
Exact Routing in Large Road Networks using
Contraction Hierarchies

ROBERT GEISBERGER, PETER SANDERS, DOMINIK SCHULTES

and CHRISTIAN VETTER

Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

Contraction hierarchies are a simple approach for routing in road networks. Our algorithm calcu-

lates exact shortest paths and handles road networks of whole continents. During a preprocessing
step, we exploit the inherent hierarchical structure of road networks by adding shortcut edges. A

subsequent modified bidirectional Dijkstra algorithm can then find a shortest path visiting only

a few hundred nodes. This small search space makes it suitable to implement it on a mobile
device. We present a mobile implementation that also handles changes in the road network, like

traffic jams, and that allows instantaneous routing without noticeable delay for the user. Also,

an algorithm to calculate large distance tables is currently the fastest if based on contraction
hierarchies.

Categories and Subject Descriptors: E.1 [Data Structures]: Graphs and networks; G.2.2 [Dis-
crete Mathematics]: Graph Theory—Graph algorithms; I.2.8 [Artificial Intelligence]: Prob-
lem Solving, Control Methods, and Search—Graph and tree search strategies

General Terms: Algorithms, Experimentation, Performance, Theory

Additional Key Words and Phrases: Algorithm engineering, Route planning, Shortest paths

1. INTRODUCTION

Finding optimal routes in road networks is an important problem used in diverse
applications, such as car navigation systems, Internet route planners, traffic simula-
tion, or logistics optimisation. Formally, we are given a directed graph G = (V,E)
together with an edge weight function c : E → R+. Edges represent roads and
nodes represent junctions. In practice, c is usually the travel time or some more
general cost function highly correlated with travel time. Since the network does not
change much over time, it makes sense to preprocess this graph in order to speed up
subsequent (shortest path) queries asking for a minimum weight path from a given
source node to a given target node. However, in order to scale to networks with
millions of nodes, preprocessing has to be fast and space efficient. In particular, it
is not feasible to precompute a complete distance table.

Our motivation for contraction hierarchies (CH) was to create an efficient routing
algorithm whose simplicity makes it adaptable to a variety of situations. Interest-
ingly, we were able to engineer our simple approach to get one of the most efficient
algorithms known today. Our algorithm is currently the fastest for car navigation
systems and to calculate large distance tables. It needs less space for preprocessed
information than any other scheme and no other approach achieves faster query
times with comparable preprocessing time. Subsequent works achieve the fastest
query times known and generalise the model. We exploit the observation that road
networks have an inherent hierarchy with a few important and many unimportant
roads and junctions, i. e., roads and junctions that are only used for local traffic
near the source and target of a route. However, it is not necessary to specify road
categories in advance. Our algorithm performs the road classification automatically

by evaluating the assigned cost of each road. To show that our algorithm is feasible
in practice, we released source-code as open-source [Geisberger et al. 2008a] and we
provide a mobile implementation [Vetter 2010] that calculates exact shortest paths
within split seconds. We also added features of current commercial systems that
can cope with traffic jams or blocked routes.

1.1 Basic Approach

The idea of our algorithm is to remove unimportant nodes from a directed, weighted
road network in a way that preserves shortest path distances. This concept is called
node contraction: deleting a node u and adding shortcut edges (shortcuts) [Sanders
and Schultes 2005; Goldberg et al. 2006] to preserve shortest path distances between
the remaining nodes. The shortcuts bypass node u and represent whole paths.
During the preprocessing, we contract one node at a time until the graph is empty.
All original edges together with the shortcuts form the result of the preprocessing,
a contraction hierarchy. Subsequently, nodes removed later will be called higher up
in the hierarchy. A crucial figure is the number of shortcuts. If it is too large, our
algorithm will not be useful because preprocessing time, space consumption and
query time will suffer. But due to the inherent hierarchy of road networks, we can
keep this figure small by a careful heuristic choice of the order in which the nodes
are contracted. Roughly, after contracting a node, the remaining graph should be
as sparse as possible. Hence, the edge difference – the number of added shortcuts
minus number of incident edges – of a contracted node should be small. Further
heuristics enforce a uniform contraction everywhere in the graph and try to limit
the effort for contraction or subsequent queries.

The concept of node contraction allows an efficient and simple query algorithm.
We find a shortest path from source s to target t using a variant of the bidirectional
version of Dijkstra’s algorithm: Forward search from s is constrained to upward
edges and backward search from t is constrained to downward edges. Because of
the shortcuts, both searches will meet on a node u that is highest in the CH on a
shortest path between s and t.

We developed two implementations of CHs: one for personal computers and one
for mobile devices. The mobile implementation required engineering of an external-
memory graph representation to overcome the I/O bandwidth and main memory
limitations of those small devices. We divided the graph into several blocks, each
containing a subset of the nodes and the corresponding edges. We put particular
effort into exploiting the fact that the edges in one block only lead to nodes in a
small subset of all blocks; many edges even lead to nodes in the same block.

1.2 Related work

Computing shortest paths in road networks in a well-studied problem, c. f. [Ahuja
et al. 1993]. Recently a plethora of faster algorithms (speedup techniques) has been
developed that are several orders of magnitude faster and can handle much larger
graphs than the classic algorithm by [Dijkstra 1959]. We can only give an abridged
overview with emphasis on directly related techniques beginning with the closest
kin. For a recent overview we refer to [Delling et al. 2009]. Previous heuristic
approaches, e. g. [Fu et al. 2006], or speedup techniques based on A*, e. g. [Klunder
and Post 2006], are orders of magnitude slower than the best exact methods known

now.

CHs, first introduced by [Geisberger et al. 2008b], are an extreme case of the
hierarchies in highway-node routing (HNR) by [Schultes and Sanders 2007] – every
node defines its own level of the hierarchy. CHs are nevertheless a new approach
in the sense that the node ordering and hierarchy construction algorithms used
by HNR are only efficient for a small number of geometrically shrinking levels.
We also give a faster and more space efficient query algorithm and improve their
dynamization techniques.

