
THE ASYMPTOTIC OPTIMALITY OF THE SPT RULE FOR THE FLOW
SHOP MEAN COMPLETION TIME PROBLEM

PHILIP KAMINSKY
Industrial Engineering and Operations Research, University of California, Berkeley, California 94720, kaminsky@ieor.berkeley.edu

DAVID SIMCHI-LEVI
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, dslevi@mit.edu

(Received August 1997; revisions received January 1999, October 1999; accepted February 2000)

In the flow shop mean completion time problem, a set of jobs has to be processed on m-machines. Every machine has to process each one
of the jobs, and every job has the same routing through the machines. The objective is to determine a sequence of the jobs on the machines
so as to minimize the sum of the completion times of all jobs on the final machine. In this paper, we prove the asymptotic optimality of
the Shortest Processing Time algorithm for any continuous, independent, and identically distributed job processing times.

In the m-machine flow shop problem, a set of jobs, each
consisting of m operations, must be sequentially pro-

cessed on m machines. Each machine can handle at most
one job at a time, and a job can only be processed on one
machine at a time. The jobs have to be processed on each
of the machines without preemption, and every machine
serves the arriving jobs in a first-come, first-served fash-
ion. Given the processing times of each of the jobs on
each of the machines, the Flow Shop Mean Completion
Time Problem involves determining a sequence of the jobs
on the machines that minimizes the average or, equiva-
lently, the sum, of the completion times of the jobs on the
final machine in the sequence. It is well known (see Garey
et al. 1976) that this problem is NP-hard, even in the two-
machine case.
Much previous research on the Flow Shop Mean Com-

pletion Time problem has focused on optimal solutions
to small-size problems, sometimes with as many as 10
machines and 50 jobs but most often with only 2 machines.
Some of these approaches were adapted to find heuris-
tic solutions. For example, Kohler and Steiglitz (1975)
combined branch and bound techniques with local search
heuristics to, approximately, solve 2-machine problems for
up to 50 jobs.
For larger problems, dispatch rules are typically used to

find reasonable sequences. Bhaskaran and Pinedo (1992)
suggest a variety of simple and compound dispatch rules
useful for larger-problem instances. Morton and Pentico
(1993) compare bottleneck dynamics and OPT-like rules,
which adjust the schedule based on the perceived
bottlenecks, to dispatch rule-based heuristic scheduling
approaches. Simulation experiments demonstrated the rel-
ative advantage of each of the approaches, although the
absolute performance of each approach was not known.

Most work involving the use of dispatch rules for the flow
shop model and, indeed, for multiple-machine models in
general, is experimental in nature.
Recently, Kaminsky and Simchi-Levi (1998) used a dif-

ferent approach to analyze this model. Utilizing the tools
of probabilistic analysis, they characterized the underlying
structure of the asymptotic optimal solution to the Flow
Shop Completion Time Problem (weighted, in that case)
as the number of jobs increases to infinity and developed
a simple algorithm for the problem based on this analy-
sis. Their algorithm is a modification of the Shortest Pro-
cessing Time (SPT) sequence, which is defined as follows:
Sequence the jobs in increasing order of their sum of the
processing times on all of the machines. Indeed, they show
that a specific Shortest Processing Time sequence of the
jobs is optimal for a special discretized version of the prob-
lem. This special discretized version has many different
SPT sequences, however, so the question of the asymptotic
optimality of any Shortest Processing Time algorithm for
general flow shop problems, and in particular for problems
in which processing times are continuous random variables,
remained open.
The difficulty in answering this question is illustrated by

the following example. Consider a two-machine schedul-
ing problem with the same number, 3, of four types of
jobs. The first type, which we call the �1�3� type, has
processing time of 1 on Machine 1 and 3 on Machine 2;
the second type, the �3�1� type, has a processing time of
3 on Machine 1 and 1 on Machine 2; and the remain-
ing two types, �1�1� and �3�3�, have a processing time
of either 1 or 3 on both machines. Clearly, in an SPT
sequence, the �1�1� jobs will be scheduled first, and the
�3�3� jobs will be scheduled last. However, any sequence
of �1�3� and �3�1� jobs is an SPT sequence. Interestingly,

0030-364X/01/4902-0293 $05.00
1526-5463 electronic ISSN 293

Subject classifications: Production/scheduling: multiple machine sequencing, Flow shop weighted completion time problem, shortest processing time dispatch rule. Analysis of
algorithms: probabilistic analysis.

Area of review: Optimization.

Operations Research © 2001 INFORMS
Vol. 49, No. 2, March–April 2001, pp. 293–304

294 / Kaminsky and Simchi-Levi

Figure 1. Comparing SPT sequences.

alternating between �1�3� and �3�1� jobs reduces total
completion time relative to other SPT sequences, as illus-
trated in Figure 1. Both sequences in this Figure are SPT,
but Sequence A has an objective value of 222, whereas
Sequence B has an objective value of 252. Thus, the SPT
sequence can either be very good (and in fact, asymp-
totically optimal, as in Kaminsky and Simchi-Levi 1998)
or, depending on which SPT sequence is used, far from
optimal.
Previous computational results (see Kaminsky and

Simchi-Levi 1998) indicate that the SPT rule is in fact
effective for various randomly generated flow shop prob-
lems, particularly as the number of jobs gets to be large. For
example, for 5,000 jobs with processing times generated
from a uniform distribution, the SPT sequence has a cost
which, on average, is between 1% and 7% larger than that
of a lower bound, depending on the number of machines in
the flow shop. Specifically, in the case of a three-machine
flow shop problem, the average increase in cost is about
8% when the number of jobs is 500.
Our objective in this paper is to characterize the condi-

tions under which any Shortest Processing Time sequence
is asymptotically optimal, as the number of jobs tends to
infinity, for the Flow Shop Mean Completion Time Prob-
lem, and thus provide an analytical, rather than an experi-
mental, understanding of the effectiveness of this particular
dispatch rule. Indeed, the key assumption in the probabilis-
tic model described in the next section is that processing
times are generated from a continuous distribution. This
implies that, with high probability, all job processing times
are different, and thus, the model avoids the difficulty of
having to select “the correct SPT” that arises in the example
shown above.
To put our work into perspective, we highlight other

research relating to probabilistic analysis of scheduling
problems. Much of this work has focused on parallel
machine problems, including the work of Coffman et al.
(1982), Loulou (1984), and Frenk and Rinnooy Kan (1987),
who analyze the parallel machine scheduling problem when
the objective is to minimize the makespan, and Spaccamela
et al. (1992) and Webster (1993), who analyze the parallel
machine weighted completion time model. The only work
we are aware of related to flow shop models is the recent
work by Ramudhin et al. (1996), who analyze the two-
machine flow shop makespan model. Finally, Hall (1997)
surveys the development of algorithms with guaranteed
worst-case bounds for various related scheduling models.

