POLITECNICO DI TORINO

Repository ISTITUZIONALE

The two-echelon capacitated vehicle routing problem: models and math-based heuristics

Original
The two-echelon capacitated vehicle routing problem: models and math-based heuristics / Perboli, Guido; Tadei, Roberto; Vigo, D.. - In: TRANSPORTATION SCIENCE. - ISSN 0041-1655. - STAMPA. - 45:(2011), pp. 364-380. [10.1287/trsc.1110.0368]

Availability:

This version is available at: $11583 / 1485029$ since
Publisher:
INFORMS (Institute for Operations Research and Management Sciences)
Published
DOI:10.1287/trsc.1110.0368

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

The Two-Echelon Capacitated Vehicle Routing Problem: Models and Math-Based Heuristics

Guido Perboli
DAUIN, Politecnico di Torino, 10129 Torino, Italy and CIRRELT, Montréal, Québec H3T 1J4, Canada, guido.perboli@polito.it
Roberto Tadei
DAUIN, Politecnico di Torino, 10129 Torino, Italy, roberto.tadei@polito.it
Daniele Vigo
Department of Electronics, Information, and Systems, University of Bologna, 40136 Bologna, Italy, daniele.vigo@unibo.it

Abstract

Multiechelon distribution systems are quite common in supply-chain and logistics. They are used by public administrations in their transportation and traffic planning strategies, as well as by companies, to model own distribution systems. In the literature, most of the studies address issues relating to the movement of flows throughout the system from their origins to their final destinations. Another recent trend is to focus on the management of the vehicle fleets required to provide transportation among different echelons.

The aim of this paper is twofold. First, it introduces the family of two-echelon vehicle routing problems (VRPs), a term that broadly covers such settings, where the delivery from one or more depots to customers is managed by routing and consolidating freight through intermediate depots. Second, it considers in detail the basic version of two-echelon VRPs, the two-echelon capacitated VRP, which is an extension of the classical VRP in which the delivery is compulsorily delivered through intermediate depots, named satellites.

A mathematical model for two-echelon capacitated VRP, some valid inequalities, and two math-heuristics based on the model are presented. Computational results of up to 50 customers and four satellites show the effectiveness of the methods developed.

Key words: vehicle routing; two-echelon systems; city logistics
History: Received: October 2008; revisions received: June 2009, July 2010, November 2010; accepted:
December 2010. Published online in Articles in Advance June 16, 2011.

1. Introduction

The freight transportation industry is a major source of employment and supports the economic development of the country. However, freight transportation is also a disturbing activity, because of congestion and environmental nuisances that negatively affect the quality of life, in particular in urban areas.
In freight transportation there are two main distribution strategies: direct shipping and multiechelon distribution. In direct shipping, vehicles starting from a depot transport their freight directly to the customers, while in multiechelon systems the freight is delivered from the origin to the customers through intermediate depots. The growth in the volume of freight traffic, as well as the need to take into account factors such as environmental impact and traffic congestion, has led research in recent years to focus on multiechelon distribution systems, and, in particular, two-echelon systems (Crainic, Ricciardi, and Storchi 2004). In two-echelon distribution systems, freight is delivered to an intermediate depot and from this depot to customers.

Multiechelon systems presented in the literature refer to the movement of flows throughout the system from their origins to their final destinations and, eventually, explicitly consider only the routing problem at the last level of the transportation system (Ricciardi, Tadei, and Grosso 2002; Daskin, Coullard, and Shen 2002; Shen, Coullard, and Daskin 2003).

Moreover, in the past decade multiechelon systems with less than truckload dispatching policies have been introduced by practitioners in different areas, such as express delivery service companies (http://www.tntlogistics.com), grocery and hypermarkets product distribution, e-commerce and home delivery services (http://www.sears.com), newspaper and press distribution (Jacobsen and Madsen 1980), and city logistics (Crainic, Ricciardi, and Storchi 2004).
The main contribution of this paper is to introduce two-echelon vehicle routing problems (VRPs), a new family of routing problems where routing and freight management are explicitly considered at their different levels. The basic variant of Two-Echelon VRPs, the two-echelon capacitated VRP (2E-CVRP) is introduced and examined in detail. In 2E-CVRP, the freight
delivery from the depot to the customers is managed by shipping the freight through intermediate depots. Thus, the transportation network is decomposed into two levels, the 1st level connecting the depot to the intermediate depots and the 2nd connecting the intermediate depots to the customers. The objective is to minimize the total transportation cost of the vehicles involved in both levels. Constraints on the maximum capacity of the vehicles and the intermediate depots are considered, while the timing of the deliveries is ignored.

A flow-based model for the 2E-CVRP is introduced, as well as valid inequalities used to strengthen the continuous lower bound. Moreover, the same model is used to derive two fast math-based heuristics.

The paper is organized as follows. In $\S 2$ we recall the literature related to multiechelon distribution systems, showing similarities and differences between two-echelon VRPs and other problems present in the literature. In $\S 3$ we give a general description of twoechelon VRPs. In $\S 4,2 \mathrm{E}-\mathrm{CVRP}$ is introduced, and a mathematical model is given, which is strengthened by means of valid inequalities in $\S 5$. Section 6 presents the two heuristics using different simplified variants of the base model to quickly find feasible solutions for the 2E-CVRP. Finally, test instances for 2E-CVRP are introduced, and some computational results are discussed in $\S 7$.

2. Literature Review

Freight distribution and vehicle routing have been playing a central role in the past decade not only in supply chain and production planning but also for their leading role in several environmental and politic aspects. Moreover, several transportation and production systems have been moved from a single level to a multiechelon distribution schema. As stated in the introduction, this paper focuses on the extension to multiechelon systems of VRPs, which have been poorly studied so far from the routing point of view. For this reason, the literature review is presented below along two directions. First, some references for VRPs are shortly recalled. Second, a more detailed review of the literature on multiechelon systems is discussed.

Vehicle routing has become a central problem in the fields of logistics and freight transportation. In some market sectors, transportation costs constitute a high percentage of the value added of goods. Therefore, the use of computerized methods for transportation can result in savings ranging from 5% to as much as 20% of the total costs (Toth and Vigo 2002). Unfortunately, to our knowledge, even if VRP problems are present in the literature in many variants, only the single-level version of the VRP has been studied (see Toth and

Vigo 2002; Baldacci, Toth, and Vigo 2007 for the main contributions in the area; Perboli, Pezzella, and Tadei 2008 for a comparison of the main heuristic methods in the capacitated VRP case).

In the literature, the multiechelon systems, and the two-echelon systems in particular, refer mainly to supply chain and inventory problems (Daskin, Coullard, and Shen 2002; Shen, Coullard, and Daskin 2003; Verrijdt and de Kok 1995). These problems do not use an explicit routing approach for different levels but focus more on the production and supply chain management issues.

Several papers deal with the design of the multiechelon system with different levels of detail (for a survey on continuous location models, network location models, mixed-integer programming models, and applications (see Klose and Drexl 2005)). These papers include the location and relocation of uncapacitated (Galvão and Santibaez-Gonzalez 1992; Khumawala and Whybark 1976; Van Roy and Erlenkotter 1982; Tadei, Perboli, and Ricciardi 2009) and capacitated (Hormozi and Khumawala 1996; Barros 1998; Barros and Labbé 1994; Ricciardi, Tadei, and Grosso 2002; Tadei et al. 2010) intermediate depots, as well as with multiple objective functions (Melachrinoudis and Min 2000; Min and Melachrinoudis 1999) and budget constraints (Wang et al. 2003). For a classification of the different types of problems, as well as for a general mathematical framework for the dynamic multicommodity capacitated facility location of intermediate depots, refer to Melo, Nickel, and da Gama (2006). However, a common issue of these articles is that the routing aspects are simplified by approximating the true routes by direct shipping.

The first application of a two-echelon distribution system with an explicit minimization of the total transportation costs can be found in Jacobsen and Madsen 1980. In this study, a comparison is presented between several fast heuristics for solving a two-echelon location routing problem in which transfer points are not known in advance. The distribution system and input data are based on a real case, in which two newspaper publishers combined their printing and transportation facilities to decrease transportation costs. A more recent real application of two-tier distribution networks is attributable to Crainic, Ricciardi, and Storchi (2004) and is related to freight distribution in a large urban area. The authors developed a twotier freight distribution system for congested urban areas, using small intermediate platforms called satellites as intermediate points for the freight distribution. In Crainic, Ricciardi, and Storchi (2007) and in Crainic, Ricciardi, and Storchi (2009b) the same authors introduced the first formal definition of 2E-CVRP as a twolevel, time-dependent, synchronized, multitour, multidepot, multiproduct, heterogeneous fleet (on each
level) VRP with hard (at satellites) and soft (at customers) time windows.

As stated before, multiechelon systems presented in the literature usually explicitly consider the routing problem only at the last level of the transportation system, while at higher levels a simplified routing problem is considered. While this relaxation may be acceptable if the dispatching at higher levels is managed with a truckload policy (TL), the routing costs of the higher levels are often underestimated, and decision makers cannot directly use the solutions obtained from the models in the case of the less-than-truckload (LTL) policy (Daskin, Coullard, and Shen 2002; Shen, Coullard, and Daskin 2003; Verrijdt and de Kok 1995).

In the case where LTL policy with vehicle trips serving several customers is applied only at the second level, the problem is similar to a multidepot VRP. However, because the most critical decisions are related to which satellites will be used and to the assignment of each customer to a satellite, more pertinent methods will be found in location routing problems (LRPs). In these problems, the location of the distribution centers and the routing problem are not solved as two separate problems but are considered as a unique more complex problem (for a more detailed survey of LRP, see Nagy and Salhi 2007; AlbaredaSambola, Diaz, and Fernandez 2005; Prins et al. 2007). Moreover, even if the routing from the intermediate depots to the customers is considered, as for example, in the capacitated LRP, the routing cost between the central depot and the satellites is ignored (Boulanger and Semet 2009). Other LRP studies refer to direct shipping strategies to simplify the routing costs, and some heuristics have been developed for specific multiechelon problems, even if no extension to a general multiechelon routing scheme has been developed (Jacobsen and Madsen 1980; Gendron, Khuong, and Semet 2009). Another application of a specific twoechelon routing problem is the truck and trailer routing problem (TTRP). In this problem some customers can be serviced by either a complete vehicle (i.e., a truck pulling a trailer) or a single truck, while others can only be serviced by a single truck for various reasons (e.g., government regulations, limited maneuvering space at customer site, road conditions, etc.) (Semet and Taillard 1993; Lin, Yu, and Chou 2009; Villegas et al. 2010). Moreover, a limited number of parking points let the drivers detach the trailer to service a subset of customers that require the truck only. This implies the presence in the solution of three types of routes: a pure truck route traveled by a single truck; a pure vehicle route without any subtour traveled by a complete vehicle; and a complete vehicle route consisting of a main tour traveled by a complete vehicle and at least one subtour traveled by the truck alone. The last type of route is a two-level route, where the
trailer at the parking point acts as a small satellite. The network structure is partially a two-echelon one, but on the contrary of 2E-CVRP, just one single type vehicle and no consolidation at satellites are considered.

