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Abstract. Trains often arrive delayed at stations where passengers have to change to other
trains. The question of delay management is whether these trains should wait for the origi-
nal train or depart on time. In traditional delay management models passengers always take
their originally planned route. This means, they are in case of a missed connection always
delayed with the cycle time of the timetable. In this paper, we propose a model where re-
routing of passengers is incorporated.

To describe the problem we represent it as an event-activity network similar to the one used
in traditional delay management, with some additional events to incorporate origin and des-
tination of the passengers. We prove NP-hardness of this problem, and we present an integer
programming formulation for which we report the first numerical results. Furthermore, we
discuss the variant in which we assume fixed costs for maintaining transfers and we present
a polynomial algorithm for the special case of only one origin-destination pair.
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1 Introduction and Motivation

Delay management is an important issue in the daily operations of railway companies. It deals
with (small) source delays of a railway system as they occur in the daily operational business of
any public transportation company. In case of such delays, the scheduled timetable is not feasible
any more and has to be updated to a disposition timetable. Since delays can also be transferred
if a connecting train waits for a delayed feeder train such connections are often not maintained
in case of delays. These wait-depart decisions are important decisions for the passengers. In order
to ensure safe operations and to take the limited capacity of the track system into account, also
priority decisions are necessary. They determine the order in which trains are allowed to pass a
specific piece of track.

There exist various models and solution approaches for delay management. The main question
which has been treated in the literature so far is to decide which trains should wait for delayed
feeder trains and which trains better depart on time (wait-depart decisions). It neglects the limited
capacity of the tracks. A first integer programming formulation for this problem has been given
in [Sch01] and has been further developed in [GHLO08,Sch07], see also [Sch06] for an overview
about various models. The complexity of the problem has been investigated in [GJPS05,GGJ104]
where it turns out that the problem is NP-hard even in very special cases. The online version of the
problem has been studied in [GJPWO07,Gat07]. In [BHLSO07], it was shown that the online version of
the uncapacitated delay management problem is PSPACE-hard. Further publications about delay
management include a model in the context of max-plus-algebra [RAVM98,Gov98], a formulation
as discrete time-cost tradeoff problem [GS07] and simulation approaches [SM99,SMBGO1].
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Recently, the limited capacity of the track system is taken into account. This has been done
heuristically in a real-world application studied within the project DisKon supported by Deutsche
Bahn (see [BGJ105]). Some first ideas on how to model these constraints in the context of delay
management have been presented in [Sch09], heuristics and properties of the models including the
never-meet property of uncapacitated delay management are presented in [SS08,SS09].

What has been neglected so far are the aspects of re-routing. In the available models it is assumed
that passengers take exactly the lines they planned, i.e. if they miss a connection they have to wait
a complete period of time until the same connection takes place again. This assumption is usually
not valid in practice. Often there is an earlier connection using another line or even changing the
path of the trip. A real-world example of a situation where re-routing passengers in case of delays
is beneficial is given next.

Zwolle

Hilversum

Amersfoort

Utrecht

Fig. 1. A small part of the railway network in the Netherlands. A regional train runs from Amersfoort
to Hilversum and further to Amsterdam. An intercity service runs from Zwolle to Utrecht and stops at
station Amersfoort. All other trains are intercities as well.

Consider the network in Figure 1. An intercity service runs from Zwolle to Utrecht via Amersfoort.
There are also intercities from Utrecht to Amsterdam and from Amersfoort to Amsterdam. Finally,
a regional train runs via Hilversum from Amersfoort to Amsterdam. A large number of passengers
want to travel from Zwolle to Amsterdam, and thus have a transfer at Amersfoort. In the current
timetable, the intercity to Amsterdam departs from Amersfoort 5 minutes after the intercity from
Zwolle has arrived. Therefore, if the intercity from Zwolle has a small delay, these passengers will
miss the connecting intercity to Amsterdam. If the possibility of re-routing the passengers is not
taken into account, the decision to delay the intercity from Amersfoort to Amsterdam assumes
that the passengers that miss the connection at Amersfoort have to wait for one hour for the
next intercity. However, these passengers will probably take the regional train via Hilversum, that
departs a few minutes after the intercity has left. As the regional train stops at more locations,
the travel time of the regional train is larger than that of the intercity, but the difference is only
several minutes. The delay of the passengers will then be far less than one hour. If the delay is so
large that the regional train has left as well, the passengers could stay in the delayed train and
travel via Utrecht instead. The transfer time in Utrecht is much larger than in Amersfoort. This
small example shows that the delay of passengers that miss a connection is often much smaller
than one hour. To find the optimal wait-depart decisions, re-routing passengers should therefore
be taken into account.

In our paper we will investigate how such a re-routing of passengers can be incorporated into the
delay management problem. We denote the resulting model by delay management with re-routing
decisions (DMwRR). To the best of our knowledge a re-routing of passengers has never been
treated before.



The remainder of the paper is structured as follows. In Section 2 we show how the re-routing
of passengers can be modeled in the event-activity network and that delay management with
re-routing is NP-hard. An integer program based on the event-activity network is formulated in
Section 3. In Section 4 we present a polynomially solvable case in which we show how optimal wait-
depart decisions can be made if only one origin-destination pair is present. We furthermore discuss
another simplified variant in which we assume fixed delay costs for each maintained changing
activity. We finally conclude the paper mentioning ideas for further research.