1. THE MODEL AND THE MAIN RESULT

To formally present our model, which is similar to the
model presented in Kaminsky and Simchi-Levi (1998),
consider a set of n jobs that have to be processed on
m machines. Job i� i= 1�2� 	 	 	 � n, has a processing time tli
on Machine l� l = 1�2� 	 	 	 �m. The processing times are
drawn from an identical and bounded distribution with
nonzero density ��·�, defined on the interval �0�1
.
Each job must be processed without preemption on each

of the machines sequentially. That is, each job must be
processed on Machine 1 through Machine m in that order.
Jobs are available for processing at time zero, and with the
exception of the first machine all other machines process
the jobs in a first-come, first-served manner, a so-called
permutation schedule. Also, there is unlimited intermediate
storage between successive machines, and we are interested
in semiactive schedules, or schedules in which no opera-
tion on any machine can be completed earlier without alter-
ing the processing sequence on any of the machines (see
Pinedo 1995). For the objective we are about to describe,
there is always an optimal semiactive schedule.
The objective is to determine a schedule, or sequence of

jobs, such that the total completion times of all the jobs
on the final machine is minimized. Note that although the
processing times of each of the n jobs are drawn from a
random distribution as described above, all of the process-
ing times are available before the schedule is determined.
We call this problem Problem P, and use Z∗ to denote its
optimal objective function value. That is, Z∗ is the min-
imum possible total completion time of all jobs in Prob-
lem P. Similarly, given a heuristic H for the Flow Shop
Completion Time Problem, we use ZH to denote the sum
of the completion time in the resulting schedule. Specifi-
cally, ZSPT represents the sum of completion times of the
jobs when they are sequenced from smallest to largest total
processing times, an SPT sequence.
In this paper we prove the following.

Theorem 1. Let the processing times t1i � t
2
i � 	 	 	 � t

m
i , i =

1�2� 	 	 	 � n, be independent random variables having the
same continuous and bounded distribution ��·� with
nonzero density defined on (0, 1]. Then with probability
one we have

lim
n→�

Z∗

n2
= lim

n→�
ZSPT

n2
	

Theorem 1 thus implies that the objective value of the
solution generated by the SPT sequence converges to the

Kaminsky and Simchi-Levi / 295

optimal objective value as the number of jobs tends to infin-
ity. Unfortunately, the rate of convergence remains an open
question. However, the computational results cited above
(Kaminsky and Simchi-Levi 1998) provide some insight as
to the rate at which the objective value of the SPT solu-
tion approaches the optimal objective value. For example,
consider the three-machine flow shop, in which processing
times of each job are generated from a uniform distribu-
tion. For 500 jobs, the SPT sequence has a cost which, on
average, is about 8% higher than that of a lower bound on
the optimal solution. This decreases to 5% for 1,000 jobs,
3% for 2,500 jobs, and 1% for 5,000 jobs.
To prove Theorem 1, we start in § 2 by presenting a sim-

plified discrete model. For this simplified model, we prove
a result analogous to our main result. This proof helps to
provide some of the intuition for the proof of Theorem 1
in §3, which uses, among other results, the simplified dis-
crete result. Certain Lemmas and Properties to which we
refer throughout the analysis are included in Appendix A.
For the subsequent analysis, it is useful to define the

concept of an associated single-machine model to the flow
shop model we have defined. In particular, consider the fol-
lowing single-machine model, associated with Problem P
defined above. Given Job i� i= 1�2� 	 	 	 � n, with processing
times t1i � t

2
i � 	 	 	 � t

m
i on Machine 1�2� 	 	 	 �m, respectively,

let ti =
∑m

l=1 t
l
i . Consider a single-machine scheduling prob-

lem with n tasks each having a processing time ti, i =
1�2� 	 	 	 � n. As with the original flow shop problem, the
objective of the single-machine problem is to sequence the
tasks so as to minimize the sum of their completion times.

2. THE DISCRETE MODEL

To prove our main theorem, Theorem 1, we begin by intro-
ducing a discrete model, first introduced in Kaminsky and
Simchi-Levi (1998), with a finite number of different pos-
sible processing times and a carefully defined relationship
between certain subsets of the jobs. The following analysis
of this Cyclic Discrete Model has two purposes. It provides
some intuition as to why Theorem 1 is true, and it provides
an upper bound that is useful in the proof of Theorem 1.

2.1. The Model

Consider an m-machine flow shop model for which the
objective is to minimize the sum of the completion times.
Each job has an associated vector �t1� t2� 	 	 	 � tm�, where ti

is the processing time on the ith machine. The total pro-
cessing time of a job is the quantity

∑m
l=1 t

l. We say that
two jobs are identical when the vectors representing each
job are equal, element wise, and we call a set of identi-
cal jobs, which can all be represented by the same vector
(t1� t2� 	 	 	 � tm), a job type.
Given a job type represented by (t1� t2� 	 	 	 � tm), we con-

struct a number of new jobs types through a cyclic shift
of the processing times. That is, given the job type rep-
resented by vector (t1� t2� 	 	 	 � tm), new job types are cre-
ated by shifting the processing times over one machine in a

cyclic manner. In that process we create the following job
types, represented by the vectors

�t2�t3�			 �tm�t1���t3�t4�			 �tm�t1�t2��			 ��tm�t1�t2�			 �tm−1�	

Of course, when some of the processing times tl� l =
1�2� 	 	 	 �m, are equal, some of the job types in the pro-
cess may be identical. If, on the other hand, the processing
times tl� l= 1�2� 	 	 	 �m, are all different, the shifted cyclic
process will generate m−1 new nonidentical job types. To
simplify the exposition, in this model we will restrict our-
selves to job types for which all of the processing times are
different, although the results can be quite easily general-
ized to include job types for which two or more processing
times are the same.
We define a group type g to be a job type, which we

call jg
1 , and its m−1 cyclic shifted job types, jg

2 � j
g
3 � 	 	 	 � j

g
m,

where job type j
g
2 is shifted left one position from j

g
1 � j

g
3 is

shifted left two positions from j
g
1 , and so on. Thus, each

group type g consists of m job types, each of which has the
same total processing time, tg . In addition, when we refer
to the next job type within a group, we are referring to the
job type that is shifted one additional time to the left. That
is, j

g
2 is the next job type after j

g
1 � j

g
3 is the next job after

j
g
2 , and so on, noting especially that jg

1 is the next job type
after jg

m. Finally, we refer to all groups with the same total
processing time as a family and define t̃d to equal the total
processing time of each job in Family d.
Now, consider a model in which there is a finite num-

ber, G, of group types and, thus, a finite number, f , of
families. Let ng be the number of jobs of type j

g
k , for

k = 1�2� 	 	 	 �m, and g = 1�2� 	 	 	 �G. Thus, all job types
in a group have the same number of jobs assigned to each
one of them, so n=m

∑G
g=1 ng is the total number of jobs,

out of which mng are associated with group type g. Also,
let ñl, l = 1�2� 	 	 	 � f be the number of jobs in Family l.
Clearly, there is a strong relationship between groups and
families. That is, ñl = m

∑
i�ti=t̃l

ni.
Let Z∗ be the optimal solution to this m–machine flow

shop problem, where the objective is to minimize total
completion times of all jobs. In what follows, we refer to
this problem as the original Cyclic Discrete problem.
In the probabilistic analysis that follows, we consider a

Cyclic Discrete model in which groups of m jobs are added
to the model by selecting a group type g with probability
pg , for g = 1�2� 	 	 	 �G, and then generating m jobs, one for
each job type within that group. That is, with probability
one, we have pg = limn→� ng/

∑G
l=1 nl for g = 1�2� 	 	 	 �G.

