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Abstract. This paper defines the Stochastic Eulerian Tour Problem (SETP) and 

investigates several characteristics of this problem.  Given an undirected Eulerian graph 

, a subset (G V E= , ) ( n  R R = ) of the edges in E  that require service, and a probability 

distribution for the number of edges in R  that have to be visited in any given instance of 

the graph, the SETP seeks an a priori Eulerian tour of minimum expected length.  We 

derive a closed form expression for the expected length of a given Eulerian tour when the 

number of required edges that have to be visited follows a binomial distribution.  We also 

show that the SETP is NP-hard, even though the deterministic counter part is solvable in 

polynomial time.  We derive further properties and a worst case ratio of the deviation of 

the expected length of a random Eulerian tour from the expected length of the optimal 

tour.  Finally, we present some of the desirable properties in a good a priori tour using 

illustrative examples. 
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1. Introduction 
One of the most common problems in routing is the design of routes for people or vehicles delivering 

service.  Such routing problems are of two types -- node routing and arc routing problems, depending on 

whether the service request is at a node or on an arc/edge.  The underlying problem for most arc routing 

problems is determining a giant tour that starts and ends at a designated depot, and traverses all edges 

requiring service at least once.  This is the deterministic Eulerian Tour Problem (ETP).   

 A connected graph is Eulerian if there exists a closed walk in the graph containing each edge 

exactly once.  If the given graph is not Eulerian, the first step is to add a least cost set of arcs or edges to 

the graph to make it Eulerian.  This is called the least cost augmentation problem.  Edmonds and Johnson 

(1973) show that this problem can be solved in polynomial time for the undirected Chinese Postman 

Problem (CPP) using an adaptation of Edmond’s blossom algorithm.  While the least cost augmentation 

problem for directed graphs is also solvable in polynomial time, it is NP-hard when the underlying graph 

contains both arcs and edges.  In this case, heuristics are used to make the graph Eulerian.  

Given an Eulerian graph, an Eulerina tour can be determined in polynomial time.  Edmonds and 

Johnson (1973) have described three different algorithms for the ETP on an undirected graph.  These are 

the end-pairing algorithm, the next-node algorithm, and the maze-search algorithm. The ETP is well 

solved for directed and mixed graphs also.  van Aardenne-Ehrenfest and de Bruijn  describe the spanning 

arborescence algorithm  for the ETP on directed graphs.  For mixed graphs, one usually assigns directions 

to the undirected edges to transform the mixed graph into a symmetric graph, and then completely orient 

the remaining undirected edges so that the indegree equals to the outdegree for all vertices of the graph. 

The spanning arborescence algorithm can then be used to determine the Eulerian tour for this graph. 

 In this paper, we assume that we have solved the least cost augmentation problem and are given 

an undirected Eulerian graph ( )G V E= ,  in which the set ( )ER R ⊆  represents the set of edges that 

require service.  It is important to note that there may be more than one Eulerian tour for a given graph.  

However, all these tours have the same cost and hence there is no optimization involved in the ETP.  But 

The Stochastic Eulerian Tour Problem

CIRRELT-2007-45 1



 

there exist quite a few situations in practice, when not all the edges that require service need to be visited 

everyday.  In such cases, the number of edges that require a visit on any given day is a random variable.  

For example, consider a postal carrier who has to deliver mail to n different streets.  The postal company 

wishes to minimize the total walking distance for the carrier.    When the carrier has to visit all the n 

streets every day, any Eulerian tour would suffice, since all the Eulerian tours are of equal length.  But in 

reality, based on the realization of demand, the carrier might have to visit only a subset of the streets 

requiring service on any particular day.   

Consider the following alternative in that situation: the postal carrier follows the predetermined 

tour as long as he has to visit the next street on the tour to provide service.  If at any point on the tour, the 

postal carrier does not have to visit a street, he skips that street, and takes the shortest path to the next 

street on the tour that requires a visit.  With this alternative, the ETP takes on a different dimension.  The 

different possible Eulerian tours of a graph yield themselves better to skipping certain edges of the graph.  

We use the example in Figure 1 to illustrate this.  All edges of the underlying undirected graph have a 

length of 1 and the edges represented by solid lines require service. Node O represents the depot.  The 

dotted lines represent the edges that are only traversed and not serviced. Tours 1 and 2 are two different 

Eulerian tours for the same graph.  The numbers on the edges of the two tours represent the order in 

which one visits the edges in these tours.   

 

                              

 
                
 
 
 

 

Figure 1.  Two different tours for a 3x3 undirected graph 

On a particular day, let us assume that edges A, B, C, and D require service.  This translates to 

edges 2, 6, 10, and 14 on tour 1 and edges 4, 5, 12, and 13 on tour 2.  If we start at the depot, visit the 

TOUR 1 TOUR 2
1               4                                                1                  2

16   3 2 5   16   6 5   3  

12              9                                               10                  9

13   10   11   8   11  13   14   8   

4  6   

14   12   
7  

15   15   

7   
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edges in the same order that they appear in the respective tours and return to the depot, tour 1 results in a 

total length of 10 (Depot-1-2-7-6-11-10-15-14-15-16-Depot), while tour 2 results in a length of 12 

(Depot-1-2-3-4-5-6-15-12-13-10-11-16-Depot).  Thus, tour 1 is better for this instance.  On the other 

hand, if edges A, C, E and F require service, tour 2 which has a length of 6 (Depot-1-2-3-4-5-1-Depot) is 

better than tour 1 which has a length of 8 (Depot-1-2-3-4-5-6-3-1-Depot).  Hence, under such 

circumstances, the objective is to determine not just any Eulerian tour, but a particular tour (if more than 

one tour exists for the given graph) which has the shortest tour length “on an average”.  This motivates 

the investigation of the Stochastic Eulerian Tour Problem (SETP) which we define below. 

