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Abstract

The Delta-Wye Approzimation Procedure (DWAP) is a procedure for
estimating the two-terminal reliability of an undirected planar network
G = (V, E) by reducing the network to a single edge via a sequence of
local graph transformations. It combines the probability equations of
Lehman — whose solutions provide bounds and approximations of two-
terminal reliability for the individual transformations — with the Delta-
Wye Reduction Algorithm of the second two authors — which performs
the corresponding graph reduction in O(|V[*) time. A computational
study is made comparing the DWAP to one of the best currently known
methods for approximating two-terminal reliability, and it is shown that
the DWAP produces approximations that are between 10 and 80 times
as accurate.
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1 Introduction

Of considerable concern to designers of communications, transportation, and
electrical /VLSI networks is the reliability of the network. The various com-
ponents (vertices and edges) of a network are typically subject to degradation
or failure, due to hardware/software faults, physical damage, or congestion.
These occur unpredictably, and can render the component unable to carry
the required load. The network designer or user is concerned with the ability
of the network to maintain communications or travel between various pairs
of vertices in the network in the face of this random failure.

When one considers assessing reliability of a network subject to through-
put, transmission speed, congestion, and timing constraints one is dealing
with the performability analysis problem, and the complexity of the problem
usually requires simulating the network performance to get any reasonable
assessment of reliability. This is cumbersome and somewhat unsatisfactory
from an analysis point of view, and the results are themselves subject to
error due to statistical variance in the simulation. A more effective approach
would be to produce bounds on the required reliability measure, so that one
is guaranteed a minimum (or maximum) reliability for the network, subject
of course to the accuracy of the input data.

To apply powertul methodology to a complex performability analysis
problem, it is usually necessary to make one or both of the following re-
strictions: (¢) the performance measure of interest must be a fairly simple
one, and (¢i) the class of problem instances considered must have a suffi-
cient amount of structure for the appropriate machinery to be used. It is
important to choose these restrictions in such a way as to capture a measure
of significance to the network designer while still being able solve problem
instances similar to ones with which the designer is likely to be faced. In
this paper we choose the two-terminal reliability of a network, that is, the
probability that a specified pair of vertices can be connected by a path when
edges of the network fail at random. This measure has generally been con-
sidered the central one underlying many performability analysis problems.
We also restrict our attention to planar network instances, that is, instances
where the network is laid out in such a way that no two edges cross. This is
frequently the case with transportation and local communications networks,
and the planarity structure is found extensively in global communications
and VLSI networks as well.



This paper presents the delta-wye approximation technique for approxi-
mating two-terminal reliability in a planar network, by iteratively simplifying
the network while maintaining the most accurate possible approximation of
the reliability after each simplification. This method is both remarkably
simple and at the same time extremely accurate — in particular, the compu-
tational studies in this paper show accuracy improvements of ten to eighty
times those of the best previous approximation techniques. It thus stands as
one of the most promising tools in the area of performability analysis.

The two-terminal reliability problem (TTRP) is described by instance
(G,p), where G = (V, E, s,t) is a two-terminal undirected graph with vertex

set Vo= {vy,--,v,}, edge set E = {ey, -+, e,}, and terminal vertices s
and t; and p = (p1,---,pm) is the set of edge operating probabilities with
0 <p; <1, 7 =1,--,m. The vertices of G are assumed to be perfectly

reliable and each edge e; of GG operates independently with probability p;,
j = 1,---,m. The measure of interest for this instance is the two-terminal
reliability (or (s,t)-connectedness reliability) R(G, p), which is the probability
that the operating edges of G admit a path between s and t.

Two-terminal reliability has been a notoriously difficult measure to com-
pute exactly for general graphs. This should not be surprising, as TTRP is
known to be in the computationally intractable class of #P-complete prob-
lems [VAL79]. The most efficient worse-case algorithm for TTRP [PRO84]
can require as much as order 3" computations. Planar graphs have a slightly
better worst-case algorithm (order 2V" computations [BIES6]) although TTRP
on planar graphs is still #P-complete [PRO86]. There are a small number of
classes of graph for which two-terminal reliability can be computed in poly-
nomial time, the best-known being series-parallel graphs [WALS3], [SATS85].
Since computation of exact solutions is intractable except for these very spe-
cial cases, attention has turned to approximation schemes. The most success-
ful of these to date appear to be variants of path- and cut-packing schemes,
and more general inclusion-exclusion schemes which were empirically studied
by Brecht and Colbourn [BRE 88] and Colbourn [COL88] and Shier[SHI91]
(for a complete account of the schemes, see [COL87] Ch.6.)

The purpose of this paper is to investigate an approximation scheme for
TTRP on planar graphs which relies on the use of a delta-wye reduction for
(. Specifically, suppose we are given instance (G, p) for TTRP, with G a
planar graph and s and ¢ arbitrary vertices of (G. An example is given in
Figure 3a (the labels will be explained in Section 3). We will allow G to



have parallel edges, that is, edges with the same pair of endpoints. We will
assume, however, that G does not have any irrelevant 2-component, that is,
any subgraph of G that is attached to the remainder of G by a single vertex
and that does not contain s or ¢ except possibly as the attachment vertex.
Irrelevant 2-components can be detected in linear time, and their removal
will have no effect on the reliability of (G. The combinatorial framework of
our approximation algorithm is a procedure to reduce G to the single edge
(s,1), using the following set of four transformations:

T1. Series reduction: if ¢ = (u,v) and f = (u,w) are edges with u a
nonterminal of degree two, then e, f and u are replaced by the single
edge (v, w).

T2. Parallel reduction: if e and f are distinct edges with the same endpoints
u and v, then e and f are replaced by the single edge (u,v).