This implies that the probability that a job belongs to
Family l� p̃l, equals almost surely limn→� ñl/

∑f
j=1 ñj for

l� l = 1�2� 	 	 	 � f .
Finally, given an instance of this Cyclic Discrete model,

define an associated single-machine model as described in
Section 1, with optimal objective value Z∗

1 .

2.2. The Main Discrete Result

Consider any SPT ordering of n jobs in the Cyclic Discrete
problem described above. Associated with such an ordering

296 / Kaminsky and Simchi-Levi

is a Kn value, which we determine as follows: Starting with
the first job in the sequence, determine its forward match
by finding in the sequence the first job that is the next
job type, as defined in Section 2.1. Continue through the
remaining jobs, noting that to find the forward match of
job j, find the first job in the sequence following job j that
has not been the forward match of a job preceding job j
and is the next job type in the same group as job j. When
a job has no forward match, we define the last job in its
family in the SPT sequence to be its forward match. In
particular, the last job in every family is the forward match
of itself. Consequently, with the possible exception of the
last job, a job can only be the forward match of a single
other job. However, each job must have a forward match,
regardless of whether or not it is the forward match of a
preceding job.
Define the distance between two jobs as one plus the

number of jobs between these two jobs. The Kn value asso-
ciated with a particular SPT ordering of n jobs is defined as
the largest distance between any job and its forward match.
Now, let ZSPTK be the total completion time of all jobs

in an n-job SPT ordering with its associated Kn value.
We note that a particular set of jobs may have more than
one associated SPT ordering (depending on how ties are
broken) and thus may have more than one possible ZSPTK

value. Finally, recall our definition of family, which implies
that in any SPT ordering, all jobs within the same family
are sequenced consecutively.
We prove the following.

Theorem 2. For any SPT sequence whose associated Kn

value satisfies almost surely

lim
n→�

Kn

n
= 0�

we have with probability one

lim
n→�

Z∗

n2
= lim

n→�
ZSPTK

n2
= lim

n→�
Z∗
1

mn2
= ��

for some constant � > 0.

This theorem implies that regardless of how ties are broken
in a particular SPT sequence, as long as the Kn value of that
sequence meets the condition required above, the sequence
is asymptotically optimal.

Proof of Theorem 2. We prove the theorem by finding a
lower bound on the asymptotic value of Z∗/n2 and an upper
bound on ZSPTK /n2 which converge to the same value. First
we apply Lemma A.1 to obtain the following lower bound,
which also characterizes the value of � in Theorem 2.

Lemma 1. We have almost surely

lim
n→�

ZSPTK

n2
� lim

n→�
Z∗

n2
� lim

n→�
Z∗
1

mn2

= 1
m

[
f∑

j=1

t̃j
p̃2

j

2
+

f∑
k=2

p̃k

k−1∑
i=1

p̃i t̃i

]
	 (1)

Proof. Consider the original Cyclic Discrete problem and
an associated single machine scheduling problem con-
structed as described above. In the latter model, we have ñj

jobs each having a processing time t̃j , for j = 1�2� 	 	 	 � f .
The minimum total completion time of n jobs on a single
machine is obtained using the SPT first rule. Let

Gj = t̃j
�ñj +1�ñj

2
� ∀j = 1�2� 	 	 	 � f 	

The optimal objective value of the single machine problem
is clearly

Z∗
1 =

f∑
j=1

Gj +
f∑

k=2

ñk

(k−1∑
i=1

ñi t̃i

)
	

Dividing by mn2, taking the limit as the number of jobs,
n, tends to infinity, and noting that with probability one,

p̃j = lim
n→� ñj/n� ∀j = 1�2� 	 	 	 � f �

we get with probability one,

lim
n→�

Z∗
1

mn2
= 1

m

[f∑
j=1

t̃j
p̃2

j

2
+

f∑
k=2

p̃k

k−1∑
i=1

p̃i t̃i

]
	 (2)

This, together with Lemma A.1 completes the proof. �

We now construct an upper bound on ZSPTK and show
that asymptotically this upper bound converges to the
asymptotic lower bound from Equation (1). For this pur-
pose, consider the original Cyclic Discrete problem. We
schedule the jobs using an arbitrary SPT ordering, and
determine the Kn value associated with this ordering. To
simplify exposition, we round up Kn to the nearest multi-
ple of m, the number of machines. We also index the jobs
from 1 to n, according to their appearance in the sequence.
To construct an upper bound we hold that part of the

processing time of the final job departing from Machine
m stationary and shift all the other jobs on Machine m as
far to the right as possible, with the sequence remaining
the same. In other words, we keep the starting time of job
n on Machine m the same, and beginning with job n−1
and going backwards to job 1, we increase the starting
times of each job on machine m only as much as possible,
without overlapping jobs and while maintaining the same
order. Figure 2 provides a simple two-machine example of
this shifting procedure. Sequence A represents the original
sequence, whereas Sequence B is the shifted sequence.

Figure 2. Comparing the original and shifted
sequences.