The node ordering computed by HNR uses levels acquired by highway hierarchies
(HHs) by [Sanders and Schultes 2005; 2006]. Our original motivation for CHs was
to simplify HNR by obviating the need for another (more complicated) speedup
technique (HHs) for node ordering. HHs are constructed by alternating between
two subroutines: Edge removal is a sophisticated and relatively costly routine that
only keeps edges required ‘in the middle’ of ‘long-distance’ paths. Node removal
contracts nodes. In the original paper for undirected HHs of [Sanders and Schultes
2005], node removal only contracted nodes of degree one and two. For directed
graphs we needed a more general node ordering criterion for the contraction as
described by [Sanders and Schultes 2006]. It turned out that the edge difference is
a good way to estimate the cost of contracting a node v. [Goldberg et al. 2007; Bauer
and Delling 2009] further refine this method using a priority queue and avoiding
parallel edges. All previous approaches to contraction had in common that the
average degree of the nodes in the remaining graph would eventually explode. So
it looked like an additional technique such as edge removal or reaches would be a
necessary ingredient of any high-performance hierarchical routing method. Perhaps
the most important result of CHs is that using only (a more sophisticated) node
contraction, we achieve very good performance.

The fastest speedup technique so far, transit-node routing (TNR) by [Bast et al.
2007], offers almost constant query times by reducing most queries to a few table
lookups. However, it needs considerably higher preprocessing time and space, is less
amenable to dynamisation, and, most importantly it relies on another hierarchical
speedup technique for its preprocessing. We will show that using CHs for this
purpose leads to improved performance.

A different hierarchical approach is proposed by [Thorup 2004] to answer queries
accurate within a factor (1+ε) in time O(log log(nC) + 1/ε) on planar graphs with
integer edge weights in a range from 0 to C.

Finally, there is an entirely different family of speedup techniques based on goal-
directed routing. In particular, ALT (A*, Landmarks, Triangle inequality) [Gold-
berg and Harrelson 2005] yields strong lower bounds that can direct the search
towards the target . It has fast preprocessing but considerable space requirements.
Arc flags (AF) [Lauther 2004] indicate for each edge into which regions it leads.
They give a stronger sense of goal direction than ALT and need less space yet very
high preprocessing times. Combination of CHs with goal-directed routing have
been systematically studied by [Bauer et al. 2010b]. TNR based on CHs combined
with arc flags yields the currently fastest queries. CHs combined with arc flags give
another favorable tradeoff between preprocessing time/space and query time. Their
experiments suggest that CHs also work for other sparse networks with high locality

such as some transportation networks, or sparse unit-disk graphs. For more dense
networks, CHs can be used in an initial contraction phase whereas a goal-directed
technique is applied to the resulting core network.

For mobile algorithms, only few academic implementations exist. [Goldberg and
Werneck 2005] successfully implemented the ALT algorithm on a Pocket PC. Our
implementation, a static version was presented earlier in [Sanders et al. 2008], is
more than one magnitude faster and drastically more space efficient. Also the
RE algorithm of [Gutman 2004; Goldberg et al. 2007] has been implemented by
[Goldberg 2006] on a mobile device, yielding query times of ‘a few seconds including
path computation and search animation’ and requiring ‘2–3 GB for USA/Europe’.
Commercial systems, to the best of our knowledge, do not compute exact routes
and require several seconds to calculate a route. However a direct quantitative
comparison is not possible since they are slowed down due to various reasons like
showing a progress bar.

Several aspects of routing in road networks are more or less orthogonal. For ex-
ample turn restrictions and turn penalties can be modeled using edge based routing
where nodes represent the starting point of a road segment and edges represent the
cost of going from one starting point to a subsequent starting point. [Volker 2008]
investigated its effects on speedup techniques.

1.3 Outline

In Section 3 we describe CHs in detail and explain the preprocessing (Sects. 3.1,
3.3) and the query algorithm (Sect. 3.2). Our adaptions for mobile devices are
in Section 4. The refined dynamisation technique is described in Section 5 and a
variant suitable for the mobile scenario in Section 6.

2. PRELIMINARIES

Dijkstra’s algorithm can be used to solve the single-source shortest path problem,
i. e., to compute the shortest paths from a single source node s to all other nodes in
a given graph. Starting with the source node s as root, Dijkstra’s algorithm grows
a shortest path tree that contains shortest paths from s to all other nodes. During
this process, each node of the graph is either unreached, reached, or settled. A node
that already belongs to the tree is settled. If a node u is settled, a shortest path P ∗

from s to u has been found and the distance ds(u) = c(P ∗) is known, where c(P)
denotes the sum of the costs of the edges on a path P . A node that is adjacent to
a settled node is reached. Note that a settled node is also reached. If a node u is
reached, a path P from s to u, which might not be the shortest one, has been found
and a tentative distance δs(u) = c(P) (δ = greek delta) is known. Nodes that are
not reached are unreached.

3. CONTRACTION HIERARCHIES

As introduced in Section 1.1, we construct a CH by ordering the nodes and then
contracting the nodes in this order. For convenience, we assume that, after node
ordering, the nodes are numbered 1..n, n:= |V | in order of ascending importance.
A node u is contracted by removing it from the network in such a way that shortest
paths in the remaining graph are preserved. When we do not add a shortcut, then

2
1 2

2

6

1

4

3

5

3

3
5

8

n
o
d
e
or
d
er

2

Fig. 1. A completed CH, dashed edges
are added shortcuts.

2

2

1

1

1
1

1
uv

w

x

y

Fig. 2. There is no witness path between the
node pairs v, w and v, x so we need to add

shortcuts (dashed) for the contraction of node

u. The witness path 〈w, y, x〉 allows us to omit
a shortcut between the node pair w, x.

there must exist a shortest path 〈v, . . . , w〉 6= 〈v, u, w〉, we call such a path witness
path. The concept of witness paths is particularly important for the dynamization
described in Sections 5 and 6. Figure 1 shows a completed CH.