2 Model

We will make use of an event-activity network to model the delay management problem with
re-routing. Event-activity networks were first introduced by [Nac98] for timetabling problems and
were used for the classical delay management problems by [Sch06]. The event-activity network will
be extended to take re-routing of passengers into account.
We assume that the number of passengers that want to travel from a given origin to a destination
at a certain time is known. For example, 200 passengers want to travel from Zwolle to Amsterdam
at 8 o’clock in the morning. We denote such an origin-destination pair by p = {u, v, sy, }, where u
is the origin, v is the destination and s, is the planned starting time of the trip. P denotes the
set of all such origin-destination pairs. From now on, we will abbreviate an origin-destination pair
as an OD-pair. We denote w,, for the number of passengers associated to an OD-pair p € P.
The event-activity network N' = (€, A) is a directed graph, where £ denotes the set of events and
the set A consists of the activities. The departure or the arrival of a train g at a station v, denoted
by (9 — v — Dep) or (g — v — Arr) respectively, are the most important events in the network. To
incorporate the routes of the passengers, we introduce for every OD-pair p = {u, v, sy} € P an
origin event (p — Org) and a destination event (p — Dest). Note that besides the origin and the
destination, the OD-pairs also contain the time at which passengers want to start their journey.
In summary, the set of events in the network, denoted by &£, consists of the departure events of
the trains, the arrival events of the trains and the origin and destination events for the passengers
for a given OD-pair.

&= gdep U garr U gorg U gdest~

The activities are the arcs in the directed graph N. Similar to the event-activity network used by
[Sch06] for the delay management problem without re-routing, there are driving arcs, waiting arcs
and changing arcs. The driving and waiting arcs represent driving from one station to the next
and waiting at a station to let the passengers get on and off the train. The changing activities are
used by the passengers. They represent the possibility for passengers to transfer from a train that
arrives at a certain station to a train that departs at the same station some time later. It should
be noted that the driving and waiting arcs impose operational restrictions on the vehicles. On the
contrary, a changing arc does not imply that a train has to wait in case of a delay of another train,
although it would be convenient for the transferring passengers.

To take the rerouting of passengers into account, we also introduce origin and destination arcs. Let
an origin event e = (p— Org) € Eqgg be given, where p = {u, v, s, } represents the passengers that
want to travel from station u to station v at time s,,,,. This event e is connected to all the departure
events that depart from u not earlier than the time s,,. It remains to connect the arrival events
to the destination events. Consider therefore a destination event (p — Dest) € Eqest, where again
p = {u, v, Sy, }. Denote SP, for the arrival time of the passengers if there are no delays and denote
n,p for the number of transfers needed for this trip. SP, is clearly a lower bound for the arrival time
of the passengers. To derive an upper bound on the arrival time, note that in the worst case all
n, connections are missed. We conclude that an arrival event e should be connected to (p — Dest)
if e is an arrival event at station v and if the planned time 7. satisfies 7. € [SP,, SP, + n,T],
where T is the cycle time of the original timetable. This concludes the description of the arcs in
the event activity network. Summarizing,

A= -Adrive U -Await U Achange U Aorg U -Adest-
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Fig. 2. The event activity network for the situation depicted in Figure 1. The square nodes are the
departure and arrival events where “D” stands for departure and “A” stands for arrival. The origin and
destination events are represented by ovals omitting the add-ons “Org” or ‘Dest” as this is obvious in
the picture. As we only consider one possible departure time for each origin-destination pair, we did not
include the starting time in the origin and destination nodes. The dashed arcs are the origin and destination
arcs, that are introduced to be able to state the shortest path problem for the passengers. The solid lines
represent driving, waiting and changing activities.

An example of an event-activity network is given in Figure 2. This event-activity network corre-
sponds to the railway network in Figure 1. The oval nodes represent the origin and destination
events, that are introduced to model the behavior of passengers when delays occur. The dashed
arcs, that depict the origin and destination arcs, are needed only to take re-routing of passengers
into account. Recall that transfer arcs do not impose any operational constraints. It is therefore
possible not to maintain a connection in case of delays, which would imply that passengers cannot
use such a connection.

For every activity a € Adrive U Await U Achange @ length L, is given that represents the technically
minimal time that is needed to perform the activity. As the origin and destination activities are
not activities in the original sense and thus they are not time consuming, their lengths can be set
to 0 or they can just be omitted.

For every event e € &,,:UE4ep, the planned time is denoted by 7., i.e. m corresponds to the timetable
as it is planned to be operated. For an origin event e = (p — Org) € Eug with p = {u, v, sy, }
we set m, = Sy, (which can be interpreted as the time at which a passenger of OD-pair p arrives
at his or her departure station). For destination events we have to determine the time when the
passengers reach their last station, hence 7, is not known beforehand.

Given a timetable, for every OD-pair a route through the network has to be found, so that the
travel time is minimized. To this end, let P be a directed path from e; to ey in the network N.

— First, assume that es € Eqep UEarr. We define [(P) = m,, — ¢, to be the travel time or distance
between eq, e in N.

