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In the flow shop weighted completion time problem, a set of jobs has to be processed on m machines. Every machine has to process
each one of the jobs, and every job has the same routing through the machines. The objective is to determine a sequence of the jobs
on the machines so as to minimize the sum of the weighted completion times of all jobs on the final machine. In this paper, we
present a characterization of the asymptotic optimal solution value for general distributions of the job processing times and weights.
In particular, we show that the optimal objective value of this problem is asymptotically equivalent to certain single and parallel
machine scheduling problems. This characterization leads to a better understanding of the effectiveness of the celebrated weighted
shortest processing time algorithm, as well as to the development of an effective algorithm closely related to the profile fitting
heuristic, which was previously utilized for flow shop makespan problems. Computational results show the effectiveness of WSPT and
this modified profile fitting heuristic on a set of random test problems.

In the m-machine flow shop problem, a set of jobs, each
consisting of m operations, must be sequentially pro-

cessed on m machines. Each machine can handle at most
one job at a time, and a job can only be processed on one
machine at a time. The jobs have to be processed on each
of the machines without preemption, and every machine
serves the arriving jobs in a first come first served fashion.
Given the processing times of each of the jobs on each of
the machines, and weights associated with each of the jobs,
the Flow Shop Weighted Completion Time Problem in-
volves determining a sequence of the jobs on the machines
so as to minimize the average, or equivalently the sum, of
the weighted completion times of the jobs on the final
machine in the sequence. It is well known (see Garey et al.
1976) that this problem is NP-hard even in the two-
machine case with all weights equal.

The majority of flow-shop related research has focused
on minimizing the makespan, that is, minimizing the time
it takes to complete processing all jobs. This is due to the
fact that individual job-related objectives, such as mean
completion time, are very difficult to analyze, and in fact,
as Pinedo (1995) points out, “makespan results are already
relatively hard to obtain.” Nevertheless, individual job re-
lated objectives capture important real-life managerial
scheduling concerns that are not reflected in the makespan
and similar objectives (see, for example, Morton and Pen-
tico 1993).

Previous research on the Flow Shop Mean Completion
Time Problem has typically focused on branch-and-bound
or local search strategies, sometimes with as many as 10
machines and 50 jobs, but most often with only 2 ma-
chines. For instance, Ignall and Schrage (1965) first ap-

plied branch and bound to small size flow shop problems,
while Krone and Steiglitz (1974) applied local search tech-
niques. Kohler and Steiglitz (1975) combined these ap-
proaches to solve two-machine problems of up to 15 jobs
to optimality, and of up to 50 jobs approximately. Szwarc
(1982) and Adiri and Amit (1984) identified various prop-
erties of this problem as well as classes of more easily
solvable special cases. Van de Velde (1990) utilized Lan-
grangean relaxation to determine lower bounds when
building the branch-and-bound tree, and effectively solved
problems with 2 machines and up to 20 jobs to optimality.
Finally, Bhaskaran and Pinedo (1992) and Morton and
Pentico (1993) suggest a variety of dispatch rules as a way
to solve real-world industrial flow shop problems.

In this paper, we take a different approach to the flow
shop weighted completion time problem. Utilizing proba-
bilistic analysis techniques similar to those that have re-
cently proved effective for large scale vehicle routing
problems (see Bramel and Simchi-Levi 1995 and Bramel
and Simchi-Levi 1996), we characterize the underlying
structure of the asymptotic optimal solution to the flow
shop weighted completion time problem. Interestingly, we
demonstrate that the asymptotic optimal objective value of
this problem is directly related to the asymptotic objective
value of certain single and parallel machine scheduling prob-
lems. By-products of the analysis are a better understand-
ing of the effectiveness of the celebrated Weighted
Shortest Processing Time (WSPT) first rule, as well as the
development of an algorithm based on the Profile Fitting
Heuristic proposed by McCormick et al. (1989) for the
Flow Shop Makespan Problem with Blocking.
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It is worth pointing out that much of this research was
motivated by the success we had (see Kaminsky and
Simchi-Levi 1998), using the WSPT algorithm to solve
some large-scale, industrial scheduling problems. In fact,
this dispatch rule proved to be much more effective than
many more complex algorithms that we tested for this in-
dustrial problem. Indeed, computational results presented
in this paper with random test problems show that WSPT
performs well relative to a lower bound for the Flow Shop
Weighted Completion Time Problem. We note that in the
context of the flow shop model analyzed in this paper, the
WSPT first rule sequences the jobs in decreasing order of
the ratio of the job weight to the job total processing time.

To put our work and results in perspective it is impor-
tant to describe some related work on probabilistic analysis
of algorithms for machine scheduling problems. As far as
we are aware, most of this work has focused on the Paral-
lel Machine Scheduling Problem, in which each job has to
be processed on one out of m identical machines and the
objective is to minimize the makespan. For instance, Coff-
man et al. (1982), Loulou (1984), and Frenk and Rinnooy
Kan (1987) have analyzed the performance of the Longest
Processing Time first rule. Spaccamela et al. (1992) have
analyzed the same model when the objective is to mini-
mize the weighted completion time and demonstrate that in
this case the Weighted Shortest Processing Time first rule
is asymptotically optimal. Webster (1993) extends these
results to some instances of parallel machines with differ-
ent speeds. Finally, Chan et al. (1996) use probabilistic
analysis to characterize the effectiveness of linear program-
ming relaxations of set partitioning formulations of this
model. A departure from this line of problems is presented
in Ramudhin et al. (1996), in which the two-machine flow
shop model is analyzed when the objective is to minimize
the makespan. They characterize the expected behavior of
a variety of strategies including optimal and approximate
algorithms.

In the next section we provide a detailed description of
the model analyzed together with our main result.