T3. Delta-wye transformation: if e = (v,w), f = (w,z) and ¢ = (z,v) are
edges, then e, f and ¢ are replaced by the three edges ¢ = (u,v), f' =
(u,w) and ¢" = (u, z), where v is nonterminal and has no other edge
incident to it.

T4. Wye-delta transformation: the inverse of T3.

These transformations are illustrated in Figure 1. Note that transformations
T1 and T2 decrease the number of edges in G (hence the label “reduction”)
whereas in transformations T3 and T4 the number of edges in G remains the
same.

A sequence of these transformations which, when performed on ¢, reduces
(i to a single edge (s,1) is called a delta-wye reduction sequence for G. An ex-
ample of a delta-wye reduction sequence is given in Figure 3b. The existence
of delta-wye reduction sequence for any arbitrary two-terminal planar graph
was conjectured by Akers [AKE60] and Lehman [LEH62], and later proved
by Epifanov [EPI66]. Epifanov’s proof is quite difficult and does not lend
itself to an algorithm for the reduction. Specific algorithms have been given
by Feo [FEOS85] and Truemper [Tru89], but these are difficult to implement
efficiently. Feo and Provan [FEQ92] give a very simple O(|V]?) reduction
algorithm, and it is this algorithm which is the basis for our study.

The primary questions addressed in this paper are the following:



o How can a delta-wye reduction sequence such as one given by the Feo
and Provan algorithm be used to approximate R(G, p)?

e How accurate are these approximations in practice ?

It is well-known that for the transformations T1 and T2, it is possible
to assign probabilities to the edges in the transformed subgraph in such a
way that its reliability is identical to that of the original graph. As indi-
cated in the next section, it is impossible in general to construct reliability
maintaining transformations associated with the delta-wye and wye-delta
transformations — which is to be expected since the problem is known to be
#P-complete. Lehman [LEH63], however, presents three sets of reliability
approzimating transformations for T3 and T4, one of which is guaranteed to
underapprozrimate the actual reliability, one of which is guaranteed to over-
approximate the actual reliability, and one of which lies between these two.
Lehman goes on to show that these are the “best” possible underapproxima-
tion, overapproximation, or intermediate approximation possible in a local
sense.

In this paper an approximation scheme is presented based on the Feo-
Provan delta-wye reduction algorithm and the reliability approximating trans-
formations of Lehman. The scheme performs a delta-wye reduction of G,
while at each stage maintaining an edge probability vector which which cor-
responds to either a lower bound, upper bound, or best approximation to the
true reliability when evaluated on the graph at that stage. As each graph
transformation in the reduction sequence is performed, the edge probability
vector is transformed according to the appropriate probability assignments,
namely:

o the reliability maintaining transformation if a T1 or T2 transformation
is involved;

e the appropriate underapproximation, overapproximation, or intermedi-
ate approximation of Lehman if a T3 or T4 transformation is involved.

This means that at each stage of the reduction algorithm the lower bound
(upper bound) edge probability are guaranteed to produce a lower bound
(upper bound) on the two-terminal reliability of the network, while the best
approximation will lie between the two. When (i is reduced to the single edge
(s,t) then its reliability is simply the the probability of that edge, and hence
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the appropriate upper bound, lower bound, or intermediate approximation
can be read off immediately.

In Section 2 of the paper we outline, on an implementational level, the
analysis of Lehman. In Section 3, we give the Delta-Wye Reduction Proce-
dure of [FEO92] and the incorporation of Lehman’s approximations into this
algorithm. Section 4 gives a computational study of the resulting bounds,
comparing them to some of the best known bounds for two-terminal reliabil-
ity. These studies indicate that the given scheme produces approximations
that are dramatically better than the best known polynomial-time approxi-
mation techniques.

2 Lehman’s approximation scheme for delta-
wye transformations

The graph transformations T1-T4 given above are examples of local replace-
ments, that is, the current graph G is transformed into graph G’ by removing
a subgraph 5 of some specified type from G and replacing it with a subgraph
S’ of specified replacement type. The associated reliability transformations
we consider will likewise be local, in that the only changes in the probability
vector p occur only on the edges of S’. The associated two-terminal relia-
bility R(G',p’) of this instance should be as close to R((, p) as possible, in
a sense that is independent of the values of the nonreplaced edges. That is,
it should minimize the worst-case error in the resulting probability over all
possible probability values of the nonreplaced edges, as given by

e(p’,p) = max{|R(G', p') — R(G, p)|}

the maximum being taken over all pairs of edge probability vectors p and
pl with p. = p.,e € S, p. = pl,e € 5, and p. = p. on the remaining
edges.! The goal is choose the edge probabilities for edges of the replacement
subgraph so as to minimize e(p/, p).

!Lehman’s analysis assumes nothing about the structure of G outside of S, as it must
apply in every instance in which a T3 or T4 transformation occurs. As a technical matter,
then, this maximum is also taken over all possible graphs G'\ S. Unless S is situated very
close to s or t, however, the structure of the remaining graph will be sufficient so that the
above definition applies.



We now look at the probability assignments that go with the four trans-
formations given in Figure 1. The series and parallel replacements have well-
known associated edge probability assignments, which are given in Figure
2. These assignments comprise exact reliability transformations, since when
the replacement edge is given the probability indicated, we have R(G',p’) =
R(G,p),i.e €e(p',p) = 0. For the delta-wye and wye-delta replacements it is
known that except in very special cases there can exist no assignment of edge
probabilities making either of these transformations exact. Lehman [LEH63]
has performed a thorough analysis of just how good such a replacement can
be, in terms of the measure ¢(p’, p). The purpose of this section is to give a
practical summary of Lehman’s analysis.