— We now extend this definition to nodes ez € Egest- Let pre(eq, P) be the predecessor of ey in
path P. Then we define I(P) = Tpye(cy,p) — Te, -

For a path P connecting an OD-pair p = {u, v, Sy, } we hence obtain [(P) = Tpre(es,P) — Suv- AS We

assume that passengers take the fastest paths to arrive at their destinations, we set [(p) = I(Pyps,.)
where P,ys,, is a shortest path from the origin event e = (p — Org) to the destination event

e = (p — Dest).



Given a set of source delays d. associated to some events e € &, U Egep the problem is to
decide which trains should wait for passengers to arrive from delayed trains and which should
depart without waiting. Thus we have to determine which of the connections a € Achange Will be
maintained and which will be removed. We denote the set of maintained connections by Agy. For
the resulting network

N(Afix) = (87 Adrive U Await U Afix U Aorg U -Adest)

in which the set of changing arcs has been replaced by Agx a new timetable can be constructed
using the critical path method (see [Sch07]). The event times for the events e € Eqep U Earr in this
new timetable will be denoted by .. For an OD-pair p we define t 4, (p) = x. where e is the
predecessor of the destination event (p — Dest) on a shortest path from the origin event (p — Org)
to the destination event (p — Dest) in the network N (Afiy ).

In NV (Asix) the travel time of an OD-pair p = {u,v, Sy, } is analogously defined as

l-Af'ix (p) = lAg, (p) — Suv-

In the delay management problem we want to minimize the sum of all delays of the OD-pairs. The
delay of an OD-pair p = {u, v, Sy, } is given as

L, (p) = 1(p) = tag. (P) = Suwv — U(p)-

Since sy, and I(p) are constants we can equivalently minimize ¢ 4,_(p), hence the objective of delay
management with re-routing is to find a subset Agix C Achange S0 that we minimize:

min E Wy -t (D)-
Atix CAchange P fix ( )
peEP

Our first result is to clarify the the complexity status of delay management problem with re-routing
and show that it is NP-hard. This is not surprising, because the delay management without re-
routing is NP-hard as well ([GJPSO05]).

Theorem 1. Delay management with re-routing is NP-hard.

Proof. The proof will be done by reduction to the "Uncapacitated Facility Location” (UFL) prob-
lem. An instance of UFL consists of a set of potential facilities J = {1,...,n} and a set of
customers I = {1,...,m} which have to be served by the facilities. A customer can only be served
by a facility if it is opened. Let f; be the cost for opening facility j and c;; be the transportation
cost for serving customer i from facility j. The objective of UFL is to find a subset @ C J and an
assignment of the customers to the facilities so that the total cost consisting of the opening cost
of the facilities and the transportation cost is minimized. The objective function is:

f(Q) := min Z%igcij + Z fi
iel jeQ

For a given instance of UFL we define the following instance of delay management with re-routing
(see Figure 3).

— We consider a transportation system with 2+ m + n stations, namely two fixed stations u and
@ and stations v; for all 7 € I and v; for all j € J.

— As trains we consider one train g running from v to @, trains h; running from @ to the stations
0; and trains k;; linking each pair of stations (0;,v;). Altogether we hence have 1+ n + mn
trains each of them driving between one pair of stations only.

— We use the event-activity network based on this transportation system with a departure event,
a driving activity of length 1 and an arrival event for each of the 1 +m + nm trains. There are
no waiting activities. We have the following set C; U C5 of changing activities consisting of



o transfers from the train g to each of the trains hj;, j = 1,...,n. These are the changing
activites ¢; = {(g — @ — Arr,h; — @ — Dep)},j =1,...,n with length 1. We define

Ci={cj:jeJ}
e transfers from a train h; to a train k;;, j=1,...,n,9=1,...,m, i.e.
Cy ={(hj —v; — Arr,k;; — 0; — Dep) : j € J,i € I}.
— Furthermore, we need OD-pairs P given as
P ={p; ={u,v;,0}Vi e I} U{p; = {a,v;,2}Vj € J}.

We set the number of passengers wanting to travel between the corresponding origin and
destination events as w,, = 1 for every p; = {u,v;,0} and w;;, = f; for every p; = {1, v;,2}.

— Finally, as source delay we assume that the departure event of train g is delayed by d = 1
minute.

First we note that maintaining the connection between the trains h; and k;; does not cause addi-
tional delay for any OD-pair. So we can assume that all changing activitities in Co are maintained
and will in the following only consider such solutions.

Now let () C J be a subset of opened facilities. We define a relation between such opened facilities
and maintained connections which is only based on the maintained connections in C4:

A ={c;eC1:j€QIUC,.

fix
Vice versa for a given subset Ag, € C1 U Cy we set
Q'Aﬁx = {] cJ: cj € Aﬁx}.

