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Abstract

In this paper we propose a Branch and Price algorithm for solving multi-period

single-sourcing problems. In particular, we generalize a Branch and Price algorithm

that was developed for the Generalized Assignment Problem (GAP) to a class of

convex assignment problems. We then identify an important subclass of problems,

containing many variants of the multi-period single-sourcing problem (MPSSP), as
well as variants of the GAP, for which we derive an eÆcient solution procedure for

the pricing problem, a critical factor in the eÆciency of the Branch and Price al-

gorithm. We execute an extensive numerical comparison between the performances

of the Branch and Price algorithm and the MIP solver of CPLEX for a particular

variant of the MPSSP.

1 Introduction

Some of the most important problems in logistics faced by a supplier are the timing of
production, the location of inventories, and the assignment of customers to warehouses.
In this paper we will study a multi-period single-sourcing problem (MPSSP) that can
be used to support the corresponding decisions. The model we propose is dynamic in
nature, in contrast to many of the quantitative models proposed in the literature which
assume a static environment. The fact that our model is dynamic enables us to handle
a dynamic demand pattern of the customers, as well as to support inventory decisions
explicitly. Related literature, focusing on static models, can be found in Geo�rion and
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Graves [10], Benders et al. [2], and Fleischmann [9]. Duran [7] studies a dynamic model
for the planning of production, bottling, and distribution of beer, but focuses on the
production, instead of the distribution, process. Chan, Muriel and Simchi-Levi [4] study
a dynamic, but uncapacitated, distribution problem.

The logistics network we are considering consists of a set of facilities (each of which
could be interpreted as a plant with an associated warehouse), and a set of customers. The
decisions that need to be made concern (i) the assignment of customers to facilities, and (ii)
the location and size of inventories. These two types of decisions can be handled in a nested
fashion, where we essentially decide on the assignment of customers to facilities only, and
where the location and size of inventories are determined optimally as a function of the
customer assignments. Viewed in this way, the multi-period single-sourcing problem is a
generalized assignment problem with a convex objective function and possibly additional
constraints, representing, for example, throughput or physical inventory capacities, or
perishability constraints. To be able to deal with many variants of the multi-period
single-sourcing problem using a single solution approach, we will introduce a general
class of convex assignment problems, having the property that the objective function and
feasible region are convex, and are both separable in the facilities. The class of convex
assignment problems clearly contains the well-known Generalized Assignment Problem
(GAP), and thus convex assignment problems are NP-Hard as well. We will discuss one
of the variants of the multi-period single-sourcing problem in detail in this paper. In this
variant each plant has known, �nite, and possibly time-varying, capacity, each customer
needs to be served by (assigned to) a unique facility throughout the planning horizon,
and the customer demands exhibit a seasonal pattern.

The outline of the paper is as follows. In Section 2 we will introduce a class of convex
assignment problems, CAP, and propose an exact branch-and-price procedure for solving
these problems based on a column generation approach for a set partitioning formulation
of the problem. This approach generalizes a similar branch-and-price procedure for the
GAP (see Savelsbergh [22]). In Section 3 we study the pricing problem for a particular
subclass for which an eÆcient branch-and-bound procedure can be constructed. In Section
4 we formulate the variant of the multi-period single-sourcing problem mentioned above.
In Section 5 we illustrate the performance of the Branch and Price scheme for this variant
of the MPSSP. In Section 6 we end the paper with some concluding remarks.

2 Solving convex assignment problems

2.1 Convex assignment problems

Consider the following convex assignment problem:

minimize
mX
i=1

gi(xi�)

subject to (CAP)

mX
i=1

xij = 1 j = 1; : : : ; n
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xij 2 f0; 1g i = 1; : : : ; m; j = 1; : : : ; n

xi� 2 Xi i = 1; : : : ; m

where the functions gi are convex, as are the sets Xi denoting any additional constraints.
Ferland, Hertz and Lavoie [8] introduce an even more general class of assignment prob-
lems, and show the applicability of object-oriented programming by developing software
containing several heuristics. As mentioned in the introduction, the GAP is an example
of a convex assignment problem, where the cost function gi and the additional constraints
de�ned by the set Xi associated with agent i are linear in xi�. Variants of the MPSSP are
examples of convex assignment problems as well, one of which will be discussed in detail
in Section 4. In a more general context, all set partitioning models discussed by Barnhart
et al. [1] with convex and separable objective function in the index i are examples of
convex assignment problems. The CAP can be formulated as a set partitioning problem,
in a similar way as was done for the GAP by Cattryse, Salomon, and Van Wassenhove
[3]; and Savelsbergh [22]. In particular, a feasible solution for (CAP) can be seen as a
partition of the set of objects f1; : : : ; ng into m subsets. Each element of the partition is
associated with one of the m agents.

Now let Li be the number of subsets of objects that can feasibly be assigned to agent
i (i = 1; : : : ; m). Let �`

i� denote the `-th subset (for �xed i), i.e., �`
ij = 1 if object j is an

element of subset ` for agent i, and �`
ij = 0 otherwise. We will call �`

i� the `-th column
for agent i. Then, the set partitioning problem can be formulated as follows:

minimize
mX
i=1

LiX
`=1

gi(�
`
i�) y

`
i

subject to (MP)

mX
i=1

LiX
`=1

�`
ijy

`
i = 1 j = 1; : : : ; n (1)

LiX
`=1

y`i = 1 i = 1; : : : ; m (2)

y`i 2 f0; 1g ` = 1; : : : ; Li; i = 1; : : : ; m

where y`i is equal to 1 if column ` is chosen for agent i, and 0 otherwise. As mentioned by
Barnhart et al. [1], the convexity constraint (2) for agent i (i = 1; : : : ; m) can be written
as

LiX
`=1

y`i � 1

if �ij = 0 for each j = 1; : : : ; n is a feasible column for agent i with associated costs
gi(�i�) = 0. One of the advantages of (MP) is that its linear relaxation LP(MP) gives a
bound on the optimal solution value of (MP) that is at least as tight (and usually tighter)
as the one obtained by relaxing the integrality constraints in (CAP), R(CAP). Hence, if
we let v(R(CAP)) and v(LP(MP)) denote the optimal objective values of R(CAP) and
LP(MP), respectively, then the following holds.
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Proposition 2.1 The following inequality holds:

v(R(CAP)) � v(LP(MP)):

Proof: First of all, note that if LP(MP) is infeasible, the inequality follows directly since
in that case v(LP(MP)) = 1. In the more interesting case that LP(MP) is feasible, the
desired inequality follows from the convexity of the objective function and the feasible
region of (CAP). We may observe that both relaxations can be obtained by relaxing the
integrality constraints to nonnegativity constraints. Each feasible solution to LP(MP)
can be transformed to a feasible solution to R(CAP) as follows:

xij =

LiX
`=1

�`
ijy

`
i i = 1; : : : ; m; j = 1; : : : ; n:

For each i = 1; : : : ; m, vector xi� is a convex combination of vectors �`
i� for ` = 1; : : : ; Li.