1. THE MODEL AND THE MAIN RESULT

To formally present the model, consider a set of n jobs
that have to be processed on m machines. Job i, i 5 1,
2, . . . , n, has a processing time ti

l on machine l, l 5 1,
2, . . . , m, and an associated weight wi. The processing
times are independent and identically distributed random
variables, defined on the interval (0, 1]. Similarly, the
weights are independent and identically distributed ran-
dom variables, defined on the interval (0, 1].

Each job must be processed without preemption on each
of the machines sequentially. That is, each job must be
processed on machine 1 through machine m in that order.
Jobs are available for processing at time zero, and with the
exception of the first machine, all other machines process
the jobs in a first-come-first-served manner, a so-called
permutation schedule. Also, there is unlimited intermedi-

ate storage between successive machines. The objective is
to determine a schedule, or sequence of jobs, such that the
total weighted completion times of all the jobs on the final
machine is minimized. We call this problem Problem P
and use Z* to denote its optimal objective function value.
That is, Z* is the minimum possible total weighted com-
pletion time of all jobs in Problem P. Similarly, given a
heuristic H for the Flow Shop Weighted Completion Time
Problem, we use ZH to denote the sum of the weighted
completion time in the resulting schedule.

Associated with an instance of the Flow Shop Weighted
Completion Time Problem is the following parallel ma-
chine scheduling model. Given job i, i 5 1, 2, . . . , n, with
processing times ti

1, ti
2, . . . , ti

m on machine 1, 2, . . . , m,
respectively, let ti 5 ¥l51

m ti
l. Consider a parallel machine

scheduling problem with k machines and n tasks each hav-
ing a processing time ti and a weight wi, i 5 1, 2, . . . , n.
The objective in the parallel machine scheduling problem
is to assign each task to a single machine so as to minimize
the sum of the weighted completion times of all tasks. We
refer to this parallel machine scheduling problem as Prob-
lem Pk with Z*k as its optimal solution value, the minimum
total weighted completion time of all the tasks in the par-
allel machine scheduling problem with k machines. Thus,
Z*m is the optimal solution to Problem Pm, the parallel
machines scheduling problem with m machines and n tasks
each having a processing time ti and weight wi, i 5 1,
2, . . . , n. Similarly, Z*1 is the optimal solution to Problem
P1, the single machine scheduling problem with n tasks
each having a processing time ti and weight wi, i 5 1,
2, . . . , n. Unlike the Flow Shop Weighted Completion
Time Problem and the associated parallel machine sched-
uling problem, the optimal solution to the single machine
scheduling problem is easily obtained via the WSPT first
rule; see, for example, Pinedo (1995).

Recently, Spaccamela et al. (1992) established the
equivalence between the single and parallel machine prob-
lems. Their result, translated to our model, is stated in the
following theorem.

Theorem 1.1. Let the processing times ti
1, ti

2, . . . , ti
m, i 5 1,

2, . . . , n, be independent and identically distributed ran-
dom variables defined on (0, 1]. Let the weights wi, i 5 1,
2, . . . , n, be independent and identically distributed ran-
dom variables defined on (0, 1]. Then with probability one
we have

lim
n3`

Z*m
n 2 5 lim

n3`

Z*1
mn 2 5 u ,

for some constant u.

In fact, the Spaccamela et al. result is more general; it
allows for unbounded random variables provided that cer-
tain restrictions are met. In addition, they also characterize
the constant u and express it as an expected value of a
stylized kernel function. Kaminsky (1997) provides a
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closed form expression for the special case when all the
weights, wi, are equal.

Building on their result, we prove Theorem 1.2.

Theorem 1.2. Let the processing times ti
1, ti

2, . . . , ti
m, i 5 1,

2, . . . , n, be independent random variables having the
same continuous distribution with bounded density f[ de-
fined on (0, 1]. Let the weights wi, i 5 1, 2, . . . , n, be
independently and identically distributed according to a cu-
mulative distribution function F[ defined on (0, 1]. Then
with probability one we have

lim
n3`

Z*
n 2 5 lim

n3`

Z*m
n 2 5 lim

n3`

Z*1
mn 2 5 u ,

for some constant u.

Theorem 1.2 thus implies that asymptotically there is no
difference between the optimal solution to Problem P, the
Flow Shop Weighted Completion Time Problem, and the
optimal solution to its associated parallel machine sched-
uling problem, Problem Pm. Such an insight is useful in the
context of capital investment issues in which a decision is
being made between machines that perform sequential op-
erations and multipurpose machines that operate in
parallel.

It is also interesting to note that Theorem 1.2 character-
izes the asymptotic equivalence of three models, one of
which (the single machine model) can easily be solved in
polynomial time, one of which can be either easy to solve
or NP-hard, depending on whether or not the weights are
equal (the parallel machine model), and one of which is
NP-hard even in the case of equal weights and two ma-
chines (the flow shop model).

To prove Theorem 1.2, we start in Section 3 by present-
ing a specialized model that captures the essential ideas of
our proof. In Section 4 we build on this analysis, providing
a formal proof for Theorem 1.2. In Section 5 we demon-
strate that the results and the accompanying analysis lead
to an understanding of the effectiveness of the Weighted
Shortest Processing Time Rule for the Flow Shop
Weighted Completion Time Problem. Computational evi-
dence with randomly generated instances shows that in
many cases WSPT is very effective. Finally, the structural
knowledge gained in this analysis indicates that a modified
version of the Profile Fitting Heuristic developed by Mc-
Cormick et al. (1989) for the Flow Shop Makespan prob-
lem will also be effective for the Weighted Completion
Time Problem, and this is supported by some computa-
tional testing of this heuristic.

2. PRELIMINARIES

In this section we develop a fundamental, but simple,
lower bound on the optimal solution to Problem P, Z*,
which we use throughout the paper. This lower bound is
directly related to the optimal solution to Problem P1, Z*1.
In later sections we show that this lower bound is asymp-
totically tight.

