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Many real-world vehicle routing problems are dynamic optimization problems, with customer requests
arriving over time, requiring a repeated reoptimization. In this paper, we consider a dynamic vehicle
routing problem where one additional customer arrives at a beforehand unknown location when the vehicles are
already under way. Our objective is to maximize the probability that the additional customer can be integrated
into one of the otherwise fixed tours without violating time constraints. This is achieved by letting the vehicles
wait at suitable locations during their tours, thus influencing the position of the vehicles at the time when
the new customer arrives. For the cases of one and two vehicles, we derive theoretical results about the best
waiting strategies. The general problem is shown to be NP-complete. Several deterministic waiting strategies
and an evolutionary algorithm to optimize the waiting strategy are proposed and compared empirically. It is
demonstrated that a proper waiting strategy can significantly increase the probability of being able to service

the additional customer, at the same time reducing the average detour to serve that customer.
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1. Introduction
Dynamic vehicle routing with previously unknown
customer requests arriving over time has become
increasingly important in the transportation industry
as new technologies such as global positioning sys-
tems and wireless communications allow the assign-
ment of new requests to vehicles in real time. An
optimization algorithm in such a dynamic environ-
ment has to repeatedly adapt a solution whenever
new information becomes available. If most cus-
tomer requests are known in advance, a simpler
and more practical approach is to design preplanned
routes for the known customers, and to insert the
few new customers as they become known into the
already planned routes. However, if new requests
are expected, rather than just reacting to the new
demand, one should anticipate a change by trying to
maintain flexibility (Branke and Mattfeld 2000). As we
will show, for the vehicle routing problem (VRP) such
flexibility can be maintained by having the vehicles
wait at appropriate locations in their tours.

In this paper, we consider a VRP with a single
new customer arriving after the vehicles have left the
depot. The location of the new customer is assumed
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to be uniformly distributed within the service region,
and we consider the cases of either a known or
unknown arrival time. We assume that there is slack
time in the preplanned tours that can be used to insert
a new customer request or to wait, or both. The new
customer may be inserted between two subsequent
customers of any one of the given tours, as long as
the vehicle has enough slack time. If no vehicle can
integrate the new customer, the new customer is not
serviced.

We examine the problem of finding an optimal
waiting schedule for the vehicles to maximize the
probability that a new customer can be incorporated
into one of the tours. Intuitively, serving customers as
quickly as possible (i.e., without waiting) seems to be
a good strategy. Waiting has the clear disadvantage
of using up precious time that cannot be used later
to make a detour to serve the additional customer.
Indeed, we prove that for the case of a single vehi-
cle, not to wait is the optimal strategy. In the case of
several vehicles, however, waiting may be beneficial,
because it allows the vehicles to remain at strategi-
cally favorable locations. We prove that for the gen-
eral problem with more than one vehicle the problem
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of finding an optimal waiting schedule is NP-hard.
We present and compare several heuristics and an
evolutionary algorithm, and show empirically that a
proper waiting strategy improves the probability of
being able to service an additional customer, while
reducing the average length of the detour that is nec-
essary to integrate this customer.

We will also provide evidence that the benefits of
waiting will prevail even when more than one new
customer is to be inserted, as long as the number of
new customers is small. When the number of new
customers is large, waiting is unlikely to be of any
benefit, but the strategy of working with preplanned
tours becomes questionable anyway.

The remainder of the paper is organized as follows.
In §2 we survey some related work. The definition
of the considered dynamic vehicle routing problem
and the NP-completeness results can be found in §3.
In §4, we show theoretical results for the cases of one
and two vehicles. Several heuristics for the general
case are suggested in §5. The heuristics are analyzed
empirically in §6. Some problem variants, in particu-
lar the case of more than one new customer, are dis-
cussed in §7. The paper concludes with a summary
and an outlook for future work in §8.

2. Related Work

Dynamic VRP has been studied extensively in the lit-
erature, with different aspects of the problem chang-
ing over time. An introduction to dynamic vehi-
cle routing, explaining the differences between static
and dynamic vehicle routing, has been given by
Psaraftis (1988, 1995). A recent classification and sur-
vey on dynamic vehicle routing has been provided by
Bianchi (2000). Further surveys can be found in the
works of Gendreau and Potvin (1998) and Bertsimas
and Simchi-Levi (1996). Because our approach is con-
cerned with new customers arriving over time, the
remaining section is restricted to related work dealing
with that particular aspect of dynamism.

In the literature, one can find two main approaches
to cope with the problem changes caused by new cus-
tomer arrivals. The two strategies are reoptimization
and dispatching. The first approach is to reoptimize
the VRP whenever a new customer arrives. A typical
example is the tabu search algorithm for the dynamic
VRP with time windows presented by Gendreau et al.
(1996, 1999). In the proposed approach, a tabu search
heuristic is running continually, trying to improve
the current best solution. It is interrupted only by
two events: Either a new request arrives that has
to be scheduled, or a customer has to be removed
because it is currently served by a vehicle. If a new
request arrives, it is inserted into the existing solu-
tion at the location that minimizes a weighted sum of

detour and service delay, then a local search heuris-
tic is performed until a local minimum is found,
and the tabu search is resumed. Once a customer of
a vehicle has been served, the best solution found
up to now is used to determine the next stop for
the particular vehicle and all other current solu-
tions are updated correspondingly. Based on the same
tabu search heuristic, in a subsequent paper, Ichoua,
Gendreau, and Potvin (2000) examine the benefit of
allowing a vehicle to change its destination while
under way from one scheduled customer to the next
in order to service a newly arrived customer. Empiri-
cal tests show a reduction in the number of unserved
customers and in the combined objective function
addressing the distance traveled and the total late-
ness, if diversion is allowed.

Diversion is investigated also by Regan, Mahmas-
sani, and Jaillet (1995c) in the context of a dynamic
single-vehicle, single-capacity pickup and delivery
problem. Using simulation, they conclude that diver-
sion can reduce the overall distance traveled. How-
ever, if the system has to deal with multiple dynami-
cally arriving requests, the number of diversions must
be limited to avoid long travel distances toward the
end of the service horizon. Regan, Mahmassani, and
Jaillet (1995a) extend this work to a multiple vehi-
cle environment, and Regan, Mahmassani, and Jaillet
(1995b) investigate the effect of allowing reassignment
of customers that are already scheduled but not yet
served.

Yang, Jaillet, and Mahmassani (1999) compare an
exact branch-and-cut algorithm solved every time the
problem changes, with a resequencing and reassign-
ment heuristic. As might be expected, the constructive
algorithm suffers from lack of computation time if the
congestion level is high, and therefore performs worse
than the heuristic approach. However, even for low
congestion levels the heuristic rescheduling approach
gives almost as good results as the constructive algo-
rithm. Similarly, Powell, Towns, and Marar (1998)
present a model that allows the human dispatcher,
if he so desires, to override a solution provided
by the system. They show that in a dynamic envi-
ronment greedy heuristics frequently produce more
usable solutions than algorithms guaranteeing math-
ematical optimality.

The second way to handle problem dynamics is to
renounce planning to a certain extent, and, instead of
scheduling all known tasks, only decide on a vehi-
cle’s next task. In this case, whenever a customer
has been serviced and a vehicle is available, dis-
patching rules are used to decide which customer
should be assigned to the vehicle next. An example
for the use of this approach is the work by Bertsimas
and van Ryzin (1991, 1993) on the dynamic traveling
repairman problem, where queuing models are used
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to compare the impact of different dispatching rules
on the average time that a customer spends in the
system (while waiting for service or being served).
For the uncapacitated one-vehicle case, Bertsimas and
van Ryzin (1991) derive an optimal dispatching policy
for light traffic and a lower bound for the expected
waiting time in heavy traffic. Papastavrou (1996) pro-
poses for this problem a policy that performs opti-
mal in light traffic and does not perform worse than
twice the lower bound in heavy traffic. Bertsimas and
van Ryzin (1993) and Swihart and Papastavrou (1999)
extend this approach of developing dispatching rules
by applying queuing theory to a wider scope of prob-
lem areas. Bertsimas and van Ryzin (1993) study the
dynamic traveling repairman problem with multiple
capacitated and uncapacitated vehicles, and Swihart
and Papastavrou (1999) apply this methodology to the
single-vehicle pickup and delivery problem.

