A GENETIC ALGORITHM FOR THE
MULTIPLE-CHOICE INTEGER PROGRAM

Atidel Ben Hadj-Alouane
James C. Bean
Department of Industrial & Operations Engineering
University of Michigan
Ann Arbor, MI 48109-2117
Technical Report 92-50

September 1992
Revised July 1993

A Genetic Algorithm for
the Multiple-Choice Integer Program

*

Atidel Ben Hadj-Alouane
James C. Bean

Department of Industrial and Operations Engineering
University of Michigan
Ann Arbor, MI 48109-2117

July 15, 1993

Abstract

We present a genetic algorithm for the multiple-choice integer program that finds
an optimal solution with probability one (though it is typically used as a heuris-
tic). General constraints are relaxed by a nonlinear penalty function for which the
corresponding dual problem has weak and strong duality. The relaxed problem is
attacked by a genetic algorithm with solution representation special to the multiple-
choice structure. Nontraditional reproduction, crossover and mutation operations
are employed. Extensive computational test for dual degenerate problem instances
show that sub-optimal solutions can be obtained with the genetic algorithm within
running times that are shorter than those of the OSL optimization routine.

*This work was supported in part by the National Science Foundation under Grant DDM-9018515
and DDM-9202849 to the University of Michigan.

1 Introduction

The multiple-choice integer program is a linear binary program in which the variables
have been partitioned. For any feasible solution exactly one variable from each partition-
ing set must take the value one (all others are zero). The objective is to minimize a linear
function while satisfying general linear constraints. This widely applicable structure in-
cludes as special cases the assignment problem, multiple-choice knapsack problem and
generalized assignment problem and has been used for many real applications ([2], [4],

[6], [11]). The multiple-choice integer program (MCIP) can be stated mathematically:

min ¢z
s.to Az —-b02>0 (1)
(MCIP) Zmii:l’ fori=1,2,....,m (2)
1=1
zi; € {0,1}. (3)
For each set, © = 1,...,m, equations (2) and (3) force exactly one variable in {z;;}}L,

to be one. Constraints (2) are called multiple-choice constraints or generalized upper
bounds. The system of inequalities (1) are general linear constraints where Aisa k x n
(n = ¥, n;) coefficient matrix and b is a constant vector in R*.

Solving the above problem is basically finding the correct choice of positive variable
from each multiple-choice set. Finding such a choice may require investigating [['~, n;
combinations, which grows exponentially in terms of n in the worst case. The most suc-
cessful techniques for solving (MCIP) are branch-and-bound algorithms that use either
linear programming ([13]), Lagrangian relaxation ([8] [20]), or variations of Lagrangian
relaxation ([2], [6]) for bounding purposes.

Lagrangian relaxation drops some constraints from the problem while introducing to
the objective a weighted linear penalty for constraint deviation. Choosing correct weights
in this penalty function can result in good bounds or even optimal solutions to the original

problem. A typical Lagrangian relaxation for (MC1IP) relaxes the general constraints,

(1), resulting in the following simple problem:

min ¢z — AM(Az - b)
(PR)) s.to Er=en,
z;j € {0,1},

where AT is a vector in ®¥, A > 0. Constraints Ez = e,, are the multiple-choice con-
straints, where E 1s an m X n matrix and e,, € R™ is a vector of ones. The entries, E;;,

of E are given as follows,

1 oaf YSitine <7 < Ther e

0 otherwise

E,‘]' =

This type of relaxation often fails to give reasonable solutions in dual degenerate
problems [17], that is, problems with multiple optima. Such problems occur commonly
in practice, for example, the real facility location problem in [5]. In this example there
are many identical facilities to be placed. This ambiguity causes many solutions to be
optimal.

In this paper we adapt a nonlinear penalty function, py(z), commonly used in con-
tinuous nonlinear programming (see [1]). This penalty consists of summing the weighted

squares of violations of the constraints (1). The penalty has the form
k
pa(z) =Y Ailmin(0, A,z — b))%
=1

Figure 1 shows this function for a single constraint with A = 1 and A = 5. Adding py(z)

to the objective function of (MCIP) gives the following nonlinear integer program:

min ¢z + pr(z)
(PP,) s.to Er=e,
z;; € {0,1},

where) is a vector in ¥, A > 0. Note that py(z) is convex and continuously differentiable.
The relaxation (PPy) does not have the integrality property (see [8]), whereas (PR))
does. Below we show that multipliers exist such that (PPy) solves (M C1P) exactly. This

A
p(x)
A=5
A=1 20
11
: : : >
-2 -1 1 2 Ax-b

Figure 1: Nonlinear penalty function versus constraint violation

is a stronger result than is shown for nonlinear continuous programs or for traditional
linear Lagrangian relaxation for integer programming.

Unfortunately, (PPy) is nonlinear and, hence, more difficult to solve than (PR)). We
present a genetic algorithm that handles this nonlinearity. Further, we note that it will
solve (PP)) optimally with probability one.