 We are given an undirected Eulerian graph ( )G V E= , , a set ( )n  R ,ER R =⊆  of edges that 

require service (We shall call them “white” edges following the notation in [6].), and a distance ( )ji vvd ,  

between every pair of directly connected nodes iv  and jv .  On any instance of the problem, only a subset 

of the n white edges is present, and hence, requires a visit.  The number of present edges follows a 

specified probability distribution.  The objective is to determine an a priori Eulerian tour that visits all the 

n edges and minimizes the expected length of the tour.  On any given instance, one visits and services the 

present edges in the same order as in the a priori tour, while skipping the ones that are absent. 

 Our investigation of the SETP has also been motivated by a real-world problem.  In the UK 

postal system, the postal carriers usually deliver mail a second time in the afternoon.  During the first mail 

delivery, the carriers have to visit all the streets almost always, whereas the second mail delivery is 

typically very light.  Only a small subset of the streets requires service during the afternoon delivery.  

While any Eulerian tour would be sufficient for the first mail delivery, it is definitely advantageous to 

determine a tour that minimizes the total length in an expected sense for the second mail delivery.  It is 

important to note that even though the ETP is well solved, it is not feasible to determine a new tour for 

each day, since following a new tour every day would decrease the operating efficiency of the postal 

carrier considerably.  In certain applications, like Canada Post, the mail carrier collects the mail to be 

delivered at various points along the route from relay boxes.  On any given day, the present edges are 

The Stochastic Eulerian Tour Problem

CIRRELT-2007-45 3



 

known only after the carrier starts his route and thus, it is not possible for the carrier to determine a new 

route at the start of each day.  In such situations, it is certainly efficient to let the mail carrier follow the 

same route every day, while allowing the flexibility of skipping streets, if necessary. 

 A considerable amount of research has been done on deterministic arc routing.  Eiselt et al. 

(1995a, 1995b) provide an excellent overview of this area of research.   However, stochastic arc routing is 

a new area of research.  Researchers have investigated several stochastic node routing problems over the 

past decade.  In the following section, we present some of the related research on stochastic node routing.  

Section 3 states the definitions and assumptions for the SETP, and presents the method to obtain the 

expected length of a given tour efficiently.  In this section, we also show that the SETP is NP-hard.  We 

investigate some of the properties and derive bounds for the expected length of a given tour in Section 4.  

Finally, Section 5 highlights some of the desirable properties in an a priori tour using illustrative 

examples and Section 6 provides the conclusion and directions for future research. 

 

2. Literature Review 
Most of the current literature on arc routing addresses problems in a deterministic context.  However, over 

the past few years, considerable amount of work has been done in understanding the nature of 

probabilistic node routing problems.  We present here a brief summary of the literature on the 

probabilistic version of the Traveling Salesman Problem (TSP), which is closely related to the SETP.  

Researchers have also studied the m-TSP and the Vehicle Routing Problem with stochastic customers and 

stochastic demand.  For results about these studies and a recent survey on stochastic vehicle routing, see 

Gendreat et al. (1995).   

Jaillet (1985) introduced the TSP with stochastic customers as the Probabilistic Traveling 

Salesman Problem (PTSP).  It is essentially a TSP where each vertex vi  is present with a probability pi , 

and hence the number of vertices requiring a visit is a random variable.  The recourse action Jaillet uses is 

to follow the a priori tour and simply skip absent customers.  Under the assumption that ip = p for all 
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vertices, he derives closed form expressions for computing the expected length of a tour.  He also derives 

bounds and several interesting properties of the problem.  Jaillet (1998) and Jaillet and Odoni (1988) 

summarize most of the results in Jaillet (1985). 

 Jaillet shows that an optimal TSP tour can be arbitrarily bad for the PTSP.  He also shows that an 

optimal tour for the PTSP may intersect itself in the Euclidean plane.  This is in contrast to what we know 

about optimal TSP tours.  These results indicate that algorithms have to be developed specifically with the 

PTSP in mind.  Jaillet has developed a number of heuristics by suitably modifying several well-known 

TSP heuristics such as the Clarke-Wright algorithm and tour merging algorithms.  Rossi and Gavioli 

(1988) present computational results after testing three of Jaillet’s heuristics. 

 Bertsimas (1988) and Bertsimas and Howell (1993) have developed a few more heuristics based 

on probabilistic 2-opt edge exchange, vertex moves within a tour, and space filling curves.  Laporte and 

Louveaux (1993) have developed a branch and cut algorithm called Integer L-Shaped method that is 

applicable to many stochastic programs with recourse.  Laporte, Louveaux and Mercure (1989) have 

applied this method to the stochastic TSP and solved instances with up to 50 vertices optimally. 