Kaminsky and Simchi-Levi / 297

Let ZSHIFT be the total completion time of all jobs in the
above shifted strategy. Clearly,

ZSPTK � ZSHIFT 	 (3)

Note that all of the idle time on machine m in this new
shifted sequence occurs before the first job is processed
on that machine. We define the length of the idle time on
Machine m to be Im.
To construct an upper bound on ZSHIFT , consider each

family, fj , j = 1�2� 	 	 	 � f , and divide the family into sj −1
sets of exactly Kn consecutive jobs and one additional set
that contains at most Kn consecutive jobs. Number the sets
consecutively within a family and let Si

j , j = 1� 	 	 	 � f , i =
1� 	 	 	 � sj be the ith set in the jth family.
We note the following important observations:
• All sets, with the possible exception of the last set

within each family, contain Kn jobs.
• An upper bound on the total processing time of any

set on Machine m is Kn, because all processing times are
bounded by 1.
• Any job within Family j and its (m− 1) forward

matches (that is, a job, its forward match, the forward
match job’s forward match, and so on for a total of m
jobs) have a total processing time on Machine m of t̃j . This
is true because this collection of jobs must belong to one
group within Family j.
• For every family with sj > m, consider the time

Machine m completes processing the last job in the set
Si

j , i = m� 	 	 	 � sj , j = 1� 	 	 	 � f according to the shifted
sequence. This time can be divided into three components.
The first is the idle time of Machine m; the second is the
time it takes for Machine m to process all jobs prior to the
first job in Family j; the third is the total processing time
of completed jobs within the same family, Family j. The
latter is no more than

Kn

m
t̃j�i+1−m�+ �m−1�Kn	

This is true because, for each i = m� 	 	 	 � sj , at least
�i+ 1−m�Kn jobs are part of collections of m forward
matched jobs, as described in the previous point; each col-
lection has a total processing time of t̃j . On the other
hand, at most �m−1�Kn jobs are not part of any collection
and, therefore, the only thing we can say is that each one
of these �m−1�Kn jobs has a processing time no greater
than 1.
To find an upper bound on ZSHIFT , round the comple-

tion time of each job within a set Si
j , i = 1�2� 	 	 	 � sj ,

j = 1�2� 	 	 	 � f on Machine m up to the completion time
of the entire set on Machine m. Thus, we get that

ZSHIFT
� nIm +

f∑
j=2

ñj

j−1∑
k=1

[
Kn

m
t̃k�sk +1−m�+ �m−1�Kn

]

+f �m−1�2K2
n +Kn

·
f∑

j=1

sj∑
i=m

[
Kn

m
t̃j�i+1−m�+ �m−1�Kn

]
�

where the first component in the above upper bound rep-
resents total idle time, the second represents total process-
ing time until a specific family is processed, the third is an
upper bound on the sum of completion times on Machine
m of all jobs in Si

j , i= 1�2� 	 	 	 �m−1 and j = 1�2� 	 	 	 � f ,
and the last component in the above upper bound repre-
sents the total processing times on Machine m of all jobs
in Si

j , i = m� 	 	 	 � sj and j = 1�2� 	 	 	 � f . Hence,

ZSHIFT
�nIm+

f∑
j=2

ñj

j−1∑
k=1

[
Kn

m
t̃ksk+�m−1�Kn

]

+f �m−1�2K2
n+Kn

f∑
j=1

sj∑
i=m

[
Kn

m
t̃ji+�m−1�Kn

]

�nIm+Kn

m

f∑
j=2

ñj

j−1∑
k=1

t̃ksk+�m−1�Knn
f �f−1�

2

+f �m−1�2K2
n+

K2
n

m

f∑
j=1

sj∑
i=1

t̃j i+�m−1�Knn

�nIm+ 1
m

f∑
j=2

ñj

j−1∑
k=1

t̃k�ñk+Kn�+�m−1�Knn
f �f−1�

2

+f �m−1�2K2
n+

K2
n

m

f∑
j=1

t̃j sj
�sj+1�

2
+�m−1�Knn	

Dividing by n2, taking the limit as the number of jobs, n,
tends to infinity, recalling the assumption that

lim
n→�

Kn

n
= 0

and noting that with probability one,

p̃j = lim
n→� sjKn/n = lim

n→� ñj/n� ∀j = 1�2� 	 	 	 � f �

we get that with probability one,

lim
n→�

ZSHIFT

n2
� lim

n→�
Im

n
+ 1

m

[f∑
j=1

t̃j
p̃2

j

2
+

f∑
k=2

p̃k

k−1∑
i=1

p̃i t̃i

]
	 (4)

Finally, using Lemma 1, Equation (3), and Equation (4)
we get that with probability one

lim
n→�

Z∗
1

mn2
� lim

n→�
Z∗

n2
� lim

n→�
ZSPTK

n2

� lim
n→�

Im

n
+ lim

n→�
Z∗
1

mn2
	 (5)

Thus, the difference between the lower and upper bounds
developed is a function of Im, the idle time on Machine m
obtained in the shifted strategy. We characterize this idle
time below.

Lemma 2. For any SPT schedule in the original Cyclic
Discrete flow shop problem described above with an asso-
ciated Kn value, the total idle time on Machine m satisfies
Im = O�Kn�.

Proof. The proof proceeds by induction on the num-
ber of machines. We begin with the two-machine case.

298 / Kaminsky and Simchi-Levi

Lemma A.2, combined with the definition of a semi-active
schedule, tells us that

I 2 =max
{
0� max

l=2�3� 			 � n

l∑
k=2

(
t1k − t2k−1

)}
	

Given l, we analyze the function

l∑
k=2

(
t1k − t2k−1

)
	

Because the distance between any job and its forward
match is no more than Kn, the sequence of
jobs 1�2�3� 	 	 	 � l has no more than fKn jobs, each of
which has the property that its forward match is the last
job in its family. That is, every job, except for at most
fKn jobs, has a forward match that is its next job type, as
defined in Section 2.1.
This, together with the fact that the processing time on

a machine is no more than one, implies that

l∑
k=2

(
t1k − t2k−1

)
can never be larger than fKn. Hence, accounting now for
the idle time before the first job begins processing, the idle
time on the second machine is no larger than fKn +1.
Next, we assume that Im−1 =O�Kn�, and we analyze Im.

Lemma A.2 tells us that

Im =max
{
0� max

l=2�3� 			 � n

(
Im−1
l +

l∑
k=2

(
tm−1
k − tmk−1

))}
	

By the induction hypothesis, we know that the Im−1 =
O�Kn�. Also, by the same argument as above,

l∑
k=2

(
tm−1
k − tmk−1

)
can never be larger than fKn. Hence, accounting for the
idle time on Machine m before the first job is processed,
idle time on Machine m can never be larger than fKn +
�m−1�+O�Kn� = O�Kn�. �

To complete the proof of Theorem 2, we utilize Equation
(5), Lemma 2, and the assumption,

lim
n→�

Kn

n
= 0	

3. PROOF OF THE MAIN THEOREM

We prove Theorem 1 by constructing a number of dis-
cretized versions of Problem P. We begin by discretiz-
ing the original problem and removing just enough jobs
to obtain a Cyclic Discrete model, described in the previ-
ous section. These discretized models allow us to develop
an expression for an upper bound on the asymptotic objec-
tive value of the SPT ordering associated with an instance
of Problem P. We show that under the condition stated in
Theorem 1, this upper bound on the SPT sequence con-
verges to a lower bound on the optimal value of Problem
P developed in Lemma A.1.