Since all constraints in (CAP) are convex x is a feasible solution for (CAP). Moreover, by
convexity of the functions gi we have that

mX
i=1

gi(xi�) =

mX
i=1

gi

 
LiX
`=1

�`
i�y

`
i

!
�

mX
i=1

LiX
`=1

gi(�
`
i�)y

`
i :

Thus, the desired inequality follows. 2

This result suggests that the formulation (MP) is more promising than (CAP) when
solving the convex assignment problem by a Branch and Bound scheme.

2.2 A Branch and Price scheme for (MP)

2.2.1 Solving the convex assignment problem

The convex assignment problem is a (non-linear) Integer Programming Problem which
can be solved to optimality by using, for example, a Branch and Bound algorithm. One
of the factors determining the performance of this algorithm is the quality of the lower
bounds used to fathom nodes. Proposition 2.1 shows that the lower bound given by
relaxing the integrality constraints in (MP) is at least as good as the one obtained by
relaxing the integrality constraints in (CAP). Thus, the set partitioning formulation for
the convex assignment problem looks more attractive when choosing a Branch and Bound
scheme. There are other reasons to opt for this formulation like the possibility of adding
constraints that are diÆcult to express analytically.

A standard Branch and Bound scheme would require all the columns to be available,
but (in the worst case) the number of columns (and thus the number of variables) of (MP)
can be exponential in the size of the problem. This makes a standard Branch and Bound
scheme quite unattractive for (MP). However, since the number of constraints in (MP)
is relatively small with respect to the number of variables, only few variables will have
strictly positive value in the optimal solution of LP(MP). Thus, only a very small subset
of columns is relevant in the optimization of LP(MP). Basically, this is the philosophy
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behind Column Generation techniques (see Gilmore and Gomory [11]). Combining a
Branch and Bound scheme with a column generation procedure yields a so-called Branch
and Price algorithm. Barnhart et al. [1] have uni�ed the literature on Branch and Price
algorithms for large scale Mixed Integer Problems. They focus on branching rules and
some computational issues relevant in the implementation of a Branch and Price scheme.
We will concentrate mainly on the pricing problem. We will also present a greedy heuristic
which generates an initial set of columns for (MP). A similar approach has been followed
by Chen and Powell [5] for parallel machine scheduling problems when the objective
function is additive in the jobs.

2.2.2 Column generation scheme

Usually, the number of columns associated with each agent will be extremely large, thus
prohibiting the construction and solution of LP(MP) as formulated above. However,
one may solve LP(MP) using only a subset (say N) of its columns (and refer to the
corresponding reduced problem as LP(MP(N))). If it is then possible to check whether
this solution is optimal for LP(MP), and to generate an additional column that will
improve this solution if it is not, we can solve LP(MP) using a so-called column generation
approach:

Column generation for LP(MP)

Step 0. Construct a set of columns, say N0 � f(`; i) : ` = 1; : : : ; Li; i = 1; : : : ; mg, such
that LP(MP(N0)) has a feasible solution. Set N = N0.

Step 1. Solve LP(MP(N)), yielding y�(N).

Step 2. If y�(N), extended to a solution of LP(MP) by setting the remaining variables
to zero, is optimal for LP(MP): STOP.

Step 3. Find a column (or a set of columns) so that the new objective value is at least
as good as the objective value of y�(N) and add this column (or set of columns)
to N . Go to Step 1.

Steps 2 and 3 verify that the optimal solution of LP(MP(N)) is also optimal for
LP(MP) or �nd a new columns to add to LP(MP(N)) that may improve the current ob-
jective value. The information contained in the optimal dual multipliers of the constraints
of LP(MP(N)) is used to perform those steps. In the following we will describe the steps
of the algorithm in more detail.

Step 0: Initial columns

The column generation procedure calls for an initial set of columns N0 to start with. For
this purpose, a straightforward generalization of the class of greedy heuristics proposed by
Martello and Toth [14] for the GAP can be used. An element of this class asymptotically
yields a feasible and optimal solution with probability one for large numbers of customers
(see Romeijn and Romero Morales [19]). The basic idea is that each possible assignment
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of an object to an agent is evaluated by a pseudo-cost function f(i; j). The desirability
of assigning an object is measured by the di�erence between the second smallest and the
smallest values of f(i; j). Assignments of objects are made in decreasing order of this
di�erence. Along the way, some agents will not be able to handle some of the objects due
to the constraints de�ned by the sets Xi, and consequently the values of the desirabilities
will be updated taking into account that the two most desirable agents for each object
should be feasible.

We will denote a partial solution for (CAP) by xG. Let |̂ be an object which has not
been assigned yet and xG [ f(̂{; |̂)g the partial solution for (CAP) where the assignment
of object |̂ to agent {̂ is added to xG. More formally,

(xG [ f(̂{; |̂)g)ij =

8<
:

xGij if j 6= |̂; i = 1; : : : ; m
1 if (i; j) = (̂{; |̂)
0 otherwise.

This greedy heuristic can formally be written as follows:

Greedy heuristic for (CAP)

Step 0. Set L = f1; : : : ; ng, NA = � and xGij = 0 for each i = 1; : : : ; m and j = 1; : : : ; n.

Step 1. Let

Fj = fi = 1; : : : ; m : xG [ f(i; j)g 2 Xig for j 2 L:

If Fj = � for some j 2 L, the algorithm cannot assign object j; then set
L = L n fjg, NA = NA[ fjg and repeat Step 1. Otherwise, let

ij 2 argmin
i2Fj

f(i; j) for j 2 L

�j = min
s2Fj

s6=ij

f(s; j)� f(ij; j) for j 2 L:

Step 2. Let |̂ 2 argmaxj2L �j. Set

xGi|̂|̂ = 1

L = L n f|̂g:

Step 3. If L = �: STOP. If NA = �, xG is a feasible assignment for (CAP), otherwise
xG is a partial feasible assignment for (CAP). Otherwise, go to Step 1.

The challenge is to specify a pseudo-cost function that will yield a good (or at least a
feasible) solution to (CAP). See Martello and Toth [14] for suggested pseudo-cost functions
for the GAP; and Romeijn and Romero Morales [19, 21] for pseudo-cost functions for the
GAP and a variant of the multi-period single-sourcing problem for which the greedy
heuristic is asymptotically feasible and optimal in a probabilistic sense.

The output of this heuristic is a vector of feasible assignments xG, which is (at least)
a partial solution to (CAP), and thus yields a set of columns for (MP). As mentioned in
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the previous section, the optimal dual vector of LP(MP(N0)) is required to perform Steps
2 and 3. Thus, when the solution is only a partial one, LP(MP(N0)) is infeasible and we
cannot start the column generation procedure. Moreover, it could also be the case that
(MP) is infeasible. To overcome those two situations we have added a dummy variable
sj � 0 to the j-th constraint (1) with a high cost, for each j = 1; : : : ; n. This ensures
that LP(MP(N0)) always has a feasible solution, and infeasibility of this LP-problem is
characterized by the positiveness of some of the dummy variables.