2.1 The open- and short-circuit equations

The two sets of equations which play a key role in Lehman’s analysis are called
the open-circuit and short-circuit equations. Referring to Figure 2, they
relate the edge probabilities (pg,p?,pg) of the delta to the edge probabilities

(P2, pr, plr) of the wye.

open circuit equations (O):

d d d d. d_d
prpy = pe+ Py — Pepip,
pupt = ph+plpt — plpipt

d d d d. d_d
[0 TR o 1 T O

short circuit equations (S):
d d d d
PP+ —phy) = Py Py — pip,
Py (pY + Pl — plpl) = pl+pl—plpt
d d d d
Pl + 05— plvs) = pL+p; — pips

The probabilistic interpretation of these two sets of equations is as fol-
lows: system (O) equates the probabilities that each specified pair among
the vertices v, w, and z are connected through the subgraph, and system (S)
equates the probabilities that a specified vertex of v, w or z is connected to
at least one other vertex through the subgraph. These six equations are suf-
ficient to completely specify the probabilistic behavior of one subgraph from



that of the other. Unfortunately they are inconsistent in general, and so this
probabilistic behavior can only be approximated. We devote the remainder
of the section to giving the approximation analysis of Lehman. The readers

are referred to [LEH63] for proofs.

2.2 Solving the open-and short-circuit equations

(A) For (O) or (S) taken separately, if the set of probability values for either
pgl,p?/,pz, or pg,p?,pg is specified, then the other set of probability
values is determined uniquely.

(B) The values of p/,, p%, p), are determined from those of pg,p?,pg through
(O) by the following formulae:

P = \[TiTe/Tes  Pp = JTera[ T Py = V rery /Ty,

where r., rs, 1, are the values of the right-hand sides of (O), respectively.

(C) The values of pZ,,p?/,pz, are determined from those of pg,p?,pg through
(S) by finding the unique root 0 < z < 1 in the following cubic equa-
tions:

Pl Az = (g + (14 £)A)2" + w(Agpty — Appg)z + ApAg =0

Pt BA2T = (K peprg + (14 £)A )2 + B(Acpte — Aghtg)z + XAy = 0
pz/ DA 2 — (KPpepy + (1 )N+ k(A gy — Aepre)z + A Ay =0

where
Ae = pl A+ (L—phpipt + kpl(1 — p})(1 — pl)
Ar o= pi+(L—phplpt + spi(1 —pd)(1 - p)
Ay = (1—pg) pf+ rpl(1—pH)(1 —pf)

( pI)(p§ — pl)

py = (1=phHipt—pd)
(1= pH)(p! = pf)
1



(D) The values of p¢, pglc, p;l are determined from those of p!,, p%,, p;, through
(O) and (S), respectively, as follows:

() substitute the variables ¢¢, qu, q;l, Qs G5 Qo Tor pl, phes Py, e,
p}. pl, respectively, in the opposite set of equations (S) and (O),
respectively;

(¢1) using the values ¢7, = 1 —pl), ¢} = 1 — p} and ¢ = 1 — pl,,
determine ¢, qu and q;l via either (B) or (C);

(112) set p? =1 —q%, pf =1—4qf, p} =1—¢’.

(Note that this is simply the “dualization” of the problem solved in

(€).)

2.3 Approximation analysis

Let GG’ be obtained from G by making a delta-wye or wye-delta transforma-
tion, and let p° and p® be obtained from p by using the solutions of (O) and
(S), respectively, as the subgraph replacement probabilities. Let p’ be any
set of edge probabilities for G' which agrees with p outside of the replacement
subgraph.

(E) The extreme values of R(G’,p’) occur when p’ = p© and p’ = p°.

(F) For a delta-wye transformation, the sign of the error R(G’, p')— R(G, p)
is the same as that of 67 = pgp?pg — (p? —I—pglc —I-p;l) + 1 when p’ = p©,
and opposite that of 62 when p’ = p®. Thus p® and p° provide upper
and lower bounds for R(G,p), respectively, when 7 is positive, and
lower and upper bounds, respectively, when 69 is negative.

(G) For a wye-delta transformation, the sign of R(G’,p') — R(G,p) is the
same as that of 6Y = p%p},p!, — (plp% +plpli+p%pl)+1 when p’ = p©,
and the opposite of ¥ when p’ = p°. The assignment of lower or upper

bounds is, therefore, as above.

(H) For the transformations given in (F) or (G), the appropriate error
¢(p®,p) or ¢(p°,p) corresponding to the lower (upper) bound is the
smallest possible for any p’ guaranteed to produce a lower (upper)

bound for R(G,p), and is bounded above by .0089.



(I) When the approximation is not required to be an upper or lower bound,
the minimum worst case error e(p’, p) for a delta-wye transformation
occurs when p?,, p%, and pj,, are assigned to be the unique roots 0 < z <
1 of the cubic equations given in (C), with & now set to % The resulting
error here is €(p’,p) < .0037., but the sign of the error R(G,p’) —
R(G,p) cannot be determined independently of the structure of the
rest of the graph, and hence it cannot be determined whether R(G', p')
is a lower or upper bound on R(G,p). It is always the case, however,

that R(G',p') is between R(G',p®) and R(G', p°).

(J) For a wye-delta transformation, the associated minimum worst-case
error is achieved by substituting 1 —p?,, 1 — p?/, 1— pz,, for p?, pglc, and
p;l in defining the cubic equations given in (I), finding the appropriate
roots z., zy and z,, respfectively, and then setting p? = 1‘—2‘57 p? =1—zy,
and p;l =1 — z,. Again, €(p/,p) < .0037. (Again, this is simply the
“dualization” of the problem solved in (I).)