Thus we have a bijection between subsets () C J and subsets Agx C Achange- It holds:
Q

1. Q is feasible for (UFL) if and only if all passengers reach their destinations if Ag,_is chosen as
set of maintained connections.
2. The objective values of (UFL) and delay management with passenger re-routing coincide up
to an additive constant, i.e. f(.Agx) = f(Q) + const.
ad 1: A solution @ to an instance of UFL is feasible if and only if there is at least one opened facility.
Similarly, all passengers will reach their final destinations if and only if the set of maintained
connections within Cy is not empty.

ad 2: For a given feasible solution @ to an instance of UFL the objective value is

f(@) = Zg%igcij +Y fi

i€l JEQ
In the associated solution network N (Agx) for every OD-pair p; = {u,v;,0} the arrival time

t A (i) can be calculated depending on the chosen train k;; by adding the lengths L, of the
activities on the path in the event-activity network and the delay d = 1. Furthermore, for
every OD-pair p; = {1, 7;,2} the arrival time t 4, (D)) is ta,, (Pj) = sas, + 1 +d = 4 if the
connection (g — @ — Arr, hj, 4, Dep) is kept alive and ¢4, (pj) = sas; + 1 = 3 otherwise. Thus
the associated solution has solution value:
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Fig. 3. The event activity network for the instance of the delay management problem with re-routing constructed from an instance of UFL with m = 3 customers
and n = 2 facilities. The square nodes are the departure and arrival events. The origin and destination events are represented by ovals omitting the add-ons
“Org” or ‘Dest” as this is obvious in the picture. The dashed arcs are the origin and destination arcs, the solid lines represent driving and changing activities.
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We remark that NP hardness of a similar model also dealing with delay management with re-
routing of passengers has been shown in [GGJT04].

3 Integer Programming Formulation

In this section we will give an integer programming formulation that takes the routing decisions
for the passengers into account explicitly. The model is based on the classical delay management
model as it was introduced in [Sch01]. We will refer to this classical delay management model as
the original model.

The event activity network is a directed graph. We denote 6 (e) and §°"*(e) for the set of arcs
into e and out of e, respectively, for every event e € £.

3.1 Variables

The most important decision is which connections need to be kept alive. For each changing activity
a € Achange We thus introduce a binary decision variable z,, which is defined as follows.

L 1 if connection a is maintained,
@ 0 otherwise.

The times that the arrival and departure events take place are the next set of decision variables.
For each event e € Earr U Eqep, we define . € N as the rescheduled time that event e takes place.
The variables = (z.) therefore define the disposition timetable. These decision variables are the
same as in the original model.

The new aspect that we have to model are the routes that the passengers take. First note that a
route has to be determined for every origin-destination pair. Recall that the set P is defined as
the set of all origin-destination pairs. To model the routing decisions for a given pair p € P, we
introduce binary decision variables qqp, which indicate whether arc a € A is used in the path that
is chosen for origin-destination pair p € P. Formally, the variables g4, are defined as follows.

_J 1 if connection a is used by passengers in p,
9ar =10 otherwise.

The arrival time for p now depends both on the path that is chosen, and on the disposition
timetable x. To be able to incorporate the arrival time of these passengers in a linear model, we
introduce a variable ¢, € N, which will represent the arrival time for pair p € P.



3.2 Integer programming formulation

We first present our integer programming formulation for (DMwRR) and then discuss its meaning,.

min Z Wply (1)

peP
such that
Te > Te +de Ve € Earr U Edep, (2)
Te > Ter + Lo Va = (¢, ¢e) € Aqrive U Avwait, (3)
ZTe > Zer + Lo — Mi(1 — 24) Va = (6,7 e) € AChange7 (4)
Qap < Za Vp € P,a € Achange, (5)
S =1 Ve = (p— Org) € o, (6)
a€sout(e)

Z Qap = Z Gap Vp € P,e € Earr U Edep, (7)

a€sout(e) agdin(e)
1= Z Gap Ve = (p — Dest) € Egest, (8)

agdin(e)
tp > xe — Ma(1 — gpa) Ve = (p — Dest) € Eqest, a € 6™ (e), 9)
2o € {0,1} Va € Achanges (10)
dap € {0,1} VpeP,aec A, (11)
2. €N Ve € Earr U Edep, (12)
t, €N Vp € P. (13)

The objective function (1) minimizes the arrival times of all passengers. This is equivalent to
minimizing the overall or average delay of the passengers. Constraints (2) imply that events cannot
take place earlier than in the original timetable and that source delays are taken into account.
To make sure that delays are propagated through the network correctly, constraints (3) transfer
the delay from the start of activity a to its end. For maintained connections, that is connections
for which z, = 1, constraints (4) transfer delays from the feeder train to the connecting train.
The value of My should be chosen large enough for these constraints to be correct. In [Sch06] it
has been shown that M; = max.c¢ d. is large enough. Constraints (2 - 4) are also present in the
original model.

Constraints (5 - 9) take the routing decisions into account. First of all, constraints (5) make sure
that changing activities can only be used if the connection is kept alive. Constraints (6 - 8) define
a shortest path problem for each origin-destination pair p. For every pair, a path is selected from
the origin to the destination. The last constraint defines the arrival time for trip p, where M is
again a large number. For the arrival event e that is selected and the driving activity a into this
event, gp, = 1, showing that ¢, > z. for this particular event. All other path variables gy, are
equal to zero, therefore putting no restriction on the value of t,.

To find the minimal value of My for which (9) is correct, consider an arbitrary OD-pair p € P.
It was shown in Section 2 that only arrival events that arrive within n, periods after the planned
arrival of the passengers should be connected to the destination event (p, destination), where n,, is
the number of transfers for these passengers if the timetable is operated as planned. The maximal
delay for the OD-pair p is therefore equal to n,T + max, d.. Assuming that no passenger has more
than two transfers, it follows that My = 2T + max.c¢ d. is large enough. Indeed, as

— My <m, —|—ma€Xde — M < S'Pp—|—2T—|—rnagxde — My = SP,,
ec ec

where SP, is the planned arrival time, ¢, > . — M> does not pose a restriction.