Steps 2 and 3: The Pricing Problem

A major issue in the success of the column generation approach is of course the viability
of Steps 2 and 3. The usual approach is to consider the dual problem D(MP) to LP(MP):

maximize
nX

j=1

uj �
mX
i=1

Æi

subject to D(MP)

nX
j=1

�`
ijuj � Æi � gi(�

`
i�) ` = 1; : : : ; Li; i = 1; : : : ; m

uj free j = 1; : : : ; n

Æi free i = 1; : : : ; m:

Now note that the optimal dual solution corresponding to y�(N), say (u�(N); Æ�(N)),
satis�es all dual constraints in D(MP) corresponding to elements (`; i) 2 N . Moreover,
if it satis�es all dual constraints in D(MP), then y�(N) (extended with zeroes) is the
optimal solution to LP(MP). The challenge is thus to check feasibility of the dual solution
(u�(N); Æ�(N)). This can, for example, be achieved by solving, for each i = 1; : : : ; m, the
following optimization problem

minimize gi(z)�
nX

j=1

u�j(N)zj + Æ�i (N)

subject to

zj 2 f0; 1g j = 1; : : : ; n

z 2 Xi

thereby �nding the minimum slack in all dual constraints. If all these optimization prob-
lems yield a nonnegative value, then all dual constraints are satis�ed. Otherwise, feasible
solutions with positive objective function value correspond to columns that would enter
the basis if added to LP(MP(N)) (starting from y�(N)).

The success of the column generation procedure depends on the ability to solve this
subproblem eÆciently, thus, its structure is crucial. For example, Savelsbergh [22] shows
that this subproblem turns out to be a Knapsack Problem for the case of the GAP.
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2.2.3 Branching

If the optimal solution of the LP-relaxation of (MP) is not integer we need to branch
to obtain an optimal integer solution. Since the LP-relaxation of (MP) has been solved
by column generation, it is unlikely that all columns are present in the �nal reduced
linear programming problem. Thus, by using a Branch and Bound scheme using only the
columns thus generated, we will in the best case end up with only a feasible solution for
(MP). This approach thus yields a heuristic for solving the convex assignment problem.

If we want a certi�cate of optimality new columns (when needed) should be generated
when branching. The choice of the branching rule is crucial since it can destroy the
structure of the pricing problem. The straightforward choice would be to branch on
the variables y`i . Fixing one of those variables to zero is equivalent to prohibiting the
generation of that column again. As Savelsbergh [22] pointed out for the GAP, with this
branching rule we may need to �nd not only the optimal solution of the pricing problem
but also the second optimal solution for it. Usually we cannot incorporate this additional
information into the pricing problem directly, thereby prohibiting an eÆcient algorithm
for the pricing problem. However, the proof of Proposition 2.1 shows that each feasible
solution y for (MP) has a corresponding feasible solution x for (CAP). Moreover, it is
easy to see that if y is fractional then x is fractional as well. Thus, we can branch on
the fractional variables xij. We may observe that the subproblems obtained by branching
on the xij variables are again convex assignment problems. Thus, the column generation
procedure in each node of the tree is the same as in the root node.

3 A special case

3.1 Introduction

In this section we will consider a class of convex assignment problems for which the pricing
problem exhibits an attractive property. In the disciplines of logistics and scheduling, the
situation where objects require some resources which are available at the agents appears
frequently (for example, see Mazzola and Neebe [16]). The limited availability of those
resources can often be modeled by means of knapsack constraints and the costs as linear
functions.

In the remainder of this section we will analyze the class of convex assignment problems
where for each agent i the set Xi is de�ned by a knapsack constraint and the costs gi are
equal to the sum of a linear function in xi� and a convex penalization of the use of the
resource of agent i. More precisely, we will choose

Xi =

(
z 2 [0; 1]n :

nX
j=1

!ijzj � 
i

)

gi(z) =
nX

j=1

�ijzj +Gi

 
nX

j=1

!ijzj

!
for each z 2 R

n :

We may notice that the GAP is still a member of this class with Gi = 0 for each i =
1; : : : ; m. Some extensions of the GAP are also included. The convex penalty function

8



could be seen as a way of modeling a situation where the resource capacities are not rigid,
and where they are allowed to be exceeded at some cost (see Srinivasan and Thompson
[23]). Another example could be that a convex penalty is used to model the fact that it is
undesirable to plan the use of resources to full capacity, due to possible deviations from
the predicted requirements when a solution is implemented. As we will see in Section 4,
a variant of the MPSSP is another relevant example of a member of this class.

Since this is a subclass of the class of convex assignment problems, we can use the
Branch and Price scheme described in Section 2.2. As mentioned above, the success of this
procedure depends on how eÆciently we can solve the pricing problem. After rearranging
terms and transforming it into a maximization problem, the pricing problem for this class
associated with agent i reads

maximize
nX

j=1

�
u�j(N)� �ij

�
zj �Gi

 
nX

j=1

!ijzj

!
� Æ�i (N)

subject to

nX
j=1

!ijzj � 
i

zj 2 f0; 1g j = 1; : : : ; n:

Without loss of optimality we can leave out the constant term Æ�i (N). The feasible region
of this problem is described by a knapsack constraint. As in the Knapsack Problem, items
which are added to the knapsack yield a pro�t u�j(N)��ij . However, in contrast with the
traditional Knapsack Problem, the utilization of the knapsack is penalized by the convex
function Gi. We will call this problem the Penalized Knapsack Problem (PKP) and it
will be analyzed in the next section.

3.2 The Penalized Knapsack Problem

3.2.1 De�nition of the problem

Consider a knapsack with a certain capacity and a set of items which make use of this
capacity. When adding an item to the knapsack a pro�t is obtained. However, the total
use of the knapsack will be penalized by a convex function. The PKP is the problem of
choosing items in such a way that the capacity constraint is not violated when we add
those items to the knapsack and the total pro�t minus the penalization on the use of the
knapsack is maximal.

Let n denote the number of items. The required space of item j is given by !j � 0,
and the pro�t associated with adding item j to the knapsack is equal to pj � 0. Let 

be the capacity of the knapsack, and let G(u) denote the penalization of using u units of
capacity of the knapsack, where G is a convex function. The PKP can then be formulated
as follows:

maximize
nX

j=1

pjzj �G

 
nX

j=1

!jzj

!
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subject to

nX
j=1

!jzj � 


zj 2 f0; 1g j = 1; : : : ; n:

Since all items with zero space requirement will de�nitely be added to the knapsack, we
can without loss of generality assume that !j > 0 for each j = 1; : : : ; n. However, contrary
to the ordinary knapsack problem, items with pj = 0 cannot a priori be excluded from
the knapsack, since the penalty function is not required to be nondecreasing, and thus
adding such an item to the knapsack can be pro�table. If the penalization on the use of
the knapsack is nonpositive, i.e. G(u) � 0 for each u 2 [0;
], we know that the optimal
solution of the problem is maximal in the sense that no additional items can be added
to the knapsack without violating the capacity constraint, see Martello and Toth [15].
However, in the general case, it may occur that the pro�t associated with adding an item
to the knapsack is not enough to compensate for the penalization of the capacity used
to add this item to the knapsack. The same follows for the relaxation of the PKP, say
R(PKP), where the integer constraints are relaxed.