 Recently, Fleury at al. (2005) have studied the Capacitated Arc Routing Problem (CARP) with 

stochastic demands.  They have adapted a hybrid genetic algorithm developed by Lacomme at al. (2001) 

for the CARP to handle stochastic demands.  They have tried several objective functions to study the 

robustness of the solutions developed by the hybrid genetic algorithm.  Computational results indicate 

that the proposed algorithm produces robust solutions.  Fleury et al. (2005) indicate the need for 

mathematical formulations for stochastic arc routing problems.  This paper aims at developing a 

mathematical representation and analysis of a basic stochastic arc routing problem. 

 

3. Important Results for the SETP 
In this section, we first present the basic definitions and assumptions before formally defining the SETP.  

We then derive a closed form expression for calculating the expected length of a given tour t .  We finally 

show that the SETP is NP-hard even though the ETP is solvable in polynomial time.   
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3.1. Definitions and Assumptions 

( )E,VG  =  is an undirected Eulerian graph where V  is the set of nodes and E  is the set of edges.  A 

subset ( )n  R  R =  of the edges in E  that requires service denotes the set of white edges.  Associated with 

each edge ( )ji v,v  in E  is a non-negative real number ( )ji v,vd , the direct distance from node iv  to node 

jv .  The graph G  has a node designated as the depot where the Eulerian tour starts and ends.  In order to 

facilitate the representation and analysis, we duplicate the depot and represent the duplicated node as v0 , 

which now serves as the depot. The duplicated node v0  is connected to the original depot by two edges of 

length 0. 

 Given an Eulerian tour t , we have an ordering of the nodes and edges, and thus, a direction of 

traversal (and service) for each of the n  edges in R .  If we traverse edge ei  from node vk  to vl , we 

define vk  as the in-node for edge ei ( )in
iv  and vl  as the out-node for edge ei ( )out

iv .  Thus, given the in-

node and the out-node for each edge in R , we represent an Eulerian tour t  as 

( )02221110 ,,,,,,,,,,, vvevvevvevvt out
nn

in
n

outinoutin K= , where the edges e e en1 2, , ,L  are numbered in 

their order of appearance in tour t .  The length of the tour t , ( )tL  is given by:  

( ) ( ) ( )∑∑
=

+
=

+=
n

i

in
i

out
i

n

i
i vvdeltL

0
1

1
,       (1) 

   with  v v vout in
n0 01

= =
+

, and ( ) iel =  length of edge ei  

If nodes iv  and jv  are not directly connected, then ( )ji vvd ,  is the shortest distance between vi and v j . 

 Each edge ei  in R  is present with probability pi .  Thus, for any given instance, the number of 

white edges present (i.e., requiring a visit) is a random variable.  We assume that if k  edges require a 

visit on a particular day, then every set of k  edges out of the n  white edges is equally likely.  Note that 

when p pi =  for all i , the number of present edges follows a binomial distribution. 
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 Thus, given ( )EVG ,= , a set of n  white edges, a distance matrix D  and a probability pi  of 

white edge ei  being present, the SETP seeks an a priori tour that minimizes the expected length of the 

tour.  Looking at it as a stochastic program with recourse, in the first stage, we construct an a priori 

Eulerian tour of minimum expected length.  Once we know the set of present edges, we can describe the 

second stage solution as follows -- start at the depot, travel to the in-node of the first present edge via the 

shortest path, traverse and service the first edge and then take the shortest path from the out-node of the 

first present edge to the in-node of the second present edge.  We continue in a similar manner until we 

reach the out-node of the last present edge and then take the shortest path back to the depot.  Given this 

recourse action and the precise definition for tour representation, we are ready to present the results for 

calculating [ ]tLE , the expected length of a given tour t . 

 

3.2. Expected Length of a Given Tour 
The length of any given tour consists of two parts, namely, the total length of the present white edges, and 

the total distance traveled from the out-node of one present white edge to the in-node of the next present 

white edge (i.e., the inter-edge traversal distances).  The SETP is similar to the PTSP with n white nodes 

and one depot in certain aspects.  The inter-city traversal distances in the PTSP would correspond to the 

inter-edge traversal distances.  The main difference between the two problems is that in the SETP, in 

addition to the inter-edge traversal distances, we have to consider the length of the white edges also.  

Thus, many of our results are extensions of Jaillet’s (1985, 1988) results for the PTSP.   

In order to derive a concise expression for the inter-edge traversal distances, we define the 

following n  quantities. 