3.1 Node Contraction

The most important part of the node contraction is to find witness paths. A simple
way to decide on the uniqueness of 〈v, u, w〉 is to perform for each node v ∈ S a for-
ward shortest-path search only using nodes > u until all nodes in T \{v} are settled.
Such a search to compute shortest path distances between the neighbours is called a
local search. Let δv(w) be the shortest path distance found by this local search. We
add a shortcut if and only if δv(w) > c(v, u) + c(u,w), i. e. if the shortest v-w-path
excluding u will be longer, see Figure 2. We can additionally stop the search from
a node x when it has reached distance c(v, u) + max {c(u,w) | w ∈ T \ {v}}.

Limit Local Searches. In order to achieve fast preprocessing we rely on the as-
sumption that local searches are fast since they visit only a tiny fraction of the
network. However, this assumption fails when long-distance edges like ferry connec-
tions are involved. We therefore additionally truncate local searches that become to
large. Note that this preserves shortest path distances since we only introduce some
superfluous shortcuts. Since additional shortcuts slow down all further processing,
the local search limit needs to be carefully selected for maximum performance. We
propose two approaches to limit the local searches: a settled nodes limit and a hop
limit that limits the number of edges of witness paths. Limiting the number of
settled nodes is simple, but, in our experience, leads to dense remaining graphs
and does not speedup the contraction a lot. However, if we only use it to estimate
the edge difference and perform the real contraction without a limit, it speeds up
the node ordering and yields CHs with fast query times. Hop limits, introduced
by [Schultes 2008], provide a better contraction speedup and also adapt to denser
remaining graphs. To achieve further speedup, we propose staged hop limits: We
start contracting nodes with a small hop limit, e. g. one. At some point, we switch
to larger hop limits because otherwise the remaining graph will get too dense. We
use the average node degree, a measure for density, to trigger these switches.

Fast Local 1-Hop Search. To find witness paths consisting just of one edge, it is
sufficient to scan through all outgoing edges of the source node v ∈ S. The 1-hop

search makes sense if lots of edges of the graph are shortest paths, like in a road
network. In this case, it allows to contract a significant amount of nodes without
too many additional shortcuts being added.

Fast Local 2-Hop Search. We implement a simple variant of the many-to-many
shortest paths algorithm of [Knopp et al. 2007]. with each node x > u, we associate
a bucket b(x):= {(w, c(x,w)) | w ∈ T, (x,w) ∈ E}. Computing the non-empty b(x)
is done by by scanning the incoming edges of all w ∈ T . For v ∈ S we then
compute δv(w):= min {c(v, x) + c(x,w) | (v, x) ∈ E, (w, c(x,w)) ∈ b(x)}∪{c(v, w)}
by scanning the outgoing edges (v, x) of v and the buckets b(x).

1-Hop Backward Search. To speed up a local search from v ∈ S with hop limit
a ≥ 3, we first perform a Dijkstra search with (a−1)-hop limit resulting in distances
δv(·). We improve these to δv(w):= min {δv(w)} ∪ {δv(x) + c(x,w) | (x,w) ∈ E}
by scanning the incoming edges of w ∈ T . The distance limit for the forward
search changes, we now stop the search if the last settled node exceeds the distance
c(v, u) + max {c(u,w)−min {c(x,w) | (x,w) ∈ E} | (u,w) ∈ E,w 6= v}.

On-the-fly Edge Reduction. If the local search is performed by a local Dijkstra
search, it computed tentative distances δv(x) to all neighbours x > u of v. We
use them to remove superfluous edges (v, x) ∈ E with δv(x) < c(v, x). This edge
reduction is cache efficient and will therefore cause almost no direct overhead but
brings potentially faster preprocessing and query times.

3.2 Query

In this section we will introduce our query algorithm and prove its correctness. The
query does not relax edges leading to nodes lower than the current node. This prop-
erty is reflected in the upward graph G↑:= (V,E↑) with E↑:= {(u, v) ∈ E | u < v})
and, the downward graph G↓:= (V,E↓) with E↓:= {(u, v) ∈ E | u > v}). We com-
bine them in the search graph G∗ = (V,E∗) with E↓ := {(v, u) | (u, v) ∈ E↓} and
E∗ := E↑ ∪ E↓. With each e ∈ E∗, we store a forward and a backward flag such
that ↑ (e) = true iff e ∈ E↑ and ↓ (e) = true iff e ∈ E↓. Algorithm 1 describes
our bidirectional Dijkstra-like query on G∗, essentially a forward search in G↑ and
a backward search in G↓.

Algorithm 1: Query(s,t)

1 d↑:= 〈∞, . . . ,∞〉; d↓:= 〈∞, . . . ,∞〉; d:= ∞; // tentative distances

2 d↑[s]:= 0; d↓[t]:= 0; // start bidirectional search from s and t
3 Q↑ = {(0, s)}; Q↓ = {(0, t)}; r:= ↑; // priority queues

4 while (Q↑ 6= ∅ or Q↓ 6= ∅) and (d > min {minQ↑,minQ↓}) do
5 if Q¬r 6= ∅ then r:= ¬r; // interleave direction, ¬ ↑=↓ and

¬ ↓=↑
6 (·, u):= Qr.deleteMin(); // settle u
7 d:= min {d, d↑[u] + d↓[u]}; // u is potential candidate

8 foreach e = (u, v) ∈ E∗ do // relax edges

9 if r(e) and (dr[u] + c(e) < dr[v]) then // shorter path found

10 dr[v]:= dr[u] + c(e); // update tentative distance

11 Qr.update(dr[v],v); // update priority queue

12 return d;

Theorem 3.1. Algorithm 1, applied to a CH, returns the correct shortest path
distance.