3.1. Discretization

First, we take the original continuous problem, Problem P,
and discretize it so there are a finite number of possible job
types. When discretizing the problem, however, we need to
ensure that given an instance of Problem P and an SPT
sequence, this sequence remains an SPT ordering in the
discretized model. That is, suppose ti and tj represent the
total processing times of Jobs i and j in Problem P, and
ti � tj . Also, suppose tid and tjd represent the total process-
ing times of the discretized versions of Jobs i and j. We
must ensure that tid � tjd for all i and j, such that ti � tj .
To do this, we round up each of the processing times, using
the following two-step process.
In Step 1, we begin by subdividing the �0�1
 interval into

s subintervals, each of length ". We use Al, l= 1�2� 	 	 	 � s,
to denote the lth subinterval, that is, Al = ��l− 1�"� l"
.
For every Job i in Problem P, i= 1�2� 	 	 	 � n, and Machine
k, k = 1�2� 	 	 	 �m, such that tki ∈ Al for some l, l =
1�2� 	 	 	 � s, we round its processing time, tki , up to the value
l", and call this new processing time t̄ki . Let t̄i be equal to
the sum of the rounded processing times of Job i. Clearly,
this step is not sufficient to ensure that an SPT ordering of
the discretized job set is the same as the original sequence.
In Step 2, we utilize the following technique to ensure

that the SPT ordering remains the same. For every Job i� i=
1�2� 	 	 	 � n, in the original Problem P, let ti be the total
processing time of the job before rounding. Next, subdivide
the interval (0�m] into ms subintervals, each of length ",
and define Bl to be the lth interval, l = 1�2� 	 	 	 �ms. That
is, Bl = ��l− 1�"� l"
. For every Job i in Problem P, i =
1�2� 	 	 	 � n, such that ti ∈ Bl for some l� l = 1�2� 	 	 	 �ms,
let t̃i = l". Clearly, t̃i � t̄i.
To maintain the SPT sequence, every job that has the

same associated time t̃i as defined above must have the
same total processing time in the discretized problem.
Define

ri = �t̄i − t̃i�/"�

and for each job i in the rounded problem created in the
first step, add an additional " to the �m− 1�− ri largest
unrounded processing times within that job. That is, given
a Job i, order its processing time in Problem P on the
m machines from the largest to smallest. Now, for the
�m− 1�− ri largest processing times of this job in Prob-
lem P, increase the corresponding processing times in the
rounded problem by exactly ". This process is illustrated
in Figure 3 for m = 2. In this figure, each job is repre-
sented by a point on the graph, where the x-axis represents
processing time on Machine 1, and the y axis represents
processing time on Machine 2. At the end of the two-step
rounding process described above, all of the points in the
shaded area are rounded up to points on the dotted line, as
illustrated by the arrows. The remainder of the processing
time pairs are rounded in a similar fashion.
Thus, for every Job i, the total processing time of the

rounded version of that job is,

tid = t̄i + ��m−1�− ri�" = t̃i + �m−1�"	

Kaminsky and Simchi-Levi / 299

Figure 3. The rounding strategy.

We call this new rounded problem Problem PD, whose opti-
mal objective value is Z∗

D	
Given an instance of Problem P and an SPT sequence,

construct Problem PD using the rounding technique
described above. This rounding procedure implies that the
(single) original SPT sequence associated with Problem P
is also one of possibly many SPT orderings of Problem PD.
We use ZSPT

D to denote the objective value of this SPT
sequence when applied to Problem PD. Clearly,

Z∗
� ZSPT

� ZSPT
D 	 (6)

Because in Problem PD, processing times take only dis-
crete values, we can construct an associated Cyclic Discrete
problem called Problem PCD. As in the previous section,
let a job type be represented by a vector (t1� t2� 	 	 	 � tm).
Observe that in Problem PD, every job type has a cor-
responding vector whose elements tk satisfy tk = l" for
every k, k = 1�2� 	 	 	 �m, and for some l, l = 1�2� 	 	 	 ,
�s+1�.
In Problem PCD, we consider only job types from Prob-

lem PD represented by vectors that have no two equal ele-
ments. We partition the set of all job types from Problem
PD with the above property into groups g1� g2� 	 	 	 � gG and
in addition create the remaining job types necessary so that
all of these groups are complete. That is, each group must
include all of the job types that are obtained by a cyclic
shift of each one of the others. Clearly, each such group
consists of exactly m job types, and all of the job types
within a single group correspond to the job types defined
in Section 2.1.
Let nl

gi
be the number of jobs in Problem PD whose pro-

cessing times are represented by the lth job type of group
gi, l = 1� 	 	 	 �m, and i = 1�2� 	 	 	 �G. Let

ñ = n−
G∑

j=1

m∑
l=1

nl
gi
�

that is, ñ is the number of jobs in Problem PD, each of
which has at least two machines on which its processing
times are equal.

In the new problem, Problem PCD, we assign exactly

ngi
= min

l=1� 			 �m
(nl

gi
)

jobs to each one of the job types associated with group
gi. Each job in Problem PCD has a corresponding job in
Problem PD.
Let Z∗

CD be the optimal solution value of the resulting
problem, let ZSPT

CD be the objective value of the resulting
problem when jobs are sequenced in the same order as their
corresponding jobs in the SPT sequencing of jobs in Prob-
lem PD and observe that this problem is a Cyclic Discrete
model, as defined in Section 2.
We note the following relationship between Problem

PCD and Problem PD. For each job deleted from the SPT
sequencing of Problem PD to obtain Problem PCD, the
completion time of each subsequent job in the sequence
decreases by no more than m�1+ "�. This is true because
the processing time on each machine is bounded by one.
Because a total of

ñ+
G∑

i=1

m∑
l=1

(
nl

gi
−ngi

)
jobs are deleted, the following relationship holds:

ZSPT
CD � ZSPT

D −nm�1+ "�

[
ñ+

G∑
i=1

m∑
l=1

�nl
gi
−ngi

�

]
	 (7)

Dividing Equation (7) by n2, taking the limit as n goes
to infinity, and using Equation (6) we obtain

lim
n→�

Z∗

n2
� lim

n→�
ZSPT

CD

n2

+ lim
n→�

1
n2

nm�1+ "�

[
ñ+

G∑
i=1

m∑
l=1

�nl
gi
−ngi

�

]
	

A similar argument to the one employed in Kaminsky
and Simchi-Levi (1998) can be used to show that the sec-
ond term in the above upper bound is almost surely O�"�,
and thus, almost surely,

lim
n→�

Z∗

n2
� lim

n→�
ZSPT

CD

n2
+O�"�	 (8)

Because Problem PCD is a Cyclic Discrete problem, we
can utilize Theorem 2 to prove the following Lemma.