Note that while the “local” error value ¢(p’, p) was used in Lehman’s worst-
case analysis, the actual error from any of the T3-T4 transformations given
above will depend upon the probabilistic structure of the remainder of the
network. Thus the optimizing values of p’ given above may not minimize
the actual error (and cannot be expected to, as they depend only on local
information). The actual error, however, is always bounded above by €(p’, p),
regardless of the structure of the rest of the graph. Further, the given values
.0089 and .0037 are (approximately) the smallest possible, in that there exist
probability values that can be assigned to the edges of the delta or wye for
which the appropriate best approximation actually attains an error of (about)
.0089 or .0037.

We proceed to use the appropriate values found in (F) and (G) for the
lower and upper bounds in our delta-wye approximation procedure, and the
values found in (I) and (J) as the best estimates. We note that the compu-
tation of values for the cubic equations given in (C) or (I) could be solved
in closed form by classical techniques, although the precise closed form will
depend upon the values of the original edge probabilities. In practice, a more
efficient method is to simply apply Newton’s method starting anywhere in
the interval (0,1).



3 The delta-wye reduction of planar graphs

In this section we outline the Delta-Wye Reduction Procedure given in [FE092],
which reduces a two-terminal planar graph to the single edge (s,?) by means
of a polynomial number of transformations of type T1-T4. By applying the
appropriate edge reliability assignments given in Section 2 for each trans-
formation, we will have a valid approximation scheme for the two-terminal
reliability problem.

We assume that GG has been laid out on the plane with no crossing edges,
and more specifically, that the appropriate data structures have been pro-
duced which can, in constant time per operation, (i) determine the two faces
of G incident to a given edge, (ii) determine the degree (number of adjacent
edges) of any face or vertex, and (iii) traverse the edges incident to a given
face or vertex in clockwise order. (The noncrossing layout of G can be con-
structed in linear time using [HOP74], and the appropriate data structures
can be produced in linear time using [WHI90].) The Delta-Wye Reduction
Procedure consists of two phases, a labeling phase and a reduction phase. The
labeling phase assigns to each edge and vertex of G a label indicating in a
certain sense how far that edge or vertex lies from the terminal s. It consists
of the following iterative procedure:
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Labeling Phase

Assign the label 0 to s, and declare all other vertices and edges unlabeled.
Set [ =0 [l = current level]
do while there are unlabeled vertices or edges:

1. To each unlabeled edge incident to a labeled vertex, assign the label
[+ 1.

2. To each unlabeled edge sharing a tface with a labeled vertex, assign

the label [ + 2.

3. To each unlabeled vertex incident to a newly labeled edge, assign

the label [ + 2.
4. Set [:=14 2.

end do while

The example graph given in Figure 3a illustrates the labeling. With the
associated data structure given with the plane layout, the labeling phase
requires O(|V]) steps.

The reduction phase amounts to the identification and processing of a
special class of the transformations T1-T4, called positive transformations,
as given in Figure 4. These transformations depend precisely on the labels
of the associated edges, and result in a change of labels of edges of the
transformed subgraph. It is easy to see that resultant labeling is consistent
with one obtained if the labeling algorithm were applied directly to the new
graph.

The procedure can thus be given as follows:

Reduction Phase

do while GG is not the single edge (s,1)

Find and perform a positive transformation as given in Figure 4,
with the priority that T1 and T2 transformations are always chosen
before T3 and T4 transformations.

end do while

11



Figure 3b gives a possible positive reduction sequence with respect to the
labeling given in Figure 3a. It should be noted that the terminal ¢ can
appear as a pendant (degree 1) vertex lying inside one of the regions required
to be empty in a positive transformation. In this case the pendant edge
should be moved to another region so that the transformation can proceed
as given.

In [FEO92] the following two facts are established:

1. If GG is not the single edge (s,1), there always exists a positive transfor-
mation which can be applied to G.

2. The reduction phase reduces GG to a single edge after at most 3|V|?
such transformations.

As it is given in [FEO92] the Delta-Wye Reduction Procedure actually uses
two additional transformations, one that removes a pendant edge whose de-
gree 1 vertex is a nonterminal, and the other that removes a loop (edge
having identical endpoints). The following lemma alleviates the necessity of
using these reductions.

Lemma 1 Let GG be a two-terminal planar graph with no irrelevant 2-components.
Then the reduction phase given above never creates a loop or nonterminal
pendant edge.

Proof Since (¢ has no irrelevant 2-components, then it initially can have
no loops or nonterminal pendant edges. We now prove that when transfor-
mations are performed using the priorities given in the Reduction Procedure,
there will be no irrelevant 2-components created, and hence no loops or non-
terminal pendant edges created. Proceeding by contradiction, consider the
first transformation which creates an irrelevant 2-component, and let G’ be
the graph occurring immediately before this transformation. Now the only
possible transformation for G’ which can create a new irrelevant 2-component
is the delta-wye transformation T3, and the only new irrelevant component
that can be created is an nonterminal pendant edge attached to the vertex u
of the wye. But this means that the original delta had to have had a degree
2 nonterminal vertex, and so the reduction phase would have chosen this T1
reduction first. Thus such a transformation can never occur, and the lemma
follows. O
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The data structures of the plane layout can also be used to identify and
perform positive transformations in constant time. This is done by keeping
track of the set of potential positive transformations at each step of the graph
reduction. Since the degree of each face and vertex is part of the input data of
the planar layout, it is easy to run through the initial labeled graph and test
each vertex and face of degree 2 or 3 for admitting one of the four positive
transformations. If so, the candidate is put into one of two stacks holding,
respectively, the candidate T1 and T2 transformations and the candidate T3
and T4 transformations, and the stacks are queried according to the priority
given by the reduction procedure. When a transformation is performed, the
(at most six) adjacent regions and vertices affected by the transformation
are updated, and if a new face or vertex of degree 2 or 3 is detected, then
the labeling is checked to see if the associated transformation is a positive
transformation. If so, the candidate transformation is added to the appro-
priate stack. It may be that some stack items no longer correspond to valid
transformations, due to the intervening modifications which have been made
to the graph. In this case the transformation is simply discarded when it
comes to the top of the stack. Note that since a performed transformation
can affect at most six other faces and vertices, it can affect at most six stack
elements. Thus the number of discarded transformations is no more that six
times the total number of transformations (and in practice is nowhere near
this number). It follows that the entire delta-wye-reduction algorithm can
be implemented in time O(|V]?) as promised.