Proof. It follows from the definition of a shortcut, that the shortest path dis-
tance between s and t in the CH is the same as in the original graph. Every
shortest s-t-path in the original graph still exists in the CH but there may be
additional shortest s-t-paths. However since we use a modified Dijkstra algo-
rithm that does not relax all incident edges of a settled node, our query algo-
rithm does only find particular ones. It only finds shortest paths of the form (PF)
〈s = u0, u1, . . . , up, . . . , uq = t〉 with p, q ∈ N, ui < ui+1 for i ∈ N, i < p and
uj > uj+1 for j ∈ N, p ≤ j < q. We will prove that if there exists a shortest
s-t-path then there also exists a shortest s-t-path of the form (PF).

Given a shortest s-t-path P = 〈s = u0, u1, . . . , up, . . . , uq = t〉 with p, q ∈ N,
up = maxP . Let MP := {uk | uk−1 > uk < uk+1} denote the set of local min-
ima excluding nodes s, t. MP 6= ∅ iff P is not of the form (PF), like in Figure 3(a).
Let uk:= minMP and consider the two edges (uk−1, uk), (uk, uk+1) ∈ E. Both
edges already exist at the beginning of the contraction of node uk. So there is
either a witness path Q = 〈uk−1, . . . , uk+1〉 consisting of nodes higher than uk with
c(Q) ≤ c(uk−1, uk) + c(uk, uk+1) (even = since P is a shortest path) or a shortcut
(uk−1, uk+1) of the same weight is added. So the subpath 〈uk−1, uk, uk+1〉 can ei-
ther be replaced by Q or by the shortcut (uk−1, uk+1). The resulting path P ′ is
still a shortest s-t-path and minMP ′ > uk or MP ′ = ∅. Since n < ∞, there must
exist a shortest s-t-path P ′′ with MP ′′ = ∅ of the desired form (PF).

Outputting Complete Path Descriptions. Algorithm 1 can be extended to return
the whole shortest path P . However, P can contain shortcuts. To obtain a shortest
path P ′ in the original graph, we iteratively replace a shortcut (v, w) created from
edges (v, u), (u,w) during contraction of u, by these two edges (v, u), (u,w). It
runs in O(|P ′|) where |P ′| is the number of edges in P ′ when we store pointers to
(v, u) and (u,w) in the shortcut (v, w).

n
o
d
e
o
rd
er

s = u0 uq = t

u1

up

uk−1

uk

uk+1

(a) before

n
o
d
e
o
rd
er

s = u0 uq = t

u1

up

uk−1

uk+1

shortcut or witness

(b) after

Fig. 3. Step of the correctness proof to construct a s-t-path of the form (PF).

Pruning the Query Search Space. using the stall-on-demand technique [Schultes
and Sanders 2007] reduces the number of settled nodes: Before a node u is settled
at distance d↑(u), we check whether there exists an edge e = (u, v) ∈ E∗ with
↓ (e) = true and d↑[v]+c(e) < d↑[u]. In this case we can stall u since the computed
distance to u is suboptimal and we do not relax the edges of u which leads to a
considerably smaller search space. Moreover, stalling can propagate to additional
nodes w in the neighbourhood of u, if the path via v to w is shorter than d↑[w]. We
perform a BFS from u using the edges available in G∗, but stop at nodes that are
not being stalled. To ensure correctness, we unstall a node u if a shorter path to u
than the current one in is found by the regular query algorithm. Stall-on-demand
is also applied to the backward search in the same way.

3.3 Node Order Selection

In this section we fill in the remaining details of the node order selection. [Bauer
et al. 2010a] show that selecting an optimal node order that minimizes the query
search space is NP-hard. Our selection is based on heuristics and the observation
is that we do not need to know the complete order of the nodes before we can start
contracting nodes: it is sufficient that we know the next node to be contracted. The
selection of the next node is done using a priority queue. The priority of a node
is the linear combination of several priority terms and estimates the attractiveness
of contracting this node. A priority term is a particular property of the node and
can be related to the already contracted nodes and the remaining nodes. Thus the
priority terms can change after the contraction of a node and need to be updated.
To keep the time required for priority updates small, we only update the neighbours
of the contracted node.

Lazy Updates. In general, more than the neighbours are affected. So we update
the priority of the top node on the queue before we remove it (lazy update). Since
the node with the smallest priority is on top, increasing priorities get updated in
time. To further improve the node order selection, we also do a complete update
of all priorities if there were recently too many lazy updates. A check interval t
is given and if more than a certain fraction a · t of successful lazy updates occur
during a check interval, the update is triggered. We currently only use a:= 1.

Edge Difference. Intuitively, the number of edges in the remaining graph should
decrease while more and more nodes get contracted. The change in the number of
edges caused by a node contraction is called edge difference. It is arguably the most

u

v

x1

x2

xr yr

y2

y1x′
2 y′2

x′
r

y′r

1 1

11

r

rr

r

r2 r2

Fig. 4. After the contraction of node u the edge difference of node v in this directed, weighted

graph changes.

important priority term and we calculate it with a simulated contraction of node u.
For our implementation, we used the difference in the space requirements. Note
that we store two edges (v, w) and (w, v) with the same weight c(v, w) = c(w, v) as
only one edge with two additional forward and backward flags. We could also use
the cardinality difference but this would ignore the space consumption.

Contracting a node u can affect the edge difference of node v that is arbitrarily far
away as we show in Figure 4: The contraction of node v will require new shortcut
(x1, y1), whereas before, this shortcut was not necessary because of the witness
path 〈x1, x2, , . . . , xr, u, yr, . . . , y2, y1〉. However, the neighbours of u are affected
the most since they may get new incident edges.

If after the contraction of a node u, the priority of a node v changes that is not
a neighbour of u, v may be extracted from the priority queue in a different order
than desired. Lemma 3.2 shows that under certain conditions, lazy updates can
reestablish the correct order.

Lemma 3.2. We contract all nodes in correct order if (a) after the contraction
of a node, all of its neighbours are updated, (b) the local searches for witness paths
are unlimited, (c) the edge difference is the the only priority term and has a non-
negative coefficient and (d) lazy updates are used.

