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In this paper, congestion dynamics along crowded freeway corridors are modeled as a conservation law with
a source term that is continuous in space. The source term represents the net inflow from ramps, postulated
here as a location-dependent function of the demand for entering and exiting the corridor. Demands are
assumed time-independent, which is appropriate for understanding the onset of congestion. Numerical and
analytical results reveal the existence of four well-defined regions in time-space, two of which are transient.
The conditions for the existence of congestion both in the freeway and in the on-ramps are identified, as
well as the set of on-ramps that are most likely to become active bottlenecks. The results in this paper help
explain the stochastic nature of bottleneck activation, and can be applied to devise effective system-wide
ramp metering strategies that would prevent excessively long on-ramp queues.
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1. Introduction.12

The main drawback of current traffic flow network models based on the kinematic wave model13

(Lighthill and Whitham 1955, Richards 1956) is the treatment of boundary conditions at merges.14

Invariably, it is assumed full priority for the entering flows, which is convenient for mathematical15

tractability but only reasonable under very light traffic (see e.g. Coclite and Piccoli 2002, Bayen16

et al. 2004, Gugat et al. 2005, Coclite et al. 2005, Bastin et al. 2007, Jin and Zhang 2003, 2004).17

Under congested conditions, however, empirical evidence reported by Cassidy and Ahn (2005)18

indicates that the available capacity on the freeway is allocated to competing streams according19

to a “merge ratio”, as per Daganzo’s model (Daganzo 1996), which is a constant independent of20

flows.21

To circumvent this problem, this paper uses a result in Laval and Leclercq (2008) who obtained22

a continuum model for lane-changing rates in congested traffic. In the case of merges, this means23

that freeway inflows are expressed as a function of the flow on the freeway and the demand for24

entering the freeway. The resulting formulation allowed us to better understand the onset of morn-25

ing and evening commute congestion along crowded freeway corridors, and its relationship with26

the demand for entering and exiting along the corridor. In order to obtain analytical solutions and27

better understand system dynamics, a continuum approximation was used to represent inflows and28

outflows to the corridor.29

This paper is organized as follows. Section 2 formulates the problem as a conservation law in30

both the freeway and the on-ramps, as well as the appropriate boundary conditions. The numerical31

solution of this problem is carried out in section 3, which reveals considerable insight. Based on32

this insight, section 4 shows the analytical solution for three important cases. Finally, section 533

presents a discussion and outlook.34
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2. Problem Formulation.35

Consider a long n-lane freeway corridor of length L with entrances and exits evenly spaced δ36

distance units apart. The number of entrances and exits is large, and therefore freeway inflow and37

outflow rates can be treated as continuous variables in time t and location x, φ+(t, x) and φ−(t, x),38

in units of veh/time-distance. There exists a homogeneous fundamental diagram q(k) that gives39

the flow q(t, x) as a function of the local density k(t, x); both quantities defined as totals across all40

of freeway lanes. Therefore, the traffic conservation law can be expressed as41

kt + s(k)kx = φ+−φ−, (1)42

where s(k) = dq(k)/dk is the speed of characteristics, and variables in subscript represent partial43

derivatives. We will use the superscript “x” to denote variables belonging to the on-ramp that44

merges at location x in the freeway. With this notation, traffic dynamics at on-ramps are given by45

kx
t + sx(kx)kx

y = 0, (2)46

where kx(t, y) gives the density at location y along the on-ramp. The length of all on-ramps is d47

and are assumed identical to a single freeway lane.48

It is reasonable to assume that exit flows are Markovian; i.e.,49

φ− = βq, (3)50

where β(t, x) is the proportion per unit distance of the freeway flow that exits at (t, x). The51

determination of φ+(t, x) is more elaborate because one has to capture driver merging behavior,52

which depends on both the traffic state in the freeway and in the on-ramp. To this end, let α(t, x) be53

the demand rate for entering the freeway at (t, x), in units of veh/time-distance. Notice that α gives54

the number of vehicles willing to enter the freeway and not the number of vehicles that actually55

enter the freeway. To obtain the latter, in this paper we modify eqn. (6) in Laval and Leclercq56

(2008) which pertains to discretionary lane-changing rates in multilane freeways. Accordingly, the57

actual freeway inflow rate may be expressed as58

φ+(t, x) = min{1, µ(k(t, x))
λ(k(t, x))