Consider the case where some items have been already added to the knapsack. Let u
be the used capacity by those items. We will say that item j not yet in the knapsack is
a feasible item for the knapsack if

u+ !j � 
;

and that it is pro�table if it is feasible and

pj �G(u+ !j) = max

2[0;1]

fpj
 �G(u+ !j
)g:

3.2.2 Example

Consider the following example of the PKP where there is only one item to be added to
the knapsack (n = 1) with pro�t p1 = 10 and required space !1 = 20. Moreover, let the
capacity of the knapsack be equal to 
 = 25 and the penalization equal to G(u) = 15u2.
This particular instance of the PKP reads

maximize 10z1 � 15z21

subject to

20z1 � 25

z1 2 f0; 1g:

The item is feasible since the required space (20) is below the capacity (25). The objective
value of not adding the item to the knapsack (z1 = 0) is equal to 0, and the cost of adding
it to the knapsack completely is equal to �5. Thus, the item is not pro�table and the
optimal solution of the PKP is equal to 0. Figure 1 plots the value of its relaxation
R(PKP). We may observe that the maximum of this function is attained at z�1 =

1
3
even

though, as we have seen before, the item can be feasibly added to the knapsack.
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Figure 1: Value of the relaxation R(PKP) of PKP

3.2.3 The relaxation

One of the properties of the PKP is that the optimal solution of its relaxation R(PKP) has
the same structure as the optimal solution of the LP-relaxation of the standard Knapsack
Problem (see Martello and Toth [15]), and can be solved explicitly as well.

Assume that the items are ordered according to non-increasing ratio pj=!j. Assume
that items 1 till item ` � 1 can be feasibly added to the knapsack. Let P `(
), where

 2 [0; 1], be the objective value of R(PKP) associated with the solution zj = 1 for each
j = 1; : : : ; `� 1, zj = 0 for each j = `+ 1; : : : ; n, and z` = 
. The next lemma shows the
behaviour of this function.

Lemma 3.1 P `(�) is a concave function.

Proof: Let u be the capacity used by items 1 till ` � 1, i.e., u =
P`�1

j=1 !j. The domain

of the function P ` is the segment
h
0;minf1; 
�u

!`
g
i
. Thus, we have that

P `(
) =
`�1X
j=1

!j + p`
 �G(u+ !`
)

which a concave function in 
. 2

Given that items 1 till ` � 1 have been added to the knapsack, item ` is pro�table if
it is feasible and the maximum of the function P `(�) is reached at 
 = 1. This can be
characterized by the condition (P `)0�(1) � 0, where (P `)0�(
) denotes the left derivative
of the function P ` in 
. De�ne items k1 and k2 as

k1 = minf` = 1; : : : ; n :
X̀
j=1

!j > 
g
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k2 = minf` = 1; : : : ; n : (P `)0�(1) < 0g:

By de�nition, k1 is the �rst item which cannot be added completely to the knapsack due
to the capacity constraint, and item k2 is the is the �rst item which will not be added
completely to the knapsack due to the penalization of the capacity utilization. Now de�ne
item s as

s = min(k1; k2);

i.e., the �rst item which should not be completely added to the knapsack due to either
the capacity constraint or because it is not pro�table. In the next proposition we show
that the optimal solution for R(PKP) just adds to the knapsack items 1; : : : ; s � 1 and
the feasible and pro�table fraction 
� of item s, i.e.,


� = minf
�1 ; 

�
2g

where


�1 =

�

Ps�1
j=1 !j

!s

and 
�2 is the maximizer of the function P s(�).

Proposition 3.2 The vector �z 2 R
n de�ned by

�zj =

8<
:

1 if j < s

� if j = s
0 if j > s

is an optimal solution for R(PKP).

Proof: Let z be a feasible solution for R(PKP). The idea is to show that there exists a
feasible solution ẑ at least as good as z so that ẑj = 1 for each j = 1; : : : ; s� 1 and ẑj = 0
for each j = s+1; : : : ; n. By the de�nition of item s and fraction 
�, �z is at least as good
as ẑ. Thus, the desired result follows.

Suppose that there exists an item r = 1; : : : ; s � 1 so that zr < 1. If zq = 0 for each
q = s; : : : ; n we can construct a better solution by increasing zr to 1 because the �rst
s � 1 items are feasible and pro�table. Thus, assume that there exists q = s; : : : ; n so
that zq > 0. By increasing zr by " > 0 and decreasing zq by "!r=!q the used capacity
remains unchanged which implies that the penalization remains the same. Moreover, the
pro�t associated with the new solution is at least as good as the pro�t in z since

pr"� pq" !r=!q = " !r(pr=!r � pq=!q) � 0

because r < q. Hence, we can assume that zj = 1 for each j = 1; : : : ; s� 1.
Now we will prove that zj = 0 for each j = s+ 1; : : : ; n. Suppose that there exists an

item r = s+ 1; : : : ; n so that zr > 0. Then, zs < 
�1 since zj = 1 for each j = 1; : : : ; s� 1.
In this case, by increasing zs by " > 0 and decreasing zr by "!r=!q it follows in a similar
way as above that the new solution is at least as good as z. 2

12



Lemma 3.1 and Proposition 3.2 suggest a procedure to solve R(PKP) explicitly. We
will denote the optimal solution for R(PKP) by zR and a feasible solution for the PKP
by zIP. We will add items to the knapsack while there is enough space and the objective
function does not decrease, i.e., P `(1) � P `(0). Let r be the last item added to the
knapsack. If we stop due to infeasibility, then the critical item is s = r + 1. Otherwise,
the objective function decreases if item r+1 is completely added to the knapsack. Then,
there are two possible cases. In the �rst case, the function P r is an increasing function,
thus the item s = r+1 is the �rst item which is not pro�table. Otherwise, the maximum
of the function P r is attained at 
 2 (0; 1), so this is the critical item, i.e. s = r. However,
we only realize that when we try to add item r + 1. More precisely, if (P r)0�(1) � 0 then
s = r + 1, otherwise s = r. Finally, it remains to evaluate the optimal fraction 
�s which
can be found eÆciently since it is the maximizer of a concave function (see Hiriart-Urruty
and Lemar�echal [13]). We may observe that as a by-product we obtain a feasible solution
zIP for the PKP. We can set zIPj = 1 for each j = 1; : : : ; r, and zIPj = 0 otherwise.

Recall that the items have been renumbered so that if j < k then pj
!j
� pk

!k
.

Solving R(PKP)

Step 0. Set J = f1; : : : ; ng. Set zRj = 0, and zIPj = 0 for each j = 1; : : : ; n.