Let   ( )   ,   
0

1∑
=

++=
n

j

in
rj

out
j

r
t vvdL   { }1,,0   −∈∀ nr L   (2) 

 where  010 vvv in
n

out == +  

   ( ) ( ) 11 mod 1 +++=++ nrjrj  
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   ( ) ( )
( ) ( )⎪⎩

⎪
⎨
⎧

≤<−+

−≤≤
=

+−

++

++ njrnv,vdv,vd

rnjv,vd
v,vd

in
rnj

out
j

in
rj

out
jin

rj
out
j

  if     

0  if                       
  

00

1
1  

Note that when 0=r , 0
tL  is the total inter-edge traversal distance for the given tour t  and ( )∑

=

+
n

i
it elL

1

0  

is the length of the given Eulerian tour t .  For 11 −≤≤ nr , Lt
r  is the sum of ( )1+n  elements.  Each 

element represents the distance from the out-node of edge e j  to the in-node of its ( )thr 1+  successor 

edge (i.e., edge e j r+ +1 ) with respect to the given tour t .  More precisely, we start at the out-node of edge 

e j , skip the next r edges on the tour and travel to the in-node of the ( )thr 1+  edge following edge e j  to 

calculate Lt
r .  Note that when n r j n− < ≤ , to reach the in-node of edge e j r+ +1  from the out-node of 

edge e j , we define ( )in
rj

out
j v,vd 1++  as reaching the depot from the out-node of e j  and then traveling from 

the depot to the in-node of e j r+ +1 .  We first obtain the conditional expected length of a given tour t  when 

k  of the n  white edges are not present.   

 

Lemma 1. Given a graph G  with n  white edges, a designated depot v0 , and a probability of 

occurrence p  for each white edge, the conditional expected length of a tour t , given k  of the n  white 

edges are not present in the given tour t  is 

( )[ ]
                                  
present edges kn LE t =−

( ) ( )

( )

0

1 1

1
2

01 2

if 

if 

if 

k n

k n

k n

=
⎡

⎣
⎢

⎤

⎦
⎥ = −

⎛
⎝
⎜
⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

−⎛
⎝
⎜

⎞
⎠
⎟ +

− −
−

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥ = −

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

−

=

==

∑

∑∑

n  l e  +  L

n
k

  
n 1

k
 l e   

n r
k r

 L

i t
n 1

i 1

n

i
r 0

k

t
r

i 1

n

, , ,K

  (3) 
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Proof. (i)  k n= :  Since none of the white edges are present, this case is obvious.   

(ii)  k n= −1:  Only one white edge is present and each one of the n  edges is equally likely to 

be present.  We have to travel from the depot to the in-node of this present edge, service the edge, and 

travel from its out-node back to the depot.  Thus, from the definition of Lt
n−1 , this case follows.   

(iii) k n= −01 2, , ,K :  The expected length is the sum of the total length of the white edges 

traversed (the first term ) and the total inter-edge traversal distances (the second term in the expression).   

When k  edges are missing, the resulting total inter-edge traversal distance is a sum of n - k  

elements.  Since some of the elements might be repeated in the various combinations, we regroup them 

using r
tL .  Consider an element ( )in

rj
out
j v,vd 1++  of r

tL  for a given { }210 −∈ n,,,r K .  For this element to 

be included, the white edges je  and e j r+ +1  have to be present and the edges between them have to be 

absent.  Since we have only k  edges missing, if kr > , ( )in
rj

out
j v,vd 1++  will never appear and r

tL  will not 

be used in calculating ( )[ ]present edges  knLE t − .  However, if kr ≤ , we still need to choose the 

remaining rk −  white edges that are missing from a total of rn −− 2  available white edges, and this 

can be done in ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−
rk

rn 2
 ways.  Since this is valid for all { }n,,,j K10∈ , it follows that each r

tL  

appears ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−
rk

rn 2
 times while calculating ( )[ ]present edges  knLE t − . 

Now, we have to account for the number of times the white edges are actually traversed.  When 

k  out of the n  edges are missing, we have ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− k

n
kn

n
 different combinations of the present edges.  

Each combination has ( )kn −  white edges.  Since each one of the n  white edges appears an equal 

number of times over all the combinations, the number of times an edge ei  occurs in [ ]E Lt  is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
k

n
nkn

k
n 1

  )( .       g 
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Now that we have a closed form expression for the conditional expected length, we can calculate [ ]tLE  

using the appropriate probabilities. 

 

Theorem 1. Given a graph G , with n  white edges, a designated depot v0 , and a probability of 

occurrence p  for each white edge, the expected length of a given tour t is 

[ ] ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
+−+⎥

⎦

⎤
⎢
⎣

⎡
−= ∑∑

=

−−
−

=

n

i
i

n
t

n
n

r

r
t

r
t elpLppLp pLE

1

11
2

0

2    1    1     (4) 

Proof. [ ] [ ] { }present edges Prob  present edges    
0

knknLE LE t

n

k=
t −×−=∑   (5) 

where, { } ( )kkn pp
k
n

kn −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− − 1   = present edges Prob    

[ ] ( ) ( )

( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡
+

+⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

=

−

−
−

= = =

∑

∑ ∑ ∑

1

1

1

2

0 1 0

1  
1

     1               

 1    
2

   
1

 1   

n
n

i

n
ti

kkn
n

k

n

i

k

r

r
tit

pp
n

n
Leln

pp
k
n

L
rk

rn
el

k
n

k
n

LE

 

 

( ) ( ) ( )

( ) ( ) ( )

   

                                                       p p L  p p el    

 p p e l  
k

n
    p p L  

rk
rn

    

nn
t

n
n

i
i

n

k

n

i

kkn
i

n

k

k

r

kknr
t

111

1

2

0 1

2

0 0

11

1
1

1
2

−−−

=

−

= =

−
−

= =

−

−+−

+⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+⎥

⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−−

=

∑

∑ ∑∑ ∑

 (6) 

Let us now consider each term of (6). 