3. Two-Echelon Vehicle Routing Problems

Freight consolidation from different shippers and carriers associated with some kind of coordination of operations is among the most important ways to achieve a rationalization of the distribution activities. Intelligent transportation systems technologies and operations research-based methodologies enable the optimization of the design, planning, management, and operation of city logistics systems (Crainic, Gendreau, and Potvin 2009a; Taniguchi et al. 2001).

Consolidation activities take place at so-called distribution centers (DCs). When such DCs are smaller than a depot and the freight can be stored for only a short time, they are also called satellite platforms, or, simply, satellites. Long-haul transportation vehicles dock at a satellite to unload their cargo. Freight is then consolidated in smaller vehicles, which deliver them to their final destinations. Clearly, a similar system can be defined to address the reverse flows, i.e., from origins within an area to destinations outside it.

As stated in the introduction, in the multiechelon VRPs, the delivery from the depot to the customers is managed by rerouting and consolidating the freight through different intermediate satellites. The general goal of the process, which is also known in the literature as cross-docking (Barthold and Gue 2004), is to ensure an efficient and low-cost operation of the system, while the freight is delivered on time and the total cost of the traffic on the overall transportation network is minimized. Usually, capacity constraints on the vehicles and the satellites are considered.

More precisely, in the multiechelon VRPs the overall transportation network can be decomposed into $k \geq 2$ levels:

- the 1st level, which connects the depots to the 1st-level satellites;
- $k-2$ intermediate levels interconnecting the satellites;
- the last level, where the freight is delivered from the satellites to the customers.

The most common version of multiechelon VRP arising in practice is the two-echelon $V R P$, where only one intermediate level of satellite depots is present.

Let us denote the depot by v_{0}, the set of intermediate depots called satellites by V_{s}, and the set of customers by V_{c}. Let n_{s} be the number of satellites and n_{c} the number of customers. The depot is the starting point of the freight, and the satellites are capacitated. The customers are the destinations of the freight, and

Figure 1 Example of 2E-CVRP Transportation Network
each customer i shows a demand d_{i}, i.e., the quantity of freight that has to be delivered to that customer. The demand of each customer cannot be split among different vehicles at the 2nd level. For the 1st level, we consider that each satellite can be served by more than one 1st-level vehicle, so the aggregated freight assigned to each satellite can be split into two or more vehicles. Each 1st level vehicle can deliver the freight of one or more customers, as well as serve more than one satellite in the same route.

The distribution of the freight cannot be managed by direct shipping from the depot to the customers. Instead the freight must be consolidated from the depot to a satellite and then delivered from the satellite to the desired customer. This implicitly defines a two-echelon transportation system: the 1st level interconnecting the depot to the satellites and the 2nd one the satellites to the customers (see Figure 1).
We define as arc (i, j) the direct route connecting node i to node j. If both nodes are satellites or if one is the depot and the other is a satellite, we define the arc as belonging to the 1 st -level network, while if both nodes are customers or if one is a satellite and the other is a customer, the arc belongs to the 2 nd-level network.

We define as $1 s t$-level route a route run by a 1st-level vehicle that starts from the depot, serves one or more satellites, and ends at the depot. A 2 nd-level route is a route run by a 2 nd-level vehicle that starts from a satellite, serves one or more customers, and ends at the same satellite.
The problem is easily seen to be NP-hard via a reduction to VRP, which is a special case of 2E-CVRP arising when just one satellite is considered.
In this paper, we will focus on two-echelon VRPs, using them to illustrate the various types of
constraints that are commonly defined on multiechelon VRPs. We can define three groups of variants as follows.

Basic variants with no time dependence:

- Two-echelon capacitated VRP (2E-CVRP). This is the simplest version of multiechelon VRPs. At each level, all vehicles belonging to that level have the same fixed capacity. The size of the fleet of each level is fixed, while the number of vehicles assigned to each satellite is not known in advance. The objective is to serve customers by minimizing the total transportation cost, satisfying the capacity constraints of the vehicles. There is a single depot and a fixed number of capacitated satellites. All the customer demands are fixed, known in advance, and must be compulsorily satisfied. Moreover, no time window is defined for the deliveries and the satellite operations. For the 2nd level, the demand of each customer is smaller than each vehicle's capacity and cannot be split in multiple routes of the same level.

Basic variants with time dependence:

- Two-echelon VRP with time windows (2E-VRPTW). This problem is the extension of 2E-CVRP where time windows on the arrival or departure time at the satellites and/or at the customers are considered. The time windows can be hard or soft. In the first case the time windows cannot be violated, while in the second, if they are violated a penalty cost is due.
- Two-echelon VRP with satellites synchronization (2E-VRP-SS). In this problem, time constraints on the arrival and the departure of vehicles at the satellites are considered. In fact, the vehicles arriving at a satellite unload their cargo, which must be immediately loaded into a 2 nd-level vehicle. Also this kind of constraints can be of two types: hard and soft. In the hard case, every time a 1st-level vehicle unloads its freight, 2nd-level vehicles must be ready to load it (this constraint is formulated through a very small hard time window). In the second case, if $2 n d-l e v e l ~ v e h i c l e s ~ a r e ~$ not available, the demand is lost and a penalty is paid. If the satellites are capacitated, constraints on loading/unloading operations are incorporated, such that in each time period the satellite capacity in not violated.

Other 2E-CVRP variants are:

- Multidepot problem. In this problem the satellites are served by more than one depot. A constraint forcing to serve each customer by only one 2nd-level vehicle can be considered. In this case, we have a multidepot single-delivery problem.
- 2E-CVRP with pickup and deliveries (2E-VRP$P D)$. In this case we can consider the satellites as intermediate depots where both the freight that has been picked up from the customers and that which must be delivered to the customers are stored.

Table 1 Definitions and Notations

active vehicles cannot exceed m_{2}, and each satellite k has a maximum capacity $m_{s_{k}}$. The 2 nd-level vehicles have the same given capacity K^{2}. No additional limitation on the route size, neither in length nor in number of visited customers, is introduced.

In our model we will not consider the fixed costs of the vehicles, because we suppose that they are available in fixed number. Let us consider the travel costs $c_{i j}$, which are of two types:

- costs of the arcs traveled by 1st-level vehicles, i.e., arcs connecting the depot to the satellites and the satellites between them;
- costs of the arcs traveled by 2nd-level vehicles, i.e., arcs connecting the satellites to the customers and the customers between them.

Another cost that can be used is the cost of loading and unloading operations at the satellites. Supposing that the number of workers in each satellite $v_{s_{k}}$ is fixed, we consider only the cost incurred by the management of the freight, and we define F_{k} as the unit cost of freight handling at the satellite $v_{s_{k}}$.

The formulation we present derives from the multicommodity network design and uses the flow of the freight on each arc as main decision variables.

We define five sets of variables, which can be divided into three groups:

- The first group represents the arc usage variables. We define two sets of such variables, one for each level. The variable $x_{i j}$ is an integer variable of the 1 stlevel routing and is equal to the number of 1st-level vehicles using arc (i, j). The variable $y_{i j}^{k}$ is a binary variable representing the 2 nd-level routing. It is equal to 1 if a 2 nd-level vehicle runs a route that starts from satellite k and goes directly from node i to node $j, 0$ otherwise.
- The second group of variables represents the assignment of each customer to one satellite and is used to link the two transportation levels. More precisely, we define $z_{k j}$ as a binary variable that is equal to 1 if the freight to be delivered to customer j is consolidated in satellite k and 0 otherwise.
- The third group of variables, split into two subsets, one for each level, represents the freight flow passing through each arc. We define the freight flow as a variable $Q_{i j}^{1}$ for the first level and $Q_{i j k}^{2}$ for the second level, where k represents the satellite that the freight is passing through. Both variables are continuous.

To lighten the model formulation, we define the auxiliary quantity as

$$
\begin{equation*}
D_{k}=\sum_{j \in V_{c}} d_{j} z_{k j}, \quad \forall k \in V_{s}, \tag{1}
\end{equation*}
$$

which is nonnegative and represents the freight passing through each satellite k.

The model to minimize the total cost of the system may be formulated as follows:

$$
\begin{equation*}
\min \sum_{i, j \in V_{0} \cup V_{s}, i \neq j} c_{i j} x_{i j}+\sum_{k \in V_{s}} \sum_{i, j \in V_{s} \cup V_{c}, i \neq j} c_{i j} y_{i j}^{k}+\sum_{k \in V_{s}} F_{k} D_{k} \tag{2}
\end{equation*}
$$