}λx(kx(t, d))/δ, (4)59

where µ and λ are the receiving and sending function of kinematic wave theory. For a triangular60

fundamental diagram with free-flow speed u, wave speed w, and jam density κ, we have61

µ(k) = min{(nκ− k)w,nQ}, (5a)62

λ(k) = min{uk,nQ}, (5b)63

µx(kx) = min{(κ− kx)w,Q}, (5c)64

λx(kx) = min{ukx,Q}. (5d)65
66

where Q = uwκ/(u + w) is capacity of one lane. Notice that q(k) = min{λ(k), µ(k)} and qx(kx) =67

min{λx(kx), µx(kx)}.68

Notice that (4) is the continuum limit (as the cell size goes zero) of the model introduced in Laval69

and Daganzo (2006) for the flow of lane changes, which allocates the available capacity to each70

approach according to its sending function. In the case of discrete merges, this approach was first71

introduced in Jin and Zhang (2003). The appendix shows that this type of models are equivalent to72

Daganzo’s model (Daganzo 1996), which has been validated empirically (Cassidy and Ahn 2005).73

In particular, they produce constant merging priorities independent of the (congested) flow in the74

competing approaches. Without loss of generality, (5b) and (5d) imply equal priority between the75
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on-ramp and the freeway shoulder lane. The appendix also shows how one can modify (5d) to76

account for a different priorities.77

To model on ramps as a continuum, the term 1/δ in (4) “diffuses” the demand of a discrete78

on-ramp (given by (5d)) within a vicinity of length δ. Similarly, we use the following initial and79

boundary conditions for on-ramps:80

kx(0, y) = α(0, x)δ/u, (6a)81

kx(t,0) = α(t, x)δ/u, (6b)82

qx(t, d) = φ+(t, x)δ. (6c)83
84

Initial condition (6a) assumes that all on-ramps are filled with the demand at t = 0. Boundary85

conditions (6b) and (6c) imply that the demand at time t enters the on-ramp at y = 0, and that86

the flow that actually enters the freeway (i.e., that exits the on-ramp at y = d) is given by (4).87

We also assume that the freeway is empty at t = 0 and that there is no inflow from the upstream88

end of the freeway; the only inflow is due to on-ramps in 0≤ x≤L. Notice that the latter is without89

loss of generality because one can always increase L to account for higher freeway flows at a given90

location. Thus, in addition to (3) and (4), the following are the initial and boundary conditions for91

the freeway:92

k(0, x) = 0, (7a)93

k(t,0) = 0. (7b)94
95

As formulated, the problem is general enough to capture any demand pattern whatsoever. The96

numerical solutions for such problems would be straightforward, but simulation is a lousy tool for97

understanding the problem. Therefore, in the sequel we restrict our attention to time-independent98

and location-monotonic demand patterns, i.e., α = α(x), β = β(x), d2α/dx2 = d2β/dx2 = 0. Depend-99

ing on the sign of the slope of α(x) and β(x), this should provide an adequate approximation100

for the morning and evening commute problems. Additionally, this simplification will allow us to101

obtain analytical solutions that reveal important insights which should be true in general.102

The next section shows the numerical solution of the problem formulated in this section. The103

numerical solution reveals important properties of the problem, which are useful for the analytical104

solution presented in section 4.105

3. Numerical Solution.106

In this section we apply Godunov’s scheme to the problem (1)-(7) solving the Riemann problems107

using the sending and receiving functions (5) as described in Daganzo (1996). Without loss of108

generality, we have chosen w = u in these experiments in order to obtain exact solutions, i.e., free109

of numerical errors (the reader is referred to Leclercq et al. 2007, for a demonstration). For the110

numerical examples in this section we have used n=3 lanes, w = u = 100 km/hr and κ=150 veh/km111

(and therefore Q=7500 veh/hr).112

The main insight revealed by the numerical solutions is that there exists four distinct regions in113

the time-space plane where density obeys a distinctive pattern: two of these regions correspond to114

free-flow states (labeled regions A and B in the sequel) and two are congested (C and D). Regions115

A and C are transient while B and D give the steady state of the system (until demands drop at116

the end of the rush hour). Of course, the evolution of density inside each region will depend on the117

functions α(x) and β(x), but as we will see in the sequel the shape of the regions is rather general118

for typical rush-hour patterns.119
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Figure 1 Numerical solution for the constant demand case: a = 4,850 veh/hr/km, b = 0.2 km−1 and L = 20 km
and δ = 1 km. (a) Time-space density contour map for the freeway. Bold lines correspond to interfaces
between the different traffic states, while thin lines are isodensity contours. (b) and (c): evolution of
density at t = 20 min and x = 10 km, respectively.