Genetic algorithms with penalty functions have been used and discussed in the liter-
ature [9] [18]. Other genetic algorithm approaches to constrained optimization appear
in [16] and [3]. The genetic approach presented here appears to be the first to use a
parametrized penalty function. That is, it is a primal/dual algorithm.

The remainder of this paper is organized as follows. The second Section motivates the
difficulties caused by dual degeneracy and illustrates the nonlinear relaxation, (PP)). The
third Section proves weak and strong duality for the dual corresponding to the nonlinear
relaxation. Section 4 provides a brief overview of genetic algorithms and describes the

genetic algorithm for (PP)). Section 5 evolves this into a genetic algorithm for solving

(MCIP). The sixth Section presents computational results. Finally, Section 7 presents

some extensions.

2 Dual Degeneracy

The problem (MCIP) is said to be dual degenerate if it has multiple optima. Let
v(-) be the optimal value of problem (-). The traditional, linear dual is maxy»o v(PRy).
This dual can have a duality gap, that is maxy»o v(PRy) < v(MCIP).

In the dual degenerate case the dual has nongeneral characteristics. This is illustrated
by the following example of a multiple-choice integer program formulation of a facility

location problem involving two identical facilities.

Example 1

Consider the case of m =2, and n; = ny = 2. The original problem is

min 31 + 2212 + T + 229
s. to —23711 + 3CL‘12 - 2.’1521 + 3-’1322 > 1

(MCIP) 1+ z2=1
T+ T =1

T11, T12, To1, T2 € {0,1}

The first multiple-choice set, containing the variables xy, and 19, represents the first
facility that will be located in one of two possible locations: location 1 (zq; = 1 and
t13 = 0) or location 2 (x1; = 0 and 713 = 1). A similar interpretation can be given
for the second multiple-choice set which contains x4, and z99. In addition, the two fa-
cilities are identical since, for each location, the variables associated with the two facili-
ties have same cost and constraint coefficients. The problem has two optimal solutions:
(211, T12, 221, T22) = (1,0,0,1) and (211,12, 221, T22) = (0,1,1,0). The linear Lagrangian

relazation 1is:

min (1 + 2)\).’131] + (2 - 3/\)1‘12 + (1 + 2/\).’1721 + (2 - 3/\).’L‘22
s.to i +a=1
(PRy) To1 + Ty =1

T11,T12,T21,T22 € {03 1}

If X < 1/5, the optimal solution to (PR)) is (1,0,1,0), and if A > 1/5, the optimal
solution is (0,1,0,1). Therefore, for any of these values of A the optimal solution is
either to put both facilities in location 1, which is not feasible in the original problem,
or to put both facilities in location 2, which is the worst feasible solution to the original
problem. At A = 1/5 all four solutions are equivalent. For no value of A is a good
solution returned. Figure 2 shows the convex optimization problem formed by the dual;
each line corresponds to values of cx — AM(Ax — b) for a specific solution z. Note that all
lines intersect at A = 1/5. This corresponds to the classical concept of dual degeneracy

in linear programming.

As noted in the above example, when the Lagrangian relaxation is used, identical
facilities in a solution are not treated separately, but rather as one unit that are located
together. In order to avoid this problem while still benefiting from the idea of constraint
relaxation we use the nonlinear relaxation (PP)).

The advantage of using the penalty function p)(z) over the linear penalty function is
that only infeasible solutions incur nonzero penalty. Therefore, if there is a value of A
for which the optimal solution to the relaxed problem is feasible to the original problem,

it must be the optimal for MCTP. This is illustrated by the following example.

cx- MAx-b) /— optimal (1,0,0,1) or (0,1,1,0)

infeasible (1,0,1,0)

nonoptimal (0,1,0,1)

1/ A
Figure 2: Lagrangian relaxation

Example 2

Consider the same problem of Erample 1. The nonlinear relazation is:

min -z + 2215 + 2o + 2220 + pa(2)
(PP\) s. to Ty + Ty = 1
T+ Ty=1

11, T12, To1, T2 € {0, 1}

where py(z) is the penalty term as defined in (1). The optimal solutions to (PPy) are
(1,0,1,0) ¢f A < 1/25 and (1,0,0,1) or (0,1,1,0) of A > 1/25. Figure 8 shows the conver
optimization problem formed by this dual. Similarly to Figure 2, each line corresponds to

values of cx + py(x) for a specific solution x.

From the above two examples, note that by not penalizing (or rewarding) the feasible
solution (0, 1,0, 1), the nonlinear relaxation allows for the optimal solutions to be discov-

ered for a certain range of values of the parameter A. However, in the case of Lagrangian

6

f
cx+Py(x)

/ nonoptimal (0,1,0,1)

optimal (1,0,0,1) or (0,1,1,0)

infeasible (1,0,1,0)

Y

125 A

Figure 3: Nonlinear relaxation

relaxation, a degeneracy occured at A = 1/5.