Instead of just reacting to problem changes (e.g., the
arrival of new customers), however, it may be ben-
eficial to anticipate such events by positioning the
vehicles in strategic locations. Some first attempts in
that direction can be found in the literature. In the
aforementioned paper by Bertsimas and van Ryzin
(1991), it is shown that in the case of a single vehicle
and customers appearing uniformly distributed in an
Euclidean plane, it is optimal to reposition the vehi-
cle to the center of the service region whenever there
are no customers left to be serviced. Returning to the
center anticipates future customer arrivals by posi-
tioning the vehicle so that the expected distance to
the next arriving customer is minimized. Of course,
this strategy assumes light traffic, with the vehicle
being mostly idle. Similar results are shown in Bert-
simas and van Ryzin (1993) for the light traffic case
of the multiple-vehicle traveling repairman problem
and in Swihart and Papastavrou (1999) for the single-
vehicle pickup and delivery problem. Kilby, Prosser,
and Shaw (1998) propose for a VRP that a vehicle
should not drive back to the depot when idle, but
should wait at the last customer location. This, of
course, increases the probability of being able to ser-
vice new customers in the area of the last customer.
Powell (1986, 1996) studies a dynamic assignment
problem where a fleet of vehicles is assigned to a
set of locations with dynamically occurring demands.
He shows that it is advantageous to take forecasted
demands into account when deciding where the vehi-
cles should drive next, compared with a model that
only reacts after new demands have arrived. This,
however, assumes that the demands can be accurately
predicted. Thomas and White (2004) study anticipa-
tory routing in the case of a few known locations of
potential customers that might issue a request while
the vehicle is under way.

In this paper, we examine the question of where
vehicles should wait to maximize the probability that
a new customer, appearing anywhere in the service
region, can be integrated into one of the tours. Other
than the previously described approaches for vehicle
routing, we do not restrict such an anticipatory action
to the case when vehicles are idle, but allow a vehi-
cle to wait, even if it has not yet serviced all known
customers. As we will show, allowing the vehicles to
wait can greatly improve the service probability for
the new customer.

Recently, Mitrovic-Minic and Laporte (2004) have
also looked at the benefit of waiting strategies.
The authors examine whether waiting strategies can
reduce the total detour or the number of required
vehicles for a dynamic pickup and delivery envi-
ronment with time windows. They show that if all
the available time is used for waiting at the begin-
ning, total detour can be reduced, but more vehi-
cles are needed to serve the additional customers.
If, on the contrary, all waiting time is used at the
end, the total number of vehicles can be reduced at
the cost of having larger detours. Therefore, they pro-
pose a mixture of both strategies where the total tour
is partitioned into service zones and the total time
available for waiting is spread among them propor-
tional to the time necessary to serve each service zone.
With this waiting heuristic, they are able to reduce
the detour and the required number of vehicles at
the same time. Mitrovic-Minic, Krishnamurti, and
Laporte (2004) combine the idea of waiting with the
issue that short-term objectives (the next two hours)
and long-term objectives (the remaining part of the
day) are different in dynamic routing environments;
the authors apply a double horizon-based heuristic
with different objectives for these time periods.

The above-mentioned work has been carried out
independently from our paper. The main differences
are as follows: First, we consider a standard VRP,
whereas Mitrovic-Minic and Laporte (2004) consider
a pickup and delivery problem with time windows.
Second, our aim is to maximize the probability of
being able to service an additional customer, but they
focus on the expected detour. In addition to experi-
mental results, we also provide some theoretical anal-
yses. Nevertheless, it is interesting to note that their
results regarding “wait at the beginning” and “wait at
the end” are consistent with the computational results
presented in §6 of this paper.

3. Dynamic Vehicle Routing and the
Waiting Drivers Problem
3.1. Problem Definition

Given are customers 1,2,...,n and a depot 0 (also
called customer 0) in the Euclidean plane, a fleet of m



Branke, Middendorf, Noeth, and Dessouky: Waiting Strategies for Dynamic Vehicle Routing

Transportation Science 39(3), pp. 298-312, ©2005 INFORMS

301

vehicles, and for every vehicle i, i € [1:m] a tour
ri=(0, ¢, Cns o) Cin,, 0), ¢ € [1:m], ¢ # ¢y for ij # kI,
i.e.,, a sequence of customers that originates and ter-
minates at the depot. Let di]-, 0<i<j<n be the
Euclidean distance between customers i and j. All
vehicles depart from the depot at time 0 and must
be back at the depot at time T > 0 at the latest. It is
further assumed that vehicles drive on a direct line
from one customer to the next with the same constant
speed. Without loss of generality, we assume that the
speed is one distance unit per time unit so that we can
identify distance with travel time. Furthermore, there
are no service times at a customer’s location. Then,
the total length of a tour r equals the time ¢, to fin-
ish the tour so that all customers have been serviced.
Time w, =T —t, >0 is called the slack of the tour and
can be used to wait at customer locations or to make a
detour to serve an additional customer. It is assumed
that all vehicles service their customers in the order as
defined by their tour, except for a possible insertion
of a new customer between two existing customers.
Note that we allow a vehicle to change its direction
during its drive from one customer to the next when
the new customer becomes known and such a diver-
sion seems appropriate.

In this paper, we study the case that exactly one
additional customer request arrives at a uniformly
distributed random location within a given con-
vex service region. If several vehicles could service
the customer, the vehicle with the smallest required
detour will service it. If insertion is not possible into
any tour (because otherwise the tour would take
longer than time T), the customer request is rejected
and the customer is not serviced.

A waiting strategy for a tour r is an assignment of
waiting times to the customers of r (including the
depot) such that the sum of the waiting times is less
than or equal to the tour’s slack w,. When waiting
time & is assigned to the depot this means the vehicle
starts at the depot at time 6 > 0. A waiting strategy
for a set of tours R consists of waiting strategies for
all tours r in R. The strategy to not assign any wait-
ing times to the customers is called NoWait. A loca-
tion x in the plane is said to be t.-covered by a waiting
strategy, if and only if the waiting strategy allows
the integration of a new customer at location x arriv-
ing at time f. into one of the given tours. Other-
wise the location is called f.-uncovered. An area is
t.-covered (t,-uncovered) when every location in the
area is f.-covered (f.-uncovered). Location x is called
not reachable when there is no waiting strategy for R
such that x is covered. A region in the plane is not
reachable when every location in the region is not
reachable. Note that at any time f,, for a set of tours R
and a waiting strategy for R, the probability to serve a
customer equals the ratio of the ¢,-covered area of the

service region to the size of the whole service region.
We call the service region restrictive when it does not
include all reachable locations. Otherwise it is called
nonrestrictive.

Assuming that the additional customer may appear
at any time t, € [0...T] within the service region,
we are looking for an optimal waiting strategy, i.e.,
a waiting strategy that maximizes the probability of
servicing the new customer. Formally, we define the
corresponding decision problem for the case that ¢, is
known in advance.

Waiting drivers problem (WDP) with known cus-
tomer arrival time:

Given: Customers 0,1,2,...,n in the Euclidean
plane where customer 0 is the depot, and a convex
service region. A set R of m tours so that all customers
are serviced by these tours. Positive constants p, <1
and f,. € [0, T], where T > 0 is the total time available.

Question: Is there a waiting strategy for R so that
the probability to serve the new customer arriving
with uniform random distribution within the service
region at time ¢, is at least p,?

The corresponding problem where the arrival
time f. of the customer is a random variable that
is uniformly distributed in [0, T] and is not known
in advance is called the WDP with unknown customer
arrival time.