We remark that the variables z, are not needed in the above model, since constraints (4) and (5)
can be replaced by the constraint

Te > Ter + Lo — M(1—qop) Va=(e,e) € AchangeVp € P

leading to an equivalent model. Nevertheless, we have chosen to leave these variables in the model
to show the similarity with earlier models. Furthermore, the variables z, could be used to guide
the solution process.

3.3 Some preliminary numerical results

We have implemented the integer program for a small part of the railway network in the Nether-
lands. This small sample consists of 10 stations in the center of the Netherlands, including the
stations in Figure 1. The timetable and the passenger figures are obtained from Netherlands Rail-
ways. We consider 184 trips and 141 OD-pairs during a planning period of 5 hours in the evening.
The sample under consideration contains many OD-pairs for which different routes are possible,
especially near Amsterdam.

The resulting event-activity network contains 502 nodes and 1475 arcs. The number of changing
activities is equal to 542. The integer program was solved using CPLEX 10.1 on an Intel Core
2 Duo PC (2.33 GHz) with 3 GB of memory. For randomly selected delays, the problem can be
solved to optimality within 30 seconds. If only the train from Zwolle to Amersfoort is delayed, as
in our motivating example in Section 1, we indeed see that passengers are re-routed via Utrecht. It
should be noted that in all our tests, the optimal solution is found in less than 5 seconds, although
it takes about 30 seconds to prove optimality of the solution.

4 Special Cases of Delay Management with Re-Routing

In the precedent section we gave an integer programming formulation for the general problem
(DMwRR). Now we will identify simplifications and special cases of (DMwRR) in order to under-
stand the border between still polynomial solvable and already NP-hard variants. The knowledge
about the reasons for the NP-hardness as well as polynomial approaches for special cases can later
serve to construct good heuristics for the general case.

In this section we will hence examine two special cases of (DMwRR). We first present a polynomial
algorithm for the case of delay management with re-routing where the demand is given by only one
OD-pair. Then we will consider another variant in which the costs for maintaining a connection
are fixed. Although this is a strong simplification of delay management with re-routing, it will turn
out to be NP-hard as well.

4.1 Delay management with re-routing for one single OD-pair

This subsection deals with a simplification of delay management with re-routing (DMwRR): We
assume that we are given just one OD-pair p = {u, v, S, }. To simplify the notation in the following
chapter we will identify (p—Org) and v and (p— Dest) and v, so u and v will be regarded as events
in the network. In this case the problem is solvable by a modified version of Dijkstra’s algorithm
for finding a shortest path (see [VC79]). The part of the algorithm that has to be modified is the
calculation of the node labels that in Dijkstra’s algorithm represent the shortest-path distance to
the origin and in the modified algorithm will represent the earliest possible arrival time at a node.
In order to calculate the transfer of delays efficiently we define T'r[e] as the train belonging to an
event e € Egep U Earr

Let A be a network with feasible timetable 7, p = {u, v, sy, } an OD-pair and D a set of source
delays. Like in the original Dijkstra’s algorithm we solve in every step the problem of determining
an optimal path for a pair of events {u,i} where u = (p — Org) is the origin node of the OD-pair
p = {u, v, Sy} under consideration and ¢ € £. In order to do this formally, we need the following
slight extension of (DMwRR):
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Having in mind the practical application in train re-routing we defined in Section 2 the problem
(DMwRR) for a network A and a set of OD-pairs P consisting of elements of the form p =
{u, v, $ur } where u is the origin, v the destination and s, is the starting time. Now we also want
to deal with OD-pairs as elements of the type p* = {u, i, s, } where i € £ is an arbitrary successor
of w in V. From a mathematical point of view we can do this easily by just defining ¢ 4,. (p*) := x;
as the (artificial) arrival time of such an OD-pair p*. We hence extend the problem (DMwRR) to
instances consisting of a network A" and a set of OD-pairs P of type p*.

Let u be the origin node of the considered OD-pair. Determining an optimal path for a pair of
events {u,i} can hence be seen as solving (DMwRR) for N and P = {{u,i, 84} : 7 € E}. If the
problem (DMwRR) is solved for {u, 1, s,,} we store:

— Ti]: Minimal arrival time for passengers traveling from u to ¢ with starting time sy,,.

— Apgix[i]: Changing activities that have to be maintained in the optimal solution of (DMwRR)
with OD-pair {u, i, Sy}

— TD[i] ={j: (e,7) € Asxl[i] for some e € E}: Set of (departure) events that transfer a delay to
a new train if the optimal path for OD-pair {u, %, Sy, } is realized.