3 Validity of Nonlinear Relaxation

Analogous to the Lagrangian relaxation, the nonlinear relaxation provides some
important theoretical tools that can be used to evaluate its solutions. The following
results are extensions of results on penalty function methods for continuous nonlinear

programming [1]. Lemma 1 proves weak duality.
Lemma 1 (Weak Duality) v(PP),) < v(MCIP) for all A > 0.

Proof: Let z* be optimal to (MCIP). Then z* is feasible in (PPy) and py(z*) = 0 for
all \. Hence v(PP,) < ca* =v(MCIP).

The following Theorem describes the relationship between v(PPy) and v(MCIP) for
a fixed A.

Theorem 1 (Fixed 1)

a- For a given X > 0, if « is optimal to (PPy) and Ax—b > 0, then z is optimal
to (MCIP).

b- For a given A > 0 and € > 0, if z is e-optimal to (PPy) and Az = b > 0,
then is e-optimal to (MCIP).

Proof:

a- Since z is optimal to (PP)) then v(PPy) = cz + py(z). Since z is feasible in
(MCIP), then cx > v(MCIP) and py(z) = 0 so v(PP) = cz. By Lemma 1,
ct <v(MCIP). Hence v(MCIP) = cz.

b- Since z is e-optimal to (PPy) and Az —b > 0 then cz —v(PP)) < ¢. By Lemma
1, ct —v(MCIP)<e.

That completes the proof. »
The following theorem establishes the existence of some value of the vector A for which

Theorem 1-a can be applied. This establishes strong duality for the dual max>o v(PPy).

Theorem 2 (Strong Duality) Let Sy be the set of optimal solutions to (PPy). If
(MCIP) is feasible, then there exists X > 0 such that, for all X > X, there ezists = € S
such that py(z) = 0 and z is optimal to (MCIP).

Proof: Let X = {z € R": Ez = e,z € {0,1}}, Y = {c € R": Az — b > 0} and z* be
an optimal solution to (MCIP). Let ¥ be the complement of Y.

v(PPy) = irél/{l{m + pa(a)}

= min{_min_ (co + p(e))s_min_ (s + ()
= min{cz"; min_(cz + px(x))}.
s€(XNF)
Note that, since X is a finite set, (PP)) and (MC1P) are bounded. Define

a(z) = Y5 [min(0, Apz — b;)]? and Ay = MaXge X a(z)20{ eiocz) o R

a(z)

Choose A = max{Ao; 0}ex, where e, = (1,1,...,1)T € R*.

Therefore,

v(PP;) = min{ex ;zexrgl(rrl);ﬁo(cx T hoa(e))}.

For any A > A let Z, = arg mine(xny)(cz + pa(r)). Since A > A,

(AV4

cZx + pa(Zy) ¢y + Aoa(Zy)
cT™ — CT)

a(:h)

v

ci;—i—()O((:i)‘)

x
cT

Therefore, v(PP)) = cz*, i.e., 2" € Sy. Since py(z*) = 0, the proof is completed. u
This nonlinear relaxation is stronger here than in continuous nonlinear programming.
In the latter case, strong duality is attained only asymptotically. Further, it is stronger
than the traditional Lagrangian relaxation due to the lack of a duality gap. The drawback
is that the resultant problem, (PP)), is a nonlinear integer program.
This difficulty is overcome by the use of a genetic algorithm to heuristically solve
(PP)). It solves the nonlinear problem with nearly the facility of a linear problem. The

tradeoff is possible loss of optimality.

4 A Genetic Algorithm Approach

4.1 Introduction to Genetic Algorithms

Genetic algorithms are random search techniques that mimic processes observed in nat-
ural evolution. They combine survival of the fittest (or best) among string structures
(solutions) with a structured yet randomized information exchange [9][7]). Genetic al-
gorithms differ from traditional optimization techniques in many aspects. They work
with an encoding of the variables (typically as strings) rather than the variables them-
selves, and use probabilistic transition rules to move from one population of solutions to
another rather than a single solution to another. The most important and interesting

characteristic of genetic algorithms is that they use only objective function evaluations.

9

That is, they do not use any information on differentiability, convexity or other auxiliary
characteristics. This property makes genetic algorithms easy to use and implement for a
wide variety of optimization problems, including nonlinear integer problems.

A simple genetic algorithm works by randomly generating an initial population of
solutions (a generation), then moves from one generation to another by breeding new
solutions. The traditional breeding process involves objective function evaluation and
three operators. The first operator is reproduction where strings (solutions) are copied to
the next generation with some probability based on their objective function value. The
second operator is crossover where randomly selected pairs of strings are mated, creating
new strings. The crossover operation is described in detail in [3] and [9]. The third
operator, mutation, is the occasional random alteration of the value at a string position.
It plays a secondary role in genetic algorithms since, in practice, it is performed with a
very small probability (on the order of 1/1000). Mutation diversifies the search space and

protects from loss of genetic material that can be caused by reproduction and crossover.

4.2 A Genetic Algorithm for (PP))

Application of genetic algorithms to operations research problems has been limited due
to the complex feasible domains. Given an optimization problem, often the hardest step
in applying a genetic algorithm is the encoding the solutions as strings so that crossovers
of feasible solutions result in feasible solutions.