The first term can be expressed as: 

 ( )  1    
2

   
2

0

2

∑ ∑
−

=

−

=

−
⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−−n

r

n

rk

kknr
t pp

rk
rn

L      (7) 

Setting rku −=  and rns −−= 2 , (7) reduces to  

 ( ) ( ) ( )∑∑ ∑
−

=

−

= =

− −=⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

2

0

2
2

0 0

2 1    1     1  
n

r

r
t

r
n

r

s

u

uusr
t

r Lpppp
u
s

Lpp   (8) 
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The second and third terms can be combined as: 

 ( ) ( )∑ ∑
=

−

=

−
⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −n

i

n

k

kkn
i pp

k
n

el
1

1

0
1    

1
    

  =  ( ) ( ) ( )∑∑ ∑
==

−

=

−− =⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ − n

i
i

n

i

n

k

kkn
i elppp

k
n

elp
11

1

0

1      1    
1

      (9) 

From (6), (8), and (9), we get  

 [ ]tLE  = ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
+−+⎥

⎦

⎤
⎢
⎣

⎡
− ∑∑

=

−−
−

=

n

i
i

n
t

n
n

r

r
t

r elpLppLpp
1

11
2

0

2    1   1   g 

Since each Lt
r  is the sum of n +1 elements, given a tour t , we can calculate [ ]tLE  in ( )2nO  time using 

(4).  Also, note that if the number of white edges present does not follow a binomial distribution, but 

some other specified probability distribution, we can substitute the appropriate probabilities in (5) to 

calculate [ ]tLE .  However, the ( )n k−  present edges must be chosen at random from the set of n  white 

edges to use (5).  In certain scenarios when each white edge ei  is present with probability pi , we can 

calculate [ ]tLE  using the following formula. 

[ ] ( ) ( ) ( ) ( ) ( )∏∑∏∑∑
+==

−

===

−−
n

ik
ki

n

i

out
i

i

k
ki

n

i

in
i

n

i
iit ppv,vdppv,vdelpLE

11
0

1

11
0

1
1   + 1   +  =  

  ( ) ( )∑ ∑ ∏
= +=

−

+=

−+
n

i

n

ij

j

ik
kji

in
j

out
i p pp v,v d 

1 1

1

1
1     (10) 

We can derive (10) by looking at the probability of the following events: 

• each white edge being present (first term) 

• link between the depot and the in-node of each white edge being present (second term) 

• link between the out-node of each white edge and the depot being present (third term) 

• link between the out-node of a white edge ei  and the in-node of each white edge following ei  in tour 

t  being present (fourth term) 
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Expressions (4) and (10) are similar to the closed form expression for calculating the expected length of a 

given tour for the PTSP with one black node (the depot) and n  white nodes.  The main difference is that 

for the SETP, we have to consider the length of the white edges in addition to the distance traveled 

between edges.  We use this similarity to prove that the SETP is NP-hard. 

 

Theorem 2. The SETP is NP-hard. 

Proof.  The SETP belongs to class NP, since given a tour t , we can calculate [ ]E Lt  in polynomial time 

( )( )2nO  that we can then compare with a bound B .  We reduce the PTSP to the SETP to show that it 

belongs to the class NP-complete. 

Given an instance of the PTSP, we construct the graph ( )EVG ,=  as follows: 

For each white node vi  in the PTSP, define two nodes vi
in  and vi

out . 

{ } { }V v v i n vi
in

i
out= ∀ = ∪, , ,  1 0K  

( ){ } ( ) ( ){ } n,,i  v,v , v,v n,,i  , v,v E out
i

in
i

out
i

in
i KK 11 00 =∀∪=∀=  

    ( ) ( ){ }     ,  Ev,vv,v ji
in
j

out
i ′∈∀∪  

( ){ } 1    n,,i,v,vR out
i

in
i K=∀=  

( ) ( ) ( ) ( ) njiEvvvvdvvdnivvd jiji
in
j

out
i

out
i

in
i ,,1,  ,,  , , = , ; ,,1  ,0 =  , KK =′∈∀′=∀  

( ) ( ) ( )d v v d v v d v v i ni
in

i
out

i0 0 0 1, , , , , , =   =   ′ = K  

 'BB =  

Let ( )02221110 ,,,,,,,,,,, vvevvevvevvt out
nn

in
n

outinoutin K=  be a feasible Eulerian tour for G  with 

[ ]   BLE t ≤ .  Since each edge ei  is of length 0, it is clear that from the Eulerian tour t , we can construct 

a tour ( )010 ,,,, = vvvvt nK′ , which is feasible for ′G .  Also, note that L Lt
r

t
r= ′  for all r n= −0 1, ,K  

by construction of G , and hence [ ] [ ] BBLELE tt ′=≤′  = .  Similarly, we can show that if the PTSP has a 
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feasible solution with [ ] BLE t ′≤′  , then the SETP has a feasible solution with [ ] BLE t ≤ , and hence the 

SETP is NP-hard.     g 

 
4. Properties and Bounds for the SETP 
In this section, we examine a few properties of the SETP.  In order to derive these properties, we express 

[ ]tLE  succinctly in a weight-form notation.  Let W  be the random variable that represents the number of 

present white edges. 