3.1. Constant demands120

We start our discussion with the simplest case where α(x) = a and β(x) = b are constant in 0 <121

x < L and zero elsewhere. Figure 1a shows a density contour map obtained numerically. Region A122

corresponds to the “filling up” of the freeway, where, as time passes, the density increases. As can123

be seen in figure the isodensity contours are vertical, meaning that at a given time the density in the124

freeway is constant for x≥ ut. Inside region B densities have reached a free-flow equilibrium, where125

isodensity contours are horizontal. Point “0” in the figure marks the beginning of congestion. At126

this point the density reaches the critical density and therefore a shock waves propagates upstream,127

which corresponds to the back of the queue. At the same time, a wave is emanated from point “1”128

in the figure, which is not a result of a restriction from downstream of x = L but of the absence of129

lateral inflow and outflow for x > L. This wave eventually meets the back of the queue, and marks130

the boundary between congested regions C and D. The difference between these regions is that131

in the former the isodensity contours are vertical and in the latter, horizontal. These congested132

regions can be broken down into two subregions: regions C1 and D1 where on-ramps are in free-flow133

conditions, and regions C2 and D2 where on-ramps are congested. The boundary between the two134

sub regions are defined by points “2” and “3” in the figure. Point “2” corresponds to the most135

downstream location where on-ramp congestion is first observed, while point “3” is the analogous136

for the most upstream location.137

Figures Fig. 1b and 1c show the evolution of density at t = 20 min and x = 10 km, respectively.138

As expected, there is a sharp shock between region B and the congested regions. It can be seen139

in part b of the figure that point “2” corresponds to an inflection point in the spatial evolution of140

density inside region D.141

A density map at selected time instants is presented in Fig. 2 for both the freeway and the on-142

ramps. Consistently with Fig. 1a, it can be seen that congestion at on-ramps starts around t = 14143

min simultaneously between locations x2 and x3. On-ramp queues propagate upstream thereafter,144
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Figure 2 A density map at selected time instants for both the freeway and the on-ramps.

eventually reaching the beginning of the on-ramp at y = 0. It is interesting to note that at a given145

time instant larger queues are observed roughly in the midpoint between x2 and the back of the146

freeway queue.147

3.2. Monotonic demand patterns.148

Here we extend our previous analysis to include a first-order dependency between the demand149

and freeway location. To this end, we consider all combinations, the following specifications for150

on-ramps:151

α(x) =a, (constant demand) (8a)152

α(x) =a(1−x/L), (decreasing demand) (8b)153

α(x) =ax/L, (increasing demand) (8c)154
155

and the for exits:156

β(x) =b, (constant demand) (9a)157

β(x) =b(1−x/L), (decreasing demand) (9b)158

β(x) =bx/L, (increasing demand) (9c)159
160

Notice that specifications (8) and (9) are valid in 0≤ x≤L; elsewhere all functions are identically161

zero.162

The numerical solution for all combinations between (8) and (9) are shown in Fig. 3. It can be163

seen that the main qualitative difference with respect to the constant demand case of Fig. 1 are164

that165

1. the isodensity contours in regions A and C are no longer vertical, and are determined by166

on-ramp demand. This can be verified by comparing the second and third row of the figure.167

2. there is a new free-flow region B2 that appears downstream of D1 in three cases(parts c, d168

and f in the figure). These regions appear because of the small on-ramp demand and-or a large169

exit demand near the end of the freeway segment.170
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Figure 3 Numerical solution for all combinations between (8) and (9). Bold lines correspond to interfaces between
the different traffic states, while thin lines are isodensity contours.