The techniques for encoding solutions vary by problem and, in most cases, involve
a certain amount of art. For general 0 — 1 integer programs, solutions are typically
represented by a string of bits of length equal to the total number of variables in the
problem, n, where each string position can take the value 0 or 1 (in genetic terminology,
the string position is called gene, and the position value is called allele). This results in
a search space of cardinality 2", exponential in the number of variables [12].

Recently, a special encoding technique, called random keys [3], has been introduced
and shown to be successful for a variety of sequencing and optimization problems. It

consists of representing a solution with random numbers which are used as sort keys to

10

decode the solution. For (PP)), a more direct encoding can be used. A solution can be
represented by a string of length equal to the number of multiple-choice sets. The allele,
for a given set, takes the value of the index of the element of that set taking the value
one. All other variables in that set take zero. Hence, each position (gene), i, of the string
can take any integer in {1,...,n;}, where n; is the number of variables in multiple-choice

set 2. This isillustrated by the following example.

Example 3 let m = 2 and n; = 3 for i = 1,2. One solution that satisfies the multiple-
choice constraints is 12 = x93 = 1 and all remaining four variables equal zero. Using the

proposed representation, this solution can be represented by the following string (2,3).

In genetic terminology, the string position is called gene, and the position value is
called allele. With this representation, the size of the search space is reduced from 2"
to [T'2; n;. The computational complexity resulting from this representation can still be
exponential. However, if growth in variables takes place within existing multiple-choice
sets the genetic algorithm has polynomial complexity.

This large alphabet encoding (see [9]), also referred to as the real coding [10] or floating
point coding [15], is an alternative to binary encodings. The experimental study in [15]
praises the floating point coding, especially when used with special genetic operators,
since it has the advantage of shorter representations. In our problem, it also has the
characteristic that, after relaxation of the general constraints, there are no interactions
between genes other than through the value function. Results in Section 6 suggest that
this is quite effective. A broader study is underway into the reasons for and limitations
of this effectiveness.

In this paper, a genetic algorithm is applied to the problem (PP)). Since (PP)) has
only multiple-choice constraints, using the encoding above, each string in a randomly
generated generation is guaranteed to be a feasible solution. Basic crossover or mutation
operations produce feasible solutions.

There are many variations of genetic algorithms formed by using different reproduc-

tion, crossover and mutation operators [9]. The genetic algorithm employed here has

11

proved to be very successful for the MCIP, particularly large scale, dual degenerate

MCIP’s. Given a current generation, the next generation is created as follows.

1. Copy the N, top solutions. The solutions of the current generation are sorted by
increasing order of the objective function value, then the top N, solutions are copied
into the next generation. N, is usually fixed to 10% of the population size. This
approach, called elitist reproduction [9], replaces the traditional probabilistic repro-
duction. The advantage of using elitist reproduction is that the best solution is

monotonically improving from one generation to another.

2. Mate random pairs: first, randomly select two strings (parents) from the entire
current generation. Next, create two offspring as follows. For each gene, a biased
coin 1s tossed, and the outcome determines whether or not to interchange the alleles
of the parents. Formally, this operation can be described as follows. Consider the
parent strings P, = p1ip12... pim and Py = pa1pos . .. pam, Where p;; is the allele of the
Jth gene of the string P,. Similarly, let O; = 0;7012...01, and O; = 09,09;...02m
be the offspring created by mating P, and P,. Note that, here, the bold style
is used for o;; since the latter denotes the gene of O; and not the allele. Then,
the probabilistic interchange of the m alleles can be modeled as m independent
random variables, say Xi, X,,...X,,, having each the Bernoulli distribution with a
parameter not equal to 1/2. These random variables are thus defined as follows.

Forj=1,...,m,

¥ 1 of alleles pyj and py; are interchanged
]' =
0 otherwise

By performing these m independent trials, the genes of the two offspring are built.
Therefore, The offspring genes are functions of the random variables X;’s, given as
follows.
Forjy=1,...,m,

01; = (1 = Xj)p1; + Xjpa;

0 = Xjp1; + (1 = X;j)pa

12

An illustration of this operation is given in Example 4. Once the offspring are cre-
ated, they are evaluated, and only the one with better objective value is included
in the new generation. This mating operation is similar to the uniform crossover
described in [9], and the parametrized uniform crossover introduced in [19]. Experi-
ments have shown that, for the MCIP, this operator is computationally better than

the one-point or two-point crossover.

3. Create mutations by randomly generating a small number of entirely new solutions
(Nm = 1% of the population size) and including them in the new generation. A

random solution consists of a string of m random numbers, say

12 ... Tm, where r; is uniformly distributed on the integer interval [1,n;], for each
¢ = 1,...,m. This operation is clearly different from the gene by gene mutation
since it involves bringing new members to the population. In [3] this is referred to
as “immigration” and is shown to have an important role in preventing premature
convergence of the population, especially when it is used with the elitist reproduction

as opposed to the probabilistic reproduction.