3.2. NP-Hardness

In this section, we show the NP-hardness of WDP
even under severe restrictions that are relevant for
practical applications. The first theorem shows that
WDP is NP-complete, no matter whether the cus-
tomer arrival time is known or unknown, and even
when the service region is nonrestrictive. Hence, no
polynomial time algorithm exists for the WDP (if P #
NP). The proof for the first theorem uses a reduction
of the 3-SAT problem and is given in the appendix.

THEOREM 1. The WDP with known or unknown cus-
tomer arrival time is NP-complete even when the service
region is nonrestrictive.

For many practical applications, each individual
tour contains only few customers and the total service
region is divided into subregions so that each subre-
gion is serviced by its own tour. Hence, the question
arises whether the WDP problem becomes polyno-
mial time solvable under such additional restrictions.
Unfortunately, we can show with Theorem 2 that
WDP remains NP-complete even when all tours are
simple in the following sense. Each tour contains only
a constant number of customers and the main parts
of the tours between the first customer and the last
customer do not cross each other. Only when a vehi-
cle is on the way from the depot to the first cus-
tomer or back to the depot might it cross other tours.
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Because the proof of Therorem 2 is rather technical,
it is omitted here. The proof’s idea is to use a suit-
able NP-complete planar version of the 3-SAT prob-
lem where each variable occurs at most three times
positive and at most three times negated in a clause,
and where the subgraphs that represent the variables
are bipolar (Lichtenstein 1982).

THEOREM 2. The WDP with known or unknown cus-
tomer arrival time is NP-complete even when the service
region is nonrestrictive and every tour contains at most
a constant number of customers, and where all subtours
between the first and the last customer do not cross each
other (i.e., for each tour it is allowed that the part between
the depot and the first customer and the part between the
last customer and the depot crosses other tours).

4. Optimal Waiting Strategies for

Special Cases

In this section, we derive optimal waiting strategies
for some special cases of the WDP. We prove that for
a single vehicle and when the service region is nonre-
strictive the NoWait strategy is optimal. When one of
these conditions does not hold (i.e., the service region
is restrictive or there is more than one vehicle), wait-
ing can be advantageous even for simple problems.

4.1. Single Vehicle

We start with an example that shows that waiting
can be advantageous for WDP with a single vehicle
when the service region is restrictive, even when all
customers lie within the service region. In the exam-
ple, we assume that the arrival time is known. Simi-
lar reasoning shows that the result holds also for an
unknown arrival time. Let » = (0, 1,0) be the tour
of the vehicle where customer 1 has distance 1 from
the depot. Let T =4 and t, = 2. First, consider the
case when the vehicle does not wait. It is back at
the depot at time f, = 2. Clearly, then the area that
is t.-covered by the nonwaiting vehicle is a circle of
Radius 1 around the depot (see Figure 1). For the

Service Region

p

- I

Waiting
| Nonwaiting

Figure 1 Example for a Single Vehicle: Service Region and Areas

t,-Covered by the Waiting and the Nonwaiting Vehicle

case of a waiting vehicle, assume it waits one time
step at customer 1. Then, the vehicle is at the location
of customer 1 at time f, = 2. It can service an addi-
tional customer at any location for which the sum of
the distances to customer 1 and the depot is at most
two. Assuming that the locations of the depot and
customer 1 have coordinates (0, 0) and (1, 0), respec-
tively, the f-covered area is an ellipse of the form
x? + (4/3)y* = 1. Note that the depot and customer 1
lie on the focal points of the ellipse, its major semiaxis
has length 1, and its minor semiaxis has length +/3/2.
Assume that the service region is a triangle with ver-
tices (0, 0), (5/4,1/2), (5/4, —1/2). It is easy to see that
the whole triangle is f.-covered by the waiting vehi-
cle but not by the nonwaiting vehicle. The following
theorem shows that waiting is never advantageous for
WDP with a single vehicle when the service region is
nonrestrictive.

THEOREM 3. For the WDP with known and unknown
customer arrival time, a single vehicle and a nonrestrictive
service region, the optimal waiting strategy is NoWait.

Proor. First, assume that the new customer arrives
at known time ¢t,. Let T > t. be the total service time.
For a contradiction, let us assume that it is optimal
to wait at some location (locations) before time . and
consider a waiting vehicle with an optimal waiting
strategy and a nonwaiting vehicle. Let § > 0 be the
total waiting time of the waiting vehicle before f..
Without loss of generality, we assume that (x, 0) and
(y,0), y <x are the positions at time f, of the non-
waiting vehicle and the waiting vehicle, respectively.

Let us at first assume that there is no customer at
location (x,0). Let 1,2, ..., n be the sequence of cus-
tomers that remain to be served by the nonwaiting
vehicle after time ¢, in this order, and let z;, ..., z, be
their locations. The depot is the final customer 0 with
location z,,,. Without loss of generality, we assume
that the next customer to be serviced by the waiting
vehicle and the nonwaiting vehicle is the same, and
thus the sequence of customers that have to be ser-
viced by the waiting vehicle after time ¢, is the same
as for the nonwaiting vehicle. Otherwise, there would
be an additional customer on the tour of the waiting
vehicle before it would reach location (x,0), which
would reduce the covered area of the waiting vehicle,
but does not influence the covered area for the non-
waiting vehicle. Then, x —y = 6 holds and the location
of the first customer on the tour after (x,0) is of the
form z; = (x’,0) with x’ > x. Let d := x" — x be the
distance between (x, 0) and (x’, 0).

Because the new customer can only be integrated
into the tour without changing the sequence of the
other customers, it follows that the total covered
area is the union of areas that are covered by a
set of ellipses that are defined in the following. Let
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E,, ..., E,; be the ellipses corresponding to the non-
waiting vehicle, where the focal points of ellipse E;
are (x,0) and z; = (x/,0), and the focal points of
ellipses E; are z; ; and z; for j € [2:n + 1]. Similarly,
let ellipses Ef, ..., E,,; be the corresponding ellipses
for the waiting vehicle, where the focal points of
ellipse E; are (y,0) and z; = (x',0), and the focal
points of ellipse E; are the same as that of ellipse E;
for je[2:n+1].

Clearly, for each point on an ellipse E;, j € [2:n+1]
the sum of the distances of the point to the focal
points equals the distance between the two focal
points plus w, where w is the slack of the tour
For each point on an ellipse E;, j € [2:n + 1], this
distance equals the distance between the focal points
plus w—3§. Because for every point on ellipse Ej,
je[2:n+1] the sum of the distances to its foci
is 6 units smaller than the corresponding sum for
ellipse Ej, and because E; and E]» have the same focal
points, it follows that for every location that is cov-
ered by E; the distance to the nearest location that is
not covered by any of the ellipses E,, h € [2:n+1] is at
least 6/2 (Property 1). We need the following propo-
sition, which is easy to show.

ProrosiTiON 1. Let E and E' be two ellipses with semi-
axes that are parallel to the Cartesian axes, and let (a, 0)
and (c, 0) be the end points of the horizontal semiaxis of E/,
and (b,0), and let (d,0) be the end points of the hori-
zontal semiaxis of E so that a <b < ¢ < d. Assume that
the horizontal semiaxis of E is shorter than the horizontal
semiaxis of E', i.e., d—b < c—a, and that the vertical semi-
axis of E is properly longer than the vertical semiaxis of
E'. Let C (C’) be the area that is covered by E (respectively
E’) but is not covered by E' (respectively E), and let L be
a horizontal line L that intersects E'. Then the intersec-
tion between C (C') and every horizontal line is a (possibly
empty) interval, and the length of this interval is at least
d — c (respectively, at most b — a).