Lemma 2.1. Consider Problem P, the general Flow Shop
Weighted Completion Time Problem, and its associated
single machine scheduling problem, Problem P1. For every
instance we have,

1
m Z*1 < Z*.

Proof. Given the optimal sequence to Problem P, index
the jobs according to their departure time from the last
machine, starting with the index [1] and finishing with the
index [n]. Note that this is not necessarily a WSPT se-
quence. Let C[i] be the completion time of the ith job that
departs from the last machine in that sequence. Let t[i] be
the total processing times of job [i] on all the m machines.
These definitions imply that

mC @i# > O
j51

i

t @ j# ,

since mC[i] is the total time available on all the machines
up to time C[i] while ¥j51

i t[ j] is the time used by jobs [1],
[2], . . . , [i]. Rearranging this inequality and multiplying by
the weight of job [i] gives

w @i# C @i# > w @i#
1
m

O
j51

i

t @ j# .

Summing over all of the jobs we see that

O
i51

n

w @i# C @i# >
1
m

O
i51

n

w @i# O
j51

i

t @ j# ,

and since the WSPT gives the optimal solution to the sin-
gle machine problem, we have

Z* 5 O
i51

n

w @i# C @i# >
1
m

O
i51

n

w @i# O
j51

i

t @ j# >
1
m

Z*1 ,

which completes the proof. □

3. THE CYCLIC DISCRETE MODEL

Our strategy in proving Theorem 1.2 is to introduce a
specific discrete model, called the Cyclic Discrete model,
with a finite number of different possible processing times,
and with a special relationship between certain subsets of
the jobs. For this specialized model, we prove a result
analogous to Theorem 1.2, by utilizing the characteristics
of its special structure. Then, in Section 4, we use this
result in the analysis of Problem P by showing that the
optimal solution to the flow shop problem can be bounded
from above by the optimal solution of an associated Cyclic
Discrete model. This, together with the lower bound devel-
oped in Lemma 2.1, will prove our main result.

It is important to point out that the Cyclic Discrete
model is not only essential to the proof of Theorem 1.2,
but, as discussed in Section 5, it also provides insight into
the structure of the algorithms needed to solve large-scale
machine scheduling problems. Indeed, this insight is used
in our development of a new algorithm for the general
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flow shop weighted completion time problem. This Cyclic
Discrete model is defined below.

Consider an m machine flow shop model for which the
objective is to minimize the sum of the weighted comple-
tion times. Each job has an associated vector (t1, t2, . . . ,
tm) where ti, ti [ (0, 1], is the processing time on the ith
machine. We call this vector a time assignment vector. The
total processing time of a job with time assignment vector
(t1, t2, . . . , tm) is the quantity ¥l51

m tl. Each job also has an
associated weight, defined on (0, 1].

We say that two jobs are identical if their associated
weights and time assignment vectors are equal, element
wise, and we call a set of identical jobs, which can all be
represented by the same time assignment vector and weight,
a job type.

Given a job type, we can construct a number of new job
types through a cyclic shift of the elements in its time
assignment vector. That is, given a job type with time as-
signment vector (t1, t2, . . . , tm) and weight w, new shifted
job types are created by shifting the processing times over
one machine in a cyclic manner, and using the same weight
w. In that process we create job types with weight w and
the following time assignment vectors:

~t 2, t 3, . . . , t m, t 1! , ~t 3, t 4, . . . , t m, t 1, t 2! , . . . ,

~t m, t 1, t 2, . . . , t m21! .

Of course, if some of the processing times tl, l 5 1,
2, . . . , m, are equal, some of the job types created in the
process may be identical. If, on the other hand, the pro-
cessing times tl, l 5 1, 2, . . . , m, are all different, the
shifted cyclic process will generate m 2 1 new, nonidenti-
cal, job types.

We define group type gj to consist of a job type, which we
call j1, and its m 2 1 cyclic shifted job types, j2, j3, . . . , jm,
where job type j2 is shifted left one position from j1, j3 is
shifted two positions from j1, and so on, and all of the job
types have the same associated weight, wj. Let tjk

i represent
the processing time on the ith machine of the kth job type
in group gj, for i 5 1, 2, . . . , m, k 5 1, 2, . . . , m. Given j1,
shifted job type j2 has an associated time assignment vector
whose elements are

t j2
1 5 t j1

2 , t j2
2 5 t j1

3 , . . . , t j2
m21 5 t j1

m, t j2
m 5 t j1

1 .

Similarly, shifted job type j3 is the vector with elements

t j3
1 5 t j1

3 , t j3
2 5 t j1

4 , . . . , t j3
m22 5 t j1

m, t j3
m21 5 t j1

1 , t j3
m 5 t j1

2 .

The remaining job types in the group gj are created in the
same manner. Thus, each group type gj consists of m job
types, each of which has the same total processing time, tj.
To simplify the analysis which follows, we restrict ourselves
in this section to job types with associated time assignment
vectors such that no two elements of the vector are equal,
and no two job types are identical.

Now, consider a model in which there is a finite number,
s, of group types. Let nj be the number of jobs of each of
the job types within group gj, for j 5 1, 2, . . . , s. Thus,

each of job types in group gj, ji, i 5 1, 2, . . . , m has the
same number of jobs assigned to it, so n 5 m ¥j51

s nj is the
total number of jobs, out of which mnj are associated with
group type gj. Let Z* be the optimal solution to this m
machine flow shop problem, where the objective is to min-
imize the sum of the weighted completion time. In what
follows we refer to this problem as the original Cyclic Dis-
crete problem.

Define now a corresponding parallel machine scheduling
problem in exactly the same way it is done in Section 1, by
associating a task with each one of the jobs of the original
problem.