Example 4 Letm =4 andn; = 3 for alli. Then one string is an element of x{_,{1,2,3}.

Two particular solutions are
(1,2,3,1); (2,3,1,2).

The former represents the solution ¥y, = x93 = T33 = T4, = 1, all other variables equal
0. To crossover these individuals as described above, toss a coin for each element of the
string. Suppose a heads selects from the first and a tails from the second to form the first
offspring and the remaining alleles form the other offspring. If the outcome of the coins
are H,T,H,T then the two offspring are

(1,3,3,2); (2,2,1,1).

The genetic algorithm approach described above can be summarized by the following

pseudocode. Note that the best feasible solution found is updated at each new generation.

13

Initialization. Choose a population size, N (experiments showed that N € [m, 3m]
works well for our test problems). Choose a stopping criteria
(an objective value bound or maximum number of generations).
Set best objective value so far to infinity. Randomly generate and
evaluate NV solutions as described above in the immigration operation.
Let (1 be the set of these solutions. Set k = 1.

Main Step. ~ While (not stop)
BEGIN
Set Grpr =0

1. Sort the solutions in Gy by increasing order of objective value.
Include the first N, solutions in Gyyq.

If top solution in G is feasible, update best feasible solution so far.

2. While (|Gr41| < (N = Np))
BEGIN (Crossover)
¢ Randomly (uniformly) select two solutions P, and P, from Gj.
e Mate P, and P, to produce offspring O; and O,.
e Evaluate O; and O,, and include in Gy, the one with
lower objective value.
END (Crossover)

3. Randomly generate N, solutions and include them in Gyy;.

If the first solution in Gy is feasible, update best feasible solution so far.
k =k + 1. Stop if stopping criteria is met.
END
Since each solution can be selected with nonzero probability by the immigration op-
erator, we can conclude that, if the genetic algorithm above is run long enough, it will

find an optimal solution with probability one.

14

5 A Genetic Algorithm Approach for (MCIP)

Combining Theorem 2 and the proposed genetic algorithm, we have the following theo-

retical algorithm.
o Set A large enough to ensure that (PPy) solves (MCIP) optimally.

¢ Run the genetic algorithm long enough to find an optimal solution to (PPy), and

hence, (MCIP).

The difficulties with implementing this procedure are 1) we do not know how long the
genetic algorithm must be run, and, 2) it is usually difficult to determine a “good”
value of A, for a particular problem. Further, it has been seen empirically that for large
values of A, the search is limited only to feasible solutions, since infeasible solutions are
highly penalized. This usually leads to an inefficient genetic algorithm, especially in the
case of problems with complex feasible domains. We describe below an implementation
that seeks good solutions to (M CIP) by adjusting the A vector while running the genetic
algorithm. Initially, we fix A at a certain value (the choice of this initial value is discussed
later in this section), and run the genetic algorithm for a certain number of generations,
Ny. We halt to check whether the top solution has had a zero or nonzero penalty for
each of these N; generations. If A is small enough, the top solution will have nonzero
penalty (infeasible). In this case, A is increased. However, if A is relatively large, solutions
with zero penalty (feasible) remain on the top of the population. In this situation, \ is
decreased. In both cases, the solutions of the current generation are re-evaluated with
the new A, and the algorithm continues. In case where the top solution alternates at
least once between feasible and infeasible (or vice versa), we continue the algorithm with
the same value of).

In this approach, we increase A by the multiplicative factor f;, and decrease by the
factor B,, where f; and f, are real constants chosen empirically. In order to avoid
cycling, it is important that the increasing and decreasing rates of A be different. In our

experiment, we empirically initialize A at a small value; therefore we use an increasing

15

rate (B1) that is larger than the decreasing rate (2), to allow for a fast improvement at
the early stages of the algorithm.

In general, the ideal value of X is the one that results in hybrid populations (contain
feasible and infeasible solutions) so that feasible solutions can be improved by mating
with infeasible solutions that may have “good” genetic material, in this case, the top
solution usually alternates between feasible and infeasible.

The initial value of) is calculated based on the theoretical result given in Theorem 2,

cr*—cr

i.e. A = max{\;0}er, where Ao = MaXzex a(e)20{ %) }. The following approximation

of Ao is used.
cT* — cx;

5\0’—‘1/]\71 Z (

i€Gy a(z:)#0 a(z;))

where G is the set of solutions in the initial generation, N, is the number of solutions,

in G1, with nonzero penalty (i.e with a(z;) # 0), and Z* is the optimal solution of the
linear programming relaxation of (MCIP).

If run long enough, the procedure described above will find an (M CIP) with probabil-
ity one. However, it is typically stopped heuristically by using lower bounds and setting
a limit to the number of generations created. A pseudocode that describes this heuristic
procedure is given below.