3. region C tends to disappear (but still exists) in the case of increasing on-ramp demand; see171

last row in the figure.172

4. the interface between regions C and A are either forward moving (parts c, d, e and f of the173

figure) or backward moving (b, g, h and i).174

Notice how pictures d and g in the figure are similar to all cases within their respective row. This175

suggests that, at least qualitatively, the behavior of the system is not very sensitive to the exit176

demand pattern, and that the constant exit demand case should provide good approximations for177
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more complicated patterns. A similar argument can be made for the constant on-ramp demand.178

It is apparent how pictures b and c in the figure are very similar to the pictures in the third179

and second row, respectively. This result is intuitive since, in terms of net inflow, an increasing180

(decreasing) exit demand and a decreasing (increasing) on demand are interchangeable.181

As expected, congestion is more severe farther away from the downtown area, in all cases. This182

is evident from the figure since higher densities are observed closer to the beginning of the freeway183

segment.184

4. Analytical Solution185

In this section we derive the analytical solution for the three cases in the first column of Fig. (3),186

i.e. β(x) = b. Unfortunately, these are the only cases where one can obtain fully algebraic solutions;187

all other cases involve terms that can only be evaluated numerically. However, it was founded in188

section 3 that the particular form of β(x) does not affect significantly the results compared to the189

constant-β case, at least qualitatively. Therefore, it is expected that the insights obtained for the190

three cases analyzed in this section are valid in general.191

The solution method proposed here recognizes that inside each region identified in the previous192

section, the density obeys a simplified form of (1) supplemented with “ad-hoc” boundary conditions.193

In particular, since each region is either congested or uncongested, the speed of characteristics s(k)194

is either −w or u, respectively, independent of the density, which facilitates matters considerably.195

The idea then is to solve each region independently choosing the appropriate boundary conditions.196

In general, a boundary condition specifies (exogenous) values for the density, k0(t, x), along a197

trajectory in the time-space plane, (t, x)∈Ω; i.e.:198

k(t, x) = k0(t, x), ∀(t, x)∈Ω. (10)199

where Ω is the set of points defining the trajectory. For the examples of the previous section, part200

a of Fig. 3 shows the trajectory relevant for each region, ΩA,ΩB . . .ΩD2
.201

It is important to note that the proposed region-by-region solution method does not require the202

explicit solution of the kinematic wave model for on-ramps (2). This is true because inside each203

region the inflow rate φ+ can be determined exogenously. In particular, φ+ takes only two possible204

values depending on the traffic states prevailing in the on-ramp just upstream of the merge; i.e.:205

φ+(t, x) =
{

α(x), (uncongested on-ramp),
(nκ− k(t, x))w/(nδ), (congested on-ramp). (11)206

It is clear that in free-flow φ+ corresponds to the on-ramp demand α(x). To obtain the congested207

portion of (11), we note that on-ramp congestion takes place only when the freeway is congested,208

in which case (4) can be written as φ+ = µλx/(λδ). Since both the freeway and the on-ramp are209

congested then µ = (nκ− k)w,λ = nQ and λx = Q, and therefore φ+ = (nκ− k)w/(nδ) as sought.210

Finally, Table 1 shows a summary of all the information needed to solve the kinematic wave211

model (1) inside each region, for the case of constant demands. All other cases are solved similarly,212

the only difference being the definition of the boundary conditions. Note that in the table kc refers213

to the critical density in a single lane.214

4.1. Constant demands215

In this section we consider demands that are constant along the freeway corridor; as per (8b) and216

(9a). Next, we use Table 1 to obtain the analytical expressions for the density inside regions A217
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Table 1 Summary of specifications for solving the kinematic wave model (1)-(7) inside each region

region freeway on-ramps s(k) φ+−φ− Ω k0(t, x)
A free-flow free-flow u α−βuk t = 0 0
B free-flow free-flow u α−βuk x = 0 0
C1 congested free-flow −w α−β(nκ− k)w t = t0 nkc

C2 congested congested −w (1/(nδ)−β)(nκ− k)w t = t2 kC1
(t2,ΩC2

)
D1 congested free-flow −w α−β(nκ− k)w x = x1 nkc

D2 congested congested −w (1/(nδ)−β)(nκ− k)w x = x2 kD1
(t2,ΩD2

)

through D2, which are labeled kA, kB . . .. This can be accomplished using the method of character-218

istics(see e.g. LeVeque 1993), which recognizes that along characteristic lines the density obeys an219

ordinary differential equation that can be solved straightforwardly. It can be shown that:220

kA(t) = (1− exp (−but))a/(ub), (12a)221

kB(x) = (1− exp (−bx))a/(ub), (12b)222

kC1(t) = nκ− 1
bw

(
a(1− c

w
u +1
1 ) exp (bwt)