[ ] ∑∑
−

=

−

=

+=
1

0

1

0

n

k
k

n

r

r
trt CLLE βα    

where, ( ) { }2,,0        Prob  
22

−∈∀−=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−

= ∑
−

=

nrknW
k
n

rk
rnn

rk
r Lα  

 ( ) nWn 1Prob1 ==−α ,  ( )knW
n

kn
k −=⎟

⎠
⎞

⎜
⎝
⎛ −

= Prob β , and ( )∑
=

=
n

i
ielC

1
. 

We first describe properties of αr ,βk and Lt
r .  We then use these properties to derive an expression for 

the maximum deviation of the expected length of a given Eulerian tour t  from the expected length of the 

optimal Eulerian tour for the SETP, *t .   

 

Property 1. Given a tour t  for an Eulerian graph G  with n  white edges,  

   Lt
n−1  is a constant independent of t ; 

   L Lt t
n1 2, ,K − are tour-dependent; and 

   L Ct
0 + is the length of the tour t . 

Proof. From the definition of Lt
r , we see that ( ) ( )[ ]∑

=

− +=
n

i

in
i

out
i

n
t vvdvvdL

1
00

1 ,, , and hence, it is tour 

independent.  However, 2,,1 , −= nrLr
t K  depend on the order in which the edges are visited, and hence 
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are tour independent.  By definition, Lt
0  gives the shortest distances between the out-node of the edge ei  

to the in-node of edge ei+1  for all white edges.  Thus, ( )∑
=

+
n

i
it elL

1

0  is the length of the given tour t .  

Note that in the PTSP, Lt
0  is the length of the given tour t .       g 

 

Property 2. The set of edges that define Lt
r  along with E , the set of required edges, consists of 

( )r +1  sub-tours, each starting and ending at the depot v0 .   

Proof. By the definition used in (2), the term Lt
r  contains ( )1+n  terms.  Of these, exactly r  terms are 

sum of two distances as defined in (2) since these have to pass through the depot before reaching the 

destination in-node of the next service edge.  Also, among the ( ) rn −+1  terms that have only one 

distance measure, the depot will be present in exactly two terms.  Thus, it follows that the ( ) rn ++1  

terms that make up Lt
r , along with the set of service edges, will contain exactly ( )r +1  sub-tours, each 

starting and ending at the depot.      g 

 

It is important to note that even if the given distance matrix D  is symmetric (and hence the matrix of 

shortest path distances is also symmetric), ( )in
j

out
i vvd , is in general, not equal to ( )in

i
out
j vvd , .  Hence, 

several properties of the PTSP do not hold for the SETP.  However, if we assume D  to satisfy the 

triangular inequality, then ( ) ( ) ( )in
j

out
k

in
k

out
i

in
j

out
i vvdvvdvvd ,,, +≤ , i.e., the inter-edge traversal distances 

also satisfy the triangular inequality.  Under this condition, we can deduce the following. 

 

Property 3. If D  satisfies the triangular inequality, we can show that, for a given tour t  of an 

Eulerian graph G , 

{ }10                   0 −∈∀≥ n,,rLL t
r
t K  
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Proof. This follows since,  

L Ct
r + = length of ( )r +1  sub-tours with v0  as a common node 

 ≥  length of the given Eulerian tour t  

 CLt += 0  

From property 2, we know that the set of edges that define Lt
r  along with the set of white edges form 

( )r +1  sub-tours with the depot as a common node.  Under the triangularity assumption, we can merge 

these ( )r +1  sub-tours into a single tour whose length will be less than or equal to CLr
t + .  The length 

of this merged tour is in turn greater than or equal to CLt +
0 , the length of the given Eulerian tour  t . 

Hence, { }10            0 −∈∀≥ n,,rLL t
r
t K .     g 

 

Property 4. Given a tour t of an Eulerian graph G  with a depot v0  and n  white edges, 

 { } 111 1
111 −≤≤−∈∀+≤ −− rr0 and ,n,,r                LLL rr

t
r
t

r
t K . 

Hence, ( ) { }11                     1 0 −∈∀+≤ n,,rLrL t
r
t K   

Proof.    ( )      
0

1∑
=

++=
n

j

in
rj

out
j

r
t v,vdL  

      ( ) ( )         
0

11
0

1 11
∑∑
=

++++
=

++ +≤
n

j

in
rj

out
rj

n

j

in
rj

out
j v,vdv,vd     

by the triangularity assumption 

 But, ( ) ( )∑∑
=

+−−+
=

++++ =
n

j

in
rrj

out
j

n

j

in
rj

out
rj v,vdv,vd

0
11

0
11 11

         

 Hence, { } 10 and 11                1
111 −≤≤−∈∀+≤ −− rr,n,,rLLL rr

t
r
t

r
t K  
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If we let, 11 −= rr  in 111 −−+≤ rr
t

r
t

r
t LLL , we get 01

t
r
t

r
t LLL +≤ − .  Using the same relationship for 1−r

tL , 

we get 02 2 t
r
t

r
t LLL +≤ − .  Thus,  

  ( ) { }11                     1 0 −∈∀+≤ n,,rLrL t
r
t K    g 

 