Initialization. Choose two scalars 8, > 3, > 1. Typical values are §; = 4 and 3, = 2.8.
Set \; = max{j\o; €}ex, where ¢ > 0 and arbitrarily small.
Choose a frequency, Ny, for altering .
Choose a value for N,u,;, the maximum number of generations to be
created. Set Lb to a lower bound, if available.

Randomly generate a population of solutions (as described in Step 3

of the genetic approach for (PP,)) and evaluate objective values.

Set k= 1.

16

Main Step. While (not stop)
BEGIN
Create a new generation using the genetic algorithm described in Section 4.
If the last Ny consecutive generations have top solution with nonzero
penalty, let Ary; = f1)k, and re-evaluate current generation with Agy;.
If the last N; consecutive generations have top solution with zero
penalty, let Apy1 = Ax/B,, and re-evaluate current generation with \gy;.
Otherwise Apyq = Ax.
k=k+1.
Stop if best solution found is no greater than Lb or if k > Npnqs.
END
In the above algorithm, the value of the frequency, Ny, is important. To allow for the ge-
netic algorithm to reach a certain equilibrium for a given value of A, we use Ny = 2max; n;
(twice the maximum number of variables in any multiple-choice set) which works well
for our test problems. Also note that different starting values of A may result in different
genetic algorithm runs and may effect its performance. However, the robustness of the
above procedure comes from its ability to adjust the value of A whether it is initially
small or large. This robustness is also supported by a small experiment on the rate by
which A increases or decreases, i.e. different values of 8; and B,. Results and discussion
of this experiment are reported in Section 6.
Computational tests of the suggested procedure have been very successful. The results

of this work are reported in the next section.

6 Computational Results

We present computational results for two sets of problems: randomly generated problems
and real facility location problems. Programming was done in C and the computation

below is reported in seconds on an IBM RS/6000-730.

17

6.1 Randomly Generated Problems

Computational experience was carried out for three sets of randomly generated problems
of different sizes: small, medium and large. Each set contains 10 problem instances. For
each problem, the number of multiple-choice sets, m, is larger than the number of vari-
ables within each set, n;. Computational testing has also been carried out for problems
of the same sizes, and m smaller than n. Results for these problems were comparable
to those reported here, and hence, were omitted. These test problem instances were all
made dual degenerate by creating a random number of duplicate multiple-choice sets.

Table 1 presents the results from a total of 300 runs of the genetic algorithm on 30
different problem instances. Each line shows the name and size of the problem instance,
and reports the outcome of 10 runs, each with a different random seed. For all these
tests, the genetic algorithm runs were terminated when a solution with value within 5%
of the optimal is discovered (if optimal is not available, the linear relaxation bound is
used). However, there is a maximum of 2000 generations not to be exceeded for all tests.
Population sizes of 30, 100 and 150 were used for small, medium and large problems,
respectively. Each line also reports the time required for IBM’s OSL package [14] to find
heuristic solutions with the same accuracy as the genetic algorithm, as well as the time
1t requires to solve the problem optimally, if possible. All OSL runs were also carried out
on an IBM RS/6000-730.

Results show that the genetic algorithm is about ten times faster than OSL’s heuristic
branch-and-bound for the small problems, and three times faster for the medium prob-
lems. For the large problems, the genetic algorithm is twice as fast as OSL. However,
the code size and simplicity, the robustness of the genetic algorithm, and the ease with
which it can be adopted to various platforms make it more appealing than branch-and-
bound as a heuristic. Moreover, the data structures used in the genetic algorithm are
simple (basically arrays), whereas branch-and-bound requires more complex data struc-
tures which can also be complex to maintain (e.g. memory size, allocation/deallocation
and structuring overhead). Note that all large problems and even some of the medium

problems could not be optimally solved by OSL, typically due to the lack of storage.

18

The results of the genetic algorithm also show two important points. First, compu-
tation time increases with problem size in a reasonable manner. Second, there is little
variance across problem instances and across the random seeds. The algorithm appears

to be very robust to these parameters.

6.2 Real Facility Location Problems

Three facility location problem instances are considered. They consist of determining
locations and sizes of different categories of stores (or facilities) in a shopping mall con-
sisting of scattered empty spaces and existing stores, so as to maximize a revenue function.
All data is derived from a real economic and optimization study [5], which resulted in
dual degenerate problems. Table 2 shows the sizes of these problems (Pbl, Pb2 and
Pb3), the results of 30 runs of the genetic algorithm with different random seeds, and
the time required for OSL to find a heuristic solution, and the time it takes to solve the
problems optimally. The population sizes used for these tests are 30 for both Pbl and
Pb2, and 100 for Pb3. These results show three important points. First, note the small
computational time of the genetic algorithm compared to OSL’s. Second, note the small
variance across the random seeds. Third, note the scalability of the genetic algorithm as
opposed to OSL. For the latter, the results were unpredictable since it took about five
times longer to heuristically solve the small problem, Pbl, than the medium problem
Pb2, and nearly twice as much time to optimally solve Pb] as it did to solve the much

larger problem instance, Ph3.