Let PERM be the set of events for which (DMwRR) has been solved and the above values have
been determined. For every e with a direct predecessor ¢ € PERM we determine the optimal path
by first calculating the time plus the delay transferred to e if the connections that belong to the
optimal path to ¢ are fixed:

2ile] = max{7e, T[j] + > ,cp,, La} if there is an event j € T'D[i] such that Tr[j] = Trle]
! Te otherwise

where P is the path from j to e containing only events of the same train Tr[j] = T'r[e]. Then
the delay of e when taking a path via i is max{z;[e], T'[i] + L(; )}. We consequently choose i so
that this expression is minimal and obtain T'[e] = mincpgrar,(ie)calzilel, T[] + Lie ). As in
Dijkstra’s algorithm we fix the event é with smallest T7[e].

In order to calculate Ag[é] and T'D[é] we distinguish two cases. Let iz be the predecessor of é in
the solution of (DMwRR) for {u, €, syv}-

— If a = (ig, ) is a changing activity and T'[é] > z;,[é] we obtain Agy[é] = Agix[ie] U {(is, €)} and
TD[é] = TDis] U {é}.
— Otherwise we simply set Agix[é] = Asix[ie] and T D[é] = T Dig].

The algorithm is summarized below.

Algorithm: Modified Dijkstra for delay management with re-routing with one OD-pair

Input: Instance of (DMwRR) with network N, feasible timetable 7, delays D and one OD-pair
p={u,v,8us}.
Step 1. Generate the timetable 7 where 7. = MaX(; ¢)e A4iveUAwar 1Te> Ti + Liie) } by the critical
path method.
Step 2. Set PERM = {u}, TEMP = E\ {u}, T[u] = $u,, Tle] = oo for every e € TEMP,
TDlu] =0, Agxlu] = 0.
Step 3. For every e € TEMP and every i € PERM so that (i,e) € A set
] = {max{fre,T[j] + Zaere L,} if there is an event j € T'D[i] such that Tr[j] = Tr[e]
! Te otherwise
where Pj. is the path from j to e containing only nodes of Tr[j] = Tr[e].
— Tle] = minie ppra, (i,e)e.a max{zi[e], T'[i] + L ey}
Step 4. Set é = argminTe], s = argmine ppras,i,e)e Al L1+ Liie)}, PERM = PERM U{é},
TEMP =TEMP\ {¢}, T[é] = T[é].
Step 5. If € = v go to Step 7.
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Step 6. If (ic, €) € Achange and T'[é] > z;,[¢]

set Agix[€] = Agx[ie) U {(i¢,é)} and TD[é] = {T'D[ic) U{é}} \ {j € Eaep : Tr[j] = Tr[é]}.
Otherwise set TD[é] = T'D[ig], Asix|€] = Asix[ie]-
Go to step 3.

Step 7. Set Agix = Afix[’l)}
Output: Optimal set Agy for the given instance of (DMwRR).

Theorem 2. The algorithm is correct and finds the optimal solution Ay, to (DMwRR) with one
OD-pair in time O(n*) where n is the number of nodes in the network N .

Proof. (a). Using induction we see that for a directed path P, from i to e with Tr[e] = Tr[i] that

(e).

(f).

contains only nodes of the train Tr[e] = Tr[i] where event j precedes event e

T[]+ Y Lo < T+ Lije)-
a€ Pie

. For a given set A C Achange let z[e] for e € €\ {v} denote the minimal possible arrival

times calculated by the critical path method in NV'(A) where 24[u] = s,,. Note that for A =0
xm[e] =7 for all e € Eapy U Edep-

. For any solution Agy[e] C Achange regarding an OD-pair {u, e, sy, } for an e € £ if we construct

Afix[e] from Afix[e] by removing the edges that are not on a shortest path from u to e in
N (Agyle]) it holds that zsxll[e] = zAsx[€l[e]. So we will assume that in the optimal solution
to the problem of finding a shortest path from u to e only the connections on the shortest path
from u to e are maintained.

. For the set Ay [€] that is constructed in the algorihm in step 6 as solution for the path between

u and é because of (c) we get

pAx[e] [6] = maX{ﬁ'e, {J:Aﬁx €] [’L] + L(i,e)}}

max
(i,e)€dm (e)N(AdriveUAwait UAfix)
for all e € £y U Eqep-

Adding changing activities to a set A; does not influence the time for events e that happen
before the added activities take place. That means for two sets Ay C Ay C Achange if for all
a = (e1,e2) € Ay \ Ay 242(e1) > x42(e), it holds that 241 [e] = 242[e].

Furthermore we observe that if for a set Agy[é] for all ¢ such that (i,€) € Agix U Adrive U Await
TD[i] N Trle] = 0, it holds that zmx€l[e] = 7.

First we will show inductively that for every node e with an incoming arc (f,e) it holds that

max{zge], T[f] + L(f,e)} = a4} ] (14)

if (f,e) is a changing arc and

max{zs[e], T[f] + L(s.e)} = x5 [e] (15)

otherwise.

1.

2.

First we regard the edges (u,e) € Agg. As Agix[u] = 0 and sy, < 7. because of (b) it holds
that

max{zy[e], T[u] + L(ye)} = max{fc, Suy + 0} = 7o = pAnx ] [e]-

Let e be a node such that its predecessor f in P,, lies on the same train T[f] = Te]. As in
N (Agix[f]) it holds that 6™[e] = {(f,e)} (see (c)) and because of (a):

max{zsle], T[f] + Ls.ey} =max{7e, T[f] + Ls.e)}
=max{f, s V[f] + L(; o)}
=g Anxlf] [e].
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3. Let e be a node such that its predecessor f in P,, does not lie on the same train, T'[f] # Te].