Proof. The edge difference of a node v depends only on the incoming and
outgoing edges of v and on the existing witness paths. After the contraction of a
node u, the edges only change for the neighbours of u. These changes are covered
by (a). Therefore only existing witness paths can affect a node v that is not a
neighbour of u. Because of (b), we will not find a witness path after the contraction
of u, if there previously was no witness path. Thus witness paths can only vanish,
leading to an increasing priority (c). Lazy updates (d) will adjust those priorities
in time.

We cannot directly apply Lemma 3.2 to our preprocessing since we have search
limits. However, if our limits are sufficiently large, we can expect only few deviations
from the projected node order.

Uniformity. Using only the edge difference, one can get quite slow routing. For
example, if the input graph is a path, contraction could produce a linear hierarchy
where most queries would again follow paths of linear length. Such a situation can
happen e. g. in dead-end valleys. In contrast, if we iteratively contract maximal
independent sets, we would get a hierarchy where any query is finished in logarith-

mic time. More generally, it seems to be a good idea to contract nodes everywhere
in the graph in a uniform way, rather than keep contracting nodes in a small re-
gion. We have tried several heuristics for choosing nodes uniformly out of which
we present the three most successful ones. For all measures used here, a large value
means that the node is contracted late.

Deleted Neighbours: Every node has a counter that gets incremented when a
neighbour is contracted. Obviously, this quantity can be maintained correctly by
either lazy update or by updating the neighbours of a contracted node. This heuris-
tic is very simple and can be computed efficiently.

Original edges term: For each shortcut we store the number of original edges in
the represented path. The original edges term is the sum of the number of original
edges of the necessary shortcuts. This increases the space requirements but the
term is beneficial, e. g. for path unpacking.

Voronoi Regions: Let R(v):= {u contracted | d(v, u) < ∞,∀ uncontracted w :
d(v, u) ≤ d(w, u)} be the Voronoi-region of a uncontracted node v. We use

√
|R(v)|

as term in the priority function. By arbitrary tie breaking, we ensure that a node
is in at most one R(v). Note that in directed graphs, a contracted node may be
in no region. When v is contracted, its neighbouring Voronoi regions will ‘eat up’
R(v). [Maue et al. 2009] describe how the necessary computations can be made
using O(|R(v)|) steps of Dijkstra’s algorithm. Assuming that we always contract
Voronoi regions of size O(average region size), the total number of Dijkstra-steps for
maintaining the Voronoi regions is O(n log n), i. e., computing them is reasonably
efficient. Since they can only grow, lazy updates ensures that the priority queue
works correctly w.r.t. this term of the priority function.

Cost of Contraction. The most time consuming part of the contraction are the
local searches for witness paths. Since their durations vary from node to node, we
want to contract ‘expensive’ nodes later in a smaller remaining graph. For Dijkstra
searches, we include the number of settled nodes as priority term, for the fast local
1-hop search we use the number of scanned edges and for the fast local 2-hop search
we use the number of bucket entries plus the number of scanned edges during the
1-hop forward search. Perfectly updating the cost of contraction would be difficult
since the contraction of any node in a search tree of the local search can affect it.

Cost of Queries. We have implemented the following simple estimate Q(u) that
is an upper bound for the number of hops of a path 〈s, . . . , u〉 explored during a
query: Initially, Q(u) = 0. Inductively, when Q(u) is an upper bound and u is
contracted then Q(u) + 1 is an upper bound for a path from s via u to a neighbour
v, so for each neighbour v, we update Q(v):= max(Q(v), Q(u) + 1).

Lemma 3.3 extends Lemma 3.2 to some of the just presented priority terms; we
omit the proof.

Lemma 3.3. Lemma 3.2 holds if additionally the uniformity terms and the cost
of queries term are used with non-negative coefficients.

Generally speaking, one can come up with many heuristic terms, but gets an
inflation of tuning parameters. Therefore, in the experiments we try to keep their
number small, we use the same set of parameters for different inputs, and we make
some sensitivity analyses to test their robustness.

4. MOBILE SCENARIO

Because of the simple query algorithm and the small search space, see Section 7, CHs
are perfectly suited for mobile devices with slow processors and limited memory.
However, some modifications to the original algorithm are necessary to engineer a
fast mobile algorithm.

4.1 Locality

Reading data from external memory is the bottleneck of our query application. To
get a good performance, we want to arrange the data into blocks and access them
blockwise. Obviously, the arrangement should be done in such a way that accessing
a single data item from one block typically implies that a lot of data items in the
same block have to be accessed in the near future. In other words, we have to
exploit locality properties of the data.

In a first level of abstraction, we need to find a node numbering that reflects
locality. Therefore, our node numbering will no longer coincidence with our CH
node order. The node numbering of real-world road networks sometimes already
respects spatial locality, i. e., the nodes are numbered somehow by spatial proximity.
However, we can do better. We consider the reverse search graph G∗ = (V,E∗ :=
{(v, u) | (u, v) ∈ E∗}), which is an acyclic graph (as G∗), and compute a topological
numbering defined by the finishing times of a depth-first search (DFS).

We furthermore stress the hierarchical locality: For a fixed next-layer fraction f ,
we divide the nodes into the group of (1− f) · |V | nodes of smaller importance, and
the group of f · |V | nodes of higher importance. Within each group, we keep the
relative topological numbering obtained by our modified DFS. We recurse in the
second group until all nodes fit into a single block. This hierarchical renumbering
step is a slightly generalised version of a technique used in [Goldberg et al. 2007].
It is important to note that the resulting numbering still represents a topological
order.

Note that a good node numbering has not only the obvious advantage that a
loaded block contains a lot of relevant data, but also can be exploited to compress
the data effectively.

4.2 Main Data Structure

The starting point for our compact graph data structure is an adjacency array
representation: All edges (u, v) are kept in a single array, grouped by the source
node u. Each edge stores only the target v and its weight. In addition, there is a
node array that stores for each node u the index of the first edge (u, v) in the edge
array. The end of the edge group of node u is implicitly given by the start of the
edge group of u’s successor in the node array.