subject to

$$
\begin{align*}
& \sum_{i \in V_{s}} x_{0 i} \leq m_{1}, \tag{3}\\
& \sum_{j \in V_{s} \cup V_{0}, j \neq k} x_{j k}=\sum_{i \in V_{s} \cup V_{0}, i \neq k} x_{k i} \quad \forall k \in V_{s} \cup V_{0}, \tag{4}\\
& \sum_{k \in V_{s}} \sum_{j \in V_{c}} y_{k j}^{k} \leq m_{2}, \tag{5}\\
& \sum_{j \in V_{c}} y_{k j}^{k} \leq m_{s_{k}} \quad \forall k \in V_{s}, \tag{6}\\
& \sum_{j \in V_{c}} y_{k j}^{k}=\sum_{j \in V_{c}} y_{j k}^{k} \quad \forall k \in V_{s}, \tag{7}\\
& \sum_{i \in V_{s} \cup v_{0}, i \neq j} Q_{i j}^{1}-\sum_{i \in V_{s} \cup v_{0}, i \neq j} Q_{j i}^{1} \\
& =\left\{\begin{array}{ll}
D_{j} & j \text { is not the depot, } \\
\sum_{i \in V_{c}}-d_{i} & \text { otherwise, }
\end{array} \quad \forall j \in V_{s} \cup V_{0}\right. \tag{8}\\
& Q_{i j}^{1} \leq K^{1} x_{i j} \quad \forall i, j \in V_{s} \cup V_{0}, i \neq j, \tag{9}\\
& \sum_{i \in V_{c} \cup k, i \neq j} Q_{i j k}^{2}-\sum_{i \in V_{c} \cup k, i \neq j} Q_{j i k}^{2} \\
& = \begin{cases}z_{k j} d_{j} & j \text { is not a satellite, } \\
-D_{j} & \text { otherwise, }\end{cases} \\
& \forall j \in V_{c} \cup V_{s}, \forall k \in V_{s} \tag{10}\\
& Q_{i j k}^{2} \leq K^{2} y_{i j}^{k} \quad \forall i, j \in V_{s} \cup V_{c}, i \neq j, \forall k \in V_{s} \text {, } \tag{11}\\
& \sum_{i \in V_{s}} Q_{i v_{0}}^{1}=0, \tag{12}\\
& \sum_{j \in V_{c}} Q_{j k k}^{2}=0 \quad \forall k \in V_{s}, \tag{13}\\
& y_{i j}^{k} \leq z_{k j} \quad \forall i \in V_{s} \cup V_{c}, \forall j \in V_{c}, \forall k \in V_{s} \text {, } \tag{14}\\
& y_{j i}^{k} \leq z_{k j} \quad \forall i \in V_{s}, \forall j \in V_{c}, \forall k \in V_{s}, \tag{15}\\
& \sum_{i \in V_{s} \cup V_{c}} y_{i j}^{k}=z_{k j} \quad \forall k \in V_{s}, \forall j \in V_{c}, \tag{16}\\
& \sum_{i \in V_{s}} y_{j i}^{k}=z_{k j} \quad \forall k \in V_{s}, \forall j \in V_{c}, \tag{17}\\
& \sum_{i \in V_{s}} z_{i j}=1 \quad \forall j \in V_{c}, \tag{18}\\
& y_{k j}^{k} \leq \sum_{l \in V_{s} \cup V_{0}} x_{k l} \quad \forall k \in V_{s}, \forall j \in V_{c}, \tag{19}\\
& y_{i j}^{k} \in\{0,1\}, \quad \forall k \in V_{s} \cup V_{0}, \forall i, j \in V_{c} \text {, } \tag{20}
\end{align*}
$$

$$
\begin{align*}
& z_{k j} \in\{0,1\}, \quad \forall k \in V_{s} \cup V_{0}, \forall j \in V_{c}, \tag{21}\\
& x_{k j} \in \mathbb{Z}^{+}, \quad \forall k, j \in V_{s} \cup V_{0}, \tag{22}\\
& Q_{i j}^{1} \geq 0, \quad \forall i, j \in V_{s} \cup V_{0}, Q_{i j k}^{2} \geq 0 \\
& \quad \forall i, j \in V_{s} \cup V_{c}, \forall k \in V_{s} . \tag{23}
\end{align*}
$$

The objective function minimizes the sum of the traveling and handling operations costs. Constraints (4) show that, if $k=v_{0}$, then each 1st-level route begins and ends at the depot. Otherwise, if k is a satellite, they impose the balance of vehicles entering and leaving that satellite. The limit on the satellite capacity is satisfied by constraints (6). These limit the maximum number of 2 nd-level routes starting from every satellite (notice that constraints limit at the same time the freight capacity of the satellites as well). Constraints (7) force each 2nd-level route to begin and end at one satellite, while implying that the outgoing and the incoming routes associated to each satellite are equal. The number of routes at each level must not exceed the number of vehicles for that level, as imposed by constraints (3) and (5).

Constraints (8) and (10) indicate that the flows' balance on each node is equal to the demand of this node, except for the depot, where the exit flow is equal to the total demand of the customers, and for the satellites at the second level, where the flow is equal to the demand (unknown) assigned to the satellites. Moreover, constraints (8) and (10) forbid the presence of subtours not containing the depot or a satellite, respectively. In fact, each node receives an amount of flow equal to its demand, preventing the presence of subtours. Consider, for example, that a subtour is present between the nodes i, j, and k at the 1 st level. It is easy to check that, in such a case, there exists no value for variables $Q_{i j}^{1}, Q_{j k}^{1}$, and $Q_{k i}^{1}$ satisfying constraints (8) and (10). The capacity constraints are formulated in (9) and (11) for the first level and the second level, respectively. Constraints (12) and (13) do not allow residual flows in routes, making the returning flow of each route to the depot (first level) and to each satellite (second level) equal to 0 .

Constraints (14) and (15) indicate that a customer j is served by a satellite $k\left(z_{k j}=1\right)$ only if it receives freight from the same satellite $\left(y_{i j}^{k}=1\right)$. Constraint (18) assigns each customer to only one satellite, while constraints (16) and (17) indicate that there is only one 2nd-level route passing through each customer. At the same time, they impose the condition that a 2nd-level route departs from a satellite k to deliver freight to a customer if the customer is assigned to that satellite, and only in such a case. Constraints (19) allow a 2 ndlevel route to start from a satellite k only if a 1 st-level route has served it.

Finally, (20)-(23) specify the domains of the variables. In particular, notice that while the arc variables $y_{i j}^{k}$ can be defined as Boolean, each customer being served by at most one route, the 1st-level arc variables $x_{k j}$ must be integer. This is attributable to the fact that each satellite could be served by more than one vehicle and that the different vehicles could share the same arc.

5. Valid Inequalities for 2E-CVRP

To strengthen the continuous relaxation of the flow model, we introduce cuts derived from VRP formulations. In particular, we use two families of cuts, one applying to the assignment variables derived from the subtour elimination constraints (edge cuts) and the other flow-based.
The edge cuts explicitly introduce the well-known subtours elimination constraints derived from the TSP. They can be expressed as follows:

$$
\begin{equation*}
\sum_{i, j \in V^{\prime}} y_{i j}^{k} \leq\left|V^{\prime}\right|-1, \quad \forall k \in V_{s}, \forall V^{\prime} \subset V_{c}, 2 \leq\left|V^{\prime}\right| \leq\left|V_{c}\right|-2 \tag{24}
\end{equation*}
$$

where V^{\prime} is a subset of the customers.
One could also consider the similar constraints on variables $x_{i j}$ for the 1 st-level routes. They are not included here because of their marginal improvement, which in turn is probably attributable to the limited number of satellites considered.

Inequalities (24) explicitly forbid the presence in the solution of subtours not containing the depot, already forbidden by constraints (10).

These inequalities can be strengthened by considering that, given a subset of second-level edges $y_{i j}^{k}$ belonging to the same satellite, the cardinality of the subset of customers V^{\prime} appearing in (24) can be substituted by the sum of variables of any subset of V^{\prime} such that the number of variables $z_{k j}$ is equal to the size of V^{\prime} minus one. More precisely, the inequality (24) can be rewritten as follows:

$$
\begin{array}{r}
\sum_{i, j \in V^{\prime}} y_{i j}^{k} \leq \sum_{j \in V^{\prime} \backslash\{l\}} z_{k j}, \quad \forall k \in V_{s}, \forall V^{\prime} \subset V_{c} \\
2 \leq\left|V^{\prime}\right| \leq\left|V_{c}\right|-2, \forall l \in V^{\prime} \tag{25}
\end{array}
$$

where V^{\prime} is a subset of the customers. In the following, we will refer to inequalities (25) as edge cuts. The number of potential valid inequalities (24) and (25) is exponential, so we should need a separation algorithm to add them. As these cuts correspond to the generalized subtour elimination constraints for the travelling salesman problem when adapted to the $2 \mathrm{E}-$ CVRP, we could use as separation procedure the exact procedure presented in Wolsey (1998). According to our test, the inequalities involving sets V^{\prime} with cardinality higher than 3 are rare. Moreover, no violation
with sets over 5 nodes are present in the instances we tested (up to 50 customers, 5 customers), and the effect of the cuts with size more than 3 is negligible. Thus the separation algorithm has been substituted by a direct inspection of the constraints up to cardinality equal to 3 .

The formulation can be strengthened by strengthening the BigM constraints (11). The idea is to reduce the constant K^{2} by considering that each customer reduces the flow by an amount equal to its demand d_{i}. Thus the following inequalities are valid:

$$
\left\{\begin{array}{l}
Q_{i j k}^{2} \leq\left(K^{2}-d_{i}\right) y_{i j}^{k}, \quad \forall i, j \in V_{c} \forall k \in V_{s}, \tag{26}\\
Q_{i j k}^{2}-\sum_{l \in V_{s}} Q_{j l k}^{2} \leq\left(K^{2}-d_{i}\right) y_{i j}^{k} \quad \forall i, j \in V_{c}, \forall k \in V_{s} .
\end{array}\right.
$$

Constraints (26) are of the same order of magnitude of (11) and dominate them. Thus, they simply replace constraints (11) in the model.

From the point of view of flow variables $Q_{i j k}^{2}$, the feasibility of a node j, restricted to a satellite k, is assured in a general way from constraints set in the basic formulation. The following constraints

$$
\begin{equation*}
\sum_{i \in V_{c} \cup V_{s}} Q_{i j k}^{2}-\sum_{l \in V_{c} \cup V_{s}} Q_{j l k}^{2}=d_{j} z_{k j} \quad \forall j \in V_{c}, k \in V_{s} \tag{27}
\end{equation*}
$$

have the same meaning of (10), restricted to V_{c} nodes set. When the route is a 2 nd-level route such that it does not serve only one customer, we can state that, for any integer solution, at most only one of variables $y_{i j}^{k}$ and $y_{j i}^{k}$ is nonzero.

Thereby, if a continuous solution of the continuous relaxation of the model contains both flow variables referred to a given edge (i, j), then the following inequalities apply:

$$
\begin{align*}
& Q_{i j k}^{2}-\sum_{\substack{m \in V_{c} \cup V_{s} \\
m \neq i}} Q_{j m k}^{2} \leq d_{j} y_{i j}^{k} \quad \forall i \in V_{c} \cup V_{s}, \forall j \in V_{c}, \forall k \in V_{s}, \tag{28}\\
& \tag{29}\\
& \sum_{\substack{i \in V_{c} \cup V_{s} \\
i \neq m}} Q_{i j k}^{2}-Q_{j m k}^{2} \geq d_{j} y_{j m}^{k} \quad \forall j \in V_{c}, \forall m \in V_{c}, \forall k \in V_{s} .
\end{align*}
$$

The inequalities (5) and (29) describe the possible node infeasibility problem generated by target incoming arc and target outgoing arc when both flow variables are active, respectively. A possible violation can be detected considering the couples $\left(y_{i j}^{k}, y_{j i}^{k}\right)$, and the separation procedure that can be done is $O\left(\left|V_{c}\right|^{3}\right)$.

Additional cuts derived from the CVRP literature could be added, but we verified that their improvement is quite marginal with respect to their high computational effort (Perboli, Tadei, and Masoero 2010), and we decided not to consider them.