Consider ellipses E; and E; that have focal points
(x,0), (', 0) and (y, 0), (x,0), respectively. For every
point on ellipse E;, the sum of the distances to the
focal points is w + x' — x where w is the slack of
the tour. For Ej, the corresponding sum of distances
is of course the same (each vehicle has the same
time to reach (x’, 0)), but the remaining slack of this
tour is only w — & due to earlier waiting. Observe
that the horizontal semiaxes of both ellipses have the
same length w + x’ — x, whereas the vertical semiaxis
of E, is longer than the corresponding semiaxis of E;.
Hence, ellipses E, and E; satisfy the requirements of
Proposition 1.

Let C' be the area that is covered by E; but not
by E,. Altogether, it follows that the area C” of loca-
tions that are covered by at least one of the ellipses E},
j €[1l:n+ 1] but are not covered by any of the

ellipses E;, j € [1:n+1] is part of C". Call C” the critical
area. Now consider a horizontal straight line L that
intersects the critical area C”. From Proposition 1, it
can be derived that the intersection between L and the
critical area C” is contained in a segment S of L with
length at most 6/2. Note that each location of S is cov-
ered by E|. In the following, we show that the inter-
section of L with all ellipses E,, h € [1:1n 4 1], which
is not covered by any of the ellipses E;, j € [1:n+1],
contains a segment of length at least 6/2. There are
two cases.

Case 1. All intersection points between the area that
is covered by the ellipses E}, j € [1:n+1] and line L
lie within the area that is covered by E;. This does not
imply that L does not intersect with the area covered
by one of the ellipses E; for j € [2:n+1]. When it does,
however, each such intersection point is also cov-
ered by E;. Then, by Proposition 1, the intersection
between line L and the area that is covered by E; but
not covered by any of the ellipses E}, j € [1:n + 1]
contains a segment S’ of length > 6/2.

Case 2. Line L contains a point that is covered by
an ellipse E/, j € [2:n + 1] but is not covered by E.
Consider such an intersection point (z;, z,) on L that
is farthest from Ej, more exactly, (z;, z,) has the max-
imal distance to the nearest location (z], z,) on L that
is covered by E;. Without loss of generality let 2} < z;.
Then, each location (z], z,) with z{ > z; is not cov-
ered by any of the ellipses E; for j € [1:n+1]. Using
Property 1, we can conclude that the distance between
(z1, 2,) and the next point that is not covered by any
of the ellipses E,, ..., E, , is at least /2. Thus, the
intersection between line L and all locations that are
covered by ellipses E;, j € [2: n+1] but are not covered
by any ellipse E;, h € [2:1 4 1] contains a segment 5’
of length at least 6/2. By our construction, we can also
assume that no location of S’ is covered by E;.

Segments S and S’ are disjoint because S is covered
by E; and S’ contains no point that is covered by E;.
Because S is not longer than S’ and L was an arbi-
trary horizontal line, it follows easily that the critical
area cannot be larger than the area that is covered
only by ellipses E;, j € [1:n+1] but not by ellipses E},
h € [1:n+1]. This is a contradiction to the assumption
that waiting can be advantageous.

A similar argument holds for the case that there is a
customer at location x. The main difference to the case
of no customer at x is that ellipse E; is replaced by
two smaller ellipses that are completely encompassed
by the former.

So far, it has been assumed that the time of the
arrival of the new customer f, is known. However,
the optimal strategy is independent of the value of ¢,
thus we can eliminate it from our consideration and
conclude that even for unknown f, it is optimal to
drive without waiting. [
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4.2, Two Vehicles

As we have shown in §4.1, for a single vehicle
and a nonrestrictive service region it is optimal to
drive without waiting. However, the problem be-
comes much more complex when several vehicles are
involved, because the areas they cover are overlap-
ping. For example, it is not optimal to have two or
more vehicles return to the depot before the new cus-
tomer has arrived because the areas covered by these
vehicles coincide. Having at least one vehicle waiting
some distance from the depot would definitely cover
some additional area.

In this section, we determine the distance that two
vehicles should ideally have from the depot at the
time of the arrival of the new customer. Because
this depends on the actual tours we study a simple
scenario that provides some general insights. There-
fore, we deviate from the WDP in the rest of section
by allowing the vehicles to wait anywhere on their
tour (not just at customer locations). Furthermore, we
assume that the two vehicles approach the depot from
opposite sides and that there are no intermediate cus-
tomers (see Figure 2).

The following theorem is interesting because it
shows that, for every amount of remaining time until
the vehicles have to be back at the depot, an opti-
mal distance from the depot can be determined. This
result gives hints at how fast the vehicles should
approach the depot; it is used in §5 to design a heuris-
tic for more general situations.

THEOREM 4. Let there be two vehicles that approach the
depot from opposite sides where each vehicle has a remain-
ing time t, for driving or waiting, or both. Then the opti-
mal distance from the depot is approximately 0.5059 - t, for
each vehicle when the service region is nonrestrictive.

Proor. We give only a sketch of the proof by omit-
ting some straightforward but tedious computations.
Let a=1/2-t,,a >0 denote the major semiaxis of
the ellipses. First, we derive the size of the area
covered by both vehicles depending on the remain-
ing maximal driving distance 22 and the distance
between the foci of both ellipses. The boundary of the
upper halves of the ellipses can be described by the

Vehicle 1

Depot Vehicle 2

Figure 2 Two Vehicles Moving from Opposite Sides Toward the Depot

in the Center

following functions:

fi(z e) =be) * v1—((z+e1)/a)?

forze[—a—e;,a—e¢],

f2(z, ) =b(ey) ¥ V1= ((z - ey)/a)?

forze[—a+e,, a+e,],

b(e)=~a?—e?,

where the depot is at (0,0), and the vehicles are at
—2e, and 2e,, respectively. Setting f,(z, e;) = f,(z, e,)
leads to the intersection at s = ¢, — e;. The total area
A(eq, e,) that is covered can then be calculated as

a+ey

Aee) =277 fe et [ e ed:)

b(e e
_ ) e,/ a% — €3 + a* arcsin =
a a

+a7-(b(er) +b(ey)

b(e e
+ () (el,/cﬂ—e%—kazarcsin —1>.
a a

For 0 <e; <a;, A(e,e,) is a concave function,
because the Hessian matrix is negatively semidefinite.
Therefore, there is at most one local maximum, which
is then also a global maximum. For e = ¢, = ¢, we
obtain

A'(e) = A(e, e)
= 2<? <ev a2 — 2 + a* arcsin —> + a%b(e)).

e
a

Setting the first derivative to zero and solving
this equation numerically yields a local maximum at
e*~1.0118-4=0.5059 - t,. Because A(e;,e,) is sym-
metric to e; = e,, the derivative that is perpendicular
to e; = e, has to be zero as well, i.e., (e*, ¢*) is also the
local maximum for A(e;, e,) in general. O

The theorem states that both vehicles should seek
a position such that their distance to the depot is
about half the total distance they can still drive. For
unknown time ¢, the ideal strategy is to move slowly
toward the depot as the remaining time elapses,
approximately at half of the normal speed of the vehi-
cle. Also due to the concavity of function A that
describes the size of the covered area, it follows that
the optimal waiting strategy for either vehicle is to
reach the changing optimal position as quickly as pos-
sible, and then to follow it toward the depot.

5. Heuristics for the General Case
Because the WDP is NP-hard, it is unlikely that poly-
nomial time algorithms exist for generating optimal
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solutions. For reasonably large problems, it is there-
fore common to design heuristics to find good solu-
tions efficiently. In this paper, we use an evolution-
ary algorithm (EA) for finding good solutions and
compare it with some simple deterministic heuris-
tics. EAs are iterative stochastic search methods based
on the principles of natural evolution. Starting with
a set of candidate solutions (population), in each
iteration (generation) of the algorithm new solutions
(individuals) are created by the following process:
Select two parents, construct a new solution based
on these two old solutions (crossover), and slightly
change the resulting solution (mutation). By repeat-
edly selecting good solutions for reproduction and
creating new solutions based on the selected indi-
viduals, the solutions “evolve” and become increas-
ingly better adapted to the problem at hand. A more
detailed introduction to EAs is out of the scope of this
paper; the interested reader is referred to Michalewicz
(1996) and Davis (1991).