6.3 Experiment on Different Variation Rate of A

In the previous computational experiment, the values of §; and f,, the rates by which A
varies, were fixed to §; = 4 and f; = 0.76;. The following small experiment is designed
to test the robustness of the genetic algorithm to these choices.

One problem of each size category, from the randomly generated problems, are selected

to be used in this experiment. Keeping the same relation between 3, and 3, and allowing

19

B to change, the genetic algorithm is run on these test problems, for 10 different seeds.
The results are reported on Table 3. Although a more extensive computational testing
is needed to draw general conclusions, this small experiment supports the robustness
of our genetic algorithm with respect to the strategy for the variation of) since there
1s no significant change in the results by varying the value of 3. The results, however,
suggest that by making the rate of variation large enough, i.e. giving a large increase (or
decrease) to A, there is a faster convergence. Intuitively, this means, for example in the
case of an increase, infeasible solutions which are at the top of the population due to a
small penalty become highly penalized and, hence, are replaced with feasible solutions.
However, this relation between the convergence rate and high variation rates cannot be
generalized for all problems. Seeking the best strategy and more conclusive results is the

subject of ongoing research and results will be reported elsewhere.

7 Extensions

The genetic algorithm approach presented in this paper is addressed specifically to the
multiple-choice integer program. However, all theoretical results as well as the solution
approach are applicable to any integer program with bounded variables, since such a
program can be transformed to a multiple-choice integer program. One transformation
is to express each variable, say , as a linear combination of 0 — 1 variables: e.g.

t=0zo+ lzy + 229 + ... 4+ ux,, with
rot+ri+To4+... .+, =1,

where 0 < 2 < u. By doing this transformation, the number of multiple-choice con-
straints created is equal to the number of bounded variables. However, no general con-
straints are added. Thus, the duality theory of Section 3 is valid for a wide class of
problems.

Section 6 shows excellent computational results for 330 runs on 30 randomly gener-

ated, dual degenerate multiple-choice problems, and 3 real facility location problems,

20

also dual degenerate. Further speed-up of the algorithm can be achieved by taking ad-
vantage of parallel computation. Current research seeks to implement the algorithm on
a massively parallel machine. In this implementation, several populations with different
seeds can be run simultaneously and the best chosen. Moreover, for each seed, process-
ing of the population itself can be parallelized by having several processors working on

sub-populations of solutions simultaneously.

Acknowledgment
The authors would like to thank Jennifer Merchant for her help in carrying out the
computational experiments and valuable suggestions regarding choices of parameters.

We would also like to thank an anonymous referee for many helpful comments.

21

References

[1] M. S. Bazaraa and C. M. Shetty. Nonlinear Programming Theory and Algorithms,
chapter 9. John Wiley & Sons, Inc, New York, 1979.

[2] J. C. Bean. A Lagrangian algorithm for the multiple choice integer program. Oper-
ations Research, 32:1185-1193, 1984.

[3] J. C. Bean. Genetics and random keys for sequencing and optimization. Technical

Report 92-43, University of Michigan, 1992.

[4] J. C. Bean, J. R. Birge, J. Mittenthal, and C. Noon. Matchup scheduling with
multiple resources, release dates and disruptions. Operations Research, 39:470-483,

1991.

[5] J. C. Bean, C. E. Noon, S. M. Ryan, and G. J. Salton. Selecting tenants in a shopping
mall. Interfaces, 18:1-9, March-April 1988.

[6] J. C. Bean, C. E. Noon, and G. J. Salton. Asset divestiture at Homart Development

Company. Interfaces, 17:48-64, January-February 1987.

(7] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York,
1991.

(8] A. M. Geoffrion. Lagrangean relaxation for integer programming. Mathematical

Programminyg, pages 82-114, 1974. Study 2.

[9] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Publishing Company, Inc., 1989.

[10] D. E. Goldberg. Real-coded genetic algorithms, virtual alphabets, and blocking.
Technical Report 90001, University of Illinois at Urbana-Champain, September 1990.

[11] R. Haessler, P. Sweeney, and F. Talbot. A separable linear programming model for
retail planning. In Proceedings of the 14th Annual Meeting, San Francisco, 1992.

American Institute for Decision Sciences.

22

[12] W. E. Hart and R. K. Belew. Optimizing an arbitrary function 1s hard for the
genetic algorithm. In Proceedings of the Fourth International Conference on Genetic

Algorithms, pages 190-195, 1991.

[13] W. C. Healy, Jr. Multiple choice programming. Operations Research, 12:122-138,
1964.

[14] IBM Corporation. Optimization Subroutine Library Guide and Reference.

[15] C. Z. Janikow and Z. Michalewicz. An experimental comparison of binary and
floating point representation in genetic algorithms. In Proceedings of the Fourth

International Conference on Genetic Algorithms, pages 31-36, 1991.

(16] Z. Michalewicz and C. Z. Janikow. Handling constraints in genetic algorithms. In
Proceedings of the Fourth International Conference on Genetic Algorithms, pages

151-157, 1991.
[17] K. G. Murty. Linear Programming. John Wiley and Sons, 1983.