6. Math-Based Heuristics for 2E-CVRP

In this section we introduce heuristics for 2E-CVRP based on the information that can be obtained by solving the linear relaxation of the model presented in the previous section. Algorithms of this type are often called math-heuristics (or model-based heuristics). If we consider the model of 2E-CVRP presented in $\S 4$, we can notice that, given feasible values to the variables dealing with the customer-satellite assignment, or $z_{k j}$ variables, the problem is simply partitioned in at most $n_{s}+1$ CVRP instances, one for the first level and one for each satellite with at least one customer assigned. Thus, given the values of $z_{k j}$, the associated solution can be computed by means of any heuristic or exact method developed for the CVRP. Thus, our idea is to focus our search on $z_{k j}$, using model (2)-(23) to guide the search process. According to these guidelines, we develop two model-based heuristic methods to find feasible solutions based on the usage of simplified versions of the 2E-CVRP model.

The first heuristic considers a continuous model derived from (2)-(23) plus the valid inequalities (25) and the tighter constraints (26). Given the optimal solution of the continuous model, the heuristic apply a diving procedure on $z_{k j}$ (Atamturk and Savelsbergh 2005). Our case differs from that of similar procedure, in that we would rather set variables to 0 . In this way we slightly perturb the model, letting it adapt to the values of the remaining variables while reducing the probability of obtaining infeasible solutions at the same time. The variable fixed to zero is the variable whose value does not exceed 0.1 and has the largest pseudocost. We remind the reader that a pseudocost is an estimation of the change in the objective function in consequence of the fact that the corresponding variable is set to an integer value; for the basic variables in the optimal continuous solution, the pseudocost plays a role similar to that of the reduced cost for nonbasic variables (Atamturk and Savelsbergh 2005). Moreover, to recover possible infeasibilities attributable to the setting, a restarting procedure is incorporated. More precisely, the procedure works as follows (see Algorithm 1 for the pseudocode and Table 5 for the list and the meaning of parameters):

[^0]solutionFound $=$ true
else
Get the $p \leq P$ variables with value $z_{k j} \leq 0.1$ and
having the largest pseudocost
if $p \neq 0$ then
Set the p variables to 0
else
Get the $q \leq Q$ variables with value $z_{k j} \geq 0.5$
Set the q variables to 1
Solve the continuous model
if Model is infeasible then
numTrials $=$ numTrials +1
Get the last variable $z_{\overline{k j}}$ rounded
forcedVars $=$ forcedVars $\cup\left\{z_{\overline{k j}}\right\}$

- the set of compulsory forced variables forcedVars is emptied;
- while an integer solution of $z_{k j}$ variables is not found or a maximum number of trials is not reached, proceed with the diving:
-set to 1 the $z_{k j}$ in forcedVars;
-solve the continuous model (2)-(23);
- if the solution is integer in the $z_{k j}$ variables and the corresponding assignment of 2nd-level vehicles satisfies the capacity constraints on the satellites, solve the corresponding CVRP instances:
-otherwise:
* get the $p<P z_{k j}$ variables with value near to zero and largest pseudocost and force them to zero;
* if $p=0$, get the $Q z_{k j}$ variables with value greater or equal to 0.5 and force them to 1 .
* optimize the continuous model (2)-(23);
* if the model is infeasible, take the last fixed variable and add to forcedVars, unfix the other fixed variables, increase the number of trials, and restart the process.

In the second heuristic method we consider that the number of variables $z_{k j}$ in model (2)-(23) is quite small and that a mixed integer programming (MIP) solver can find a near-optimal solution with a limited computational effort of 2E-CVRP model with variables $y_{i j}^{k}$ and $x_{i j}$ considered as continuous. Thus, we consider a simplified version of model (2)-(23), where (20) and (22) are ignored. Moreover, we add to the simplified model the integer variables v_{k}, representing the vehicles used by satellite k, and the following constraints:

$$
\begin{gather*}
\sum_{j \in V_{c}} z_{k, j} d_{j} \leq K^{2} v_{k}, \quad \forall k \in V_{s}, \tag{30}\\
\sum_{k \in V_{s}} v_{k}<=m_{2}, \quad \forall k \in V_{s}, \tag{31}\\
\sum_{k \in V_{s}} v_{k}<=m_{s_{k}}, \quad \forall k \in V_{s} . \tag{32}
\end{gather*}
$$

Constraints (30)-(32) are used to ensure that capacity constraints of satellites are satisfied, even when $y_{i j}^{k}$
are not integral. Constraints (30)-(32) could be also added to the original formulation to introduce some redundancy. Unfortunately, computational tests show that this redundancy is not able to strengthen the linear relaxation enough, and the marginal improvement obtained is dominated by the results of the other cuts presented in this paper. In the following, we will refer to this simplified model as semicontinuous $2 E$-CVRP model.

Thus, the semicontinuous heuristic works as follows (see Table 5 for the list and the meaning of the parameters):

- solve the continuous relaxation of the semicontinuous 2E-CVRP model and set the integer variables to the value obtained by the model;
- solve the semicontinuous 2E-CVRP model on the reduced set of variables by means of an MIP solver with a time-limit of 60 seconds and put the best solution found in a list. Let M be the size of the list, i.e., the maximum number of solutions of the semicontinuous model, which is taken into consideration in the next steps:
- for every solution in the list:
- consider the assignments satellite-customer given by the $z_{k j}$ variables;
-build the corresponding instances for the 1stlevel and the single satellites CVRP;
-solve each CVRP instance with a CVRP solver (a fixed time limit is given);
- return the best 2E-CVRP solution found.

The threshold on the explored feasible solutions of the semicontinuous model M is used to explore more integer solutions of the semicontinuous 2ECVRP model, ensuring at the same time an upper limit to the computational effort to the subsequent CVRP instances.

In both heuristics, any exact or heuristic method to solve the CVRP problems can be used to solve the underlying CVRP instances. A comparison of the results obtained by means of both exact (Ralphs et al. 2003) and heuristic (Perboli, Pezzella, and Tadei 2008) methods for CVRP is provided in $\S 7.1$.

7. Computational Tests

In this section, we analyze the behavior of the model and the heuristics in terms of solution quality and computational efficiency. Two-echelon systems are known in the literature, but the routing model, as well as the 2E-CVRP, are introduced for the first time in this paper. Thus, in $\S 7.1$ we define some benchmark instances, extending the instance sets from the VRP literature. All of the tests have been performed on a 3-GhZ Pentium PC with 1 Gb of Ram. The models and the routines have been implemented in Mosel language and tested by means of XPress 2008a solver (Dash Associates 2008).

Section 7.2 is devoted to present the computational results on a wide set of benchmark instances and the impact of the valid inequalities of $\S 5$ on the computational results, while $\S 7.3$ presents the computational results of the model, the heuristics, and the valid inequalities on the overall sets of instances.

7.1. Instance Sets

In this section we introduce different instance sets for 2E-CVRP. The instances cover up to 51 nodes (1 depot and 50 customers) and are grouped in four sets. The first three sets have been built from the existing instances for VRP by Christofides and Eilon and have been denoted as E-n13-k4, E-n22-k4, E-n33-k4, and E-n51-k5 (Christofides and Eilon 1969), while the fourth set, taken from Crainic et al. (2010), comprises randomly generated instances replicating distributions of customers and satellites typical of city logistics problems. All instance sets can be downloaded from the website of OR-Library (Beasley 1990).

The first instance set comprises 66 small-sized instances with one depot, 12 customers, and two satellites. All of the instances have the cost matrix of the instance E-n13-k4 (the costs of the matrix of the original instance is read as an upper triangular matrix, and the corresponding optimal cost of the VRP instance is 290). The two satellites are placed over two customers in all the $\binom{12}{2}=66$ possible ways (the case where some customers are used as satellites is quite common for different kinds of distribution, e.g., grocery distribution). When a node is both a customer and a satellite, the arc cost $c_{k i}$ is set to 0 . The 1 st-level vehicles are set to 2 , while the 2 nd-level vehicles are 4 , as in the original VRP instance. The capacity of 1st-level vehicles is 2.5 times that of 2 nd-level vehicles, to represent cases in which the 1st-level is made by trucks and the 2ndlevel is made by smaller vehicles (e.g., vehicles with a maximum weight smaller than 3.5 tons). The capacity of 2nd-level vehicles is equal to the capacity of the vehicles of the VRP instance. The cost attributable to loading/unloading operations is set to 0 , while the arc costs are the same as for the VRP instances. This is done so that results can be better compared with the original instances of the CVRP. In this way, we can analyze the effect on the routing costs and the satellite usage of the customers' geographical dispersion.

The second set of instances is obtained in a similar way from the instances E-n22-k4, E-n33-k4, and E-n51-k5. The instances are built by considering six pairs of randomly generated satellites. For the instance E-n51-k5, which has 50 customers, we considered an additional group of three instances obtained by randomly placing four satellites instead of two. The cost attributable to loading/unloading operations is set to 0 , while the arc costs are the same as for the VRP instances.

Table 2	Summary of the Benchmark Tests								
Set	Instances	ns	nc	m 1	m 2	C 1	C 2	Satellite distribution	Customer distribution
1	66	2	12	3	4	15,000	6,000	All pairs	Christofides and Eilon (1969) E-n13-k4 instance
2	6	2	21	3	4	15,000	6,000	Random	Christofides and Eilon (1969) E-n22-k4 instance
2	6	2	32	3	4	20,000	8,000	Random	Christofides and Eilon (1969) E-n33-k4 instance
2	6	2	50	3	5	400	160	Random	Christofides and Eilon (1969) E-n51-k5 instance
2	3	4	50	4	5	400	160	Random	Christofides and Eilon (1969) E-n51-k5 instance
3	6	2	21	3	4	15,000	6,000	Border random	Christofides and Eilon (1969) E-n22-k4 instance
3	6	2	32	3	4	20,000	8,000	Border random	Christofides and Eilon (1969) E-n33-k4 instance
3	6	2	50	3	5	400	160	Border random	Christofides and Eilon (1969) E-n51-k5 instance
4	18	5	50	3	6	12,500	5,000	Crainic et al. (2009)	

The main issue in the original instances of Christofides and Eilon is that the depot is in an almost central position with respect to the area covered by the customers. For this reason, the third set of instances also considers the instances E-n22-k4, E-n33-k4, and E-n51-k5, but the distribution of the satellites is more realistic. In fact, we consider six pairs of satellites randomly chosen between the customers on the external border of the area determined by the customers distribution. Moreover, the depot is external to the customers areas, being placed at the coordinate (0,0 , the southwest corner of the customers area).