Step 1. Set |̂ = argminfj 2 Jg and J = J n f|̂g. If |̂ is not feasible then set

s = |̂

zRs =

�

Ps�1
j=1 !j

!s

;

and STOP.

Step 2. If P |̂(1) � P |̂(0), set

zIP|̂ = 1

zR|̂ = 1

and go to Step 1. Else, if (P |̂�1)0�(1) � 0 set s = |̂, else set s = |̂� 1. Set

zR|̂ = arg max

2[0;1]

P s(
);

and STOP.

Step 2 is illustrated by Figures 2 and 3. In the �rst case (see Figure 2), item s � 1
was added completely since P s�1 is a strictly increasing function. However, the objective
function drops from 20 to 15 by adding item s to the knapsack. Thus, this is the �rst item
which is not pro�table. However, in the second case (see Figure 3) the objective function
increases from 20 to 25 by adding item s to the knapsack. Nevertheless, the maximum
of the objective function is attained at 
s = 0:8, so this is the critical item. However, we
only realize that after we try to add item s + 1.
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4 The Multi-Period Single-Sourcing Problem

In this section we will introduce the notation of the MPSSP and we will show that it is
a member of the class of convex assignment problems presented in Section 3.1.

Let n denote the number of customers, m the number of facilities, and T the planning
horizon. The total demand of customer j throughout the planning horizon is given by
dj. The demand patterns over time of the customers are assumed to exhibit a common
seasonality, represented by nonnegative seasonal factors �t for each t = 1; : : : ; T , satisfyingPT

t=1 �t = 1. Thus, the demand of customer j in period t is equal to �tdj. Let bit denote
the production capacity at facility i in period t. The costs of supplying customer j by
facility i in period t are equal to cijt. The unit inventory holding costs at facility i in period
t are given by hit. (All parameters are nonnegative by de�nition.) For convenience, we
assume that each warehouse has essentially unlimited physical and throughput capacity.
In other words, we assume that its physical capacity is suÆcient to be able to store
the cumulative excess production of its corresponding plant, even if this plant produces
to full capacity in each period. In addition, the throughput capacity is large enough
for the warehouse to be able to supply any combination of customers assigned to it.
However, these two types of capacity constraints can be easily added at little expense to
the algorithm.

The MPSSP can be formulated as follows:

minimize
TX
t=1

mX
i=1

nX
j=1

cijtxij +
TX
t=1

mX
i=1

hitIit

subject to (P0)

�t �
nX

j=1

djxij + Iit � bit + Ii;t�1 i = 1; : : : ; m; t = 1; : : : ; T (3)

mX
i=1

xij = 1 j = 1; : : : ; n

xij 2 f0; 1g i = 1; : : : ; m; j = 1; : : : ; n

Ii0 = 0 i = 1; : : : ; m

Iit � 0 i = 1; : : : ; m; t = 1; : : : ; T

where xij is equal to 1 if customer j is assigned to facility i and zero otherwise, and Iit
represents the amount of product in storage at facility i at the end of period t. Hereafter
x 2 R

mn will denote the vector with components xij and similarly for I 2 R
mT .

Romeijn and Romero Morales [21] have shown for a variant of the MPSSP that the
inventory variables can be eliminated, at the expense of introducing convexity in the
objective function, i.e., an equivalent formulation with a convex objective function exists.
In our case, this reformulation of the MPSSP yields a Single-Sourcing Problem (hereafter
SSP) with convex objective function.
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Proposition 4.1 (P0) can be equivalently reformulated as:

minimize
mX
i=1

nX
j=1

 
TX
t=1

cijt

!
xij +

mX
i=1

Hi

 
nX

j=1

djxij

!

subject to (P)

nX
j=1

djxij � min
t=1;:::;T

�Pt

�=1 bi�Pt

�=1 ��

�
i = 1; : : : ; m

mX
i=1

xij = 1 j = 1; : : : ; n

xij 2 f0; 1g i = 1; : : : ; m; j = 1; : : : ; n

where Hi(u) is the convex function given by the optimal value of the following problem

minimize
TX
t=1

hitIt

subject to

It � It�1 � bit � �tu t = 1; : : : ; T

I0 = 0

It � 0 t = 1; : : : ; T:

Proof: Let F be the feasible region of (P0). By decomposing (P0), we obtain the following
equality

min
(x;I)2F

 
TX
t=1

mX
i=1

nX
j=1

cijtxij +
TX
t=1

mX
i=1

hitIit

!
=

= min
x:9I0 (x;I0)2F

 
mX
i=1

nX
j=1

 
TX
t=1

cijt

!
xij + min

I:(x;I)2F

TX
t=1

mX
i=1

hitIit

!

= min
x:9I0 (x;I0)2F

 
mX
i=1

nX
j=1

 
TX
t=1

cijt

!
xij +H(x)

!

where H(x) is equal to

minimize
mX
i=1

TX
t=1

hitIt

subject to

Iit � Ii;t�1 � bit � �t �
nX

j=1

djxij i = 1; : : : ; m; t = 1; : : : ; T

Ii0 = 0 i = 1; : : : ; m

Iit � 0 i = 1; : : : ; m; t = 1; : : : ; T:
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This problem is separable in i, and moreover for each i = 1; : : : ; m it only depends onPn

j=1 djxij. Thus, H(x) =
Pm

i=1Hi

�Pn

j=1 djxij
�
. Now we will show that the feasible

region of the decomposed problem is equal to the feasible region of (P). Consider some x
so that there exists a feasible solution (x; I) for (P0). For each facility i, we aggregate the
capacity constraints over all the periods. Then, we obtain

TX
t=1

 
�t �

nX
j=1

djxij + Iit

!
�

TX
t=1

(bit + Ii;t�1)

 
TX
t=1

�t

!
�

nX
j=1

djxij +
TX
t=1

Iit �
TX
t=1

bit +
TX
t=1

Ii;t�1

 
TX
t=1

�t

!
�

nX
j=1

djxij + IiT �
TX
t=1

bit + Ii0

which is equivalent to 
TX
t=1

�t

!
�

nX
j=1

djxij + IiT �
TX
t=1

bit

and this implies  
TX
t=1

�t

!
�

nX
j=1

djxij �
TX
t=1

bit:

The previous inequality shows that x is feasible for (P). Now, consider a feasible solution
x to (P). Then, we know there exists a vector y 2 R

mT so that

yit � bit i = 1; : : : ; m; t = 1; : : : ; T

and
TX
t=1

yit =
TX
t=1

�t

nX
j=1

djxij i = 1; : : : ; m

(Note that y can be interpreted as a set of feasible production levels corresponding to
(x; I) in the original three-level formulation of (P0).) Now, de�ne Iit as

Iit =
tX

�=1

yi� �

 
tX

�=1

��

!
�

nX
j=1

djxij

for each i = 1; : : : ; m and t = 1; : : : ; T . It is easy to see that Iit is nonnegative, and
(x; I) 2 F . This means that x is a feasible solution for the decomposed problem.