)
, (12c)223

kC2(t) = nκ− nδa

w

(
c0

c1

) 1
bδn−1 (

1
c1

) c0w
bδnu

exp
(
−wc0

δn
t
)

, (12d)224

kD1(x) = nκ− 1
bw

(a(1+ c1) exp(b(L−x))) , (12e)225

kD2(x) = nκ− nδa

w

(
c0

c1

) 1
bδn−1

exp
(
− c0

δn
(L−x)

)
. (12f)226

227

where we have defined the (dimensionless) constants228

c0 = 1− bnδ, (13a)229

c1 = 1− bnQ/a. (13b)230
231

The above solutions are valid only in the relevant regions A. . .D2 defined in Fig. 1. To formalize232

the definition of these regions we will next find the coordinates (ti, xi) of points i = 0,1,2,3 in the233

figure.234

Point “0” is the point closest to the origin where the density equals the critical density. Therefore,235

it can be obtained by solving kB(x) = nkc for x, which gives236

x0 =
1
b

log
(

1
c1

)
, (14a)237

t0 = x0/u. (14b)238
239

In the numerical example of Fig. 1 this gives x0 = 13.14 km and t0 = 7.88 min, as can be verified240

in the figure. Clearly,241

x1 = L, (15a)242

t1 = t0. (15b)243
244

The location of point “2”, x2, marks the location of the most downstream on-ramp that first suffers245

congestion. At this point the demand on the on-ramp aδ equals the capacity allocated to the on-246

ramp according to the merge model, q(kD1(x))/n. Accordingly, solving aδ = (nκ− kD1(x))w/n for247

x gives248

x2 = L− 1
b

log
(

c0

c1

)
, and (16a)249

t2 = (L−x2)/w + t0, (16b)250
251
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which gives x2 = 11.44 and t2 = 13.02 min for Fig. 1.252

The formulae for points “0” and “2” above can be used to obtain the conditions for the existence253

of congestion both in the freeway and the on-ramps. In particular, no freeway congestion means that254

point “0” appears beyond the length of our freeway segment; i.e., x0 > L. Similarly no congestion255

on the on-ramps means x2 < 0. Using (14a) and (16a) gives256

a≤ bnQ

1− e−bL
, (no freeway congestion) (17a)257

a≤ bnQ

1− c0e−Lb
. (no on-ramp congestion) (17b)258

259

In the numerical example of Fig. 1 we obtained the conditions a≤ 4,533.2 and a≤ 4,584, respec-260

tively. Notice that for very long freeway segments the exponential terms in (17) vanish, so that a261

common no-congestion condition simplifies to a≤ bnQ.262

As was mentioned in section 3, the highest densities are observed near the beginning of the263

freeway segment, i.e., in region D2. But this high density is always smaller than the jam density.264

In fact, the limit of (12f) tends to the jam density only for very long freeways; i.e., as L→∞. For265

example, in the case of Fig. 1 we have that for L = 20 km kD2
(0) = 418 < nκ = 450 veh/km.266

It is possible to obtain the equation of the back of the queue; see Fig. 1a. This can be done using267

the classic “shock condition” which asserts that the speed of the shock is given by the ratio between268

the difference in flow and the difference density between the neighboring traffic states, respectively.269

In our case, one would obtain three formulae for the shock speed, one for each pair of neighboring270

traffic states B-C1, B-C2 and B-D2. Unfortunately, these equations are very complicated and not271

particularly insightful and therefore are not included here.272

4.2. Decreasing on-ramp demand.273

In this section we assume demands obeying (8b) and (9a); i.e., on-ramp demand decreases lin-274

early along the freeway. This could represent a first-order approximation for morning (evening)275

commute in cities where people tend to live in the suburbs (downtown area). The relevant bound-276

ary conditions are shown in Fig. 3d. Notice that these are similar to the constant demand case277

in Table 1 except for state C and the new state B2. In the latter case the boundary condition278

is simply k(t, x1) = nkc, but unfortunately for C1 and C2 the boundary conditions are far more279

complicated. In fact, as can be seen in the figure, ΩC1
(t) and ΩC2

(t) correspond to the isodensity280

curves kA(t, x) = nkc and kC1
(t, x) = kD1

(x2), respectively, which turn the problem mathematically281

intractable. This has no profound impact in our analysis since these regions are only transient. For282

the remaining regions it can be shown that283

kA(t, x) = c4

(
1+ b(L−x)− e−btu(b(L+ tu−x)− 1)