It is now a straightforward matter to combine the approximation tech-
nique of Section 2 with the Delta-Wye Reduction Procedure. Letting (G°, p°)
be the initial instance of TTRP, we apply the reduction phase to G°. At each
stage of the procedure we maintain the current graph G, together with three
associated edge-probability vectors p’, p* and p*, for which the value of
R(G,p) at each of these three vectors is a lower bound, upper bound and best
estimate for R(GY, p°), respectively. As transformations are performed on G,
the three associated probability vectors are transformed accordingly, until ¢
is reduced to a single edge, at which point the upper bound, lower bound,
and best estimate for R(G?, p°) are simply p%, p.., and p?,, respectively. The
complete procedure is outlined below. The computations of the upper and
lower bounds on the example graph of Figure 3, with p2 = .5 for all edges,
are illustrated in Figures 5a and 5b.

13



Delta-Wye Approximation Procedure

Input: TTRP instance (G, p°).
Apply the labeling phase to G°.

Set G =G0, p' =p* =p* =p°

do while GG is not the single edge (s,1).

1. Identify positive transformation 7" on (G obtained in the reduction
phase and modify GG accordingly.

2. If T'is a series or parallel transformation, then make the asso-
ciated exact edge-probability replacements in each of p!, p* and p*
as given in Figure 2.

3. If T'is a delta-wye or wye-delta transformation, then:

a. Using (F) or (G) in Section 2.3, find the edge probabilities
on the replacement subgraph which give the lower bound for
R(G,p'), and make the appropriate replacement in p'.

b. Again using (F) and (G) in Section 2.3, find the edge prob-
abilities for the replacement subgraph which give the wupper
bound for R(G,p"), and and make the appropriate replace in

p".
c. Using (I) or (J) in Section 2.3, find the edge probabilities
which give the minimum worst-case error on R(G,p*), and

make the appropriate replacement in p*.
end do while

Output: lower bound pl,, upper bound p¥ and a best estimate pZ,

14



Main result The Delta-Wye Approximation Procedure has a running time
of O(|V|*) and gives valid lower and upper bounds for R(G°,p°®). All three
output values are the best possible respective values for the given sequence of
transformations, in the sense that for each transformation the smallest error
of e(p,p’) is obtained.

Applying the DWAP to nonplanar graphs

Although the DWAP depends critically on the planar structure of the graph,
it can be modified to apply to “nearly planar” graphs to give a partial delta-
wye reduction of the graph. The procedure is as follows:

Nonplanar Delta-Wye Approximation Heuristic

1. Find a layout of G in the plane having a small number of crossing edges.

2. Remove these edges, declaring the endpoints to be terminals, so that
they are not allowed to be removed in a T1 or T4 transformation.

3. Apply the DWAP to the resulting planar graph with the modification
that whenever two endpoints of a removed edge appear on the same
face of some intermediate graph, the edge is put back into the graph
with its original edge probability.

It is easy to see that Nonplanar Delta-Wye Approximation Heuristic will
find and perform valid transformations as does the Delta Wye Approxima-
tion Procedure, and hence if ¢ is reduced to a single edge then the resulting
probabilities are valid lower bounds, upper bounds, and best estimates for
R(G,p). (An important example of this given in Section 4.) The Nonplanar
Delta-Wye Approximation Heuristic may, of course, fail to find any transfor-
mations at some point before G becomes a single edge (one such graph can
be constructed from the four-terminal example given in [FEO92]).

The reliability approximation technique given here can in fact be applied
to any delta-wye reduction sequence, whether or not it is obtained from the
Delta-Wye Reduction Procedure. Thus its efficiency could be improved by
finding a more efficient method of delta-wye reducing a planar graph. What is
more, there are nonplanar graphs which are nevertheless delta-wye reducible
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(for example, the complete bipartite graph on six points). Thus there could
exist efficient methods for delta-wye reducing a larger class of graphs than
that of planar graphs, and hence the Delta-Wye Approximation Procedure
could also be applied to this larger class. This applies as well to the Nonpla-
nar Delta-Wye Approximation Procedure, if a delta-wye reduction sequence
could be found which avoided the extra created terminals whenever possible.
A recent algorithm of Gitler [GIT91] states that three terminal planar graphs
are delta-wye reducible to the complete graph on three terminals. Thus the
Nonplanar Delta-Wye Approximation Heuristic can be successfully applied
to any graph that can be made planar by removing an edge adjacent to one
of the two terminals (so that exactly one extra terminal is created). Even
when it is not possible to perform a delta-wye reduction directly as stated
above, the reduction could be used in conjunction with other methods such
as a factoring to complete the approximation procedure. In view of the im-
pressive computational results given in this paper, such an extension would
be quite significant.