Given the n tasks associated with the n jobs of the orig-
inal cyclic discrete model, recall that Z*m is the optimal
solution to the parallel machine scheduling problem with
m machines and n tasks, while Z*1 is the optimal solution
to a single machine scheduling problem with n tasks. The
optimal solution to the single machine scheduling problem
is easily obtained by using the WSPT first rule. Conse-
quently, we order the groups in a nonincreasing order of
the ratio of their weights to their processing times

w 1

t 1
>

w 2

t 2
> · · · >

w s

t s
.

In the probabilistic analysis that follows, we consider a
Cyclic Discrete model in which groups of m jobs are added
to the model by selecting a group type gj with probability pj,
for j 5 1, 2, . . . , s, and then generating m jobs, one for
each job type within that group. That is, with probability
one, we have pj 5 limn3` nj/¥l51

s nl for j 5 1, 2, . . . , s.
We prove the following theorem.

Theorem 3.1. The optimal solutions to the cyclic discrete
model and its corresponding parallel machine scheduling
problem satisfy with probability one

lim
n3`

Z*
n 2 5 lim

n3`

Z*m
n 2 5 lim

n3`

Z*1
mn 2 5 u9,

where

u9 5
1

2m
F O

i51

s O
j51

i21

w i p i p j t j 1 O
i51

s O
j5i11

s

w j p i p j t i

1 O
i51

s

w i p i
2t iG .

To prove Theorem 3.1, we construct upper and lower
bounds on Z* that converge to the same value. Surpris-
ingly, this value is precisely the asymptotic optimal solution
of the corresponding parallel machine scheduling problem.

3.1. Upper Bound

Order the group types in a nonincreasing order of the
quantities wj/tj, the ratio of their weights to their total
processing times and let this ordering be g1, g2, . . . , gs.
Consider the following strategy for the original Cyclic Dis-
crete m machine scheduling problem. Starting with the first
group type, g1, its corresponding jobs types, 11, 12, . . . , 1m,
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and the associated mn1 jobs, schedule all these jobs by
cycling through the job types in the order

1 1 , 1 2 , 1 3 , . . . , 1 m ,

each time assigning a single job from a different job type,
until all jobs are assigned. A sample sequence with three
machines and n1 5 3 is illustrated in Figure 1.

After all the jobs of group type g1 are completely sched-
uled, schedule all the mn2 jobs of group type g2, starting at
the time the last job from the previous job type ended on
the last machine. This implies that there will be idle time
on each machine between the time the last job of group
type g1 departed that machine and the time the first job of
group type g2 started on it. Figure 2 illustrates the previous
example after the addition of the second group.

Continue scheduling the remaining jobs in this way until
all jobs are scheduled. We refer to this strategy as the
m-machine Interchange Strategy and denote its objective
value by ZINT. Given group type gj, j 5 1, 2, . . . , s, and its
associated m job types, let

L j 5 n j t j 1 t j
1 1 t j

2 1 . . . 1 t j
m21.

Thus, Lj is the total time it would take to complete pro-
cessing all jobs of group type gj using the interchange
strategy, if there were only those jobs. Similarly, given
group type gj, j 5 1, 2, . . . , s, its associated job types and
all their corresponding jobs, let

F j 5 t j
~n j 1 1!n j

2 . (1)

Thus, Fj is the sum of the completion times of all jobs of
type j1 if the jobs in gj are scheduled using the above
interchange strategy, and when no other group types exist.

We now proceed to find an upper bound on ZINT. For
this purpose, observe that the ith job of type 11 departs the
last machine at time it1, for i 5 1, 2, . . . , n1. Similarly, the
ith job of type 1u, u 5 2, 3, . . . , m, departs the last ma-
chine no later than it1 1 t1. Thus, the weighted sum of the
completion times of all jobs of group type g1 is no more
than

w 1 @mF 1 1 ~m 2 1!t 1 n 1 # .

The jobs of group type g2 are scheduled after all the
jobs of group type g1 are completed. Thus, L1, the time the

last job of group type g1 completed processing on machine
m, is the time the first job of group type g2 starts on the
first machine. Consequently, the weighted sum of comple-
tion time of the jobs of group type g2 is no more than

w 2 @mn 2 L 1 1 mF 2 1 ~m 2 1!t 2 n 2 #.

Following a similar pattern for the remaining group types,
we determine an upper bound on the sum of completion
times for the interchange strategy for all of the n jobs.

Z* ¶w 1 ~mF 1 1~m 21!t 1 n 1 !

1 w 2 mn 2 L 1 1w 2 ~mF 2 1~ m21!t 2 n 2 !

1 w 3 mn 3 ~L 1 1 L 2 ! 1 w 3 ~mF 3 1 ~m 2 1!t3 n3 ! 1

···
1 w s mn s ~L 1 1 L 2 1 · · · 1 L s21 ! (2)
1 w s ~mF s 1~m 21!t s n s !.

Finally, dividing the inequality by n2, taking the number
of jobs, n, to infinity, noting that with probability one

p j 5 lim
n3`

mn j /n , ; j 5 1, 2, . . . , s,

and using the definition of Lj, j 5 1, 2, . . . , s, we get with
probability one:

lim
n3`

2mZ*
n 2 < w 1 t 1 p 1

2 1 2w 2 p 2 p 1 t 1 1 w 2 t 2 p 2
2

1 2w 3 p 3 ~ p 2 t 2 1 p 1 t 1 ! 1 w 3 t 3 p 3
2 1 · · ·

1 2w s p s ~ p 1 t 1 1 p 2 t 2 1 · · · 1 p s21 t s21 !