We divide this graph data structure into blocks each of which stores a set of
nodes together with their associated edge data, see Figure 5. When encoding the
target v of an edge (u, v), we want to exploit the existing locality, i. e., in many
cases the difference of the IDs of u and v is quite small and, in particular, u and v
often belong to the same block. Therefore, we distinguish between internal edges
leading to a node within the same block, and the remaining external edges. We
use a flag to mark external edges. In case of an internal edge, it is sufficient to

→

→

block ID

blocks

... 42 43 44 45 47 48 49 ...

edges

blocks

adjacent

nodes

0 1 2

0 1 2 3 ...

46

block 45

target weight0←

weighttarget1←
external edge

internal edge

Fig. 5. External-memory graph data structure (without path unpacking information). Each edge
stores three flags: a forward flag (→), a backward flag (←), and a flag that indicates whether it
is an external edge leading to a node in a different block.

just store the node index within the same block, which requires only a few bits. In
case of an external edge, we need the block ID of the target and the node index
within the designated block. It can be expected that the number of blocks adjacent
to a given block B is rather small, i. e., there are only a few different blocks that
contain all the nodes that are adjacent to nodes in B. Thus, it pays to explicitly
store the IDs of all adjacent blocks in an array in B. Then, an external edge need
not store the full block ID, but it is sufficient to just store the comparatively small
block index within the adjacent-blocks array.

4.3 Building the Graph Representation

Our goal is a graph data structure that occupies as little memory as possible and
allows fast data access. We make the following design choices: each block has the
same constant size and contains a subset of consecutively numbered nodes together
with their incident edges.

All three ‘logical’ arrays (adjacent blocks, nodes, edges) are stored in a single
byte array one after the other, the starting index of each logical array is stored in
the header of the block. Within each block we use the minimal number of bits to
store the respective attributes. For example, if a block has 42 adjacent blocks, then
each external edge (u, v) in this block uses 6 bits to address the adjacent block that
contains v.

In general, building the blocks is not trivial since the memory a node and its
edges occupy depends on the other nodes in the block. In particular, an internal
edge typically occupies less memory than an external edge. Fortunately, we can
exploit the fact that we numbered the nodes topologically. When we process the
nodes from the lowest numbered one to the highest numbered one, all edges (u, v)
point to nodes v that have already been processed. This implies that we already
know whether (u, v) is an internal or external edge and, in case of an external edge,
we also know the number of nodes in the corresponding block B so that we can

choose the minimal number of bits required to encode the index of node v within
the block B. This way, we can easily calculate the memory requirements of the
current edge. If all edges of the current node u fit into the current block, the node
and its incident edges are added. Otherwise, a new block is started. Note that
when we consider to add another node and its edges, we have to account not only
for the memory directly used by them, but also for a potential memory increase of
the other nodes and edges in the same block: for example, whenever the number
of edges in the block exceeds the next power of two, all nodes in the block need an
additional bit to store the index of the first outgoing edge.

Since most edge weights in our real-world road networks are rather small and only
comparatively few edges, e. g. long shortcuts, are long, we use one bit to distinguish
between a long and a short edge; depending on the state of this bit, we use more
or less bits to store the weight.

4.4 Storing the Graph Representation

The blocks representing the graph are stored in external memory. In main memory,
we manage a cache with a simple least-recently used (LRU) strategy that can hold
a subset of the blocks. In the external-memory graph data structure, a node u is
identified by its block ID B(u) and the node index i(u) within the block. We need
a mapping from the node ID u used in the original graph to the tuple (B(u), i(u)).
Such a mapping is realised in a simple array, stored in external memory.

We want to access the external memory read-only in order to improve the overall
performance and to preserve the flash memory, which can get unusable after too
many write operations. Therefore we clearly separate the read-only graph data
structures from some volatile data structures, in particular the priority queues. We
use a hash map to manage pointers from reached nodes to the corresponding entries
in the priority queues. Since the search spaces of CHs are so small (a few hundred
nodes), it is no problem to keep these data structures in main memory. Note that
[Goldberg and Werneck 2005] used a similar distinction between read-only and
volatile data structures.

4.5 Path Unpacking Data Structures

The above data structures are sufficient to determine the shortest-path length. In
order to generate actual driving directions, it must also be possible to generate
a description of the shortest path. First of all, since we have changed the node
numbering, we need to store for each node its original ID so that we can perform
the reverse mapping. Furthermore, we need the functionality to unpack shortcuts.
To support a simple recursive unpacking routine, we store the ID of the middle
node of each shortcut (see Section 3). We distinguish between internal and external
shortcuts (v, w), where the middle node u belongs to the same block as v or not.
For an internal shortcut, we store the middle node as index i(u), for an external
shortcut, we also have to specify the block B(u).

To accelerate the path unpacking, we refine the approach of [Delling et al. 2006] to
store explicit descriptions of the paths underlying some of the shortcuts. Expanding
the external shortcut (v, w) to the edges (v, u) and (u,w) might require an expensive
additional block read. Therefore, it is reasonable to completely pre-unpack all
external shortcuts and to store the corresponding node sequences in some additional

data blocks. Instead of the middle node, we store the starting index within these
additional data blocks. A new feature is that we exploit the fact that an external
shortcut can contain other external shortcuts. We do not store these contained
shortcuts explicitly, it is sufficient to just note the correct starting position and a
direction flag since contained shortcuts might be filed in the reverse direction. We
consider external shortcuts in a descending order of importance of u. A shortcut is
unpacked only if it is not contained in an already unpacked shortcut.

5. DYNAMIC SCENARIO

Many applications do not deal with a mere static graph. Small changes take place
over time and the CH needs to be updated to remain correct. In such cases,
rebuilding the complete CH is often too time-consuming. Here, we present an
approach that efficiently processes a small amount of changes in the edge set, i. e.
insertion and deletion of edges as well as changes of edge weights.