With respect to function Hi(u) it is easy to see that has a �nite value and thus by
strong LP-duality we obtain

Hi(u) = min

(
TX
t=1

hitIt : It � It�1 � bit � �tu; I0 = 0; It � 0; t = 1; : : : ; T

)
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= max

(
TX
t=1

(�tu� bit)wt : w 2 Wi

)

where

Wi = fw 2 R
T : �wt + wt+1 � hit; t = 1; : : : ; T � 1; wt � 0; t = 1; : : : ; Tg:

Now let � 2 [0; 1] and �x u; u0 2 R. Then

max

(
TX
t=1

((�u+ (1� �)u0)�t � bit)wt : w 2 Wi

)

= max

(
�

TX
t=1

(�tu� bit)wt + (1� �)
TX
t=1

(�tu
0 � bit)wt : w 2 Wi

)

� �max

(
TX
t=1

(�tu� bit)wt : w 2 Wi

)
+

(1� �)max

(
TX
t=1

(�tu
0 � bit)wt : w 2 Wi

)

which shows the convexity of Hi(u). 2

The function Hi calculates the minimal inventory costs at facility i needed to be able
to supply the customers assigned to it. We may observe that the value of the inventory
costs at each facility only depends on the total demand required by the customers assigned
to it. The previous proposition tells us that the MPSSP belongs to the class of convex
assignment problems introduced in Section 3.1 by choosing

gi(z) =
nX

j=1

 
TX
t=1

cijt

!
zj +Hi

 
nX

j=1

djzj

!
for each z 2 R

n

Xi =

(
z 2 [0; 1]n :

nX
j=1

djzj � min
t=1;:::;T

�Pt

�=1 bi�Pt

�=1 ��

�)
:

We know that function Hi is convex. In fact, it is easy to show that this function is also
piecewise linear. This is illustrated by an example, where we will suppress the index i for
convenience. Consider n = 1, T = 3, and

� = (1; 1; 1)>

h = (2; 2; 2)>

d1 = 25

b = (50; 20; 10)>:

In that case, we have that H(z1) is equal to the optimal value of

minimize 2(I1 + I2 + I3)
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Figure 4: The inventory costs

subject to

I1 � I0 � 50� 25z1

I2 � I1 � 20� 25z1

I3 � I2 � 10� 25z1

I0 = 0

It � 0 t = 1; 2; 3:

Figure 4 plots the optimal objective function value of its LP-relaxation as a function of
the fraction z1 of the item added to the knapsack. Thus, we observe that it is a piecewise
linear function in the fraction z1 added to the knapsack. Note that each breakpoint
corresponds to a new inventory variable becoming positive. In this particular case, all
inventory variables are equal to zero if the fraction of the demand supplied is below 0:4,
i.e., z1 2 [0; 0:4]. If z1 2 (0:4; 0:6], I2 becomes positive. Finally, if z1 2 (0:6; 1], I1 also
becomes positive.

5 Testing the Branch and Price algorithm

5.1 Experimental design

The MPSSP is an NP-Hard problem since for T = 1 we obtain the SSP, which is NP-
Hard (see Martello and Toth [15]). Moreover, the decision problem associated with the
feasibility of the MPSSP is an NP-Complete problem. Therefore, even to test whether
a problem instance has at least one feasible solution is computationally hard. In this
section we propose a stochastic model for the MPSSP where the tightness of the random
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instances can be controlled. The numerical results generated in Section 5.2 illustrate the
hardness of those instances.

When testing a procedure the data generation schemes may introduce biases into the
computational results, see Hall and Posner [12]. For the particular case of the GAP,
Romeijn and Romero Morales [20] have proposed and studied a stochastic model. In this
section we describe a general stochastic model for the MPSSP based on the stochastic
model for the GAP. Consider the following probabilistic model for the parameters of
the MPSSP. For each j = 1; : : : ; n, let (Dj; Cj) be i.i.d. random vectors in [D;D] �
[C;C]mT where Cj = (Cijt)i=1;:::;m; t=1;:::;T . We assume that the vector (Dj; Cj) is absolutely
continuous for each j = 1; : : : ; n. Furthermore, let bit depend linearly on n, i.e., bit = �itn,
for positive constants �it. Observe that m and T are �xed, thus the size of the MPSSP
only depends on the number of customers n.

In Proposition 4.1 we have shown that the MPSSP can be reformulated as a SSP with
convex objective function. The SSP is a particular case of the GAP, and its feasibility
is clearly not a�ected by the convexity of the objective function. We can thus apply the
results found for the standard GAP by Romeijn and Piersma [18]. They observe that
feasibility of the problem instances is not guaranteed under the above stochastic model,
even for the LP-relaxation of the GAP, and �nd an implicit condition on the parameters
of the GAP to ensure feasibility with probability one as the number of agents m grows to
in�nity. The following assumption ensures feasibility of the MPSSP with probability one
as n goes to in�nity.

Theorem 5.1 (cf. Romeijn and Piersma [18]) As n �!1 , the MPSSP is feasible
with probability one if

mX
i=1

min
t=1;:::;T

�Pt

�=1 �i�Pt

�=1 ��

�
> E(D1);

and infeasible with probability one if the inequality is reversed.

5.2 Computational results

The Branch and Price algorithm for the MPSSP has been tested on instances generated
according to the stochastic model proposed in Section 5.1. Uniform coordinates in the
square [0; 10]2 were generated for facilities and customers. The total demand dj was
generated uniformly in [5; 25]. The seasonal factors �t were chosen as in Table 1. The
costs of supplying customer j by facility i in period t, cijt, were calculated as the product
of the Euclidean distance from customer j to facility i times the demand of customer j
in period t. The unit inventory holding costs hit were uniformly generated in [10; 30].
Finally, capacities were assumed to be equal for each facility and each period. According
to Theorem 5.1, condition

� > �min �
15

m
max

�=1;:::;T

1

�

�X
t=1

�t

ensures feasibility of the instances with probability one when the number of customers
goes to in�nity. We have chosen � = 1:1� �min.
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t 1 2 3 4 5 6
�t

1
9

1
6

2
9

2
9

1
6

1
9

Table 1: Values of �t

We have run the greedy heuristic for (CAP) given in Section 2.2.2 to get an initial
set of columns in the root node. We have chosen f(i; j) =

PT

t=1 cijt +
PT

t=1 �
�
it�tdj where

��it � 0 is the optimal dual multiplier of the capacity constraint (3) in the LP-relaxation
of the MPSSP (where constraints (3) are rewritten in �-form to ensure that � � 0).
Romeijn and Romero Morales [21] have shown that this pseudo-cost function yields a
heuristic that is asymptotically feasible and optimal with probability one for a variant of
the MPSSP, and we conjecture that the same result holds for this greedy heuristic when
applied to the variant of the MPSSP under consideration in this paper. We have already
remarked that the greedy heuristic for (CAP) does not guarantee a feasible solution for
the assignment constraints. A neighborhood search heuristic was implemented in a similar
way as Romeijn and Romero Morales [21] for a variant of the MPSSP to try to assign the
unassigned customers. A second neighborhood search heuristic was used to improve the
objective value of the solution obtained by the greedy heuristic. The same procedure has
been applied in each node of the tree with depth at most 10 to improve the best integer
solution found by the Branch and Price algorithm.