The EA used here has the following characteristics:
The search space is the set of all waiting strategies. For
a problem with m tours and n customers, a solution
is represented by a string of (n +2-m) real values—
one value for the waiting time at each customer and
two additional values for each tour for the waiting
times at the depot at the beginning and the end of the
tour. Each value represents the fraction of the slack
of the tour that is used for waiting at the particular
location. Hence, the sum of the values correspond-
ing to a tour is one. Because an application of the
mutation or crossover operator can change the sum of
these values, they are always normalized afterward.
The real-valued representation and the normalization
step allow the use of standard genetic operators. We
use a linear ranking selection method, i.e., the individ-
uals in the population are ordered and their selection
probability decreases linearly from best to worst. For
crossover between two parents, a random substring
of the string of real values from one parent is selected
and replaces the corresponding substring in the other
parent to create one child (two-point crossover). An
individual is mutated by adding to each value a nor-
mally distributed random value. The EA is run with a
population size of 100, for 100 generations, where in
each generation 99 children are produced, replacing
the old population except for the best solution found
so far (elitism).

The tricky part of applying an EA to the WDP
is the evaluation of a solution, because for an arbi-
trary number of vehicles and arbitrary tours it is not
clear how to calculate the probability of being able to
include an additional customer into one of the tours.
We chose to estimate this probability by random sam-
pling. To evaluate a single waiting strategy during the
course of the EA, 100 randomly generated customers

are checked one by one for feasibility of insertion. The
percentage of customers that could be inserted then
serves as an estimate of the solution quality. To ensure
fair comparisons, all individuals from one generation
are tested against the same set of 100 customers (see
Branke 2001b). The optimization behavior of the EA
was compared with the results of some simple heuris-
tics, namely NoWait (which has been proven optimal
for the single vehicle case) and the following five
other waiting strategies:

* Depot. Wait at the depot as long as possible be-
fore starting, i.e., for every tour r the waiting time
assigned to the depot equals the slack of the tour w,.
This is basically the opposite of the NoWait strategy.

* MaxDist. Wait at the customer location with max-
imal distance from the depot, i.e., for every tour r a
waiting time that equals the slack of the tour w, is
assigned to the customer location with maximal dis-
tance from the depot. The idea here is keep the vehi-
cles as far apart as possible, covering a large area on
their way back to the depot.

* Location. Wait at each customer location for the
same time, i.e., for every tour r with n, customers
each of its customers is assigned a waiting time w, /n,.
This strategy is a kind of compromise between the
first two heuristics: NoWait and Depot.

* Distance. Spread the whole waiting time propor-
tionally to the distance driven, i.e., for every tour
r=(0,¢,¢,...,¢,,0) customer c;, i€ [l:n,] recei-
ves waiting time w, - d . / 27;1 deCH‘ Basically,
this is a variant of the previous heuristic, with dis-
tance rather than number of customers used to divide
up waiting time.

e Variable. Drive without waiting until the time to
drive the remaining distance to the depot is equal
to the slack time. Then distribute the available wait-
ing time to the remaining customers proportional
to remaining driving distances. This heuristic basi-
cally corresponds to the strategy proven optimal in
Theorem 4 for two vehicles with customers on a
straight line.

We tested two versions of the EA: the standard EA
(referred to as EA1l) and a version where the sim-
ple heuristics were for seeding the initial population
(EA2). In the latter case, the waiting strategies that
were obtained by these six simple heuristics were put
into the initial population, and the other 94 members
were generated randomly in the hopes of providing
the EA with some helpful information.

6. Empirical Results

In this section, we empirically compare the five sim-
ple waiting strategies and the waiting strategy found
by the EA. Tests were performed on the basis of
the following VRP problem instances from Beasley’s
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OR library (Beasley 1990): ¢50, c¢75, ¢100, c100b, c120, Table 1 Number of Customers Which Could Not Be Inserted for
C150, and c199. For each VRP instance, the tours of the Different Waiting Strategies and All Test Instances
an optimal solution.were used as the giver} tours for Waiting Customers Relative
the WDP. The maximum allowed travel time T for Problem strategy not inserted perf. (%)
an instance was defined as the time required for the )
longest tour 50 NoWait 4492422 100.0
5 : , . Depot 88224138 196.4
Because we showed that the service region influ- MaxDist 5149430 114.6
ences the optimal waiting strategy, we chose a ser- Location 498.143.0 110.9
vice region that seems realistic for many practical Distance 493.8+£3.0 109.9
problems. For each instance, the service region was Variable 238-3i2-2 197-?
defined as the rectangle that is limited by the max- EAl 85543.0 08.
. .. . EA2 4425423 98.5
imum and minimum values of x and y coordinates oWai » 1
of all given customer locations. To compare the qual- ¢rs Dgp;’t 5923132 1223
ity of the solutions found by the different wait- MaxDist 3929436 955
ing strategies on a specific problem instance, 1,000 Location 3717437 905
new customers (uniformly distributed within the ser- Distance 3724+35 90.7
vice region) and arrival times uniformly distributed Variable 361.0£3.7 87.9
in [0:T] were created. To evaluate a solution, we EAl 371.3+3.9 904
EA2 370.5+4.7 90.2
checked how many of those customers could have '
been serviced (one at a time). The results reported c100 IL‘?IZVZ?” ggg';iﬁ 122'?
below are averaged for every heuristic over 20 such Mal;(Dist 41591 4.1 116.6
test runs of 1,000 customers each. For every test run, Location 356.9+4.6 100.0
the EA was started with a different seed for the ran- Distance 354.1+£4.1 99.3
dom number generator' Variable 334.7+4.7 93.8
EA1 340.9 £5.1 95.6
6.1. Ability to Insert an Additional Customer EA2 351.3+4.6 9.5
The effect of the waiting strategy on the ability to inte- ¢100b NoWwait 491.5+£32 100.0
grate a new customer into one of the tours is shown Depot 626.2:£4.0 1274
in Table 1. The table shows the mean and the stan- WaxDist 1330232 5.1
nfable L. Location 416.1£2.9 84.6
dard error for the number of customers that could not Distance 4397 +3.1 38.0
be successfully inserted, out of the 1,000 customers Variable 4177+32 85.0
tested, and the relative performance compared to the EAl 418.8+3.1 85.2
results of NoWait. The average relative performance EA2 418834 85.2
over all test problems is summarized in Table 2. ¢120 NoWait 399.8+4.6 100.0
As can be seen clearly, waiting at the depot as long Depot 611.5+£4.2 152.9
ible at the beginning of a tour (Depot) is the MaxDist 134245 103.4
as possible a ginnng ot a Pot) Location 390.6+4.8 97.7
worst strategy for each of the test instances. This strat- Distance 3978+ 4.6 995
egy fails insertion up to 96% more frequently than Variable 370.6+4.6 92.7
the reference strategy NoWait. For each of the other EAl 388.0+4.8 97.0
heuristics, there are test problems where they perform EA2 373.3+46 93.4
quite well, and other test problems where they are less ¢150 NoWait 3789+22 100.0
successful. Not to wait is sometimes among the best Depot 520.8+3.1 137.5
approaches (e.g., ¢50), but performs rather poorly on MexDist 3620431 %6
pp S (€., L), but p poorly Location 3245427 85.6
other test instances, such as on ¢199 or c100b. It seems Distance 33014223 87 1
that the quality of this “natural” approach depends Variable 323.0+2.4 85.3
strongly on the test problem. EA1 328.6+26 86.7
Waiting at the customer farthest from the depot EA2 3268+25 86.2
(MaxDist) on average performs slightly worse than c199 NoWait 370.1+£37 100.0
NoWait, and there is no test problem where it turned Depot 438.0+37 1183
out to perform best. A possible reason is that the ser- MeaxDist 320033 864
. . ) . . Location 301.8+3.4 81.5
vice region does not favor this strategy because it is Distance 3129433 845
restricted and therefore the vehicles tend to wait near Variable 298.9 4+ 4.1 80.6
the border of the service region. EAl 303.0+3.0 81.9
The other three simple heuristics and the EA all EA2 300.6+£2.4 812
perform significantly better than NoWait. The Variable Note. For each case, the mean and the standard error, as well as the

strategy derived from the simple two-vehicle case is relative performance in percent with respect to NoWait, are reported.
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Table 2 Number of Additional Customers that Could
Not Be Inserted, Relative Percentage,

Compared with Not Waiting At All

Waiting strategy Relative performance (%)

NoWait 100.0
Depot 1491
MaxDist 100.0
Location 93.0
Distance 94.2
Variable 89.0
EA1 92.6
EA2 90.0

clearly the best simple heuristic, showing that the
strategy is not only optimal for two vehicles on a
straight line, but also performs very well in more gen-
eral cases. Distributing the waiting time equally over
all customer locations (Location) is also a quite suc-
cessful heuristic, with, on average, only 93% of the
failures of the reference solution and a worst case of
110.9% for test problem ¢50. Waiting proportionally to
the distance driven (Distance) performs similar and is
only slightly worse, on average (94.2%).