)
, (18a)284

kB1
(x) = c4

(
1+ b(L−x)− e−bx(bL+1)

)
, (18b)285

kB2
(x) = c4

(
1+ b(L−x)− e−b(c2−L+x)

)
, (18c)286

kD1
(x) = nκ− c4

(
1+ b(L−x)− e−b(c2−L+x)

)
, (18d)287

kD2
(x) = nκ− c4e

−bc2−
L−xc0−

c3
b

δn
(
eb(c2+L)−c3 (1+ c3)− ebL

)
, (18e)288

289

where we have defined the (positive) constants290

c2 = nQLb/a, (19a)291

c3 =−W
(
− 1

c0

exp(−bc2− 1
c0

)
)
− 1

c0

, (19b)292

c4 =
a

b2Lu
. (19c)293

294
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In (19b) the term W(z) represent the (real-valued) Lambert W-function, which gives the solution295

of z = wew. The coordinates for the different points in Fig. 3d can be obtained similarly to the296

constant demand case. Solving kB1
(x) = nkc for x gives297

x0 = L− c2 +
1
b

(1+W (−(bL+1)exp(−b(L− c2)− 1))) , (20a)298

t0 = x0/u. (20b)299
300

For the example in Fig. 3d we have that x0 = 7.48 km and t0 = x0/u = 4.48 min. To obtain point “1”301

we note that it is the most downstream point in A where the density equals nkc. It is straightforward302

to show that303

x1 = L− (ebtu− 1)/b+ut1, (21a)304

t1 =−c2/u− (1+W (− exp(−bc2− 1)))/(bu), (21b)305
306

which in the case of Fig. 3d gives t1 = 7.59 min and x1 = 15 km. Solving δα(x) = w(nκ−kD1(x))/n307

for x gives308

x2 = L− c3/b, (22a)309

t2 = (x1−x2)/w + t1. (22b)310
311

In the case of Fig. 3d this gives t2 = 13.42 min and x2 = 5.28 km. With all, the congestion conditions312

become313

a≤ b2nQL

1− (bL+1)exp(−bL)
, (no freeway congestion) (23a)314

a≤ b2nQL

bL− log(bLc0 +1)
. (no on-ramp congestion) (23b)315

316

which for Fig. 3d give a≤ 4,257.5 and a≤ 2,923.5, respectively. Interestingly, for very long freeways317

one obtains the same non-congestion condition a≤ bnQ as in the constant demand case. The reader318

can verify this by taking the limit L→∞ in (23).319

Similarly to the constant on-ramp demand case the limit of (18e) tends to the jam density as320

L→∞. For Fig. 3d we have kD2
(0) = 431 < nκ = 450 veh/km.321

4.3. Increasing on-ramp demand322

Here demands are given by (8c) and (9a); i.e., on-ramp demand decreases linearly along the freeway,323

as an approximation for the morning (evening) commute cities where people tend to live in the324

downtown area (suburbs). Proceeding similarly as in previous sections, a summary of results follow.325

326

kA(t, x) = c4

(
but+(1− bx)(1− ebtu)

)
, (24a)327

kB(x) = c4

(
bx− 1+ e−bx

)
, (24b)328

kD1(x) = nκ− c4

(
1+ b(L−x)− e−b(c2−L+x)

)
, (24c)329

kD2(x) = nκ− c4

(
ebL− c5

bδn +
xc0
δn (1− b(L− c2))− e−

(c5−bx)c0+1
bδn (1− c5)

)
, (24d)330

331

where c5 = W
(
− 1

c0
ebL− 1

c0 (1− b(L− c2))
)

+ 1
c0

is a dimensionless constant. As opposed to the332

previous two sections, the back of the queue starts in point “1” in Fig. 3g, which is located at333

the downstream end of the freeway segment. The time when congestion starts, t1, is such that334

kA(t1,L) = nkc; i.e.:335

x1 = L, (25a)336

t1 =
1
bu

(
bL− 1−W (

ebL−1 (bL− 1− c2)
))