Then (f,e) € Achange-
— Suppose that there is no waiting arc terminating in e. Then because of (c¢) and (e):

max{zyle], T[f] 4+ L)} =max{7e, T[f] + L¢s.e)}
= max{7,, 2= f] + Life)}
= max{7,, gAnx[f1UA(fe)} [f] + L(fve)}
AU ),

— Suppose that there is a waiting arc (e, e) terminating in e and that Tr[e] U TD[f] = 0.
Thus 7., = z*5x1[e,] because of (f) and considering (e) it follows

maX{Zf [6], T[f] =+ L(f,e)} = max{ﬁ'e, T[.ﬂ + L(f,e)}
= ma’X{ﬁ-ea T[.ﬂ + L(f,e)a ﬁ.ew + L(ew,e)}
= max{fre, ZAﬁX[f] [.ﬂ + L(f,e)a xAﬁX[f] [ew} + L(ew,e)}
= max{ﬁ'e, A FIU{(f.e)} [f] + L(f’e), A [fIU{(f.e)} [ew] + L(ew,e)}’
A0 ]

— Suppose that there is (ey,e) € Awair and Tr[e] U TD[f] = {eq}. Let P, be the path on
Trleq] = Trlew] = Trle] from eq4 to e and P, ., be the path on Trleq] = Trle,] = Trle]
from eg4 to e,. We see inductively that z4wx[/1[e,,] = max{7,, , 245x1[e ] + Zaeﬁede L.}
Together with (e) follows:

max{zy[e], T[f] + Ls,e)}
=max{7., T[eq] + Z Lo, TIf1 + Lge)}
Cbepede
=max{fe, fe, + Liey.ep, Tleal + D La+ Lieye) T+ Lge)}

aeﬁ’edew

= maX{ﬁ'e’ (max{ﬁ-eva[ed] + Z La} + L(ew,e))> T[f] + L(f,e)}
acP

egew

= max{ﬁ—ea (max{ﬁew ) xAﬁX[f] [ed] + Z La} + L(ew,e))v xAﬁX[f] [f] + L(f,e)}

a€P, e,
=max{7e, v Ne, ]| + Lic, o) 2™ [f] + L5 o)}
= max{7,, 2= 1HAE} e ] 4 L(ew)e),mA“x[f]U{(f*e)}[f] +Ls o)}
=g Anl 10} g).
Thus the assumption given by equations (14) and (15) holds.

If follows that the calculation of

g iePERDJ[\lﬁi,e)eAmaX{z [e], Tl + Liie) }
= mi i (A0} . Al
1611}%%]\/[ (i’e)gilhange{x [e]}7 (iae)evril\lﬁchange{m [e]}}

leads to the optimal path from u to e among the set of paths where an element i from the actual
set PERM precedes e.

It remains to show that the set Agy[é] and the label T[¢] = x45x[¢[¢] are optimal for the node é
chosen in step 4 of the algorithm, that means that there is no A C Achange such that there is a
path from u to e in N'(A) and

zAle] < zAn<l]e].
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This assumption will be proven inductively, too. For the origin node u setting Agsy[u] = () leads to
T'[u] = Sy which is optimal.

Suppose that in the iterations 1 to k — 1 of the algorithm the choice of Agy[e] and the labels T'[e]
are optimal for the regarded nodes e.

Now let & be the node such that in the k-th iteration T[¢] = T[¢] < Tle] for every e € TEMP.
Suppose that there is a set A C Achange such that there is a path from u to e in N'(A) and

zAe] < o<l (16)
Let P“ be the optimal path from u to é in N'(A).

(A). If the predecessor eg of é in Pqﬁg is in PERM, because of the assumption that the labels T'[e]
and chosen sets Agsy[e] are optimal for all e € PERM

IA[é] :z.Afix[eo]U{(eg,é)}[é}

— min min LA IU{(f.8)} 16 , min A ([f] [é]}
1€ PERM (ivé)eAchange (ivé)EA\Achange
— pAnx[€] €]

if (eo, €) € Achange and
zA[e] =z Anxleol [g]

min { min g6 [Fu{(£.e)} e, min pAuxlf] [€]}
i€EPERM " (i,6)€ Achange (3,8) €A\ Achange

=gAnx[e[g)

otherwise, which is a contradiction to (16).
(B). If the predecessor eg of é in P2 is in TEM P let e, denote the last node in PERM on the path
P% (e; exists because u € PERM) and ex € TEM P its successor. So as T[é] = T[¢] < Te]

fore e TEMP
z4[e] > ates] = max{ze, [ea], Tler] + Liey o)} = Tlea] = T(e] = T[e] = a=[¢]
which contradicts (16).