The EA also belongs to the better heuristics: Even
without seeding it is able to reduce the number of
failures to, on average, 92.6% compared with the ref-
erence solution (EA1). The EA with seeding (EA2) is
even better. However, surprisingly, it is not as good
as the best deterministic heuristic (Variable), although
that solution was present in the initial population.
This means that the EA is not always able to recognize
the value of the seed. A problem is that the quality
estimate from 100 customers that was used in the EA
cannot guarantee the survival of a good solution. Bet-
ter sampling strategies might solve this problem as
has been suggested in Branke (2001a).

Summarizing, an appropriate waiting strategy sig-
nificantly increases the probability for a successful
insertion of a new customer when compared with
the “natural” strategy NoWait. The Variable strategy
derived from the theoretical results in §4.2 performs
best. Also successful are the simple heuristics to dis-
tribute the slack time of the tours equally (Location)
or according to the length of the tour (Distance). The
proposed EA also yielded quite successful results;
however, it did not quite reach the performance of
the Variable strategy. Nevertheless, the approach has
potential for further improvements, and is proba-
bly the only heuristic that can be easily adapted to
nonuniformly distributed customer locations (see §7).

6.2. Length of Detour

As we have shown in the previous section, an appro-
priate waiting strategy can significantly increase the
probability of being able to integrate an additional
customer into the given tours. However, there is an

additional advantage of waiting. Because the waiting
vehicles have not yet proceeded as far on their tours
at the time when the additional customer becomes
known, they have more opportunities to integrate the
customer at a convenient position into the sequence
of customers of a tour. Thus, it can be expected that
compared with NoWait, a smaller detour is necessary
to integrate the additional customer (in fact, because
some time was spent waiting, the maximal detour
possible is smaller than when the vehicle was driving
without waiting).

The average length of the detour to insert a cus-
tomer that can be successfully integrated is given in
Table 3, and the average relative performance over all
test problems is displayed in Table 4. The observed
savings with respect to NoWait are impressive. Ignor-
ing the strategy to wait at the depot for now, all sug-
gested waiting strategies save between 25% and 35%
of the driving distance required to insert a new cus-
tomer, on virtually all problem instances. The best
heuristics are Location and the EA. The best strategy
with respect to the number of inserted customers,
Variable, only ranks fifth with respect to the required
detour.

Waiting at the depot not only often fails to integrate
new customers (as has been shown in §6.1), but also
results in longer average detours to insert a customer.
Because vehicles have different amounts of time avail-
able for waiting, some of them have used up all of
their waiting time early in their tours, leaving it up
to a small number of remaining vehicles to insert the
new customer, which leads to longer detours.

Figure 3 compares the different heuristics with
respect to the average values for both examined cri-
teria, the number of customers not inserted, and the
average length of the detour per customer inserted.
The impressive improvements possible by an appro-
priate waiting strategy are clearly visible, with the
waiting strategies found by the EA and Variable per-
forming best.

7. Problem Variants

So far, we restricted the WDP to the insertion of a
single new customer, and a uniform distribution of
possible customer locations. In this section, we briefly
discuss some aspects of the WDP when relaxing these
restrictions.

7.1. Nonuniform Distribution of
Customer Locations

If the probability distribution of the newly arriving
customer is nonuniform and it is known that there are
areas with a higher probability of customers arriving,
it will, in general, make sense to wait at such areas.
Obviously, the benefits of waiting depend on the
particular probability density function, and instances
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Table 3 Average Detour per Customer Inserted, for the Table 4 Relative Average Distance of Detour to
Different Waiting Strategies and All Problem Instances Integrate an Additional Customer
Compared with Not Waiting At All
Waiting Average Relative
Problem strategy detour perf. (%) Waiting strategy Relative performance (%)
c50 NoWait 5.37+0.07 100.0 NoWait 100.0
Depot 2.58+0.07 48.0 Depot 114.7
MaxDist 4.76+0.07 88.6 MaxDist 71.9
Location 3.59+0.04 66.9 Location 62.5
Distance 3.66+0.04 68.3 Distance 64.3
Variable 5.11+0.05 95.2 Variable 68.5
EA1 3.76+0.05 70.0 EA1 62.2
EA2 4.94+0.08 921 EA2 65.0
c75 NoWait 9.62+0.14 100.0
Depot 11.46+0.14 119.0 o
MaxDist 7160.11 744 could be constructed where waiting is more (or less)
Location 6.25+0.10 65.0 beneficial than for the case of uniform distribution.
Distance 6.660.10 69.2 Note that the adaptation of the EA to this prob-
EVZ’lab/e gg;ig?z gig lem variant is straightforward, because one can just
EAo 6.97 042 65 use the appropriate (known) distribution of customer
. locations to generate test cases.
c100 NoWait 9.44+0.14 100.0
Depot 15.78+0.27 167.1 7.2. Two or More New Customers
MaxDist 7.494+0.10 79.3 N ider th herei th
Location 6.934011 733 ow consider the case wherein more than one new
Distance 6.72+0.10 711 customer 1s arriving:
Variable 7.05+0.08 74.7 * Contrary to the case of a single new customer, it
EA1 6.89+0.13 73.0 may now be beneficial to have areas covered by more
EA2 6.88+0.11 2.8 than one vehicle. If several new customers fall into
¢100b NoWait 20.15+£0.25 100.0 such an area and cannot all be serviced by a single
Depot 14.62+0.24 725 vehicle, it may still be possible to serve them by one
MeaxDist 15.2040.18 ro4 of the other vehicles covering that area. However, an
Location 13.55+0.15 67.2 ) ¢ ) .
Distance 14354015 719 area covered by a single vehicle is still more valuable
Variable 13.11+0.16 65.1 than an area also covered by another vehicle.
EAL 13.53+0.15 67.2 e If the service region is large and the number of
EA2 13.31+0.17 66.1 new customers is small, it is unlikely that more than
c120 NoWait 16.27+0.27 100.0 one customer fall into an area covered by more than
Depot 21.70+0.52 133.4 one vehicle. Then, our experimental results concern-
MaxDist 1.11+0.16 68.3 ing the relative quality of the different waiting strate-
Location 9.38+0.13 57.7 . i imatelv hold
Distance 9.49£0.15 58.3 gles will approximately noid.
Variable 8.58+0.13 52.7
EA1 9.11+0.16 56.0
EA2 8.67+0.14 53.3 100 I I I I I 0,
_ 05 L NoWait i
c150 NoWait 9.05+0.11 100.0 RS
Depot 11.28£0.20 1247 ZE ot _
MaxDist 5.414+0.07 59.8 %é
Location 4.84+0.05 535 g5 Or T
Distance 5.03+0.05 55.6 ZE s} _
Variable 5.59+0.05 61.8 0 S
EA1 4.71+0.06 52.0 25T 1
EA2 4.75+0.06 52.5 g2l <]
199 NoWait 8724012 1000 & Variable MaxDist
c oWai . . .
65 istanc .
Depot 12.08+0.20 138.5 O A2 EAL o Stance . .
MaxDist 5.040.06 57.8 % o o " % 100
chat/on 4.72+0.07 4.1 Relative Percentage of Customers Not Inserted
Distance 4.91+0.07 56.4
Laable jggiggg g;g Figure3  Comparison of the Heuristics with Respect to the Average
EAD 4614006 528 Number of Customers Not Inserted and the Average Length