(25b)337
338
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which in the case of Fig. 3g gives t1 = 3.83 min. Point “2” is given by339

x2 = c5/b, (26a)340

t2 = (L−x2)/w + t1. (26b)341
342

Unfortunately, point “0” is located in the back of the queue, and it becomes mathematically343

intractable to obtain its coordinates. However, we can still find the congested conditions. In the344

case of the freeway, this condition is equivalent to having t1 ≥L/u, since L/u is the latest time for345

congestion to form (after this time the freeway is in steady state). In the case of the on-ramps, we346

can use the same argument as in previous sections, i.e., x2 < 0. Interestingly, these two conditions347

are mathematically equivalent; i.e.:348

a≤ b2nQL

bL− 1+ exp(−bL)
, (no freeway and on-ramp congestion) (27)349

which also tends to a≤ bnQ for very long freeways.350

5. Discussion.351

The continuum approximation proposed in this paper reveals considerable insights on the opera-352

tion of freeway corridors, and yet it requires only two parameters, a and b. As in any continuum353

approximation, one has to interpret the results with care when comparing with real-world situ-354

ations. For example, one should interpret vehicular density as an indication of the likelihood to355

encounter congestion at a given time-space point. It is clear that in the real world demands are far356

more complicated than idealized here, yet our results give a first order approximation. And even357

if real-world demands behaved as postulated here, the accuracy of the predictions would decrease358

with the actual distance between ramps, δ.359

Of particular interest is region C, which is a transient and marks the beginning of congestion.360

The on-ramps covered by this region (e.g., the ones located, roughly, in x0 ≤ x ≤ x1) should be361

interpreted as the most likely on-ramps to become active bottlenecks. In fact, it is commonly362

observed in the field that the location of the active bottleneck in a freeway corridor varies from day363

to day, but always within a relatively short segment. This can be seen in Fig. 4, which presents a364

collection of density maps for 12 days from a real freeway corridor. It can be seen how the active365

bottleneck changes location within the same rush hour following a rather reproducible pattern in366

time-space. This is consistent with the shape of the interface between regions C and A shown in367

Fig. 3, which can be either forward moving (parts c, d, e and f of the figure), backward moving368

(b, g, h and i) or vertical (a). In each case one would expect that the active bottleneck would shift369

location according to the shape of this interface.370

The findings in this paper may be used to explore a new kind of ramp metering strategy. It was371

found that on-ramp queues form in a well-defined portion of the freeway segment, i.e., in x≤ x2.372

Since on-ramp queues can be very deleterious (capacity drop and spill-back to city streets) one373

can devise a ramp metering strategy that would spread on-ramp queues more evenly across the374

entire freeway corridor. This could be done by metering the on-ramps downstream of x2 in such375

a way that the freeway flow in x≤ x2 enables higher on-ramp discharge. Notice that this result is376

independent of the demand profile. While other authors have pointed out that for minimizing total377

cost the closer to the CBD the more restrictive metering rates should be, our finding is different:378

(i) there may be a multitude of strategies (but always implemented downstream of x2) that may379

achieve similar queue lengths distribution; and (ii) Figs. 3c and 3f show that there are instances380

where there is no reason for metering near the CBD as the freeway there is in free-flow conditions.381

Research in this realm continues.382
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Appendix A: The Merge Model.383

This appendix shows that (4) is equivalent to Daganzo’s model (Daganzo 1996), and that one needs a single384

additional parameter, ζ, to modify (5d) in order to obtain experimentally observed merge ratios (Cassidy385

and Ahn 2005). To simplify the exposition we consider a “discrete” merge for the demonstration in the386

first subsection, and show how to obtain the parameter ζ in the continuum approximation in the second387

subsection.388

A.1. Discrete on-ramps.389

Consider Fig. 5 which shows a discrete on-ramp and its “merge diagram” describing the actual flows through390

the merge, qi in approach i=1 (freeway), 2 (on-ramp), given a demand vector (q0
1 , q

0
2). A demand vector is391

feasible if each component is less than the approach capacity Qi, and if it is below the total capacity line392

in the figure; i.e., if the total demand q1 + q2 is less than the available capacity downstream of the merge,393