4 Computational Results

This section gives results of a computational study of the procedures de-
scribed in Section 3. All computations were performed on an IBM-PS/2-286
machine with a 387 math coprocessor. The major portion of the study was
performed on a special class of grid graphs. Specifically, for positive integers
m and n define the m x n grid graph G, ,, as follows. The vertices of G, ,,
are represented by the rectilinear grid of of points (¢,5), ¢ = 1,...,n — 1,
J = 1,....m, together with the two additional terminal points s, ¢t. The
edges of (G, ,, consist of the edges between each pair of vertically and hori-
zontally adjacent grid points, together with the set of edges from s to each
of the points (1,7), j = 1,...,m and from each of the points (n —1,7) to ¢,
J =1,...,m. Figure 6a shows the graph G44. The graphs G, , represent a
collection planar graphs which become intractable to all of the known exact
algorithms for TTRP’s as m and n grow large. Another valuable feature of
these graphs is that when m = n, they are self-dual, which means in this con-
text that R(G, (0.5,0.5,---,0.5)) = 0.5. Since midrange estimates of R(G,p)
are particularly poor for all approximation schemes (see e.g. [COL88]), this
provides a good benchmark for testing the accuracy of the approximation in
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a worst-case scenario.

Two other specific graphs were tested for historical purposes. The graph
Gpo 1s the edge graph of the dodecahedron, as shown in Figure 6b. It was
first studied in [FIS86] and has shown up frequently as a test case for reli-
ability approximations. Our approximation for Gpo can be compared with
exact results obtained by Shier [SHI88]. The other example is the popular
ARPANET, denoted by G 4r and shown in Figure 6¢. This nonplanar graph
has typically been used to compute all-terminal reliability (see [COL8T7]),
but it provides a good example to demonstrate the application of the non-
planar procedure given at the end of the last section. Specifically, consider
the computation of (s,?)-connectedness reliability between points DTT and
CMU in G 4r. Removal of any edge between these two points, say the one
between DTI and ANL, turns out to cause the remaining graph to be pla-
nar. It is therefore possible to make the point ANL a third terminal and
the delta-wye reduction procedure will reduce the resulting graph to the 3-
edge graph consisting of edges (DTL,CMU), (CMU,WPA), and (WPA,ANL).
Since the vertices DTI and ANL are clearly on the same face of this graph,
then the edge between them can be added back into the graph, and the final
three series reductions will reduce the graph to a single edge, for which the
(s,t)-connectedness reliability estimates for GG4p can be computed.

4.1 Equal Probabilities

A major portion of our testing was carried out for the case of equal operating
probability p on all edges. This allows for a good measure of overall quality
of estimates, in that we can consider R(G,p) as a function of the single
variable p, which we will henceforth denote simply by R((, p). We can then
compare graph plots of the various estimator functions of R((, p) as p ranges
from 0 to 1. The quality of a pair R'(G,p) and R*(G,p) of lower and upper
bounding functions for R(G, p) can be compared using the p-norm measure

defined .
| R (Gop) = (G p)ldp.

We compared our bounds to the a set of bounds obtained by two path-
and cut-based approximations for two-terminal reliability. For any subset
Py, .., P, of (s,t)-paths and C1, ..., C, of (s,t)-paths, if P; is the event that

17



all edges of P; operate and C; is the event that all edges of C; fail, then
Priuil;Pi} < R(G,p) < 1= Pr{ui_,Ci}

In particular, if the P;’s are edge-disjoint, each of cardinality p;, and the C;’s
are edge-disjoint, each of cardinality 7; then we have the edge packing bounds
studied in [BRE88] and [COLSS]:

q
Hl—pJ<RGp <H1—1— )] ()

Despite their apparent simplicity, the edge-packing bounds have been shown
to be one of the most effective bounding technique available for the two
terminal reliability problem.

We compared these edge-packing bounds to our bounds for the the do-
decahedron graph (Gpo), the ARPANET (G 4r), and the 4 x 4 grid graph
(G44). The packing bounds for Gipp used the three disjoint (shortest) paths
and five disjoint (s,?)-cutsets, which are indicated in Figure 6b by thickened
edges and dashes, respectively. The bounds for this case are

L—(1=p")’ < R(Gpo,p) < [1 — (L=p)"P[L = (1—p)°]".

The packing bounds for GG4r used the three paths of length 3, 7, and 17
indicated in Figure 6¢ by thickened edges, and by the three 3-edge (s,1)-cuts

of edges adjacent to DTI, edges adjacent to CMU, and edges one-removed
from CMU. The bounds for this case are

1—(1—p") (1 =p*)(1 = p'T) < R(Gar,p) <[1—(1—p)*P.

The packing bounds for G44 used the four horizontal paths and the four
vertical cuts, all of length 4. The bounds for this case are

L= (1 =p") < R(Gaap) <[1 = (1= p))".

These packing collections offer the best possible edge packing bounds for
most reasonable probability assignments. The edge-packing bounds were
computed and compared to the delta-wye bounds, using the p-norm, and
the results are given in Table 1. The delta-wye bounds were 20 to 80 times
tighter than the edge packing bounds for these three graphs.
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We also compared the delta-wye bounds for the m x n grid graphs to a
stronger set of path- and cut-based bounds — which we will refer to as lattice
bounds — introduced by Shier [SHI88]. In particular, we applied () to the
following collection of paths and cuts for G, .

Qmn: The m horizontal paths Py, ..., P,, together with the (m — 1)(n —
1) paths Pryi,..., Pug(n-1)n-1) formed, for j = 1,....m — 1, 7 =
1,...,n—1 by combining the leftmost ¢ edges of P; with the rightmost
n — ¢ edges of P11, together with the edge ((7,j), (¢,7 + 1)).