Lemma 3. Consider Problem PCD, and its SPT ordering.
We have with probability one

lim
n→�

Z∗
CD

n2
= lim

n→�
ZSPT

CD

n2
	

Of course, to apply Theorem 2, the Kn value associated
with the specific SPT must have the property that almost
surely

lim
n→�

Kn

n
= 0	

300 / Kaminsky and Simchi-Levi

Indeed, in Appendix B we prove the following result:

Lemma 4. Consider an arbitrary sequence of jobs whose
processing times are generated according to Theorem 1.
Order the jobs according to the SPT schedule and construct
Problem PCD and its associated SPT as described above.
The Kn value associated with this SPT satisfies Kn = o�n�
almost surely.

3.2. Completing the Proof

To complete the proof we utilize Lemma 3 and Equation (6)
and (8) to get

lim
n→�

Z∗

n2
� lim

n→�
ZSPT

n2
� lim

n→�
Z∗

CD

n2
+O�"�	 (9)

To find an upper bound on Z∗
CD, recall that every instance

of the flow shop mean completion time has an associated
single-machine model, as defined in §1. Starting with prob-
lem PCD, generate a single-machine model, Problem P1CD

with optimal objective value Z∗
1CD, in exactly the same way

that Problem P1 was generated from Problem P. It follows
from Theorem 2 and Lemma 4 that with probability one,

lim
n→�

Z∗
1CD

mn2
= lim

n→�
Z∗

CD

n2
	 (10)

Next, we relate Z∗
1CD to Z∗

1 , the optimal solution
to Problem P1, the single-machine model associated with
Problem P. For this purpose, note that each task in Problem
P1CD has a corresponding task in Problem P1 (although the
opposite is not true). Furthermore, the total processing time
of each task in Problem P1CD is no more than m" larger
than the total processing time of its corresponding task in
Problem P1. Consequently,

Z∗
1CD � Z∗

1 +
n�n+1�

2
m"�

and this, together with Equations (9) and (10), shows that
almost surely:

lim
n→�

Z∗

n2
� lim

n→�
ZSPT

n2
� lim

n→�
Z∗
1CD

mn2
+O�"�

�
Z∗
1

mn2
+O�"�	 (11)

On the other hand, Lemma A.1 tells us that

lim
n→�

Z∗

n2
�

Z∗
1

mn2
	 (12)

Thus, combining Equations (11) and (12) and choosing
" small enough show that with probability one,

lim
n→�

Z∗

n2
= lim

n→�
ZSPT

n2
	

This completes the proof of Theorem 1. �

4. EXTENSIONS AND CONCLUDING REMARKS

To illustrate the effectiveness of the SPT rule, it is impor-
tant to point out that in Kaminsky and Simchi-Levi (1998),
we consider some industrial data that clearly do not con-
form to all of the parameters of this model. We applied
the SPT rule to two-, three-, and six-machine problems
with 169, 143, and 112 jobs, respectively. These are small
instances so it is not surprising that SPT does not work as
well as for larger instances. Indeed, for the two- and six-
machine instances, SPT yields solutions with cost about
40% higher than that of a lower bound. However, as we dis-
cuss in more detail in the paper by Kaminsky and Simchi-
Levi, we suspect that at least some of this gap is attributable
to the weakness of the lower bound. For the three-machine
instance, SPT performs better, yielding a solution that is
about 5% larger than that of the lower bound.
Finally, we note that the analysis performed in this paper

can be carried over to a more general version of the Flow
Shop Weighted Completion Time Problem in which one
is allowed to process jobs on different machines in differ-
ent sequences, a nonpermutation schedule. In addition, the
tools of probabilistic modeling have only been applied in
a limited way to scheduling problems. In the future, we
hope to extend the kinds of approaches demonstrated in
this paper to more complex scheduling models.

APPENDIX A. PRELIMINARY RESULTS

In this section we present several Lemmas and Properties
that we refer to throughout the paper.

A.1. A Lower Bound

Given Problem P as defined in §1, we define its associ-
ated single-machine problem as defined in §1. We call this
single-machine scheduling problem Problem P1, with opti-
mal solution value Z∗

1 , the minimum total completion time
of all of the tasks. This optimal solution is achieved by
sequencing the tasks in Shortest Processing Time first order
(see, for example, Pinedo 1995).
Problem P and Problem P1 are related through the fol-

lowing lower bound, whose proof is given in Kaminsky and
Simchi-Levi (1998).

Lemma A.1. Consider Problem P, the general Flow Shop
Mean Completion Time Problem, and its associated single-
machine scheduling problem, Problem P1. For every
instance we have

1
m

Z∗
1 � Z∗	

A.2. Total Idle Time

Consider any semiactive permutation sequence of the jobs
in the m machine flow shop problem and index the jobs
according to their appearance in that sequence. Our objec-
tive is to characterize Ia

j , a = 2� 	 	 	 �m, j = 2� 	 	 	 � n, the
total idle time incurred on Machine a, between the time the
first job starts on that machine and the time Job j departs

Kaminsky and Simchi-Levi / 301

from that machine. We show

Lemma A.2. For every j� j � 2 we have

Ia
j =max

{
0� max

l=2�3� 			 � j

(
Ia−1
l +

l∑
k=2

�ta−1
k − tak−1�

)}
	

We note that because there is no idle time on Machine 1,
i.e., I 1j = 0 for every j,

I 2j =max
{
0� max

l=2�3� 			 � j

l∑
k=2

�t1k − t2k−1�

}
	

Proof. Define iaj , a = 1� 	 	 	 �m, j = 2� 	 	 	 � n to be equal
to the idle time on Machine a between the completion of
Job j − 1 on Machine a and the completion of Job j on
Machine a. By definition,

Ia
j =

j∑
k=2

iak 	

The proof proceeds by induction on j. Clearly,

Ia
2 =max(0� Ia−1

2 + ta−1
2 − ta1)	

Assume

Ia
i =max

{
0� max

l=2�3� 			 � i

(
Ia−1
l +

l∑
k=2

�ta−1
k − tak−1�

)}
�

for all i�2� i � j. We distinguish between two cases.

Case 1. Job j starts on Machine a immediately after fin-
ishing on Machine a−1. Obviously, if ta−1

j+1 + ia−1
j+1 � taj , then

Ia
j+1 = Ia

j

=max
{
0� max

l=2�3� 			 �j

(
Ia−1
l +

l∑
k=2

�ta−1
k − tak−1�

)}

� Ia−1
j+1 +

j+1∑
k=2

�ta−1
k − tak−1��

because ta−1
j+1 � taj . On the other hand, if ta−1

j+1 + ia−1
j+1 > taj ,

then,

Ia
j+1 = Ia−1

j+1 +
j+1∑
k=2

�ta−1
k − tak−1�	

To see why this is true, note that Job 1 starts processing
on Machine a immediately after it completes on Machine
a− 1 and that Job j + 1 starts processing on Machine a
immediately after it completes on Machine a− 1. Thus,
the total elapsed time on Machine a between the start of
processing of Job 1 and the start of processing of Job j+1
is exactly

Ia−1
j+1 +

j+1∑
k=2

ta−1
k 	

Subtracting the time devoted to processing yields the
idle time.