1 w s t s p s
2

5 2mu9. (3)

3.2. Lower Bound

We use the lower bound developed in Section 2. Consider
the original cyclic discrete problem and its associated sin-
gle machine scheduling problem. In the latter model we
have mnj jobs each having a processing time tj, and weight
wj, for j 5 1, 2, . . . , s. Minimizing the total weighted
completion time of n jobs on a single machine is obtained
using the WSPT first rule. Let

G j 5 t j
~mn j 1 1!mn j

2 , ; j 5 1, 2, . . . , s.

The optimal objective value of the single machine problem
is clearly

Z*1 5 O
j51

s

w j G j 1 m 2 O
k52

s

w k n k S O
i51

k21

n i t iD .

Dividing by mn2 and taking the limit we get with probabil-
ity one

Figure 1. The first group.

Figure 2. The first two groups.
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lim
n3`

Z*1
mn 2

5
1

2m @w 1 t 1 p 1
2 1 2w 2 p 2 p 1 t 1 1 w 2 t 2 p 2

2

1 2w 3 p 3 ~ p 2 t 2 1 p 1 t 1 ! 1 w 3 t 3 p 3
2 1 · · ·

1 2w s p s ~ p 1 t 1 1 p 2 t 2 1 · · · 1 p s21 t s21 !

1 w s t s p s
2] 5 u9 . (4)

Combining this result with Lemma 2.1 and inequality (3)
proves that almost surely the Interchange Strategy is asymp-
totically optimal, and that the asymptotic optimal objective
value satisfies, with probability one:

lim
n3`

Z*
n 2 5 lim

n3`

Z*1
mn 2 5 u9 . (5)

This, together with the result by Spaccamela et al.
(1992) listed in Theorem 1.1, completes the proof of The-
orem 3.1.

Observe that the Interchange Strategy orders the jobs
according to the WSPT first rule. On the other hand, not
every sequence generated by the WSPT first rule follows
the interchange strategy. We thus conclude the following
corollary.

Corollary 3.2. There exists a WSPT sequence that is as-
ymptotically optimal for the Cyclic Discrete Flow Shop
Weighted Completion Time Problem.

4. PROOF OF THE MAIN THEOREM

We prove Theorem 1.2 by constructing a number of closely
related discretized versions of Problem P. These dis-
cretized models allow us to develop upper bounds on
Z*/n2 that are related to the Cyclic Discrete Model ana-
lyzed in the previous section, and that converge to the
lower bound developed in Lemma 2.1.

To discretize the problem, we subdivide the (0, 1] inter-
val into s subintervals, each of length e. We use Al, l 5 1,
2, . . . , s, to denote the lth subinterval, that is, Al 5 ((l 2
1)e, le]. For every job i in Problem P, i 5 1, 2, . . . , n, and
machine k, k 5 1, 2, . . . , m, such that ti

k [ Al for some l,
l 5 1, 2, . . . , s, and wi [ Aj for some j, j 5 1, 2, . . . , s, we
round its processing time, ti

k, up to the value le and its
weight, wi, up to the value je. The resulting problem is an
m machine flow shop problem for which the objective is to
minimize the total weighted completion time of all the n
jobs. We refer to this problem as Problem P# D whose opti-
mal objective function value is Z# *D. It is easy to see that

Z* < Z# *D . (6)

Since in Problem P# D processing times can take only dis-
crete values, we can construct an associated cyclic discrete
problem called Problem P# CD whose optimal solution is
Z# *CD. As in the previous section, let a job type be repre-
sented by an associated weight and time assignment vector
(t1, t2, . . . , tm). In Problem P# CD, for every k, k 5 1, 2, . . . ,
m, we have tk 5 le for some l, l 5 1, 2, . . . , s, and we

consider only time assignment vectors such that each vector
has no two equal elements. We partition the set of all job
types with the above property into groups g1, g2, . . . , gG

such that each group includes all the job types that are
obtained by a cyclic shift of all of the job types in the
group, and all job types within a group have the same
weight. Clearly each such group consists of exactly m job
types, and all the job types within a single group correspond
to the job types as defined in Section 3. Let ngi

l be the
number of jobs in Problem P# D whose processing times and
weight is represented by the lth job type of group gi and its
associated weight, l 5 1, . . . m, and i 5 1, 2, . . . , G. Let

ñ 5 n 2 O
j51

G O
l51

m

n g i

l ,

that is, ñ is the number of jobs in Problem P# D, each of
which has at least two machines on which its processing
times are equal.

In the new problem, Problem P# CD, we assign exactly

n g i
5 min

l51, . . . , m
$n g i

l %,

jobs to each one of the job types associated with group gi.
Let Z# *CD be the optimal solution value of the resulting
problem and observe that this problem is a Cyclic Discrete
problem as defined in Section 3.

Our objective is to use Problem P# CD in two ways: to
construct an upper bound on Z# *D, and to relate this upper
bound to Z*1, the optimal solution to Problem P1.

We use the optimal solution to Problem P# CD to con-
struct an upper bound on the optimal solution of Problem
P# D, as follows. Start by scheduling jobs according to the
optimal solution to Problem P# CD, and then schedule all the
remaining

ñ 1 O
i51

G O
l51

m

~n g i

l 2 n g i
!

jobs at the end of the sequence. Hence,

Z# *D < Z# *CD 1 S O
i51

n O
k51

m

t i
kD F ñ 1 O

i51

G O
l51

m

~n g i

l 2 n g i
!G , (7)

since the weight of each job is bounded by one.
In order to relate Problem P# CD to Problem P1, we begin

by considering an instance of Problem P# CD and construct-
ing an instance of the related single machine total comple-
tion time problem in the same way that Problem P1 is
constructed from Problem P, in Section 1. That is, every
job i in Problem P# CD with processing time ti

l on machine l,
l 5 1, 2, . . . , m, has a corresponding task in the new
instance with processing time ¥l51

m ti
l. We refer to this

single machine total completion time problem as Problem
P# 1CD, and use Z# *1CD to denote its optimal solution, the
minimum total completion time among all possible sched-
ule for that problem.