Finally, the fourth set comprises 18 instances with 50 customers and five satellites from Crainic et al. (2010). Those instances, generated to represent different scenarios in city logistics, present three realistic distributions for the customers and three different strategies for the location of the satellites. The depot is external to the customers areas, and both capacities for the 2nd-level fleet and each satellite are present.

A summary of the main features of the different sets is reported in Table 2. The first column reports the instance set, while the number of instances in shown in Column 2. Columns 3 and 4 contain the number of satellites and customers, respectively. The number of vehicles for the 1st and 2 nd level can be read in Columns 5 and 6 , while Columns 7 and 8 provide the capacity of the vehicles at the two levels. In the remaining columns the rule used to locate the satellites and the customers are specified. More in detail, the value All pairs indicates for satellites that all the possible pairs have been computed, while Random and Border Random shows that satellites are randomly
selected. About the instance names showed in Column 10, they are those used by Christofides and Eilon (1969).

7.2. Valid Inequalities Computational Results

In this section we present the computational results of the model (2)-(23) solved by means of XPress 2008a on instances belonging to sets 1 and 2 , using the valid inequalities introduced in $\S 5$ within a computation time limit of 10,000 seconds.

With respect to the edge cuts, a series of tests was carried out using a simple procedure that tested all the subtours up to cardinality 5 . The procedure, coded in Mosel, iteratively solves the continuous problem and checks the violated cuts up to 10 iterations. According to our test, the inequalities involving subsets with cardinality of more than 3 are rare. Moreover, no violation with sets over four nodes could be found in the instances that we tested (up to 50 customers and four satellites), and the effect of the cuts with size more than 3 is negligible (they increase the overall objective function of less than 0.1 units in the best case). Thus the separation algorithm for the generalized subtour elimination constraints has been substituted by a direct inspection of the constraints up to cardinality equal to 3 .

In Table 3 the results of the 66 instances corresponding to the problem with 12 customers and two satellites are provided. The optimum is reported in the second column, while columns 3 and 4 contain the time in seconds needed to solve the instances without and with the valid inequalities introduced in §5, while column 5 reports the number of edge cuts added. Finally, the last column presents the percentage of decreasing/increasing of computational time
attributable to the usage of valid inequalities. We do not present the lower bounds at the root node with and without cuts, the difference being less than 2%. This behavior, as we will show with the results of set 2 , is mainly attributable to the small size of the instances themselves.

According to the results, most instances are solved in less than one minute, and only 10 of them need more than two minutes to be solved. There are, however, seven instances for which the computational time is greater than 10 minutes. This gap is mostly related to the satellite location. In fact, the greatest computational times are related to the situation where choosing which satellite to use has little or no effect on the final solution. In this situation, the model finds an optimal solution quickly but spends much time closing the nodes of the decision tree. This is attributable to the poor quality of the lower bound obtained by the continuous relaxation of the model. A better behavior is obtained with the valid inequalities. As a counter effect, on some instances, the computational time still increases because of the management of the additional inequalities. Moreover, the number of added cuts is quite limited, with a mean of 56 cuts added to the original formulation.
By considering all the pairs of customers as possible satellite location and comparing the results with the optimal solution of the original CVRP instance with optimum 247, in the following we discuss advantages and disadvantages of the proposed two-level distribution system.

From the quality point of view, it is clear the advantage of using the 2E-CVRP distribution model, instead of the CVRP one. Indeed, the former is able to achieve a smaller cost in 42 instances, while the decreasing/increasing of the costs is, except for satellites 11, 12 with $+24 \%$, in the range $[-15 \%,+12 \%$] of the corresponding CVRP instance. The mean decreases in the 42 instances with a reduced transportation cost of 8.5%, which could be used to balance the costs of loading/unloading operations at satellites. In the city logistics field, this means that the 2E-CVRP distribution model could be introduced without raising the total transportation cost, while obtaining indirect advantages, such as the reduction of the traffic flows and pollution level. For a more detailed discussion of the satellite location, see Crainic et al. (2010).

The results on set 2 instances are presented in Table 4, where the behavior of the lower bound computed with a continuous relaxation of the model found without and with the valid inequalities is considered. More precisely, columns 1 and 2 contain, respectively, the number of customers in the original instances of Christofides and Eilon and the position of the satellites given as customer number. The

Table 3 Twelve Customers and Two Satellites Instances: Valid Inequalities Improvements

Satellites	OPT	Time		Edge cuts	Time (\%)
		Without cuts	With cuts		
1,2	280	1,312.34	835.56	55	-36.33
1,3	286	861.94	247.99	66	-71.23
1,4	284	1,445.05	251.78	83	-82.58
1,5	218	2.06	1.68	61	-18.40
1,6	218	7.92	2.08	62	-73.71
1,7	230	19.95	5.32	100	-73.34
1,8	224	2.50	2.78	77	11.01
1,9	236	13.34	6.28	117	-52.92
1,10	244	14.27	5.18	114	-63.72
1,11	268	28.70	7.81	67	-72.80
1,12	276	45.05	28.71	5	-36.27
2,3	290	849.17	392.11	100	-53.82
2,4	288	895.19	639.22	93	-28.59
2,5	228	4.48	2.56	55	-42.99
2,6	228	4.20	12.24	66	191.16
2,7	238	7.09	3.41	157	-51.96
2,8	234	6.00	4.05	62	-32.43
2,9	246	11.69	6.95	97	-40.49
2,10	254	26.25	7.49	157	-71.48
2,11	276	37.27	9.60	93	-74.25
2,12	286	226.48	136.92	9	-39.55
3,4	312	1,704.41	810.09	40	-52.47
3,5	242	4.61	2.28	86	-50.46
3,6	242	13.13	1.89	36	-85.58
3,7	252	17.05	1.65	31	-90.32
3,8	248	7.08	1.96	58	-72.28
3,9	260	6.17	3.46	50	-43.99
3,10	268	33.27	8.37	83	-74.84
3,11	290	17.50	5.79	88	-66.92
3,12	300	13.39	7.82	76	-41.62
4,5	246	6.39	2.80	31	-56.16
4,6	246	10.17	2.93	32	-71.18
4,7	258	12.16	5.38	56	-55.77
4,8	252	5.25	0.64	48	-87.85
4,9	264	6.56	3.71	18	-43.50
4,10	272	15.28	3.56	50	-76.72
4,11	296	11.11	5.02	86	-54.78
4,12	304	13.91	5.79	52	-58.34
5,6	248	3.28	3.64	36	10.87
5,7	254	1.97	2.68	31	36.01
5,8	256	9.34	4.06	42	-56.50
5,9	262	6.59	4.39	48	-33.37
5,10	262	2.08	2.84	27	36.90
5,11	262	1.73	1.48	14	-14.51
5,12	262	1.41	1.77	14	25.72
6,7	280	17.70	19.35	62	9.31
6,8	274	7.64	5.44	13	-28.83
6,9	280	15.22	11.09	28	-27.15
6,10	280	7.73	9.13	11	18.10
6,11	280	7.11	4.84	10	-31.88
6,12	280	14.88	4.36	14	-70.67
7,8	292	4.42	1.84	18	-58.41
7,9	300	8.97	7.93	38	-11.60
7,10	304	12.63	14.11	41	11.79
7,11	310	23.88	6.89	28	-71.15
7,12	310	19.94	8.65	18	-56.60
8,9	326	40.81	16.42	96	-59.77
8,10	326	17.86	15.15	135	-15.17
8,11	326	11.55	5.29	16	-54.18
8,12	326	6.84	4.96	14	-27.59
9,10	338	24.27	17.14	101	-29.38
9,11	350	17.52	17.80	86	1.59
9,12	350	16.25	10.87	12	-33.13
10,11	358	40.98	55.11	32	34.46
10,12	358	23.19	21.34	24	-7.97
11,12	400	40.45	34.02	59	-15.91

Table 4 Results on Instances of Set 2

CVRP instance	Satellites	First Bound				Final Bound				Cuts	Sol 5,000 ss	Best sol.
		Without cuts		With cuts		Without cuts		With cuts				
		Bound	Gap (\%)	Bound	Gap (\%)	Best bound	Gap (\%)	Best bound	Gap (\%)			
E-n22-k4	7,18	399.20	4.48	411.12	1.45	417.07	0.00	417.07	0.00	234	417.07	417.07
	9,15	358.24	7.46	369.92	4.06	384.96	0.00	384.95	0.00	95	384.95	384.96
	10,20	423.48	11.13	441.10	6.69	457.07	2.96	470.60	0.00	197	470.60	470.60
	11,15	348.22	6.68	360.56	3.03	371.50	0.00	371.48	0.01	93	371.48	371.50
	12,13	374.11	14.20	395.73	7.96	417.61	2.30	427.22	0.00	210	427.22	427.22
	13,17	349.70	12.32	366.31	7.23	372.66	5.40	392.78	0.00	185	392.78	392.78
E-n33-k4	2,10	626.48	16.55	696.70	4.80	688.05	6.12	730.16	0.00	266	730.16	730.16
	3,14	610.21	17.11	675.84	5.74	656.75	8.81	709.76	0.69	190	714.64	714.64
	4,18	611.44	15.71	657.33	7.63	641.59	10.27	698.81	1.24	351	707.49	707.49
	5,6	636.93	23.61	713.81	10.29	711.73	10.62	757.39	3.95	187	856.93	787.29
	8,26	648.41	17.27	718.35	5.85	707.48	7.48	745.71	1.96	305	762.95	760.36
	15,23	662.62	17.81	750.99	3.94	741.57	5.26	764.49	2.11	155	781.56	780.60
E-n51-k5	3,18	536.23	11.47	542.60	10.16	548.80	8.92	579.74	3.10	840	755.11	597.74
	5,47	502.85	11.72	509.36	10.30	503.64	11.55	515.24	9.04	210	715.19	561.80
	7,13	505.31	10.87	510.41	9.76	507.98	10.28	528.84	5.93	781	732.17	560.22
	12,20	544.35	8.02	551.06	6.70	547.77	7.35	559.59	5.08	524	588.01	588.01
	28,48	499.29	7.79	505.86	6.39	501.82	7.25	526.34	2.25	1,244	540.88	538.20
	33,38	513.01	7.70	517.36	6.79	519.56	6.34	542.83	1.78	802	692.54	552.49
E-n51-k5	3,5,18,47	465.35	30.99	503.67	21.02	479.91	27.02	512.18	19.01	2,065	724.09	609.56
	7,13,33,38	462.99	23.50	501.87	13.93	480.45	19.01	507.49	12.67	1,572	685.45	571.80
	12,20,28,48	476.98	51.81	500.41	44.70	482.01	50.22	507.64	42.64	936	915.43	724.09

values and the percentage gap with the best integer solution of the first lower bound (calculated at the root node) without and with the valid inequalities are reported in columns 3-6, while the same data on the final lower bound (calculated at the end of the optimization process), increased by letting the solver apply lift-and-project cuts, included as a standard feature of the MIP solver during the optimization, and its gaps are presented in columns 7-10. All the gaps are computed as $(\mathrm{UB}-\mathrm{LB}) / \mathrm{LB}$, where UB is the upper bound reported in column Best sol and LB is the lower bound under study. The number of cuts added at the root node is shown in column 11, while the best solutions after 5,000 seconds and 10,000 seconds are reported in columns 12 and 13, respectively (bold values mean optimal values).