When, for a given set of columns N , we do not have a certi�cate of optimality of
the reduced problem LP(MP(N)) we search for columns pricing out for each facility.
The procedure we follow for each facility is as follows. We �rst run a greedy heuristic
for the PKP similar to the one proposed by Rinnooy Kan, Stougie, and Vercellis [17]
for the Multi-Knapsack Problem. Let � 2 R

T
+ , and let pj �

PT

t=1 �t�tdj be a weight
function measuring the value of adding item j to the knapsack. We order the set of items
according to non-increasing value of the weight function. Each time an item is added
to the knapsack, we calculate the remaining capacity. It could happen that some of the
remaining items cannot (or should not) be added anymore because there is not enough
capacity, or they are not pro�table because the payment for using extra capacity is larger
than the bene�t of adding them to the knapsack. For all those items j which cannot
be added the variables zj are forced to 0. In the current implementation of the Branch
and Price we have, for reasons of computational eÆciency, simply chosen �t = 0 for each
t = 1; : : : ; T . When the obtained column does not price out, we use a Branch and Bound
procedure for the PKP with depth-�rst search. We have branched on the variable equal
to one from the optimal solution of the relaxation of the PKP (see Martello and Toth
[15]). The relaxation of the PKP was solved explicitly as shown in Section 3.2.3. Without
extra computational e�ort we were able to add more than one column pricing out. More
precisely, we have added all columns pricing out from the sequence of improving solutions
found in the tree.

With respect to the branching rule for (MP), we have chosen the variable xij which is
closest to 0:5. Preliminary tests have indicated that this is a good choice.

To avoid a large number of columns in the model, we have included two types of
deletions of columns. The �rst one concerns the new columns added to the model in each
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iteration of the column generation procedure. Each time that the number of columns
added to the model is larger than �1, we eliminate a fraction �1 of the ones with reduced
costs larger than �1. The second deletion a�ects all the columns in the model and works
in a similar way. It is applied when the number of columns is larger than �21, �

2
2; : : :.

In this paper we have chosen, �1 = 10, �21 = 1000, �22 = 2000, : : :, �1 = �2 = 0:9 and
�1 = �2 = 0:99.

All the runs were performed on a PC with a 350 MHz Pentium II processor and 128
MB RAM. All LP-relaxations were solved using CPLEX 6.5 [6]. In contrast with most
literature on column generation, we have compared the performance of our Branch and
Price algorithm with the performance of the MIP solver from CPLEX applied to the
standard formulation of the MPSSP. The objective value of the solution given by the
greedy heuristic for (CAP) was given to CPLEX as an upper bound. Our computational
experiences have shown us that both procedures �nd most of the times the optimal solution
in an early stage, however to prove optimality can be very time consuming for some
instances. Thus, our Branch and Price algorithm and CPLEX as a MIP solver, were
stopped when the relative upper bound on the error of the best integer solution found
was below 1%.

We have generated 50 random problem instances for each size of the problem. For
all of them the number of periods T was �xed to 6. We have generated two classes of
instances. In the �rst class we �x the ratio between the number of customers and the
number of warehouses, and in the second one we �x the number of warehouses. Table
2 shows results of the performance of our Branch and Price algorithm and CPLEX as a
MIP solver for n=m = 5, and similarly, Table 3 for n=m = 10, Table 4 for m = 5 and
Table 5 for m = 10.

In the tables we have used the following notation. Column I indicates the size of the
problem, in the format m:n, and column fI indicates the number of these instances that
are feasible. Next, column f(h) tells us the number of times that the heuristic applied
to the MPSSP could �nd a feasible solution, column f(r) is the number of times that we
have a feasible solution in the root node, column f is the number of times that the Branch
and Price algorithm could �nd a feasible solution for the problem, and column s is the
number of instances that were solved successfully, i.e., either a solution with guaranteed
error less than 1% was found, or the instance was shown to be infeasible. The following
two columns give average results on the quality of the initial solutions: column er(h) is
the average upper bound on the error of the initial solution given by the heuristic, and
column er(r) gives the upper bound on the error of the solution obtained in the root node.
The latter two averages have been calculated only taking into account the instances where
a feasible solution was found. The following group of columns give information on the
Branch and Price phase of the algorithm. Column #c is the average number of columns
in the model at the end of the Branch and Price procedure, column #n is the average
number of nodes inspected, and column nt shows us how many times the optimal solution
of the MPSSP was found in the root node. The �nal columns pertaining to the Branch and
Price algorithm deal with computation times. Column t(h) is the average time used by
the heuristic for the MPSSP applied in the root node, and t is the average total time used
by the Branch and Price procedure. To illustrate the stability of this average, we have
also calculated the average time of the 45 fastest instances, see column tr which eliminates
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B&P CPLEX

I fI f(h) f(r) f s er(h) er(r) #c #n nt t(h) t tr f(c) s(c) t(c) tr(c)

2.10 41 39 41 41 50 1.29% 0.00% 44.78 0.74 50 0.01 0.06 0.05 41 50 0.06 0.05
3.15 41 40 40 41 50 2.46% 0.01% 110.46 0.82 49 0.02 0.11 0.10 41 50 0.14 0.12
4.20 43 41 43 43 50 3.97% 0.79% 211.36 1.16 44 0.04 0.26 0.23 43 50 3.49 0.37
5.25 38 37 37 38 50 1.93% 0.61% 237.14 1.26 39 0.10 0.56 0.45 38 50 8.44 1.00
6.30 46 43 44 46 50 2.45% 1.01% 395.36 3.10 34 0.08 1.37 0.87 46 47 240.20 6.99
7.35 49 44 44 49 50 2.40% 1.40% 498.12 4.42 24 0.11 2.18 1.60 49 46 356.65 30.10
8.40 48 48 48 48 50 3.53% 2.56% 591.50 4.44 21 0.13 2.94 2.44 48 48 448.01 52.09
9.45 49 46 47 49 50 3.67% 3.33% 872.26 23.46 9 0.18 16.23 6.58 48 41 776.39 478.71

Table 2: n=m = 5

B&P CPLEX

I fI f(h) f(r) f s er(h) er(r) #c #n nt t(h) t tr f(c) s(c) t(c) tr(c)