Theorem 3.1 tells us that the optimal solutions of Prob-
lems P# CD and P# 1CD are closely related. That is, if ncd is the
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number of jobs in Problem P# CD, then with probability one
we have

lim
nCD3`

Z# *CD

n CD
2 5 lim

nCD3`

Z# *1CD

mn CD
2 . (8)

Dividing Equation (7) by n2, taking the limit as n goes to
infinity, and using Equations (6) and (8), we obtain

lim
n3`

Z*

n 2
< lim

n3`

Z# *CD

n 2
1 lim

n3`

1

n 2
S O

i51

n O
k51

m

t i
kD

z F ñ 1 O
i51

G O
l51

m

~n g i

l 2 n g i
!G

< lim
n3`

Z# *1CD

mn 2
1 lim

n3`

1

n 2
S O

i51

n O
k51

m

t i
kD

z F ñ 1 O
i51

G O
l51

m

~n g i

l 2 n g i
!G . (9)

In order to obtain the desired asymptotic results, we
need to show that the second term on right hand side of
the above upper bound is almost surely O(e). For this
purpose, note that the number of groups, G, in Problem
P# CD is only a function of s, the number of subintervals, and
m, the number of machines, but not a function of n, the
number of jobs, and hence with probability one,

lim
n3`

1
n
O
i51

G O
l51

m

~n g i

l 2 n g i
! 5 0. (10)

In addition, recall that ñ is the number of jobs in Problem
P# D such that each job has a corresponding time assignment
vector for which at least two machines have equal process-
ing times. How many such time assignment vectors exist? It
is easy to see that this number is no more than

~m
2 !s m21.

Since the distribution f[ is bounded, there exists a con-
stant K such that f(u) ¶ K for every u [ (0, 1]. Hence,
the probability that a job in Problem P# D has a correspond-
ing time assignment vector for which at least two machines
have equal processing times is no more than

~m
2 !s m21~Ke! m.

This, together with se 5 1, implies that with probability
one,

lim
n3`

ñ
n 5 ~m

2 !s m21~Ke! m 5 O~e! . (11)

Finally, it is easy to see that almost surely

lim
n3`

1
n
O
i51

n O
k51

m

t i
k 5 mE@u# ,

where E[u] is the expected value of the random variable u
whose density function is f[. Consequently, with proba-
bility one we have

lim
n3`

1
n
S O

i51

n O
k51

m

t i
kD F ñ 1 O

i51

G O
l51

m

~n g i

l 2 n g i
!G 5 O~e!, (12)

and therefore, using Equation (9), we get that almost
surely

lim
n3`

Z*
n 2 < lim

n3`

Z# *1CD

mn 2 1 O~e!. (13)

To complete the proof of Theorem 1.2, we relate Z# *1CD

to Z*1, the optimal solution to the single machine problem,
Problem P1, defined in Section 1. For this purpose, ob-
serve that every task in Problem P# 1CD has a corresponding
task in Problem P1. In addition, the processing time of
every task in Problem P# 1CD is no more than me larger than
the processing time of the corresponding task in Problem
P1. Similarly, the weight of every task in Problem P# 1CD is
no more than e larger than the weight of the correspond-
ing task in Problem P1. Consequently,

Z# *1CD < Z*1 1
~n 1 1!n

2 ~m 1 1!e,

and therefore,

lim
n3`

Z*
n 2 < lim

n3`

Z# *1CD

mn 2 1 O~e! < lim
n3`

Z*1
mn 2 1 O~e!. (14)

On the other hand, Lemma 2.1 tells us that with proba-
bility one we have

lim
n3`

Z*
n 2 > lim

n3`

Z*1
mn 2 . (15)

Combining Equations (14) and (15), and choosing e small
enough, shows that with probability one we have

lim
n3`

Z*
n 2 5 lim

n3`

Z*1
mn 2 .

Finally, using the result of Spaccamela et al. (1992) as
stated in Theorem 1.1, we relate Z*1 to Z*m and show that
there exists a constant u such that with probability one

lim
n3`

Z*
n 2 5 lim

n3`

Z*m
n 2 5 lim

n3`

Z*1
mn 2 5 u .

5. ALGORITHMS AND COMPUTATIONAL RESULTS

5.1. Weighted Shortest Processing Time Rule

The analysis in the previous sections indicates that the
WSPT first rule has the potential to be quite effective for
the Flow Shop Weighted Completion Time Problem; Cor-
ollary 3.2 tells us that there is a WSPT sequence which is
asymptotically optimal for the Cyclic Discrete model, and
more importantly, this result can be easily extended to the
general Flow Shop Weighted Completion Time Problem
with any discrete distributions of the processing times and
the weight. Indeed, in a companion paper, Kaminsky and
Simchi-Levi (1997) show that SPT is asymptotically opti-
mal for the equal-weight continous model under certain
assumptions on the distributions of the processing times.
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Thus, we are motivated to test the effectiveness of this rule
on randomly generated problem sets.

Tables I and II both compare WSPT objective values
with a lower bound for various numbers of machines. The
lower bound,

Z* >
1
m

Z*1 1
1
m

O
i51

n O
k52

m

w i ~k 2 1!t i
k,

can easily be derived using an approach similar to the one
employed for the proof of Lemma 2.1. The percentages
given are the ratio of the objective value to this lower bound.
For the trials described in Table I, processing times were
generated from a uniform (0, 1] distribution. For those trials
which utilize general job weights, the weights were also gen-
erated from a uniform (0, 1] distribution. For each combina-

tion of job number, machine number, and either general
weights or equal weights, three different random trials were
performed, and both individual data and averages are shown.