µ1. The merge ratio p is such that when both approaches are congested, each one discharges at a “minimum394

capacity” q∗i , i = 1,2; i.e., p = q∗2/q∗1 and q∗1 = µ1/(1+p), q∗2 = µ1p/(1+p). An approach is said to the congested395

if q0
i > q∗i . Using this notation (4) can be expressed as396

q2 = min{1,
µ1

λ1

}λ2, while (28a)397

q1 = µ1− q2, (28b)398
399

where λi is the sending functions for approach i = 1,2. Using Q1 = nQ and Q2 = ζQ these demands can be400

expressed as401

λ1 = min{q0
1 , nQ}, (29a)402

λ2 = min{q0
2 , ζQ}. (29b)403

404

where we have introduced the parameter ζ for allowing calibrating the model against empirical merge ratios.405

To prove that (4) is equivalent to Daganzo’s model, we note that a merge can be in one of three states:406

both approach in free-flow, both approaches in congestion, and one approach congested and the other one407

in free-flow. Next we examine each case individually.408

When all approaches are in free-flow µ1 ≥ λ1 and λi = q0
i , i = 1,2 so that (28)-(29) give q2 = q0

2 , as expected.409

When all approaches are congested µ1 ≤ λ1 = nQ and λ2 = ζQ and therefore q2 = µ1ζ/n. Since in this case410

q2 should equal the prediction of Daganzo’s model q∗2 = µ1p/(1+ p), it is clear that one should choose ζ as411

ζ =
np

1+ p
. (30)412

Now we examine the case where the freeway is congested and the on-ramp is uncongested. In this case413

one gets q2 = µ1q
0
2/(nQ), which corresponds to point “2” in Fig. 5a. But this point is not stable because414

on-ramp demand is greater than the allocated capacity, i.e. q0
2 ≥ µ1q

0
2/(nQ). Therefore, a queue will grow in415

the on-ramp propagating upstream at a speed s2; see part b of the figure. However, as soon as the queue416

appears in the on-ramp, the sending function λ2 jumps to its maximum value ζQ, bringing total demand417

to point “3” in Fig. 5a. At this point, (28)-(29) give q2 = µ1ζ/n; i.e., point “4” in the figure. Again, this418

point is not stable because q0
2 ≤ µ1ζ/n, which means that the on-ramp back-of-queue will eventually recede419

at a speed s4 in Fig. 5b. As soon as this queue clears, total demand will be given by point “0’” and the420

cycle starts over. This cycle produces a “flip-flop” between points “2” and “4” in the figure. It turns out421

that the long-run average between these points is point “1”, which establishes the sought equivalence. This422

is true because the on-ramp queue does not grow indefinitely, but goes back and forth at speeds s2 and s4,423

respectively. This means that the long-run average flow discharging from the on-ramp equals its input flow,424

q2 = q0
2 . Clearly, q1 = µ1− q2. This concludes the demonstration.425

A.2. Continuous on-ramps.426

Here we show how to choose ζ in the continuum approximation. Consider a single on-ramp at x = 0 and427

let x = δ be the beginning of the next upstream on-ramp. Using the notation in the main text, it is now428

clear that when both the freeway and the on-ramp are congested then φ+(x) = q(x)ζ/(nδ),0 ≤ x ≤ δ. In429

steady-state conditions the conservation equation can be expressed as the ODE:430

dq(x)
dx

= q(x)
ζ

nδ
, (31a)431

q(0) = µ1, (31b)432
433
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whose solution is q(x) = µ1 exp(−xζ/(nδ)). Evaluating this solution at x = δ and combining it with Daganzo’s434

model prediction, i.e. q(δ) = µ1/(1+ p), gives the appropriate value for ζ,435

ζ = n ln(1+ p). (32)436

Finally, it is worth noting that for simulation purposes, it is straightforward to incorporate explicitly the437

lengths, ∆, of the insertion section (i.e., the freeway section where vehicles can change lanes from the on-438

ramp to the freeway). The only changes are (i) replacing δ with ∆, and (ii) set φ+ = 0 outside the insertion439

sections.440
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Figure 4 Density map from a 40 km corridor on the I-285 freeway in Atlanta, Georgia. This data corresponds to
the period noon-midnight, all lanes combined, eastbound direction for selected days in January 2008.
The dashed lines indicate the direction of the free-flow to congestion transitions A-C in the text.
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Figure 5 (a) Daganzo’s merge diagram; (b) fundamental diagram on approach 2.