Rumn: The n vertical cuts Cy, ..., C,, together with the (n — 1)(m — 1) cuts
Crg1s- s Crgnetyim-1) formed, for e = 1,....n -1, 7 =1,...,m — 1
by combining the top j edges of C; with the bottom m — j edges of
Cit1, together with the edge ((7,7), (¢ + 1,7)). (The elements of R, ,

are in fact “dual” to the elements of Q,, ).

The collections Q,, ,, and R, ,, include maximal collections of disjoint paths
and cuts such as those given for (G4 4, and so (*) will necessarily give tighter
bounds than the edge-packing bounds. We first indicate how to compute the
left-hand value in (x). Note that no two paths in Q,, ., cross, so that for any
pair P; and P; we have either that P; lies “below” P; — which we denote by
P; < P; — or vice versa. Thus if we define [ to be the event that the path
P; is the “lowest” operating path in Q,, ,,, then the events F; are well-defined
and clearly mutually exclusive. Hence if we set L(m,n;p) =3, Pr{F;}, we
have that
L(m,n;p) = Pr{U;F;} = Pr{U; E;}
and thus L(m,n;p) provides the correct left-hand-side value for (*). To
compute the Pr{F;} terms in L(m,n;p), we use the special structure of this
collection of paths to produce the following recursive formula (for the case
of equal operating probabilities) whose derivation can be found in [SHISS].
PriF;} = PriE;} — Y Pr{Fjpl"\"
Pi<P,

Thus the Pr{F};} values can be computed in increasing order of <, and so
L(m,n;p) can be computed in polynomial time. The upper bound for (*)

can be shown by a completely analagous “dual” argument to be equal to
1 — L(n,m;1 — p), and so (*) can be written as

L(m,n;p) < R(Gpyp) <1 — L{n,m; 1 — p)
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The lattice bounds for seven grid graphs were computed, and their p-norms
were compared to those derived for the delta-wye approximation. (This was
done by computing 50 point evaluations the bounds, and averaging the differ-
ences between the respective upper and lower bound values. For the delta-
wye algorithm the the point evaluations were computed simultaneously in
one pass of the reduction routine.) The results are shown in Table 2. As is
to be expected, the p-norms of the approximations are directly related to the
number of delta-wye reductions that are required by the reduction algorithm.
It is evident, however that the delta-wye bounds again offer a dramatic im-
provement over the lattice bounds, with p-norms 10-15 times smaller. Figure
Ta—Tc shows the plots of the reliability bounds for the examples given in Fig-
ures 6a—6¢, and the associated p-norm values are given in Table 1. Figure
7d shows an almost perfect fit of the delta-wye best estimate to the exact
values of the reliability for the graph G'po. Figure Te shows plots of the three
bounds on (515, which are also remarkably accurate considering the size of
the graph.

Table 3 compares the point-values of the delta-wye upper bound, lower
bound, and best estimate to those of using the lattice bounds on 4 self-dual
grid graphs at the point p = 0.5. (Recall that the exact reliability value
for these examples is always 0.5.) Again notice the dramatic improvement.
It is interesting to note that while the delta-wye upper and lower bounds
deteriorate as the graphs get large, the best estimates, surprisingly, appear
to converge to the correct value.

4.2 Unequal probabilities

We also computed the delta-wye bound for Gpo, G55 and G5 using indi-
vidually and randomly generated probabilities on each edge, chosen within
a variety of ranges. We compared our output with exact values which were
computed on a Macintosh Quadra 660 using a factoring algorithm coded
PASCAL by Page and Perry [PAGESS]. We thank Lavon Page for providing
us with a copy of the source code and his permission to include the computa-
tions obtained with it. Table 4 shows the computational results for the three
graphs. We also list in each case the spread (the difference between the up-
per and lower bounds) and the error in the point estimate, and compare the
two. Again, the estimates were remarkably accurate — with errors between

.00001 and .00025 and spreads between .0001 and .04.
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It is important to point out that each reliability evaluation using the
factoring algorithm required roughly 30 seconds for the dodecahedron, 15
minutes for the 5 x 5 grid graph, and 6 hours for the 5 x 6 grid graph (hence
the small number of examples shown). Clearly, the factoring algorithm or any
other algorithm would not be able to compute the two-terminal reliability
for graphs much larger than our examples.

Our empirical results suggest that the spread in the bounds for a partic-
ular graph varies significantly over varying edge probabilities even when the
overall reliabilities are similar and the same set of transformations is used.
(This can be seen by comparing the second set of estimates for G5 5 in Table
4 with the estimates for this graph in Table 3.) Several empirical results seem
to emerge, however. One is that for the same combinatorial framework and
two different edges probability vectors, the vector with smaller variation over
the edges tends to result in greater spread. Further, amongst the instances
with equal probabilities, the maximum spread tends to occur around the
fixed point of the polynomial R((, p). This is consistent with what has been
observed empirically with other bounding methods as well (See [COLS8S]).
Thus Table 3 gives upper and lower bounds for what is probably the worst
case error scenario for the self-dual grids. The dominant factor in determin-
ing the accuracy in the delta-wye bounds, however, seems to be the number of
delta-wye transformations made on the graph rather than either the topology
of the graph or the precise distribution of edge probabilities.