From these results it can be seen that the use of cuts helps the model to reduce the gap by up to nine percentage points. The behavior is confirmed by considering the values of the feasible solutions found by the model without and with the valid inequalities. According to these results, for up to 32 customers the model is able to find good quality solutions in 5,000 seconds at most. When the number of customers increases to 50 , more than 5,000 seconds are required to find a good solution. Moreover, the use of the cuts increases the average model quality in terms of the initial solutions and the lower bounds. The gaps between the best solutions and the best bounds are
quite small for instances involving up to 32 customers but increase for 50 -customer instances, with a gap of up to 42% for the four satellite instances.

7.3. Overall Computational Results

In this section we present the results of the tests in sets 2, 3, and 4. All results have been obtained using the model that has valid inequalities activated. According to the results discussed in $\S 7.2$, we limited the generation of the cuts to cycles of length 3 , while inequalities (26) were directly added to the standard formulation. The results are related to sets 2,3 , and 4 , being the sets with the largest size in terms of customers and satellites. The accuracy of both diving and semicontinuous heuristics are affected by the tuning of several parameters. The tuning has been done on a subset of 20% of the overall instances. To reduce the length of the paper, we do not discuss the tuning, but we simply report in Table 5 the optimal values for each parameter.

The results of the model on each set are summarized in Tables 6(a) and 6(b). Each table contains the instance name and the number of satellites in columns 1 and 2 . Columns 3 and 4 contain the best solution and the lower bound computed by continuous relaxation of the model. Finally, the percentage gap of the best solution, compared with that of the lower bound is presented in Column 5.

Table 5 Summary of the Optimal Values of the Parameters Used by Diving and Semicontinuous Heuristics

Heuristic	Parameter	Meaning	Value
Diving	P	Maximum number of variables fixed to 0	4
	Q	Maximum number of variables fixed to 1	4
	CVRP time limit	Time limit for every CVRP	10 ss
	EVEOpt	Stopping criteria	Default from Perboli et al. (2008)
	Max restart	Maximum number of restart of the process when the fixing gives an infeasible solution	5
Semicontinuous	Semicontinuous model	Time limit given to the MIP solver	60 ss
		Time limit	
	M	Maximum number of integer solutions of the model which are considered for finding $2 \mathrm{E}-\mathrm{VRP}$ solutions	10
	CVRP time limit	Time limit for every CVRP	5 ss
	EVEOpt	Stopping criteria	Default from Perboli et al. (2008)

Table 6 Results of the MIP Model on Sets 2 and 3

Instance	Satellites	Final solution	Best bound	Gap (\%)
(a) Set 2				
E-n22-k4-s6-17	2	417.07	417.07	0.00
E-n22-k4-s8-14	2	384.96	384.95	0.00
E-n22-k4-s9-19	2	470.60	470.60	0.00
E-n22-k4-s10-14	2	371.50	371.50	0.00
E-n22-k4-s11-12	2	427.22	427.22	0.00
E-n22-k4-s12-16	2	392.78	392.78	0.00
E-n33-k4-s1-9	2	730.16	730.16	0.00
E-n33-k4-s2-13	2	714.64	709.76	0.69
E-n33-k4-s3-17	2	707.49	698.81	1.24
E-n33-k4-s4-5	2	787.29	757.39	3.95
E-n33-k4-s7-25	2	760.36	745.71	1.96
E-n33-k4-s14-22	2	780.60	764.49	2.11
E-n51-k5-s2-17	2	597.74	579.74	3.10
E-n51-k5-s4-46	2	561.80	515.24	9.04
E-n51-k5-s6-12	2	560.22	528.84	5.93
E-n51-k5-s11-19	2	588.01	559.59	5.08
E-n51-k5-s27-47	2	538.20	526.34	2.25
E-n51-k5-s32-37	2	552.49	542.83	1.78
E-n51-k5-s2-4-17-46	4	609.56	512.18	19.01
E-n51-k5-s6-12-32-37	4	571.80	507.49	12.67
E-n51-k5-s11-19-27-47	4	724.09	507.64	42.64
Mean				6.19
(b) Set 3				
E-n22-k4-s13-14	2	526.10	526.10	0.00
E-n22-k4-s 13-16	2	521.04	521.04	0.00
E-n22-k4-s13-17	2	496.34	496.34	0.00
E-n22-k4-s14-19	2	498.81	498.81	0.00
E-n22-k4-s17-19	2	512.80	512.80	0.00
E-n22-k4-s19-21	2	520.41	520.41	0.00
E-n33-k4-s16-22	2	675.36	634.26	6.48
E-n33-k4-s16-24	2	669.60	622.88	7.50
E-n33-k4-s19-26	2	680.38	648.16	4.97
E-n33-k4-s22-26	2	680.90	650.39	4.69
E-n33-k4-s24-28	2	675.95	633.67	6.67
E-n33-k4-s25-28	2	651.25	616.59	5.62
E-n51-k5-s12-18	2	705.52	661.35	6.68
E-n51-k5-s12-41	2	823.05	635.67	29.48
E-n51-k5-s12-43	2	710.39	688.09	3.24
E-n51-k5-s39-41	2	845.94	679.80	24.44
E-n51-k5-s40-41	2	827.77	669.74	23.60
E-n51-k5-s40-43	2	906.68	707.85	28.09
Mean				8.41

These results indicate that the gap is quite small up to 32 customers, while it increases in the 50 -customer tests and particularly in those with four satellites.

The instances generated from the classical CVRP instances (sets 2 and 3) present a distribution of the customers, which is quite different from the distribution in realistic applications in urban and regional delivery. The model is able to find solutions with an average gap of about 6% in set 2 and 8.5% in set 3 , which is quite large but understandable, considering that the lower bounds come from the simple continuous relaxation of the model with cuts.

Given the complexity of the model and in particular the number of integer variables and constraints involved, it is not surprising that the solver requires more than 3 hours to obtain a reasonable solution. On the other hand, heuristic methods can help to close the gap with the lower bound with a limited computational effort. Tables 7(a) and 7(b) present the results of math-based heuristics derived from the complete 2E-CVRP model. Each table contains the instance name and the number of satellites in Columns 1 and 2. Column 3 reports the best solution obtained by the model. Columns $4,5,6$, and 7 show the behavior of the diving and semicontinuous heuristic, providing for each heuristic the value of the objective function and the computational time, while the best solution obtained by combining the two heuristics and their total computational time is shown in columns 8 and 9 . Column 10 provides the value of the best lower bound known for each problem. Finally, columns 11 and 12 present the percentage gap of the best model solution and the best heuristic solution, compared with that of the best lower bound, respectively. All the computational times include the time needed for solving the CVRP instances generated by the heuristics. Both diving and semicontinuous heuristics have been tested solving the CVRP subproblems by means of EVEOpt, the hybrid algorithm developed by Perboli,

Table 7 Results of the Math-Heuristics on Sets 2 and 3

Instance	Satellites	Model	Diving	Time ss	SC	Time ss	Best heur	Time ss	Best LB	Gap model (\%)	Gap best heur
(a) Set 2											
E-n22-k4-s6-17	2	417.07	417.07	1.0	417.07	1.6	417.07	2.65	417.07	0.00	0.00
E-n22-k4-s8-14	2	384.96	441.41	0.9	408.14	0.9	408.14	1.74	384.95	0.00	6.02
E-n22-k4-s9-19	2	470.60	472.23	2.2	470.60	1.2	470.60	3.34	470.60	0.00	0.00
E-n22-k4-s10-14	2	371.50	435.92	1.5	440.85	0.0	435.92	1.51	371.48	0.01	17.35
E-n22-k4-s11-12	2	427.22	427.22	0.6	429.39	1.1	427.22	1.70	427.22	0.00	0.00
E-n22-k4-s12-16	2	392.78	425.65	1.1	425.65	1.0	425.65	2.03	392.78	0.00	8.37
E-n33-k4-s1-9	2	730.16	772.57	3.0	736.92	0.2	736.92	3.26	730.16	0.00	0.93
E-n33-k4-s2-13	2	714.64	749.94	5.0	736.37	0.7	736.37	5.72	709.76	0.69	3.75
E-n33-k4-s3-17	2	707.49	801.19	7.4	739.47	0.7	739.47	8.07	698.81	1.24	5.82
E-n33-k4-s4-5	2	787.29	838.31	2.0	816.59	1.5	816.59	3.41	757.39	3.95	7.82
E-n33-k4-s7-25	2	760.36	756.88	2.3	756.88	4.8	756.88	7.15	745.71	1.96	1.50
E-n33-k4-s14-22	2	780.60	779.06	1.6	779.06	0.5	779.06	2.07	764.49	2.11	1.91
E-n51-k5-s2-17	2	597.74	666.83	4.9	597.49	42.9	597.49	47.80	579.74	3.10	3.06
E-n51-k5-s4-46	2	561.80	543.24	8.4	543.20	20.7	543.20	29.15	515.24	9.04	5.43
E-n51-k5-s6-12	2	560.22	560.22	8.5	554.80	7.1	554.80	15.55	528.84	5.93	4.91
E-n51-k5-s11-19	2	588.01	584.09	4.9	592.06	10.5	584.09	15.43	559.59	5.08	4.38
E-n51-k5-s27-47	2	538.20	538.20	10.3	538.20	20.8	538.20	31.10	526.34	2.25	2.25
E-n51-k5-s32-37	2	552.49	584.59	8.9	578.23	29.5	578.23	38.34	542.83	1.78	6.52
E-n51-k5-s2-4-17-46	4	609.56	590.63	16.4	542.37	34.4	542.37	50.83	512.18	19.01	5.89
E-n51-k5-s6-12-32-37	4	571.80	571.80	23.5	584.88	28.8	571.80	52.30	507.49	12.67	12.67
E-n51-k5-s11-19-27-47	4	724.09	600.34	17.8	600.34	31.6	600.34	49.41	507.64	42.64	18.26
Mean								17.74		6.19	6.16
(b) Set 2											
E-n22-k4-s13-14	2	526.10	561.10	1.7	526.54	0.6	526.54	2.25	526.10	0.00	0.08
E-n22-k4-s13-16	2	521.04	521.04	2.6	521.10	0.2	521.04	2.81	521.04	0.00	0.00
E-n22-k4-s13-17	2	496.34	496.34	3.0	496.39	0.5	496.34	3.45	496.34	0.00	0.00
E-n22-k4-s14-19	2	498.81	551.95	3.1	523.61	1.0	523.61	4.08	498.76	0.00	4.98
E-n22-k4-s17-19	2	512.80	512.81	13.8	521.84	5.4	512.81	19.21	512.75	0.00	0.01
E-n22-k4-s19-21	2	520.41	527.57	2.8	527.57	2.0	527.57	4.75	520.36	0.00	1.39
E-n33-k4-s16-22	2	675.36	674.71	3.0	672.19	15.6	672.19	18.57	634.26	6.48	5.98
E-n33-k4-s16-24	2	669.60	668.82	4.7	674.69	0.9	668.82	5.52	622.88	7.50	7.38
E-n33-k4-s19-26	2	680.38	744.42	1.8	680.38	5.2	680.38	7.01	648.16	4.97	4.97
E-n33-k4-s22-26	2	680.90	735.25	1.9	680.38	4.9	680.38	6.79	650.39	4.69	4.61
E-n33-k4-s24-28	2	675.95	702.86	8.1	692.66	6.6	692.66	14.75	633.67	6.67	9.31
E-n33-k4-s25-28	2	651.25	682.42	3.5	650.55	12.0	650.55	15.47	616.59	5.62	5.51
E-n51-k5-s12-18	2	705.52	719.64	16.9	692.54	21.2	692.54	38.04	661.35	6.68	4.72
E-n51-k5-s12-41	2	823.05	743.91	13.8	708.29	22.2	708.29	36.04	635.67	29.48	11.42
E-n51-k5-s12-43	2	710.39	711.73	4.8	712.48	9.2	711.73	13.94	688.09	3.24	3.44
E-n51-k5-s39-41	2	845.94	742.07	7.8	729.94	27.9	729.94	35.71	679.80	24.44	7.38
E-n51-k5-s40-41	2	827.77	733.60	7.7	732.42	10.5	732.42	18.16	669.74	23.60	9.36
E-n51-k5-s40-43	2	906.68	803.24	18.6	757.30	25.7	757.30	44.33	707.85	28.09	6.99
Mean								16.16		8.41	4.86