Hence, we need to show that

Ia−1
j+1 +

j+1∑
k=2

�ta−1
k − tak−1�

� max
l=2�3� 			 � j

(
Ia−1
l +

l∑
k=2

�ta−1
k − tak−1�

)
	

For this purpose, we identify the latest Job i� i � j, whose
processing time on Machine a starts after this machine has
incurred a delay. By the induction assumption and the fact
that no additional idle time is incurred after Job i starts
processing until Job j completes processing,

Ia
i =max

{
0� max

l=2�3� 			 �i

(
Ia−1
l +

l∑
k=2

�ta−1
k − tak−1�

)}

=max
{
0� max

l=2�3� 			 �j

(
Ia−1
l +

l∑
k=2

�ta−1
k − tak−1�

)}
	

Similarly, because the total time that elapses between the
start of processing of Job i on Machine a and the start of
processing of Job j+1 on Machine a is

j+1∑
k=i+1

ia−1
k + ta−1

k �

and it is clear that

j+1∑
k=i+1

�ia−1
k + ta−1

k − tak−1� > 0�

and, hence,

Ia
j+1 = Ia−1

j+1 +
j+1∑
k=2

�ta−1
k − tak−1�

= Ia
i +

j+1∑
k=i+1

�ia−1
k + ta−1

k − tak−1�

> Ia
i

� max
l=2�3� 			 � j

(
Ia−1
l +

l∑
k=2

�ta−1
k − tak−1�

)
�

where the second equality follows because the second term
in the addition captures the idle time that occurs after
Job i completes processing on Machine a, and the final
inequality follows from the induction assumption.

Case 2. Job j has to wait in front of Machine a before
its processing starts. Let , be the amount of time Job j has
to wait after finishing on Machine a− 1 and before being
processed on Machine a. We consider two cases depending
on the value ,+ taj . If ,+ taj � ta−1

j+1 + ia−1
j+1 , then

Ia
j+1 = Ia−1

j+1 +
j+1∑
k=2

�ta−1
k − tak−1��

302 / Kaminsky and Simchi-Levi

which, following the same argument as in the second part
of the previous case, implies that

Ia
j+1 =max

{
0� max

l=2�3� 			 � j+1

(
Ia−1
l +

l∑
k=2

�ta−1
k − tak−1�

)}
	

On the other hand, if ,+ taj > ta−1
j+1 + ia−1

j+1 , then

Ia
j+1 = Ia

j 	

Again, we identify the latest Job i� i < j whose processing
time on Machine a starts after this machine has incurred a
delay and we use a similar approach to the previous case.
Note that in this case, there is no additional idle time on
Machine a between the time that Job i starts processing
and the time that Job j + 1 completes processing. By the
induction assumption and the choice of Job i,

Ia
i =max

{
0� max

l=2�3� 			 � i

(
Ia−1
l +

l∑
k=2

�ta−1
k − tak−1�

)}

=max
{
0� max

l=2�3� 			 � j

(
Ia−1
l +

l∑
k=2

�ta−1
k − tak−1�

)}
	

On the other hand, by comparing elapsed times on Machine
a and a−1 as before,

j+1∑
k=i+1

�ia−1
k + ta−1

k − tak−1� < 0

and, hence,

Ia
j+1 = Ia

j

=max
{
0� max

l=2�3� 			 � j

(
Ia−1
l +

l∑
k=2

�ta−1
k − tak−1�

)}

by the induction assumption. Hence,

Ia
j+1 = Ia

i

= Ia−1
l +

i∑
k=2

�ta−1
k − tak−1� > Ia−1

j+1 +
j+1∑
k=2

�ta−1
k − tak−1��

where the first equality follows from the choice of i, and
the second equality follows by comparing elapsed time on
both machines, as in the previous case. �

A.3. Useful Inequalities

The following two properties, given here without proof, are
used throughout the paper.

Property A.1. Boole’s Inequality (See, for example,
Rohatgi 1976). Consider event Ei, i = 1�2� 	 	 	 � b, for
some positive integer b � 2. We have

Pr

(b⋂
i=1

Ei

)
� 1−

b∑
i=1

�1−Pr�Ei��	

Property A.2. For any numbers a�b, and c such that
a � 0, b � 0, and 0� c � 1,

1− �1−a��1−b��1− c� � a+b+ c	

APPENDIX B. PROOF OF LEMMA 4

To prove the Lemma, we find for every n large enough
a lower bound on the probability that Kn, the maximum
distance between any job and its forward match in the SPT
sequence consisting of n jobs, is no more than D, where
D = o�n�. In particular, we show that for D = o�n�,

�∑
n=B

Pr�Kn � D� < ��

where B is an arbitrary constant. Hence, by the Borel-
Cantelli Lemma, we have almost surely Kn = o�n�.
Our strategy in calculating the probability Pr�Kn �D� is

to consider three different random variables and then com-
bine them to find our bound. The first random variable con-
cerns �X, the maximum distance between two consecutive
jobs in the same group in the SPT sequence.

Property A.3. For every x we have

Pr��X � x� � 1−n�1− c�x� (13)

for some constant c.

Proof. Given Job i in Group gj , let X
gj

i be the distance
between Job i and the first job in Group gj that follows it
in the SPT sequence. Given a Job k with total processing
time larger than that of Job i, and whose family is the
one associated with Group gj , let p

gj

k be the conditional
probability that this job is a member of Group gj . Because
the job processing times are continuous random variables
with nonzero densities, there exists a constant c such that
c � p

gi

k for all k and j. Thus, we have that

Pr�X
gj

i � x� � 1− �1− c�x	

Using Property A.1 we have

Pr��X � x� = Pr�X
gj

i � x�∀i� j� � 1−
G∑

j=1

ngj∑
i=1

�1− c�x	

Hence,

Pr��X � x� � 1−n�1− c�x	 �

To introduce the second random variable, employed only
when m � 3, we break each group into subgroups, one for
each pair of job types within a group. Each Subgroup r
consists of all jobs within that group that are a job type and
its next job type, as defined in Section 2.1. This implies that
if there are m different machines, there will be exactly m
subgroups within a group. Also, each job type, and there-
fore each job, will be in two subgroups; in one it will be
the first type, and in another it will be the second type.
We number the jobs within a subgroup consecutively and

let Y
gj
ri represent the number of jobs in Group gj that are

sequenced between Job i and Job i+1 in Subgroup r . Note
that we are counting only jobs in Group gj ; for this purpose,
we ignore all jobs in other groups in the family.