For the trials described in Table II, processing times
were generated from an exponential distribution with
mean 1. Again, for those trials which utilize general job
weights, the weights were generated from a uniform (0, 1]
distribution.

This limited computational testing indicates that WSPT
is an effective heuristic for the Flow Shop Weighted Com-
pletion Time Problem when instances get larger and the
number of machines is small. For instance, when the num-
ber of jobs increases from 500 to 5000, the relative gap
goes down from about 8 percent to 3 percent for 3 ma-
chines, and from about 25 percent to 7 percent for 12

Table I
Uniformly Generated Computational Data

Distribution Uniform

Weights Uniform Equal

Machines 3 6 12 3 6 12

500 Jobs Trial 1 108% 114% 124% 109% 117% 121%
Trial 2 107% 115% 124% 106% 115% 120%
Trial 3 106% 113% 126% 108% 113% 118%
Average 108% 114% 125% 108% 115% 120%

1000 Jobs Trial 1 104% 110% 117% 105% 108% 114%
Trial 2 109% 112% 116% 106% 111% 116%
Trial 3 106% 110% 118% 105% 109% 116%
Average 106% 111% 117% 105% 109% 115%

2500 Jobs Trial 1 105% 107% 111% 103% 106% 111%
Trial 2 103% 107% 112% 103% 105% 109%
Trial 3 104% 107% 107% 103% 106% 110%
Average 104% 107% 110% 103% 106% 110%

5000 Jobs Trial 1 103% 106% 108% 102% 104% 107%
Trial 2 102% 105% 108% 102% 103% 107%
Trial 3 103% 105% 105% 102% 104% 109%
Average 103% 105% 107% 101% 104% 107%

Table II
Exponentially Generated Computational Data

Distribution Exponential

Weights Uniform Equal

Machines 3 6 12 3 6 12

500 Jobs Trial 1 112% 120% 139% 110% 119% 133%
Trial 2 111% 118% 139% 109% 121% 137%
Trial 3 109% 121% 138% 110% 117% 130%
Average 111% 120% 139% 110% 119% 133%

1000 Jobs Trial 1 108% 113% 128% 107% 114% 120%
Trial 2 108% 116% 123% 106% 112% 122%
Trial 3 116% 119% 127% 106% 113% 123%
Average 107% 116% 126% 106% 113% 122%

2500 Jobs Trial 1 105% 108% 119% 103% 108% 115%
Trial 2 106% 110% 120% 104% 108% 114%
Trial 3 105% 111% 119% 105% 109% 116%
Average 105% 110% 120% 104% 108% 115%

5000 Jobs Trial 1 103% 107% 113% 103% 105% 111%
Trial 2 104% 107% 113% 103% 106% 111%
Trial 3 104% 107% 112% 104% 106% 110%
Average 103% 107% 113% 103% 106% 111%
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machines, when the weights are general and processing
times are uniform (0, 1].

5.2. Modified Profile Fitting Heuristic

Although the computational results reported above are
fairly good in many cases, the WSPT rule is not as effective
when the number of machines is large and the number of
jobs is small. This motivated us to modify the WSPT rule
in order to achieve better results in these cases. Our objec-
tive was to develop an algorithm that is both computation-
ally efficient and easy to implement.

For this purpose, we utilized the structural insight stem-
ming from the analysis described in Section 3. Thus, an effec-
tive algorithm should start with the WSPT sequence and
then try to shift jobs around so that the shifted group struc-
ture described in the upper bound of Section 3 and de-
picted in Figures 1 and 2 is better approximated. That is, all
jobs in the same group should be processed together such that
there is no machine idle time when these jobs are processed.

Indeed, minimizing idle time is one of the goals of Pro-
file Fitting Heuristic (developed by McCormick et al. 1989;
see also Pinedo 1995) for minimizing the makespan in a
flow shop with blocking. For that reason, we adopt a ver-
sion of the profile fitting strategy modified to fit the Flow
Shop Weighted Completion Time model, and to better
achieve our goals.

To effectively achieve a sequence which minimizes idle
time, we utilize the concept of job profiles from McCor-
mick et al. (1989). Order the jobs according to the WSPT
rule and let Di, j be the time that job j departs from ma-
chine i, for j 5 1, 2, . . . , n and i 5 1, 2, . . . , m. Clearly,
the departure times of job 1 from each of the machines are
calculated as follows:

D i,1 5 O
k51

i

t 1
k, i 5 1, 2, . . . , m.

Assume Di,1, Di,2, . . . , Di, j21 have been calculated for i 5
1, 2, . . . , m and some j Ä 2, then

D 1, j 5 D 1, j21 1 t j
1,

D i, j 5 max ~D ~i21!, j , D i, j21 ! 1 t j
i, i 5 2, 3, . . . , m .

Therefore, the total idle time between any two consecu-
tive jobs, j 2 1 and j, j Ä 2, Ij21, j is determined as follows:

I j21, j 5 O
k52

m

$D k, j 2 t j
k 2 D k, j21 %.

Observe that in the optimal interchange strategy for the
cyclic discrete model developed in Section 3, two consecu-
tively scheduled jobs, u and v, that belong to the same
group have Iu,v 5 0. Thus, the smaller the value Ij21, j is,
the smaller the machines idle time is, and the better jobs
tend to “fit together.”

These concepts are used in the following Modified Pro-
file Fitting Heuristic.

Step One. Sort all jobs in a list from largest to smallest
according the ratio of weight to total processing time.

Step Two. Remove the first job, job j, from the list and
schedule it next.

Step Three. Search up to the first L remaining jobs in the
list to find the job l which, if scheduled next, would mini-
mize the function Ij,l. Move this job to the first position in
the list.

Step Four. Go to Step Two.