Pezzella, and Tadei (2008). In semicontinuous heuristic the parameter M, relating to the maximum number of integer solutions of the semicontinuous model used by the heuristic, is set to 5 .
According to the results, the semicontinuous heuristic dominates the diving one on set 2 , while there is not a heuristic dominating the other on set 3 . Moreover, the combination of diving and semicontinuous enabled us to reduce the mean gap from the lower bound. In particular, this is true for set 3, where the mean gap is reduced from 8.41% to 4.86%. This is more evident in 50 -customer instances, where the mean gap is reduced from 11% of the MIP model to 7% of the heuristics. The benefits of the heuristics are
also clear from the computational point of view, presenting a mean value of 17 seconds and a worst case of 52 seconds in instance E-n51-k5-s6-12-32-37.

Obviously, the results could be affected by the method used to solve the CVRP subproblems in solution quality and efficiency. Moreover, using a heuristic method to solve the CVRP instances had as a side effect a worsening of the quality of the final solution. To test the heuristics we replaced EVEOpt with the branch and cut of Ralphs et al. (2003) and stopped after 5 seconds. Results are not presented, having the same solution quality, i.e., the objective function values of the solutions obtained with EVEOpt and the truncated branch and cut are the same for the two sets. From the efficiency point of view, the
computational effort is much higher because of the usage of the branch and cut, while the size of the instances makes it impossible to use the branch and cut for instances with more than 50 customers.

The results of the model with cuts are not satisfactory when the number of satellites increases, as shown by the results in set 2 . To obtain better results, we hybridized the math-heuristics and the exact model, providing as the initial solution of the exact model the best solution found by the math-heuristics, and we introduced the cuts in a simple branch-and-cut scheme. More in detail, the branch and cut works as follows:

- the diving and semicontinuous heuristics are applied at the root node only, and their best integer solution is provided to the branch and cut;
- cut generation process is applied at every node up to node depth equal to 10 ;
- pseudocost-based branching scheme with priority on $z_{k j}$ variables;
- global time limit (heuristics and branch and cut) equal to 10,000 seconds.
The results are summarized in Table 8, where the meaning of the columns is the same as in Table 6. As one can notice, initializing the branch and cut with the heuristics supports both finding new integer solutions and improving the final lower bound, as the mean gap is reduced to 2% in set 2 and 4% in set 3 . The effect is particularly relevant on four-satellite instances in set 2 . Moreover, the behavior of the results is more stable as the number of satellites increases (compare the results of the instances with four satellites in set 2).

To confirm the behavior, we tested the same procedure (math-heuristics and exact model) on the larger instances of set 4 with 50 customers and five satellites. These instances present different realistic distribution of both customers and satellites. Their results are summarized in Table 9, where the meaning of the columns is the same as in Table 6. From the results, we can see that the mean gap is larger but still limited to 11%. Moreover, preliminary tests by Perboli, Tadei, and Masoero (2010) show that this gap is mainly attributable to the model relaxation and that it can be still slightly reduced by a branchand cut-procedure involving cuts based on CVRP, the network flow formulation, and the connectivity of the transportation system graph (Perboli, Tadei, and Masoero 2010). On the other hand, the solution quality obtained by applying the math-heuristics is quite satisfactory (most of the initial solutions found on set 4 by the heuristics are slightly improved by the branch and cut).

Table 8 Results of the Branch and Cut with Heuristic Initial Solution: Results on MIP Model on Sets 2 and 3
Instance \quad Satellites Final solution Best bound Gap (\%)
E-n22-k4-s6-17
E-n22-k4-s8-14
E-n22-k4-ss-19
E-n22-k-s-s0-14
E-n22-k-s11-12
E-n22-k4-s12-16
E-n33-k4-s1-9
E-n33-k4-s2-13
E-n33-k4-s3-17
E-n33-k4-s4-5
E-n33-k4-s7-25
E-n33-k4-s14-22
E-n51-k5-s2-17
E-n51-k5-s4-46
E-n51-k5-s6-12
E-n51-k5-s11-19
E-n51-k5-s27-47
E-n51-k5-s32-37
E-n51-k5-s2-4-17-46
E-n51-k5-s6-12-32-37
E-n51-k5-s11-19-27-47
Mean

	(a) Set 2		
2	$\mathbf{4 1 7 . 0 7}$	$\mathbf{4 1 7 . 0 7}$	0.00
2	$\mathbf{3 8 4 . 9 6}$	$\mathbf{3 8 4 . 9 5}$	0.00
2	$\mathbf{4 7 0 . 6 0}$	$\mathbf{4 7 0 . 6 0}$	0.00
2	$\mathbf{3 7 1 . 5 0}$	$\mathbf{3 7 1 . 5 0}$	0.00
2	$\mathbf{4 2 7 . 2 2}$	$\mathbf{4 2 7 . 2 2}$	0.00
2	$\mathbf{3 9 2 . 7 8}$	$\mathbf{3 9 2 . 7 8}$	0.00
2	730.16	$\mathbf{7 3 0 . 1 6}$	0.00
2	714.64	703.87	1.53
2	707.49	695.77	1.69
2	785.33	767.43	2.33
2	756.85	744.40	1.67
2	779.05	766.77	1.60
2	597.49	582.21	2.63
2	530.76	520.96	1.88
2	554.81	531.83	4.32
2	581.64	559.85	3.89
2	538.20	527.32	2.06
2	552.28	548.31	0.72
4	541.07	515.67	4.93
4	538.82	512.81	5.07
4	531.12	519.59	2.22
			2.03

E-n22-k4-s13-14	2	526.10	526.10	0.00
E-n22-k4-s13-16	2	521.04	521.04	0.00
E-n22-k4-s13-17	2	496.34	496.34	0.00
E-n22-k4-s14-19	2	498.81	498.81	0.00
E-n22-k4-s17-19	2	512.80	512.80	0.00
E-n22-k4-s19-21	2	520.41	520.41	0.00
E-n33-k4-s16-22	2	672.17	634.09	6.01
E-n33-k4-s16-24	2	668.81	625.73	6.88
E-n33-k4-s19-26	2	680.89	648.20	5.04
E-n33-k4-s22-26	2	680.89	652.12	4.41
E-n33-k4-s24-28	2	672.60	633.03	6.25
E-n33-k4-s25-28	2	653.67	615.87	6.14
E-n51-k5-s12-18	2	692.56	662.16	4.59
E-n51-k5-s12-41	2	716.58	646.50	10.84
E-n51-k5-s12-43	2	712.48	690.28	3.22
E-n51-k5-s39-41	2	729.94	682.98	6.88
E-n51-k5-s40-41	2	732.42	678.19	8.00
E-n51-k5-s40-43	2	757.30	709.46	6.74
Mean				4.17

8. Conclusions

In this paper, we introduced a new family of VRP models, the two-echelon VRP. In particular, we considered the two-echelon capacitated VRP, giving an MIP formulation and valid inequalities for it. The model and the inequalities have been tested on new benchmarks derived from the CVRP instances according to the literature, showing a good behavior of the model for small- and medium sized instances. Moreover, two different heuristics based on the MIP model have been presented. Both heuristics present good performance both from the computational and the solution quality point of view.