Note. For each case, the mean, the standard error and the relative

performance in percent with respect to NolWait are reported.

of the Detour for a Successful Insertion a New Customer
Note. Heuristic Depot has been omitted for clarity because it performs much
worse than the other strategies.
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¢ For the case of a single vehicle it has been shown
in Theorem 3 that for one new customer and a non-
restrictive service region, NoWait is always the opti-
mal strategy. In the following, we give an example
that shows that for the same case, but with more
than one new customer, waiting can be advantageous.
Consider a vehicle that services its last customer at
location (—4, 0), which corresponds to a distance of 4
from the depot at location (0, 0). The vehicle has eight
time units left. It may either proceed to the depot
without waiting, or it may wait for up to four time
units at the last customer. Let us now assume that
new customers arrive within a nonrestrictive service
region after four time units. Depending on how long
the vehicle waited, it will now be somewhere on its
way from the last customer to the depot. To test what
waiting strategy is best, we generated random test
instances with one, two, and three new customers. For
each of 100,000 randomly generated sets of new cus-
tomers we determined the number of customers that
could be inserted (assuming the best ordering of ser-
vicing the customers), depending on the waiting time.
The results are depicted in Figure 4.

The results show that (in accordance with The-
orem 3) for a single new customer, a vehicle that
does not wait has the highest probability of successful
insertion. For a larger number of two and three new
customers, a smaller fraction of the new customers
could be inserted (often only one out of the two or
three new customers can be inserted). However, note
that waiting becomes advantageous for more than one
new customer. In the example, a waiting time of 0.52
is best for two new customers; for three new cus-
tomers, an even larger waiting time of about 0.92 is
best. These results indicate that waiting may be an
even more powerful strategy when more than one
(but still few) new customers have to be inserted.

0.6 T T T T T T T
0.5
0.4
0.3

0.2

1 customer

01~ 2 customers -------

3 customers --------
0 I L ! 1 1 ] ]
0 05 1.0 1.5 20 25 30 35 4.0

Waiting Time

Avg. Fraction of Customers Inserted

Figure 4 Average Fraction of the New Customers that Can Be Inserted
into the Tour, Depending on the Time Spent for Waiting and
Number of New Customers

Note. For each different number of new customers, the best waiting time is

indicated by a circle.

* Each new customer that is inserted into a tour
reduces the tour’s slack, and thus the size of the
remaining ellipses. It may then be advantageous for
all other vehicles to speed up and to enlarge the
ellipses closer to the depot (and probably with larger
overlap to the ellipses of the vehicle that has inserted
a new customer). Therefore, if several customers are
arriving over time, a reactive waiting strategy may
have to be considered.

¢ If the number of new customers becomes very
large so that there will always be enough new cus-
tomers for the vehicles to stay busy, waiting cannot be
an advantage. With an increasing number of new cus-
tomers, though, the whole concept of using a priori
tours becomes questionable.

¢ Again, the proposed EA can easily incorporate
the expected arrival of more than one customer sim-
ply by adapting the probability distribution for gen-
erating test cases.

8. Conclusion

In this paper, we have studied a dynamic VRP where
a single new customer arrives at a uniformly chosen
random location after the vehicles have left the depot.
We examined the problem of choosing an appropriate
waiting strategy that maximizes the probability for
being able to insert the new customer into the other-
wise fixed tours.

We have shown that the problem of finding an
optimal waiting strategy is NP-complete no matter
whether the time of arrival is known or unknown and
even when each tour has at most a constant number
of customers and tours do not cross between the first
customer after the depot and the last customer before
the depot. However, for the case of a single vehicle,
we have shown that not to wait is the optimal strat-
egy when the service region where the new customer
may arrive is nonrestrictive (i.e., it contains all reach-
able locations). For simple problems with two vehi-
cles, we showed that waiting is beneficial and derived
an optimal waiting strategy. For the general prob-
lem, we empirically compared several heuristic wait-
ing strategies as well as waiting strategies evolved by
an evolutionary algorithm. Of all the heuristic wait-
ing strategies tested, the one derived from the the-
oretical considerations on a simple two-vehicle case
performed best. Overall, the obtained results clearly
demonstrate the advantage of an appropriate wait-
ing strategy: Compared with the reference strategy
of not to wait, the best waiting strategies were able
to reduce the probability that the customer cannot
be serviced by approximately 10%, while the average
length of the detour per successful insertion of a cus-
tomer was reduced by approximately 35%. In other
words, a good waiting strategy can increase the prob-
ability of being able to insert an additional customer,
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at the same time reducing the average cost of insert-
ing the customer (assuming cost depends on driving
distance).

There remain several avenues for future research.
First, our paper focuses on the case of inserting a sin-
gle additional customer. A natural next step would
be to explore further the problem variants discussed
briefly in §7, namely a nonuniform distribution of
new customers and the arrival of more than one new
customer. Our assumption was that the order of cus-
tomers on a predetermined tour is not changed and
a new customer is inserted between two other cus-
tomers on the tour. Allowing to change the prede-
termined tour to some extent and allowing to switch
customers between tours are interesting aspects of the
problem, as well. Finally, the presented EA may be
improved, e.g., by using better sampling strategies for
evaluation, as we have suggested.
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Appendix. Proof of Theorem 1

Proor ofF THEOREM 1. First consider the case that the
customer arrival time is known. We reduce 3-SAT to our
problem. Let € = {C;, C,, ..., C,} be a set of clauses each
of size three over a set V ={v;,v,, ..., v,} of variables. We
assume that for each variable there are exactly three posi-
tive and three negated literals in the clauses (3-SAT remains
NP-complete under this restriction, see Garey and John-
son 1979). We construct an instance of WDP as follows:
The maximal allowed length for a tour, T, is chosen large
enough so that the tours that are defined in the following
are feasible. We need the following two facts (the first is
easy to show and the proof is omitted). O

Facr 1. Let S=1{S,,S,,...,S,} be a set of disjoint circles in
the service region that do not contain the depot and t, k > 0 given
integers (compare Figure 5). It is possible to construct in poly-
nomial time a set of tours R and a convex nonrestrictive service
region with the following properties: (i) a waiting strategy for R
can be found in polynomial time so that the reachable area of the
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Figure 6 Construction for the Proof of Fact 2

service outside the circles is t-covered, (ii) for every circle S; with
area A; the inner circle S] with area (1 —1/k)-A; of S around
the center of S; is never reachable from tours in P, and (iii) the
optimal waiting strategy for all tours up to time t is to never
wait.

Fact 2. Let & =1{5,,5,, 53} and &, ={S,, S5, Ss} be two
groups of three disjoint circles each with diameter D > 0 that lie
in the service region as described in the following (see Figure 6).
Let (x;,y;), i € [1:6] be the center of circle S;. Then for circles
in &, it holds that x, =x;+ad+D/2, y, =y, +ad+D/2, x3 =
x1+2ad+ D, y; =y,. Analogous relations hold for circles in &,
with a+b instead of a and where x, > x3+4(a+b)d and y, =y,.
Leta,b,d,t,, and t, be positive integers with b > d +2D,d > D,
t, > t,+12(a+Db)d. It is possible to construct in polynomial time
a tour r such that (see Figure 6): (i) there exists a waiting strategy
for which the circles in &, are (t, + d)-covered, (ii) there exists a
waiting strategy for which the circles in &, are (t, + d)-covered,
(iii) there does not exist a waiting strategy so that a location in a
circle in &, is (t, +d + D)-covered, and (iv) there does not exist
a waiting strategy so that a location in a circle in ¥, is t -covered
and a location in a circle in &, is t,-covered.