(18] J. T. Richardson, M. R. Palmer, G. Liepins, and M. Hilliard. Some guidelines for
genetic algorithms with penalty functions. In Proceedings of the Third International

Conference on Genetic Algorithms, pages 191-197, 1989.

[19] W. M. Spears and K. A. De Jong. On the virtues of parametrized uniform crossover.

In Proceedings of the Fourth International Conference on Genetic Algorithms, pages

230-236, 1991.

[20] D. J. Sweeney and R. A. Murphy. Branch-and-bound methods for multi-item
scheduling. Operations Research, 29:853-864, 1981.

23

Table 1: Randomly Generated Problems

Computational effort over 10 random seeds

Problem Size Generations Seconds Seconds Seconds
(m,ni,k) min median max min median max heur. OSL | opt. OSL

smal (10,5,1) 8 17 45 0.02 0.04 0.10 0.40 0.89
sma2 (10,5,1) 10 13 102 0.02 0.03 0.24 0.39 0.56
sma3 (10,5,1) 7 18 33 0.01 0.04 0.08 1.70 2.76
sma4 (10,5,1) 14 19 37 0.03 0.04 0.09 0.70 1.81
smad (10,5,1) 22 60 325 0.06 0.14 0.73 0.49 0.77
sma6 (10,5,1) 12 18 30 0.03 0.04 0.07 0.52 1.03
sma7 (10,5,1) 3 11 19 0.01 0.04 0.04 0.59 2.49
sma8 (10,5,1) 7 18 98 0.02 0.04 0.22 0.42 0.44
sma9 (10,5,1) 12 64 253 0.03 0.15 0.58 0.36 0.41
smal0 (10,5,1) 8 18 34 0.02 0.04 0.09 0.54 1.12
mdal (40,20,10) 53 85 267 4.62 7.47 22.25 14.21 1635.68
mda2 (40,20,10) 56 86 168 4.88 7.48 14.34 41.49 *
mda3 (40,20,10) 69 91 146 6.01 7.48 12.73 30.66 114.53
mda4 (40,20,10) 68 83 146 5.90 7.28 12.37 20.77 630.36
mdab (40,20,10) 67 83 147 5.81 7.26 12.52 18.41 1358.18
mda6 (40,20,10) 67 82 128 5.81 7.20 11.50 29.90 4238.00
mda7 (40,20,10) 73 88 128 6.27 7.89 12.38 35.57 1489.11
mda8 (40,20,10) 67 78 128 5.83 6.77 10.96 22.73 7195.00
mda9 (40,20,10) 44 84 201 3.85 7.50 16.85 10.13 *
mdal0 (40,20,10) 60 105 223 5.18 9.17 18.77 25.57 *
lgal (100,50,20) 154 186 223 131.27 158.46 190.03 293.57 *
lga2 (100,50,20) 156 190 210 131.88 159.58 180.03 288.43 *
lga3 (100,50,20) 119 162 187 100.45 175.35 158.21 253.04 *
lgad (100,50,20) 127 160 228 109.55 140.17 198.45 363.48 *
lgas (100,50,20) 162 197 229 139.70 169.64 197.77 363.48 *
lga6 (100,50,20) 110 142 156 95.71 122.85 134.71 340.47 x
lga7 (100,50,20) 131 141 174 113.23 122.47 150.59 308.00 *
lga8 (100,50,20) 148 175 241 127.20 151.09 207.03 317.91 *
lga9 (100,50,20) 146 157 193 124.91 134.50 165.80 349.66 *
lgal0 (100,50,20) 148 166 228 125.13 140.40 193.35 310.05 x

= Shut down after at least 20 hours without finishing the branch-and-bound. It had not found the optimal solution. LP

optimal was used as lower bound for the genetic algorithm and heuristic OSL.

24

Table 2: Facility Location Problems

Computational effort required to get within 2.5% of the optimal solution

over 10 random seeds

Problem Size Generations Seconds Seconds Seconds
(m,ny,k) min median max min median max heur. OSL | opt. OSL
Pb1 (11,3,1) 2 7 13 0.01 0.02 0.03 0.62 105.23
Pb2 (11,21,7) 11 12 13 0.04 0.05 0.06 0.14 0.14
Pb3 (41,71,24) 24 28 42 4.13 4.79 7.25 12.51 54.80
Table 3: Effect of the Variation rate of A
Problem Size £ Generations Seconds

(m,n4,k) min median max min median max

2 34 56 347 0.08 0.13 0.78

smad (10,5,1) 4 22 60 325 0.06 0.14 0.73

8 19 32 112 0.04 0.09 0.26

2 67 83 219 5.89 7.36 18.28

mda5 (40,20,10) 4 67 83 147 5.81 7.26 12.52

8 67 83 127 5.91 7.48 11.03

2 162 197 229 137.87 167.40 194.48

lgab (100,50,20) | 4 162 197 229 139.70 169.64 197.77

8 162 197 229 139.70 169.64 197.77

25