Kaminsky and Simchi-Levi / 303

Observe that all job types within a group occur with the
same probability. Hence, the conditional probability that a
particular job within a group is in a subgroup, equals 2/m.
Defining �Y = maxj� r� i Y

gj
ri , and using Property A.1

exactly as we did above, we get

Property A.4.

Pr��Y � y� � 1−n�1−2/m�y	 (14)

For the third random variable, note that given a job, say
i, in Subgroup r and Group gj , it may be followed by many
jobs from the two job types in r until its forward match
arrives. Let W

gj
ri represent the number of jobs in Subgroup r

that are in between Job i and its forward match, as defined
in Section 2. Let �W =maxgj � r� i

W
gj
ri . We show

Property A.5.

Pr��W � w� � 1−4Gme−
w2
8n 	 (15)

Proof. Let �Wgj
r = maxi W

gj
ri . We start by calculating a

lower bound on the probability

Pr��Wgj
r � w�	

For this purpose, consider the job types in the r th subgroup
of Group gj . We refer to one type as a plus type and the
other type as a minus type. Index all the jobs in this sub-
group according to their appearance in the SPT sequence.
Associated with each such Job l is a random variable Vl.
The random variable Vl equals 1 when it belongs to the
plus job type, and it is equal to −1 when it belongs to the
minus job type. Let Sl =

∑l
k=1 Vl. It is easy to see that

�Wgj
r =

ngj

max
l

�Sl�	

The random variable Sl is well understood, see Theorem
2.7 in Coffman and Lueker (1991). They show that

Pr

(
max

1�l�ngj

Sl � w

)
� 2e

− w2
8ngj �

and similarly

Pr

(
min

1�l�ngj

Sl �−w

)
� 2e

− w2
8ngj 	

Hence, because n � ngj
, we have

Pr��Wgj
r � w� � 1−4e−

w2
8n 	

Finally, using Property A.1 again, we have

Pr��W � w� = Pr�max
r� gj

�Wgj
r � w�

� 1−∑
r� gj

�1−Pr�W
gj
r � w�

� 1−4Gme−
w2
8n 	 � (16)

To finish the proof, we combine the three random vari-
ables as follows. The above upper bounds developed in
Equations (13), (14), and (16) imply that for any x� y, and
w such that D = xyw we have

Pr�Kn � D� � Pr��W � w�Pr��Y � y�Pr��X � x�

� �1−Gm4e−
w2
8n ��1−n�1−2/m�y�

· �1−n�1− c�x��

and thus,

Pr�Kn � D� � 1− �1−Gm4e−
w2
8n �

· �1−n�1−2/m�y��1−n�1− c�x�	 (17)

Choosing

x = C1n
1/10� y = C2n

1/10�w =
√
16n lnn�

for some Constants C1 and C2, noting that for these partic-
ular values, D = o�n�, and utilizing Property A.2, we get

Pr�Kn � D� � 1−
(
1− 4Gm

n2

)

+1− (
1−n�1−2/m�C2n

1/10)
+1− (

1−n�1− c�C1n
1/10)

�

(
4Gm

n2

)
+ (

n�1−2/m�C2n
1/10)

+ (
n�1− c�C1n

1/10)
	

Finally, taking the sum over all n�n � B

�∑
n=B

Pr�Kn � D� �
�∑

n=B

4Gm

n2
+

�∑
n=B

(
n�1−2/m�C2n

1/10)

+
�∑

n=B

(
n�1− c�C1n

1/10)
	

Because each of the terms on the right hand side is finite,
the proof is complete. �

ACKNOWLEDGMENTS

Research in this study was supported in part by ONR
Contracts N00014-90-J-1649 and N00014-95-1-0232, NSF
Contracts DDM-9322828 and DMI-9732795, and a grant
from S&C Electric Corporation.

REFERENCES

Bhaskaran, K., M. Pinedo. 1992. Dispatching. G. Salvendy, ed.
Handbook of Industrial Engineering. Wiley, New York,
2184–2198.

Coffman, E. G., G. N. Frederickson, G. S. Lueker. 1982. Prob-
abilistic analysis of the LPT processor scheduling heuristic.
M. A. H. Dempster et al., eds. Deterministic and Stochastic
Scheduling. D. Reidel Publishing Company, 319–331.

304 / Kaminsky and Simchi-Levi

Coffman, E. G., G. S. Lueker. 1991. Probabilistic Analysis of
Packing and Partitioning Algorithms (Interscience series in
discrete mathematics and optimization). Wiley, New York.

Frenk, J. B. G., A. H. G. Rinnooy Kan. 1987. The asymptotic
optimality of the LPT rule. Math. Oper. Res. 12 241–254.

Garey, M. R., D. S. Johnson, R. Sethi. 1976. The complex-
ity of flowshop and jobshop scheduling. Math. Oper. Res.
1 117–129.

Hall, L. 1997. Approximation algorithms for scheduling.
D. Hochbaum, ed. Approximation Algorithms for NP-Hard
Problems. PWS Publishing, Boston, MA.

Kaminsky, P., D. Simchi-Levi. 1998. Probabilistic analysis and
practical algorithms for the flow shop weighted completion
time problem. Oper. Res. 46 872–882.

Kohler, W., K. Steiglitz. 1995. Exact, approximate, and guaran-
teed accuracy algorithms for the flow shop problem n/2/F /�F .
J ACM 22 106–114.

Krone, M. J., K. Steiglitz. 1974. Heuristic programming solu-
tions of a flowshop scheduling problem. Oper. Res. 22
629–638.

Loulou, R. 1984. Tight bounds and probabilistic analysis of two
heuristics for parallel processor scheduling. Math. Oper. Res.
9 142–150.

Morton, T., D. Pentico. 1993. Heuristic Scheduling Systems.
Wiley, Interscience, New York.

Pinedo, M. 1995. Scheduling: Theory, Algorithms and Systems.
Prentice Hall, Inc., Englewood Cliffs, NJ.

Ramudhin, A., J. J. Bartholdi, J. Calvin, J. H. Vande Vate,
G. Weiss. 1996. A probabilistic analysis of 2-machine flow-
shops. Oper. Res. 44 889–908.

Rohatgi, V. K. 1976. An Introduction to Probability Theory and
Mathematical Statistics. Wiley & Sons, New York.

Spaccamela, A. M., W. S. Rhee, L. Stougie, S. van
de Geer. 1992. Probabilistic analysis of the minimum
weighted flowtime scheduling problem. Oper. Res. Lett. 11
67–71.

Webster, S. 1993. Bounds and asymptotic results for the uniform
parallel processor weighted flow time problem. Oper. Res.
Lett. 41 186–193.