5.1 Processing the Changes

The most time-consuming part of the CH precomputation is the node ordering.
Because we only deal with a small amount of edge changes, we keep the original node
order. Instead of recontracting of the whole graph, we update existing shortcuts to
comply with the changes and then identify the subset U of nodes whose contraction
has to be repeated to add new shortcuts. Certainly, the recontraction of the other
nodes V \ U is unnecessary since no new shortcuts have to be added.

5.2 Updating Existing Shortcuts

For each changed edge (u,w) we find all shortcuts containing (u,w). This way we
can delete them or adjust their weight. After this step, only valid shortcuts remain
in the graph.

We process all changed edges except new edges, which are never part of an
existing shortcut. Let (u,w) ∈ E∗ be an edge or shortcut. Since u < w, (u,w)
can only become part of other shortcuts if, during the contraction of u, a shortcut
〈v, u, w〉 is added. This shortcut may be contained in other shortcuts so that a
DFS from (u,w) (Algorithm 2) will find all shortcuts (z, y) containing (u,w). To
identify the shortcuts correctly, we must store the middle node. Also, (z, y) may
be either stored in E∗ with z in case that z < y (Lines 3–4) or stored in reverse
direction with y in case that y < z (Lines 5–6), see Figure 6 for an example with
r =↑.

z

y

n
o
d
e
or
d
er

x
(a) z < y

x

z

y

(b) y < z

Fig. 6. The shortcut (z, y) containing edge (x, y) is (a) either stored at z or (b) in reverse direction
at y.

Algorithm 2: LocateShortcutsContaining((u,w) ∈ E∗)
1 K:= {}; if ↑ (u,w) then K.pushBack(u,w, ↑); if ↓ (u,w) then

K.pushBack(u,w, ↓); // stack

2 while (x, y, r):= K.popBack() do // invariant: x < y
3 foreach (x, z) ∈ E∗, (z, y) ∈ E∗ do // z is neighbour of x
4 if r(z, y) and x is middle node of shortcut (z, y) then

K.pushBack(z, y, r); // z < y

5 foreach (y, z) ∈ E∗ do // ¬ ↑=↓, ¬ ↓=↑
6 if (¬r)(y, z) and x is middle node of shortcut (y, z) then

K.pushBack(y, z,¬r); // y < z

The remaining shortcuts are all valid, though some may have become redundant.
They no longer represent a shortest path. But since they do not invalidate the
correctness of the CH, we keep them although they can somewhat slow down the
query.

5.3 Recontracting Nodes

The changes to the edge set may make new shortcuts necessary. We call a node u
affected if the contraction of u has to be repeated to add new shortcuts needed
for retaining a correct CH. An affected node v is a seed node if its recontraction
adds new shortcuts even when we only apply the changes to the existing edges.
An affected node u is therefore reachable in the search graph from a seed node z.
Otherwise u would not be affected at all. When a set of edges change, our strategy
is to first find a superset S of the seed nodes and then obtain a superset of the
affected nodes by considering all nodes reachable in the search graph from a node
in S.

There are two fundamentally different ways in which a node may become a seed
node.

(1) We have new or shortened edges (including shortcuts) (u, v). Such edges can
be part of new shortcuts. Recontracting min {u, v} can add new shortcuts thus
min {u, v} might be a seed node.

(2) Edges (including shortcuts) become longer or are deleted (this is equivalent
to becoming longer by ∞). If such edges are part of witnesses found during
the contraction of a node u, these witnesses may become invalid. In order to

find u, we precompute for each edge or shortcut e a seed set Ae:= {(u, δ) |
shortcut 〈v, u, w〉 was omitted due to witness path P = 〈v, . . . , w〉 using e,
δ:= c(〈v, u, w〉) − c(P)}. Ae can easily be computed during the original con-
traction. Note that if an edge e is part of a shortcut f then the nodes in Ae

need not be a superset of the nodes in Af .
To determine the additional seed node we find the smallest delta δmin for each
u showing up in Ae of a lengthened edge e. Then we add the length increments
of all edges e that have u in their Ae and decide whether this sum exceeds
δmin. If the sum exceeds δmin, u might be a seed node: an eliminated shortcut
〈v, u, w〉 might be necessary due to the changes. If the sum does not exceed
δmin, u has certainly not become a seed node because of lengthended edges: All
witness paths for a shortcut of the form 〈v, u, w〉 are still shorter.

Having determined S and a superset of U we can now simply repeat the con-
traction for all these nodes. This limited reconstruction is faster than the normal
construction: We contract fewer nodes; a large part of the CH is still intact, thus
many correct shortcuts are part of the graph; witness searches benefit from the
valid shortcuts; few new shortcuts have to be added.

6. DYNAMIC MOBILE SCENARIO

When dealing with few changes and a limited amount of queries, the conventional
dynamic approach has some shortcomings. Even rebuilding only the affected part of
the CH takes more time than performing very few queries using a simple Dijkstra’s
algorithm. In the mobile scenario, we are therefore interested in techniques that
only take changes into account which affect the queries.

6.1 Iterative Routing

The most common change in the edge set is increasing the weight of an edge, e. g.
introducing a traffic jam. [Schultes 2008] observed that a lengthened or deleted
edge can only change the result of an s-t query if it is part of the original shortest
s-t path. Therefore this kind of updates can be handled in a way that ensures that
only increments important to the query are processed.

We repeat the query until the shortest path does not differ from the shortest
path of the previous iteration. Initially we only use all new or shortened edges
to determine new seed nodes. Deleted or lengthened edges are only considered if
they are on a shortest path of any previous iteration. This can greatly reduce the
amount of lengthened and deleted edges that have to be processed. To identify
edge changes on the shortest path, we have to unpack it after each query. Usually
very few iterations are required to compute the correct result.

This approach is independent of the speedup technique applied and can be used
whenever the time to process changes outweighs the time to perform several queries.