Proor of Fact 2. Consider the tour r that is depicted
in Figure 6. Tour r is constructed so that its length is
T —(142a+2b)d — 2D and the distance between the depot
and location x (y) on r is ¢, —2bd (respectively ¢, ). Further-
more, there are customers at locations x = (x; +ad +D/2, y,)
and y = (x4, +(a+b)d+D/2, y,) and all other customers have
distance more than 4(a + b)d from every center of a circle
in S; US,. The construction implies that (i) when the vehicle
waits time 2bd at or before x it (t, + d)-covers any location
in a circle in ¥, (ii) when the vehicle does not wait before y
it (t, + d)-covers every location in a circle in &, (iii) when
the vehicle waits more than time d + 2D at or before x it
does not t,-cover a location in a circle in #,, and (iv) when
the vehicle waits less than time d 4+ 2D < b at or before x it
does not t,-cover a location in a circle in ;. Fact 2 follows
easily. O

The tour that was constructed in the proof of Fact 2 is
called #;-%,-selecting tour. Clearly, Fact 2 is also valid when
the set &, consists of only one circle S. The corresponding
tour is then called a &;-S-selecting tour.

For each variable v;, define two groups of circles ¥, ; =
{Si1,S5 2,5 3} and &, 5 ={S5; 4,5 5,5; 6} Where each circle
has diameter D and area A = 7(D/2)2. The circles have dis-
tances from each other as shown in Figure 6 with 2 =2 and
b =2. To each positive occurrence of v; assign one circle
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in ¥, 1, and to each negated occurrence assign one circle
in %, ,. For each clause C; let S; be a circle with diameter D
that has a minimal distance of 13d from all other circles. Set
F =Uietin), ket 21 Si,c YIS 17 € [L:m]}. Let t,, £, £, > 0 with
t,>t,+12(a+b)d and t, > t, +12(a + b)d. For each circle S
in &% (¥,,) define t; =t (respectively ts=t,), i € [1:n].
For each circle S=§;, j € [1:m] define tg=t,.

Before we define the details we describe the general idea
of the construction. There are two sets of tours R; and R,.
Set R, reflects the occurrence of variables in the clauses and
allows to model a truth assignment for the variables (by
defining a suitable waiting strategy). R; consists of ¥ ;-
¥, r-selecting (¥ (-Fj-selecting) tours that can cover only
circles (which one depends on the waiting strategy) in one
of the sets ¥, ; or ¥, , (respectively ¥, ; or #;). The set R,
consists of tours that cover the whole service region for
most of the time with the exception of the circles in & that
are only covered as long as they cannot be covered by a tour
in R;. The question is then whether there exists a waiting
strategy so that the tours in R, cover all circles in & during
a certain time interval (when they are not covered by tours
in R,).

Set R; consists of two types of tours. For each variable v;
let r; be an ¥, -, ,-selecting tour as in Figure 6, i.e., with
a=2 and b =2. Furthermore, these tours are defined so that
the length of the tour from the depot until x (see Figure 7)
is t, —4d, from the depot until y it is £, and the total length
is T —9d —2D. For each positive (negative) occurrence of a
variable v; in a clause C; define the ¥ ;-&;-selecting tour
where §; ; is the circle that is assigned to the occurrence
of v; in C; and so that 4 =2 and b =4 (respectively, a=4
and b =2). Furthermore, these tours are defined so that the
length of the tour from the depot until x (see Figure 7)
is t, —8d (respectively, t, — 4d), from the depot until y it

Su O
O sk l=4,51,6

k=123
Zd{ 4d

T-9d-2D
5
O sus
k=123
o { 6d
—— L]
t—8d t,
T-13d-2D
5 O
O s
=4
» { 5.6 6d
.\.. . /.
t,—4d : M t,
T-13d-2D
Figure 7 The Three Types of Tours in the WDP Instance: / € [1:n],

jel[l:m]

is t,, and the total length is T — 13d — 2D. The %, {-¥; ,-
selecting and ; ;-#;-selecting tours are constructed so that
no location of any cycle not in ¥, ; (respectively ¥, ,) can
be reached. Let R; be the set of the selecting tours.

The tours in set R, are constructed according to Fact 1
with set of circles & and time parameter t = t, + 13d,
k=2(6n+m). Hence, the tours in R, (f, + 13d)-cover the
whole service region besides the inner circles of the circles
in &. Moreover, R, is defined so that after time ¢, +13d none
of the tours in P; cover a location that is not covered by at
least one of the tours in R,. For each circle S € ¥ we add
an additional tour rg to set R, that covers the circle S until
time t; and then the vehicle has to drive away from the
circle and back to the depot. Hence it covers no location in S
after time f5 + D. Moreover, the tour rg never covers a loca-
tion in another circle S’ € &, S’ #S. The tours in R=R; UR,
form the instance of WDP.

Our construction implies that every ¥, ,-%; ,-selecting
(&, -Fj-selecting) tour can cover only circles (which one
depends on the waiting strategy) in one of the sets ¥, ;
or & , (respectively, &  or &). If a tour covers such a
circle S € & it can cover it (completely) in the time interval
[ts:ts + d] when it is not covered by its tour 5. After time
[ts:ts+d + D] no location in S is covered. To maximize the
probability to serve the new customer it remains to max-
imize the integral of the area of circles in S that is only
covered by tours in R; over times after the circles where
covered by tours in R,.

On the one hand, a single tour can cover (assuming the
right waiting strategy) a circle S so that the integral over
time and additional (with respect to tours in R,) covered
area is >(d — D)(1—1/(2- (6n + m))) - A because at least the
inner circle is covered additionally during [ts + D, t5 + d].
On the other hand, the integral over time and additional
covered area of a circle in & is at most (d + D) - A because
locations on the circle can be covered additionally only dur-
ing [ts:ts +d + D]. So when all 6n + m circles are covered,
the integral over time and the additional covered area is
at least (6n+m)(d—D)(1—1/(2-(6n+m)))- A. Assume d was
chosen such that d > 4(6n+m)D. When at least one circle is
not covered additionally by a tour in R, the integral over
time and additional covered area is at most

(6n+m—-1)(d+D)-A
< (6n+m)-dA+ (6n+m)-DA —dA
<(61’l+m)dA—(6n+m)-DA_%.dA_,_%DA

1
= (6n+m)(d D)(l 2~(6n+m)> -A.

Now it is sufficient to show that all circles in S can be cov-
ered additionally by tours in R, if and only if there exists a
‘©-satisfying truth assignment for V. Let a €-satisfying truth
assignment for V be given. If variable v; is true, choose a
waiting strategy for the ¥, ;- ,-selecting tour 7; so that ¥, ;
is covered in time interval [f5, | : ts, | +d]. Otherwise, assign a
waiting strategy so that ; , is covered during [fg, , : f5, , +4d].
For each §; k-S/--selecting tour 7, ,, assign a waiting strat-
egy so that S; is covered during [ts/- s+ d] when the cor-
responding literal is true. Otherwise, a waiting strategy is
chosen so that S; ; is covered during [fs,  :fs , +d]. Clearly
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every circle of the form §; , is covered in [t  :f5  + d]
by some tour. Because for each clause C; there exists a
true literal, there is a path with a waiting strategy so that
the circle S; is covered during [ts] s, + d] by some S, ;-
Si—selecting tour. In the other direction, there exists a ¢-
satisfying truth assignment when there exists a waiting
strategy for R such that all circles in S can be covered
additionally; this is easy to show.

Now consider the case that the customer arrival time is
unknown. The proof is similar to that of a known arrival
time. The main changes necessary for the construction are
to remove for each circle in S € &¥ the tour rg from the R,
and to set t,=t,. O
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