paper has proven to bean easy-to-implement and remarkably accurate estimator for two-terminalreliability, one that is better by an order of magnitude than the best knownestimators. It is particularly interesting to compare the overall e�ectivenessof the estimators to the errors indicated for the individual T3 and T4 trans-formations. Lehman's analysis gives a worst-case bound on the individualerrors as approximately .0089 for the upper and lower bounds, and .0037for the best estimate; in the actuality the average per-transformation errorseems to fall between .003 and .000006 for the bounds and between .0002 and.00000005 for the best estimate. Further these per transformation errors de-crease as the number of transformations grows. Not surprisingly, the analysisshows that the accumulated error between the upper and lower bounds in-21



creases as the number of transformations grows, re
ecting the additive e�ectof the errors in the individual transformations. Table 3, however, shows thestriking result that the cumulative error of the best estimates seem to actuallydecrease as the graphs get larger, indicating more of an averaging or cancel-ing e�ect of the cumulative transformations. We know of no explanation forthis unusual e�ect.We end the paper by giving some more complex and realistic performa-bility analysis problems to which one might apply an analogous delta-wyeapproximation technique.nonplanar graphs (as discussed in Section 3): This might include addingtransformations to the four discussed here that will allow the reductionof graphs which are not necessarily planar, and developing the relia-bility transformations necessary to yield the associated approximationanalysis.k-terminal reliability: Here the problem input includes a given set K ofterminals, and the network operates if all pairs of vertices in K areconnected by operating paths.directed networks: The networks discussed in this paper are required tohave two-way edges, and there does not appear to be an immediateway to extend this analysis to the case of one-way or mixed edges.stochastic shortest path reliability: Here each edge is given a length andthere is a speci�ed minimum \delay" tolerance L for the network. Thenetwork operates if vertices s and t are connected by an operating pathof length at most L.stochastic network 
ow reliability: Here each edge is given a capacity,and there is a speci�ed minimum \throughput" F for the network. Thenetwork operates if the operation arcs admit a 
ow of value at least Fbetween vertices s and t. This and the stochastic shortest path problemare particularly interesting, since their nonstochastic versions can besolved exactly by the delta-wye reduction technique (see [FEO92]).In most performability problems, including the ones given above, it is fairlysimple to �nd some kind of reliability transformations that will give bounds/approximations to the associated performance probability; the key problem is22



to choose those transformations that will give the most accurate estimates.Due to the increased complexity of problems like those given above, it islikely that the estimates will be less accurate, as well as more di�cult toanalyze, than for the two-terminal reliability problem. It is important tonote, however, that the general purpose performability analysis boundingtechniques currently used provide fairly poor estimates, or can only be usede�ectively for very small instances. In view of the remarkable success ofthe delta-wye reduction technique when applied to two-terminal reliability,we think that it is well worthwhile to study this technique for more generalperformability analysis problems.References[AKE60] Akers, S. B. (1960). The use of wye-delta transformations in net-work simpli�cations, Operations Research 8, 311{323.[BIE86] Bienstock, D. (1986). An algorithm for reliability analysis of planargraphs, Networks 16, 411-422.[BRE88] Brecht, T. B. and C. J. Colbourn (1988). Lower bounds for two-terminal network reliability, Discrete Applied Mathematics 72, 49{61.[CHA92] Chari, M. K. and J. S. Provan (1994). CalculatingK-connectednessreliability using Steiner bounds, Tech. Rep. 92/17, Operations Re-search Department, University of North Carolina, Chapel Hill.[COL87] Colbourn, C. J. (1987). The Combinatorics of Network Reliability,Oxford University Press.[COL88] Colbourn, C. J. (1988). Edge packings of graphs and network reli-ability, Discrete Mathematics 72, 49-61.[EPI66] Epifanov, G. V. (1966). Reduction of a plane graph to an edge bya star-triangle transformation, Doklady 166, 13-17.[FEO85] Feo, T. A. (1985), E�cient reduction of planar networks for solvingcertain combinatorial problems, Ph.D. dissertation, Department of In-dustrial Engineering and Operations Research, University of California,Berkeley, CA. 23
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graph p-norm foredge-packing bounds p-norm fordelta-wye boundsG4;4 .2355 .0125GDO .3057 .0156GAR .2968 .00362Table 1. Comparison of delta-wye and edge-packing bounds for examplegraphsgrid # nodes # edges # transf.required p-norm forlattice bounds p-norm ford-y bounds time insecondsG5;5 22 41 56 .1797 .0166 4G5;10 47 86 156 .2510 .0221 7G10;10 92 181 555 .3657 .0289 20G15;10 131 276 1000 .4182 .0330 30G15;15 212 421 1999 .4840 .0335 60G20;20 382 761 4865 .5640 .0401 180Table 2. Comparison of delta-wye and lattice bounds for grid graphslattice Delta-wye estimates latticegrid lower lower best upper upperbound bound estimate bound boundG5;5 .2481 .479 .5025 .527 .7518G10;10 .03182 .439 .5018 .563 .9681G15;15 .0022 .400 .5011 .595 .9978G20;20 .000126 .364 .5002 .625 .999874Table 3. Comparison of delta-wye and lattice estimates for self-dual gridgraphs at p = :526



graph lower point exact upper error spread error/spreadGDO .014400 .016362 .016309 .018751 .000053 .004351 .0122.025663 .028188 .028953 .031604 .000765 .005941 .1288.033343 .035530 .035662 .038153 .000132 .004810 .0274.134574 .141700 .144207 .151480 .002507 .016906 .1483.279837 .296042 .296412 .317333 .000370 .037496 .0099.858571 .866867 .868005 .874144 .001138 .015573 .0731.872214 .882894 .882040 .891847 .000854 .019633 .0435.908861 .916908 .916548 .923799 .000360 .014938 .0241.921707 .926560 .928246 .931047 .001686 .009340 .1805.961580 .965756 .965895 .969399 .000139 .007819 .0178.997218 .997688 .997685 .998050 .000003 .000832 .0036.997843 .998089 .998119 .998294 .000030 .000451 .0665.999640 .999729 .999739 .999795 .000010 .000155 .0645G5;5 .260993 .268991 .270445 .278251 .001454 .017258 .0843.518669 .533199 .534743 .547908 .001544 .029239 .0528.647162 .665644 .664985 .683737 .000659 .036575 .0180.957197 .961919 .963355 .966559 .001436 .009362 .1534.982125 .984391 .984743 .986359 .000352 .004234 .0831.984506 .986472 .987299 .988320 .000827 .003814 .2168.999753 .999812 .999848 .999866 .000036 .000113 .3186.999759 .999813 .999851 .999863 .000038 .000104 .3654G5;6 .251207 .266163 .268609 .284164 .002446 .032957 .0742.327675 .343522 .341277 .359500 .002245 .031825 .0705.598724 .611945 .612894 .625923 .000949 .027199 .0349Table 4 : Reliability estimates on three graphs using randomly generatedprobability values
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