Now it remains to show that Agx[v] is the optimal solution to (DMwRR) for the OD-pair p =
{u,v, 84 }. As defined in Section 2, Agy[v] is optimal if it minimizes t,, (p) = x*tx[e] for the
predecessor e of v on a shortest path from u to v in the network N (Agy). Suppose that the set
Asix[v] and the predecessor e calculated by the algorithm are not optimal with regard to an optimal
path from u to v. The same considerations as above in (A) and (B) lead to a contradiction. So the
set Agix[v] as it is set in step 7 of the algorithm indeed is the optimal solution to (DMwRR) for
the OD-pair p = {u, v, Sy }-
The generation of the timetable in step 1 is done in time O(n?) by the procedure given in [Sch07]
as well as step 7. The initialization of the algorithm in step 2 can be done in time O(n). As in each
repetition of the steps 3-6 one element is removed from T EM P, the number of times the steps
3-6 are repeated is bounded by n — 1, the number of elements initially contained in TEM P. We
observe that for given e € TEM P and i € PERM with (i,¢) € A the calculation of z;[e] and T/[e]
can be done in time O(n) if for each node k € &,y U Egep a pointer to the (unique) successor of k
on an arc @ € Ayait U Adrive 18 stored. So step 3 can be executed in time O(n?). As the steps 4-6
are done in time O(n) the running time of the modified Dijkstra algorithm is in O(n?).

O

4.2 Re-routing with fixed costs

The delays that arise in delay management with re-routing for the passengers by the wait-depart
decisions for the connections can be divided into two types:
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1. A connection is maintained: The waiting train and the passengers on the waiting train are
delayed.

2. A connection is not maintained: The passengers that wanted to take this connection have to
travel along another, probably longer path.

Calculating the delay of the first type by a heuristic approach motivates the following simplified
re-routing problem with fixed costs:

Let N' = {&, A} be a directed network with edge lengths L, for all a € A. Let Achange C A be a
set of connections that can be maintained or removed. We assume that maintaining a connection
a € Achange yields a fixed delay of d, for the passengers. Let P = {{u,v}} be a set of OD-pairs,
given as a subset of £ x £ with demand w,, for each p € P. The objective of this variant is to
minimize the costs arising as fixed delays for maintaining connections plus the travel costs of the
OD-pairs. Hence, the objective function is

p rr;iln E wp - D, (u,v) + g dq
ix CAchange
£ hang peP a€Agix

where D 4, (u,v) is the optimal path distance from u to v in the network in which all connections
a € Achange \ Arix are removed.

Like in delay management with re-routing this problem can be solved in polynomial time if there
is only one OD-pair (by adding the fixed costs d, divided by the demand of the OD-pair w, for a
connection a to its length L, and applying Dijkstra’s algorithm) but even this simplified variant
is NP-hard in general.

Theorem 3. Re-routing with fized costs is NP-hard.

Proof. Analogously to the proof of NP-hardness for (DMwRR) we can prove this theorem by
constructing an equivalent re-routing with fixed costs problem for each instance of UFL. The
network N we construct here differs from the network A considered in the proof of Theorem 1 only
in the absence of the OD-pairs {@, 9;} and the associated origin and destination nodes (p—Org) and
(p— Dest) and origin and destination arcs (p—Org, h;, —i— Dep) and (h; —0; — Arr, p— Dest). The
fixed costs for a € Achange are given by d(g_a—Arr,n,—a—Dep) = fj and d(n; 5, Arr ki;—5;— Dep) = 0-
Similar to the proof of Theorem 1 we observe that we can assume the connections (h; — v; —
Arr, k;; —9; — Dep) to be maintained because their fixed costs are 0. Like in that proof for a given
set of facilities ) we define

AG = {(9—a—Arr,hj—t—Dep) :j € Q,i € I}U{(h; —0; — Arr,k;j —0; —Dep) : j € J,i € I}.

fix
and for a given subset Agyx D {(h; — 0; — Arr,k;j —0; — Dep) : j € J,i € I} we set
QA ={jeJ:(g—1u— Arr,hj — @ — Dep) € Agy}. (17)

Now a subset @@ C J and the associated subset Ay are both feasible or infeasible and the difference
between their objective values is 5 - |I| as can be seen analogously to the proof of Theorem 1.
O

5 Conclusion and Further Research

In this paper, we introduced a model that allows to react to delayed trains not only by wait-depart
decisions for the following trains but also by re-routing of passengers. For this purpose we intro-
duced the origin and destination of the passengers as events in the event-activity network used
in delay management and connected the wait-depart decisions to a shortest path problem in the
resulting network. We proved that this problem is NP-hard. Furthermore, we developed an integer
programming formulation for the delay management problem with re-routing.
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Two main directions for further research on delay management with re-routing can be distin-
guished. First, special cases of the problem should be considered. For these special cases, faster
solution procedures can be developed. For example, if the event-activity network has a special
structure, this structure can be exploited to solve the delay management problem more efficiently.
The methods to solve these easier problems can be used in the second direction of research:
solving the delay management problem. In the paper we have reported some initial computational
results on a small instance of the Dutch railway network. However, more experiments are required.
In practice, the delay management problem should be solved on a very short notice. Therefore,
heuristics should be developed that find a reasonable solution within a short computation time.
To evaluate the quality of the solutions found by the heuristics, it is also interesting to investigate
exact solution methods. Decomposing the problem in the wait-depart decisions on one hand and
the re-routing of the passengers on the other hand could improve the running times of the exact
solution methods.

In practice, the limited capacity of the infrastructure has a large impact on the real-time perfor-
mance of a railway operator. Therefore, the capacity constraints should be integrated in the delay
management models. Considering other routing or network location problems under the aspect of
demand given as OD-pairs may also lead to interesting problems.
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