The parameter L, called the look ahead parameter,
clearly has an impact on both the quality of the solution
and the speed of this algorithm. To determine the effect
this parameter has on solution quality, we performed some
limited computational testing of the Modified Profile Fit-
ting Heuristic. Table III compares the ratio of the objec-
tive value to the lower bound for problems with processing
times generated from a uniform (0, 1] distribution, both
when the weights are all equal and when they are gener-
ated from a uniform (0, 1] distribution. Each entry repre-
sents the average of three random trials. The heuristic was
tested on problem instances with several different numbers
of jobs, and various different settings of the look ahead
parameter L. The Look Ahead row lists the parameter L
settings; “none” indicates that simple WSPT was utilized.
This limited computational testing suggests that the Modi-
fied Profile Fitting Heuristic effectively reduces the gap

Table III
Computational Tests of the Modified Profile Fitting Heuristic

Distribution Uniform

Weights Uniform Equal

Look Ahead none 10 20 50 none 10 20 50

3 Machines 250 Jobs 112% 105% 104% 104% 112% 106% 104% 103%
500 Jobs 109% 105% 103% 103% 107% 104% 102% 101%
1000 Jobs 106% 103% 102% 101% 106% 104% 103% 101%

6 Machines 250 Jobs 120% 115% 114% 117% 118% 111% 108% 107%
500 Jobs 115% 110% 109% 109% 112% 107% 106% 104%
1000 Jobs 111% 108% 107% 105% 109% 106% 105% 104%

12 Machines 250 Jobs 133% 128% 129% 138% 128% 122% 120% 116%
500 Jobs 124% 120% 120% 122% 121% 117% 115% 111%
1000 Jobs 117% 115% 113% 113% 115% 112% 110% 106%
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between the heuristic solution and lower bound when com-
pared to WSPT, especially on the unweighted problem sets.

5.3. Industrial Data

Although we did not have any industrial flow shop data to
test WSPT rule and the Modified Profile Fitting Heuristic,
we did have some large-scale job shop industrial data. We
extracted a list of jobs that went to the same two and three
machines from these data along with their processing
times on each of the machines, and used this as sample
flow shop data. As these are relatively small data sets and
our lower bound is weak for small problem instances, we
compared objective values obtained using SPT (these data
are unweighted) to those obtained utilizing the Modified
Profile Fitting Heuristic. Table IV lists the ratios of objec-
tive values obtained utilizing the Modified Profile Fitting
Heuristic with various Look Ahead parameters to the ob-
jective value obtained using SPT. The reduction in total
completion time due to the Modified Profile Fitting Heu-
ristic is evident.

6. DISCUSSION, EXTENSIONS, AND CONCLUDING
REMARKS

The analysis performed in this paper can be carried over
to several more general versions of the Flow Shop
Weighted Completion Time Problem. First, consider a ver-
sion of this model in which one is allowed to process jobs
on different machines in different sequences, a nonpermu-
tation schedule. In fact, Theorem 1.2 can be extended for
this model as well, since the lower bound developed in
Lemma 2.1 holds even when one allows different schedules
on different machines. Thus, we can perform exactly the
same analysis on the more general model to conclude that
asymptotically the restriction to a single sequence does not
have any impact on the optimal cost.

Next, consider a version of this model in which the in-
termediate storage available between successive machines
is limited. Clearly, Theorem 1.2 can also be extended to
this model, since in the upper bound developed in Section
4, no job ever waits for any machine other than the first
one. In particular, this implies that Theorem 1.2 is valid
even for a model in which there is no intermediate storage
available between successive machines. Thus, asymptoti-
cally, the presence or absence of storage space between
successive machines has no impact on optimal cost.

In addition, the analysis and results in this paper can be
extended to a problem with random routing, provided that

each job visits each machine. There are m! possible rout-
ings in an m machine shop if each job visits each machine
exactly once. Index all possible routings 1 . . . R, and let ri,
i 5 1 . . . R be the probability that a job follows routing i.
Now, consider the model described in Section 1, but ex-
tended so that rather than each job visiting each machine
in the same sequence, each has routing i with probability
ri.

To provide some insight into the analysis of this ex-
tended model, consider the Cyclic Discrete Model devel-
oped in Section 3, extended so that each group type is
defined by a particular routing, in addition to the time
assignment vector and weight used in the original model.
The lower bound developed in Lemma 2.1 still holds for
this extended model. Similarly, an analogous upper bound
can be constructed because each group type has a particular
routing and in that upper bound there is no overlap be-
tween jobs in different group types. It is therefore easy to
see that Theorem 3.1 is still valid for this more general
case. Theorem 1.2 can be extended similarly.

Finally, this paper would be incomplete without some
remarks concerning the weaknesses of our model. First,
although the Weighted Completion Time Model does con-
sider individual job related objectives, it does not consider
due-date related objectives. Clearly, many real-life mana-
gerial scheduling concerns focus on job due dates and re-
lated objectives. Also, we focus on static scheduling
situations where all jobs are released and available simul-
taneously. In actual factories, jobs are often arriving all the
time, and good schedules must dynamically adjust to these
new arrivals. In addition, actual processing times are often
stochastic, and machines can break down, although in our
model we assume that machines are always available and
processing times are all known beforehand. The distribu-
tion of processing times on successive machines may not
be identical or independent. Finally, this asymptotic analy-
sis assumes very large numbers of jobs, and it can be seen
from our computational work that WSPT is not very effec-
tive for small numbers of jobs. Nevertheless, it is encour-
aging to see that relatively complex scheduling problems
are amenable to rigorous mathematical analysis leading to
insights into the structure of optimal solutions to large-
scale scheduling problems. We hope to build on this in-
sight in future research as we alter our models to address
some of these issues.
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Table IV
Computational Tests of Industrial Data

Machines 2 3
Jobs 176 143

10 Job Look-Ahead 95% 98%
20 Job Look-Ahead 91% 97%
40 Job Look-Ahead 90% 94%
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