2.20 41 41 41 41 50 0.61% 0.00% 95.70 0.34 50 0.04 0.22 0.14 41 50 0.13 0.08
3.30 45 44 44 45 50 1.06% 0.13% 457.36 0.98 45 0.05 1.56 1.18 45 50 0.36 0.27
4.40 48 48 48 48 50 1.41% 0.31% 818.08 1.18 43 0.07 3.77 3.29 48 50 0.84 0.75
5.50 50 48 48 50 50 1.54% 1.00% 979.56 3.96 30 0.11 13.25 9.25 50 49 61.58 3.15
6.60 50 48 48 50 50 1.21% 0.93% 998.36 3.00 30 0.16 17.90 14.35 50 50 22.95 8.74
7.70 49 49 49 49 50 1.45% 1.15% 1274.70 5.32 25 0.23 35.04 28.39 49 50 37.78 15.99
8.80 50 50 50 50 50 1.86% 1.46% 1708.92 6.30 20 0.30 63.19 54.34 50 45 297.49 77.29
9.90 50 49 49 50 50 1.40% 1.16% 1924.38 6.60 25 2.15 99.98 74.96 50 45 359.16 194.94

Table 3: n=m = 10

B&P CPLEX

I fI f(h) f(r) f s er(h) er(r) #c #n nt t(h) t tr f(c) s(c) t(c) tr(c)

5.25 38 37 37 38 50 1.93% 0.61% 237.14 1.26 39 0.10 0.56 0.45 38 50 8.44 1.00
5.30 41 39 40 41 50 2.35% 0.83% 405.14 1.52 37 0.09 1.15 0.93 41 50 14.76 1.26
5.35 44 42 42 44 50 2.03% 1.09% 588.76 2.92 34 0.08 2.27 1.64 44 50 14.45 1.61
5.40 47 47 47 47 50 1.36% 0.57% 641.22 1.84 41 0.09 3.08 2.32 47 50 3.32 2.07
5.45 48 48 48 48 50 1.08% 0.34% 885.88 0.98 45 0.10 4.46 3.75 48 50 3.33 1.17
5.50 50 49 49 50 50 1.08% 0.53% 954.18 1.52 39 0.11 8.43 7.08 50 50 6.41 2.32
5.55 49 46 46 49 50 1.35% 0.66% 1334.34 4.28 31 0.13 22.25 16.12 49 50 90.93 3.81
5.60 50 50 50 50 50 0.61% 0.38% 1245.00 1.06 42 0.13 16.67 14.32 50 50 4.40 2.39
5.65 49 49 49 49 50 0.92% 0.51% 1308.68 1.26 40 0.15 26.90 21.77 49 50 2.66 2.32

Table 4: m = 5

B&P CPLEX

I fI f(h) f(r) f s er(h) er(r) #c #n nt t(h) t tr f(c) s(c) t(c) tr(c)

10.25 38 27 29 38 50 5.91% 1.75% 191.06 2.22 33 0.30 0.91 0.74 37 34 2345.88 1594.68
10.30 43 27 31 43 50 4.33% 1.77% 265.24 4.40 25 0.25 1.73 1.20 39 30 2819.48 1709.18
10.35 48 41 43 48 50 5.99% 4.24% 432.74 9.30 14 0.17 3.59 2.34 46 34 2233.45 1494.59
10.40 44 36 36 44 50 5.70% 3.85% 499.02 11.04 17 0.22 5.29 3.36 41 32 1621.04 1193.54
10.45 49 45 45 49 50 3.85% 3.38% 740.48 22.18 9 0.21 12.73 6.34 48 27 1696.40 1384.96
10.50 48 46 46 48 50 3.17% 2.67% 852.20 13.66 12 0.23 11.00 7.45 48 28 1844.87 1459.34
10.55 46 45 45 46 50 3.34% 3.09% 934.30 20.80 12 0.26 17.74 10.23 46 36 1125.14 842.64
10.60 47 45 45 47 50 2.82% 2.28% 1294.58 32.24 13 0.30 37.52 18.90 46 26 1420.94 1277.64
10.65 50 48 48 50 50 2.66% 2.57% 1201.68 25.96 6 0.30 38.69 25.53 49 34 891.78 743.60

Table 5: m = 10
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the few instances that have an extreme e�ect on the average running time. Finally, the
last results show the behaviour of CPLEX as a MIP solver. Column f(c) indicates the
number of times that CPLEX could �nd a feasible solution, and column s(c) shows the
number of times that CPLEX was successful (similar to column s above). Column t(c)
is the average total time employed by CPLEX and column tr(c) is the average of the 45
fastest instances.

The main conclusion that we can draw from Tables 2-5 is that the Branch and Price
algorithm is very well suited for solving the MPSSP problem studied in this paper, es-
pecially when the ratio between the number of customers and the number of warehouses
is not too large. For large ratios the MIP solver in CPLEX is the more eÆcient solution
approach to this MPSSP problem. The breakpoint lies somewhere between the ratios 5
and 10. In fact, CPLEX tends to become more eÆcient, even in an absolute sense, as the
number of customers grows for a �xed number of warehouses. A possible explanation for
this fact is that CPLEX, as well as the heuristic, seem to be able to take advantage of
the fact that, with an increase in the number of customers, the number of feasible options
for choosing which sets of customers to assign to a given warehouse also increases { not
only due to the increasing number of customers, but also due to an increased 
exibility in
switching customers between warehouses. On the other hand, for the Branch and Price
algorithm this increasing number of feasible assignments translates to an increase in the
number of columns in the set partitioning problem (MP), and thus in the number of
columns that may need to be generated in the column generation phase.

The second conclusion that can be drawn from the tables is that the Branch and
Price algorithm is much more successful in solving the problems than CPLEX. In fact,
the Branch and Price algorithm succeeded in �nding a solution with an error of at most
1% or giving a certi�cate of infeasibility of the instance for all of the instances generated,
while CPLEX often failed (due to a lack of memory) to solve the problem satisfactorily
{ especially for the larger instances, with failure rates up to 48% for instances with 10
warehouses.

Thirdly, the Branch and Price algorithm shows more stability in the computation
times, caused by fewer and/or less extreme outliers.

Finally, Tables 4 and 5 support our conjecture that the heuristic is asymptotically fea-
sible and optimal as the number of customers increases by showing an increasing number
of feasible instances, and a decreasing error exhibited by the heuristic solution.

6 Concluding remarks

In this paper we have generalized a Branch and Price algorithm that was developed for
the Generalized Assignment Problem (GAP) to a much richer class of problems, which we
have called CAP (Convex Assignment Problems). The viability of this approach depends
critically on the possibility of solving the pricing problem eÆciently. We have identi�ed
an important subclass of problems, containing many variants of the multi-period single-
sourcing problem (MPSSP), as well as some variants of the GAP, for which this is the
case. We have applied the method to a particular variant of the MPSSP, and have shown
that the Branch and Price algorithm is very useful for solving problems for which the
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ratio between the number of customers and the number of warehouses is at most 10. For
these problems the Branch and Price algorithm is more successful in �nding the optimal
solution, the computation times are superior (or comparable for large ratios between the
number of customers and the number of warehouses) to the computation times obtained
using the MIP solver of CPLEX, and show greater stability, i.e., fewer and less extreme
outliers are observed.
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