Property 5. Given a discrete probability distribution for W ,  

(i)  [ ] 1                                    
1

0
≥∀=∑

−

=

nnWE
n

r
rα    

(ii)  ( ) [ ] 1             0Prob 1 1
1

0
≥∀=−=+∑

−

=

nWr r

n

r
α  

(iii) [ ] 1                                    = 
1

0
≥∀∑

−

=

nnWE
n

k
kβ  

(iv) ( )( ) [ ] 1     0Prob1 =   
1

0
≥∀=−−∑

−

=

nWknn k

n

k
β  

 

Proof.  (i) ( )∑ ∑∑
−

=

−

=

−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−2

0

22

0
    Prob  

2
       =  

n

r

n

rk

n

r
r knW

k
n

rk
rn

α  

=  ( )∑ ∑
−

= =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2

0 0
  

2
     Prob  

n

k

k

r rk
rn

k
n

knW   (11) 

 But,   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−−

∑
= k

n
rk

rnk

r

1
    

2
  

0
     (12) 

 From (11) and (12), we get 

  ( )knW
k
n

k
nn

k

n

r
r −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= ∑∑

−

=

−

=

 Prob  
1

     
2

0

2

0
α     (13) 

 By replacing kn −  by u in (13), we get 
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  ( ) [ ] ( )[ ] 1 Prob -  1     Prob       
2

2

0
==== ∑∑

=

−

=

WWE
n

uW
n
un

u

n

r
rα  

 Since 
( )
n
W

n
1 Prob    1

=
=−α , the result follows. 

(ii) ( ) ( ) ( )∑ ∑∑
−

=

−

=

−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−

+
2

0

22

0
    Prob  1  

2
       =   1

n

r

n

rk

n

r
r knWr

k
n

rk
rn

r α  

=  ( ) ( )∑ ∑
−

= =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2

0 0
  

2
  1    Prob  

n

k

k

r rk
rn

r
k
n

knW   

 But,   ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−−

+∑
= k

n
rk

rn
r

k

r
    

2
 1  

0
     

 Hence, ( ) ( ) ( ) ( )1 Prob - 0 Prob1     Prob        1
2

0

2

0
==−=−==+ ∑∑

−

=

−

=

WWknWr
n

k

n

r
rα  

 Since 
( )
n
W

n
1 Prob    1

=
=−α , the result follows. 

(iii)    1

2

0

1

0
   =   −

−

=

−

=

+∑∑ n

n

k
k

n

k
k βββ  

( )∑∑
−

=

−

=

−=⎟
⎠
⎞

⎜
⎝
⎛ −2

0

2

0
 Prob     =  

n

k

n

k
k knW

n
knβ  

              ( )uW
n
un

u
=⎟

⎠
⎞

⎜
⎝
⎛= ∑

=

 Prob  
2

 

   [ ] ( )[ ]1 Prob 1
=−= WWE

n
 

  Since, [ ] nWn 1 Prob1 ==−β , the result follows. 

(iv)  ( )( ) [ ] [ ]0=WProb -1 = knWProb  =  knn 
n

k
k

n

k
∑∑
−

=

−

=

−=−
1

0

1

0
β   g 

 

Lemma 2.  Given a graph G  with n  white edges, a depot v0 , for any given tour t , 
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(i)  [ ] [ ]( ) [ ]CLnWELE tt +≥ 0    

(ii)  [ ] [ ]( ) [ ]CLWLE tt +=−≤ 0   0Prob1   

Proof.  (i)  [ ] ∑∑
−

=

−

=

+=
1

0

1

0
      

n

k
k

r
t

n

r
rt CLLE βα  

                        
1

0

1

0

0 ∑∑
−

=

−

=

+≥
n

k
k

n

r
rt CL βα    [from Prop. 3] 

           [ ]( ) [ ]CLnWE t += 0    [from Prop. 5] 

(ii)  [ ]E L L Ct r
r

n

t
r

k
k

n

      = +
=

−

=

−

∑ ∑α β
0

1

0

1

 

         ( ) ( )( )    1
1

0

1

0

0 ∑∑
−

=

−

=

−++≤
n

k
k

n

r
rt knnCrL βα  [from Prop. 4] 

         [ ]( ) [ ]CLW t +=−= 0   0Prob1   [from Prop. 5] g 

  

Next, we derive the worst case ratio for the expected length of a random Eulerian tour when compared to 

the optimal tour for the SETP. 

 

Theorem 3.  Given a graph G  with n  white edges, and a designated depot, a distance matrix D  that 

satisfies the triangular inequality, the optimal tour *t  for the SETP and a random Eulerian tour t ,  

[ ] [ ]( ) [ ] [ ] ( )( ) [ ]( )nWEWnWELELELE ** ttt 0 Prob1 =−−≤−  

Proof. From Lemma 2, [ ] ( ) [ ][ ]nWECLLE ** tt    0 +≥     

Since all Eulerian tours are of the same length, CLCL *tt +=+ 00   , and  

  [ ] ( ) [ ][ ]nWECLLE tt*    0 +≥      (14) 

Also, [ ] [ ] ( ) [ ] [ ][ ] 0 Prob1   0 =−−+≤− WnWECLLELE ttt *  (15) 
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 Dividing (15) by (14), we get the desired result.   g 

 Note that when W  follows a binomial distribution, with parameter p , [ ] npWE   =  and hence, Theorem 

3 implies [ ] [ ]( ) [ ]( ) ( )( ) pppLELELE n
ttt ** −−−≤− 11    . 