Table 9 Results of the Branch and Cut with Heuristic Initial Solution: Results on MIP Model on Set 4

Instance	Satellites	First bound no cuts	Cuts	Diving	SC	Final solution	Best bound	Gap (\%)
Instance50-s5-37.dat	5	1,259.56	4,615	1,731.94	1,587.95	1,587.95	1,405.64	12.97
Instance50-s5-38.dat	5	972.86	3,296	1,434.98	1,186.02	1,185.58	1,076.48	10.14
Instance50-s5-39.dat	5	1,239.73	4,685	1,591.48	1,525.24	1,525.24	1,421.58	7.29
Instance50-s5-40.dat	5	970.86	3,418	1,358.79	1,226.79	1,199.42	1,068.57	12.25
Instance50-s5-41.dat	5	1,356.84	2,863	1,726.04	1,726.04	1,703.03	1,541.88	10.45
Instance50-s5-42.dat	5	1,000.03	3,034	1,345.51	1,324.38	1,223.09	1,097.89	11.40
Instance50-s5-43.dat	5	1,124.13	4,532	1,607.46	1,453.11	1,453.11	1,283.21	13.24
Instance50-s5-44.dat	5	843.92	3,024	1,394.63	1,063.64	1,039.39	935.42	11.12
Instance50-s5-45.dat	5	1,118.27	3,906	1,624.30	1,497.91	1,484.64	1,299.06	14.29
Instance50-s5-46.dat	5	853.99	1,193	1,244.13	1,173.12	1,095.69	930.53	17.75
Instance50-s5-47.dat	5	1,230.77	3,880	1,627.83	1,620.70	1,598.88	1,444.15	10.71
Instance50-s5-48.dat	5	893.37	3,039	1,209.89	1,122.18	1,096.96	998.69	9.84
Instance50-s5-49.dat	5	1,196.22	7,207	1,610.03	1,508.87	1,479.16	1,339.67	10.41
Instance50-s5-50.dat	5	879.14	2,096	1,392.03	1,170.89	1,090.60	968.47	12.61
Instance50-s5-51.dat	5	1,117.00	5,143	1,495.43	1,456.12	1,436.30	1,310.90	9.57
Instance50-s5-52.dat	5	895.08	3,314	1,185.05	1,191.93	1,128.33	1,003.03	12.49
Instance50-s5-53.dat	5	1,240.22	4,795	1,611.89	1,569.59	1,552.75	1,450.87	7.02
Instance50-s5-54.dat	5	928.90	1,898	1,189.14	1,189.14	1,135.39	1,034.88	9.71
Mean								11.29

Presently, new clustering-based heuristics for the problem have been developed (Crainic et al. 2008), as well as larger instance sets of up to 200 customers and seven satellites (Crainic et al. 2010). Moreover, in Crainic et al. (2010) the reader can find an in-depth analysis of the impact of customer and satellite realistic distributions, as well as a comparison of the standard VRP approach with the 2E-CVRP.

Acknowledgments

The authors thank the anonymous referees and the associate editor, who contributed greatly improving the quality of the paper. Moreover, the authors are grateful to Jesús Gonzáles Feliu for his contribution to a previous version of the paper. This project has been partially supported by the Ministero dell'Istruzione, Università e Ricerca (MIUR) (Italian Ministry of University and Research), under the Progetto di Ricerca di Interesse Nazionale (PRIN) 2007 "Optimization of Distribution Logistics." Funding has been provided also by the Natural Sciences and Engineering Research Council of Canada (NSERC), through its Industrial Research Chair and Discovery Grants programs, and by the Fonds Québécois de Recherche sur la Nature et les Technologies (FQRNT Québec) through its Team Research grants program.

References

Albareda-Sambola, M., J. A Diaz, E. Fernandez. 2005. A compact model and tight bounds for a combined location-routing problem. Comput. Oper. Res. 32 407-428.
Atamturk, A., M. W. P. Savelsbergh. 2005. Integer programming software systems. Ann. Oper. Res. 140 67-124.
Baldacci, R., P. Toth, D. Vigo. 2007. Recent advances in vehicle routing exact algorithms. 4OR: Quart. J. Oper. Res. 5 269-298.
Barros, A. I. 1998. Discrete and Fractional Programming Techniques for Location Models, Combinatorial Optimization, Vol. 3. Kluwer Academic Publishers, London.
Barros, A. I., M. Labbé. 1994. A general model for the uncapacitated facility and depot location problem. Location Sci. 2 173-191.

Barthold, J. J., R. Gue. 2004. The best shape for a crossdock. Transportation Sci. 38 235-244.
Beasley, J. E. 1990. OR-Library: Distributing test problems by electronic mail. J. Oper. Res. Soc. 41 1069-1072. http:// people.brunel .ac.uk/mastijb/jeb/info.html
Boulanger, C., F. Semet. 2009. A column generation based heuristic for the Capacitated location-routing problem. Proc. Odysseus 2009, Çeşme-Izmir, Turkey.
Christofides, N., S. Eilon. 1969. An algorithm for the vehicle dispatching problem. Oper. Res. Quart. 20 309-318.
Crainic, T. G., M. Gendreau, J.-Y. Potvin. 2009a. Intelligent freighttransportation systems: Assessment and the contribution of operations research. Transportation Res. Part C 17 541-557.
Crainic, T. G., N. Ricciardi, G. Storchi. 2004. Advanced freight transportation systems for congested urban areas. Transportation Res. Part C 12 119-137.
Crainic, T. G., N. Ricciardi, G. Storchi. 2007. Models for evaluating and planning city logistics systems. CIRRELT-2007-65, CIRRELT, Montréal.
Crainic, T. G., N. Ricciardi, G. Storchi. 2009b. Models for evaluating and planning city logistics systems. Transportation Sci. 43 432-454.
Crainic, T. G., S. Mancini, G. Perboli, R. Tadei. 2008. Clusteringbased heuristics for the two-echelon vehicle routing problem. CIRRELT-2008-48, CIRRELT, Montréal.
Crainic, T. G., S. Mancini, G. Perboli, R. Tadei. 2010. Twoechelon vehicle routing problem: A satellite location analysis. CIRRELT-2009-15 and Procedia-Soc. Behav. Sci. 2 5944-5955.
Dash Associates. 2008. XPRESS-MP User Guide and Reference Manual (Release 2008a). Dash Associates, Northants, UK.
Daskin, M. S., C. Coullard, Z.-J. M. Shen. 2002. An inventorylocation model: Formulation, solution algorithm and computational results. Ann. Oper. Res. 110 83-106.
Galvão, R. D., E. Santibaez-Gonzalez. 1992. A Lagrangean heuristic for the p_{k}-median dynamic location. Eur. J. Oper. Res. 58 250-262.
Gendron, B., P.-V. Khuong, F. Semet. 2009. Variable neighborhood heuristic methods for a multi-echelon capacitated locationdistribution. Proc. Odysseus, Çeşme-Izmir, Turkey.
Hormozi, A. M., B. M. Khumawala. 1996. An improved algorithm for solving a multi-period facility location problem. IIE Trans. 28 105-112.
Jacobsen, S. K., O. B. G. Madsen. 1980. A comparative study of heuristics for a two-level routing-location problem. Eur. J. Oper. Res. 5 378-387.

Khumawala, B. M., D. C. Whybark. 1976. Solving the dynamic warehouse location problem. Internat. J. Production Res. 6 238-251.
Klose, A., A. Drexl. 2005. Facility location models for distribution system design. Eur. J. Oper. Res. 162 4-29.
Lin, S.-W., V. F. Yu, S.-Y. Chou. 2009. Solving the truck and trailer routing problem based on a simulated annealing heuristic. Comput. Oper. Res. 36 1683-1692.
Melachrinoudis, E., H. Min. 2000. The dynamic relocation and phase-out of a hybrid, two-echelon plant/warehousing facility: A multiple objective approach. Eur. J. Oper. Res. 123 1-15.
Melo, M. T., S. Nickel, F. S. da Gama. 2006. Dynamic multicommodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning. Comput. Oper. Res. 33 181-208.
Min, H., E. Melachrinoudis. 1999. The relocation of a hybrid manufacturing/distribution facility from supply chain perspectives: A case study. OMEGA 27 75-85.
Nagy, G., S. Salhi. 2007. Location outing: Issues, models and methods. Eur. J. Oper. Res. 177 649-672.
Perboli, G., F. Pezzella, R. Tadei. 2008. EVE-OPT: An hybrid algorithm for the capability vehicle routing problem. Math. Methods Oper. Res. 68 361-382.
Perboli, G., R. Tadei, F. Masoero. 2010. Models and cuts for the twoechelon capacitated vehicle routing problem. Electronic Notes Discrete Math. Forthcoming.
Prins, C., C. Prodhon, A. Ruiz, P. Soriano, R. W. Calvo. 2007. Solving the capacitated location-routing problem by a cooperative Lagrangean relaxation-Granular tabu search heuristic. Transportation Sci. 41 470-483.
Ralphs, T. K., L. Kopman, W. R. Pulleyblank, L. E. Trotter, Jr. 2003. On the capacitated vehicle routing problem. Math. Programming Ser. B 94 343-359.

Ricciardi, N., R. Tadei, A. Grosso. 2002. Optimal facility location with random throughput costs. Comput. Oper. Res. 29(6) 593-607.
Semet, F., E. Taillard. 1993. Solving real-life vehicle routing problems efficiently using tabu search. Ann. Oper. Res. 41 469-488.
Shen, Z.-J. M., C. Coullard, M. S. Daskin. 2003. A joint locationinventory model. Transportation Sci. 37 40-55.
Tadei, R., G. Perboli, N. Ricciardi. 2009. The capacitated transshipment location problem under uncertaintly. CIRRELT-2009-38, CIRRELT, Montréal.
Tadei, R., G. Perboli, N. Ricciardi, M. Baldi. 2010. The transshipment location problem under uncertainty with lower and upper capacity constraints. Proc. CIRO'10, Marrakech, Morocco.
Taniguchi, E., R. G. Thompson, T. Yamada, J. H. R. van Duin. 2001. City Logistics: Network Modeling and Intelligent Transport Systems. Amsterdam, Pergamon.
Toth, P., D. Vigo. 2002. An overview of vehicle routing problem. P. Toth, D. Vigo, eds. The Vehicle Routing Problem, SIAM Monographs on Discrete Mathematics and Applications, Vol. 9. SIAM, Philadelphia, 1-51.
Van Roy, T. J., D. Erlenkotter. 1982. A dual-based procedure for dynamic facility location. Management Sci. 28 1091—1105.
Verrijdt, J. H. C. M., A. G. de Kok. 1995. Distribution planning for a divergent n-echelon network without intermediate stocks under service restrictions. Internat. J. Production Econom. 38 225-243.
Villegas, J. G., C. Prins, C. Prodhon, A. L. Medaglia, N. Velasco. 2010. GRASP/VND and multi-start evolutionary local search for the single truck and trailer routing problem with satellite depots. Engrg. Appl. Artificial Intelligence 23 780-794.
Wang, Q., R. Batta, J. Bhadury, C. M. Rump. 2003. Budget constrained location problem with opening and closing of facilities. Comput. Oper. Res. 30 2047-2069.
Wolsey, L. A. 1998. Integer Programming, John Wiley \& Sons.

[^0]: Algorithm 1 (Diving-based heuristic)
 numTrials $=0$
 forcedVars $=\{\oslash\}$
 while numTrials < MaxTrials or
 solutionFound = false do
 set the variables in forcedVars to 1
 Solve the continuous model
 while one or more variables $z_{k j}$ are not integer do
 if All the $z_{k j}$ have integral value and the capacity constraints on the satellites are satisfied
 Solve $m+1$ CVRP instances