4.3 Conclusion

The delta-wye approximation procedure given in this paper has proven to be
an easy-to-implement and remarkably accurate estimator for two-terminal
reliability, one that is better by an order of magnitude than the best known
estimators. It is particularly interesting to compare the overall effectiveness
of the estimators to the errors indicated for the individual T3 and T4 trans-
formations. Lehman’s analysis gives a worst-case bound on the individual
errors as approximately .0089 for the upper and lower bounds, and .0037
for the best estimate; in the actuality the average per-transformation error
seems to fall between .003 and .000006 for the bounds and between .0002 and
.00000005 for the best estimate. Further these per transformation errors de-
crease as the number of transformations grows. Not surprisingly, the analysis
shows that the accumulated error between the upper and lower bounds in-
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creases as the number of transformations grows, reflecting the additive effect
of the errors in the individual transformations. Table 3, however, shows the
striking result that the cumulative error of the best estimates seem to actually
decrease as the graphs get larger, indicating more of an averaging or cancel-
ing effect of the cumulative transformations. We know of no explanation for
this unusual effect.

We end the paper by giving some more complex and realistic performa-
bility analysis problems to which one might apply an analogous delta-wye
approximation technique.

nonplanar graphs (as discussed in Section 3): This might include adding
transformations to the four discussed here that will allow the reduction
of graphs which are not necessarily planar, and developing the relia-
bility transformations necessary to yield the associated approximation
analysis.

k-terminal reliability: Here the problem input includes a given set K of
terminals, and the network operates if all pairs of vertices in K are
connected by operating paths.

directed networks: The networks discussed in this paper are required to
have two-way edges, and there does not appear to be an immediate
way to extend this analysis to the case of one-way or mixed edges.

stochastic shortest path reliability: Here each edge is given a length and
there is a specified minimum “delay” tolerance L for the network. The
network operates if vertices s and ¢ are connected by an operating path
of length at most L.

stochastic network flow reliability: Here each edge is given a capacity,
and there is a specified minimum “throughput” F' for the network. The
network operates if the operation arcs admit a flow of value at least F'
between vertices s and t. This and the stochastic shortest path problem
are particularly interesting, since their nonstochastic versions can be
solved exactly by the delta-wye reduction technique (see [FEOQ92]).

In most performability problems, including the ones given above, it is fairly
simple to find some kind of reliability transformations that will give bounds/
approximations to the associated performance probability; the key problem is
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to choose those transformations that will give the most accurate estimates.
Due to the increased complexity of problems like those given above, it is
likely that the estimates will be less accurate, as well as more difficult to
analyze, than for the two-terminal reliability problem. It is important to
note, however, that the general purpose performability analysis bounding
techniques currently used provide fairly poor estimates, or can only be used
effectively for very small instances. In view of the remarkable success of
the delta-wye reduction technique when applied to two-terminal reliability,
we think that it is well worthwhile to study this technique for more general
performability analysis problems.
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p-norm for p-norm for
graph edge-packing bounds delta-wye bounds
Gaa .2355 0125
Gpo 3057 .0156
Gar .2968 .00362
Table 1. Comparison of delta-wye and edge-packing bounds for example
graphs
) # transf. p-norm for p-norm for time in
grid | 7 nodes | 7 edges required lattice bounds d-y bounds seconds
Gis5 22 41 56 1797 .0166 4
G510 47 86 156 2510 0221 7
G10,10 92 181 555 3657 0289 20
G510 131 276 1000 A182 .0330 30
G515 212 421 1999 4840 .0335 60
(G'20,20 382 761 4865 5640 .0401 180

Table 2. Comparison of delta-wye and lattice bounds for grid graphs

lattice Delta-wye estimates lattice
grid lower | lower best upper | upper
bound | bound | estimate | bound | bound
Gis5 2481 AT79 5025 527 7518
G010 | -03182 439 5018 563 9681
G55 | -0022 400 5011 595 9978
Gia0,20 | -000126 | .364 .5002 625 | 999874

Table 3. Comparison of delta-wye and lattice estimates for self-dual grid
graphs at p = .5
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graph | lower point exact upper error spread | error/spread
Gpo | .014400 | .016362 | .016309 | .018751 | .000053 | .004351 0122
025663 | .028188 | .028953 | .031604 | .000765 | .005941 1288
033343 | .035530 | .035662 | .038153 | .000132 | .004810 0274
134574 | 141700 | .144207 | .151480 | .002507 | .016906 1483
279837 | .296042 | .296412 | .317333 | .000370 | .037496 .0099
858571 | .866867 | .868005 | .874144 | .001138 | .015573 0731
872214 | .882894 | .882040 | .891847 | .000854 | .019633 0435
908861 | 916908 | .916548 | .923799 | .000360 | .014938 0241
921707 | 1926560 | .928246 | .931047 | .001686 | .009340 1805
961580 | 1965756 | .965895 | .969399 | .000139 | .007819 0178
997218 | 1997688 | .997685 | .998050 | .000003 | .000832 .0036
997843 | 1998089 | .998119 | .998294 | .000030 | .000451 0665
999640 | 1999729 | .999739 | .999795 | .000010 | .000155 0645
Gss | .260993 | 268991 | .270445 | .278251 | .001454 | .017258 .0843
518669 | 533199 | 534743 | 547908 | .001544 | .029239 0528
647162 | 665644 | 664985 | .683737 | .000659 | .036575 0180
957197 | 1961919 | .963355 | .966559 | .001436 | .009362 1534
982125 | 1984391 | .984743 | .986359 | .000352 | .004234 .0831
984506 | 986472 | 987299 | .988320 | .000827 | .003814 2168
2999753 | 1999812 | .999848 | .999866 | .000036 | .000113 3186
999759 | 1999813 | 999851 | .999863 | .000038 | .000104 3654
Gse | -251207 | .266163 | .268609 | .284164 | .002446 | .032957 0742
327675 | 343522 | 341277 | .359500 | .002245 | .031825 0705
598724 | 611945 | 612894 | .625923 | .000949 | .027199 .0349

Table 4 : Reliability estimates on three graphs using randomly generated
probability values
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