 

5. Illustrative Example 
In this section, we present an example to investigate the characteristics of different a  priori tours for a 

given graph.  Consider the 3x3 grid network given earlier in Figure 1.  All vertical edges are of length 1 

and all horizontal edges are of length 2.  The dotted lines indicate the edges traversed but not serviced on 

the Eulerian tour t .  All edges represented by solid lines are white and W  is binomial with parameter p , 

( )0 1< <p .  Note, that the length of any tour is 24.  Several tours are possible for this graph.  Let us 

consider tours 3 and 4 given in Figure 2 and compare their expected lengths. 

 

 

 

 

 

 

Figure 2.  Tours 3 and 4 for a 3x3 undirected graph 

 

The length of both tours is 24.   However, the expected length of tour 3, [ ]
3tLE , is less than 

[ ]
4tLE  for all values of p  between 0  and 1.  Specifically, for [ ]

3
450 tLE ,.p =  is 17% lower than 

[ ]
4tLE .  The reason for this is quite obvious from the nature of the tours.  In tour 3, edges (2,3,4,5) and 

edges (10,11,12,13) together form two separate sub-tours.  This allows one to skip these sub-tours when 

the respective edges are not present.  On tour 4, we can reach the inner sub-tour only after traversing most 

TOUR 3 TOUR 4
1               6                                                1                 2

16   5 2 7   16   13 14 3  

14               9                                              6                  5

15   10   13   8   7 10   9   4   

12 3   

11   8   
4

12   15   

11  

The Stochastic Eulerian Tour Problem

CIRRELT-2007-45 19



 

of the outer sub-tour.  Thus, inherently tour 4 necessitates traversing more edges than tour 3, on most 

instances.  Thus, we see that the number of sub-tours clearly has an effect on the expected length of the 

tour. 

 Another interesting observation is the effect of the orientation of the edges in the inner sub-tour 

of tour 4.  All the edges are serviced from the outside towards the center.  If on a particular instance, 

edges 2, 8 and 14 are present, the length of the tour is 10.  However, if we change just the orientation of 

edge 14, the length reduces to 8.  If we change the orientation of edges 10, 12, and 14, [ ]
4tLE  drops from 

20.08 to 19.81 for p = 0 6. .  Hence, another factor to take into consideration while developing tours is the 

orientation of the edges in a sub-tour. 

 We also tested other tours to understand the impact of the size of the sub-tours.  Consider tour 5 

with 2 inner sub-tours (Figure 3).  One of the sub-tours has 6 edges (edges 2-7) while the other has only 2 

edges (edges 10 and 11).   [ ]
5tLE  is less than [ ]

4tLE  and greater than [ ]
3tLE  for all values of p .  Note 

that tours 5 and 3 have two sub-tours each, while tour 4 has only one sub-tour. Though tours 3 and 5 have 

the same number of sub-tours, the sub-tours of tour 5 are not balanced.   

 

 

 

 

 

 

Figure 3.  Tours 5 and 6 for a 3x3 undirected graph 

 

 Our example also illustrates that having a larger number of balanced sub-tours does not 

necessarily imply a lower expected length.  Consider tour 6 in Figure 3, whose edges are oriented exactly 

the same way as in tour 3.  But tour 6 consists of 4 sub-tours each with 2 edges, while tour 3 consists of 2 

TOUR 5 TOUR 6
1               8                                               1                    4

16   7 2 9   16   3 2   5 

14              13                                               12                  9

15     5   6   12   13 10   14 8   

710   

3   15   
11

4   15

6   
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sub-tours each with 4 edges.  The expected length of tour 3 is marginally less than that of tour 6 for all 

values of p .  This simple example illustrates that the nature (i.e., number and size) and orientation of the 

sub-tours play an important role in determining the expected length of the tour.  Specifically, the better 

tours in the expected sense, have more balanced sub-tours when compared to the worse tours.  Also, the 

edges of the sub-tours should be oriented to minimize the average inter-edge traversal distances.   

 

6. Conclusion 
In this paper, we first defined the SETP as the problem seeking the Eulerian tour of minimum length in 

the expected sense for an undirected graph, when the number of white edges present follows a specified 

probability distribution.  We then derived a closed form expression for calculating the expected length of 

a given tour in ( )O n2 time.  We also showed that the SETP is NP-hard even though the deterministic 

ETP is solvable in polynomial time.  We also derived a worst case ratio of the deviation of the expected 

length of a random Eulerian tour from the optimal tour.  Finally, using an illustrative example, we 

investigated some of the desirable properties in an a priori tour. 

 We are currently working on developing and testing solution procedures for the SETP, that take 

advantage of some of the results presented in this paper.  It is important to note that we assume that the 

least cost augmentation of the underlying graph is already done and define the SETP for an Eulerian 

graph.  One of the main directions for our future research is to study the Stochastic Chinese Postman 

Problem, i.e., solve the augmentation problem when the edges of the given graph are present according to 

a specified probability distribution. 
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