6.2 Handling Seed Nodes

In the mobile scenario we cannot afford to recontract nodes. Instead, we ensure
that the backward search of the query finds all currently known seed nodes on
the shortest path. If the seed nodes are found on the shortest path, no additional
shortcuts skipping these nodes are necessary. To achieve this we first determine the

set of nodes reachable from the seed nodes by one or more edges (v, u) in G∗ with
↑ (v, u) = true. We add the edge (u, v) with ↓ (u, v):= true to such a node u in
G∗, even though v < u. This enables the backward search to find the shortest path
to any seed node because now every edge useable by the forward search can also
be used by the backward search. [Schultes 2008] used a similar technique to make
queries unidirectional.

We do not have to completely repeat the search for reachable nodes in G∗ in each
iteration. It suffices to process the edge changes added in this iteration. Further-
more, if we keep track of all nodes reachable in the last iteration we can prune the
search for new nodes quite early on. As a result most of the additional edges get
added to G∗ in the first two iterations.

6.3 Data Structures

The additional data for each edge, witness data and middle node, is directly stored
with the associated edge. To compress the safety of the witness data, we use the
same scheme employed to compress the weight of an edge. Furthermore we reduce
the size of the seed sets by storing only (u, δ1) if two elements (u, δ1), (u, δ2), δ1 < δ2
are part of the same seed, since we would determine the minimum later on anyway.
We also need additional data structures for our read-only graph: ∆1 (Delta1) stores
all the changes to the edge set. It is mainly used to identify changed edges during
the iterative routing, thus only storing deleted and lengthened edges. ∆2 holds all
changes in the CH and is used by the query. It contains all edges inserted in G∗,
weight changes and deletions of edges and shortcuts, and new edges. To realise
these data structures we employ hash maps. Because the edges inserted in G∗ are
specific to the query, it pays of to clear ∆2 afterwards if the next query will be
substantially different.

7. EXPERIMENTS

Our programs were written in C++. No libraries, except for the C++ Standard
Template Library were used to implement the algorithms. To obtain a robust im-
plementation, we include extensive consistency checks using assertions and perform
experiments that are checked against reference implementations, i. e., queries are
checked against Dijkstra’s algorithm.

7.1 Experimental Setting

Environment. Our experiments were done on one core of a single AMD Opteron
Processor 270 clocked at 2.0 GHz with 8 GiB main memory and 2 × 1 MiB L2 cache,
running SuSE Linux 10.3 (kernel 2.6.22). For the mobile scenario, we used a Nokia
N800 Internet Tablet, equipped with 128 MiB of RAM and a Texas Instruments
OMAP 2420 microprocessor, which features an ARM11 processor running at 400
MHz. We used a SanDisk Extreme III SD flash memory card with a capacity of
2 GB; the manufacturer states a sequential reading speed of 20 MiB/s though the
device limits this to 8 MiB/s. The operating system is the Linux-based Maemo 4.1
in the form of Internet Tablet OS2008 4.2008.30-2. The programs were compiled
by the GNU C++ compiler 4.2.1 using optimisation level 3.

Instances. For most practical applications, a travel time metric is most useful,
i. e., the edge weights correspond to an estimate of the travel time that is needed
to traverse an edge. In order to compute the edge weights, we assign an average
speed to each road category.

7.2 Main Instance

Most of our experiments were done on a road network of Western Europe having
18 029 721 nodes and 42 199 587 directed edges. The countries Austria, Belgium,
Denmark, France, Germany, Italy, Luxembourg, the Netherlands, Norway, Portu-
gal, Spain, Sweden, Switzerland, and the UK are represented. We usually refer
to it as ‘Europe’ and it has been made available for scientific use by the company
PTV AG. For each edge, its length and its road category are provided. There are
four major road categories (motorway, national road, regional road, urban street),
which are divided into three subcategories each. In addition, there is one category
for forest and gravel roads. The assigned speeds in this order are 130, 120, 110,
100, 90, 80, 70, 60, 50, 40, 30, 20, 10 km/h.

7.3 Additional Instances

In addition, we also performed some experiments on two other road networks. A
publicly available version of the US road network (without Alaska and Hawaii)
has 23 947 347 nodes and 57 708 624 directed edges that was obtained from the
TIGER/Line Files. These were provided by the [U.S. Census Bureau, Washing-
ton, DC 2002] (USA) and distinguish between four road categories with assigned
speeds of 100, 80, 60, 40 km/h. The company ORTEC provided a new version
of the European road network (New Europe) with 33 726 989 nodes and 75 108 089
directed edges for scientific use. Additionally to Europe it covers the Czech Re-
public, Finland, Hungary, Ireland, Poland, and Slovakia. It distinguishes between
motorways, multiple and single lane A and B roads, regional, local and other roads
outside/inside cities, delivery roads, pedestrian zones and ferries. We used the
rather slow ORTEC car speed profile that assigns speeds 87, 84/77, 73/63, 60/53,
50/40, 37/27, 23/17, 13/10, 8, 5, 2 km/h.

Preliminary Remarks. Unless otherwise stated, the experimental results refer to
the scenario where the road network of Europe with travel time metric is used, and
only the shortest-path length is computed without outputting the actual route.

When we specify the memory consumption, we usually give the overhead, which
accounts for the additional memory that is needed by our approach compared to a
space-efficient unidirectional implementation of Dijkstra’s algorithm. This overhead
is always expressed in ‘bytes per node’.

7.4 Methodology

To calculate the average query time, we pick source-target pairs uniformly at ran-
dom. Unless otherwise stated, we perform 100 000 queries.

For use in applications it is unrealistic to assume a uniform distribution of queries
in large graphs such as Europe or the USA. Therefore, we also measure local queries
within the big graphs. We choose random sample points s and for each power of two
r = 2k, we use Dijkstra’s algorithm to find the node t with Dijkstra rank rks(t) = r.

The Dijkstra rank rks is the order in which the nodes were settled during the search
starting at node s. By plotting the resulting statistics for each value r = 2k, we can
see how the performance scales with a natural measure of difficulty of the query.
We represent the distributions as a box-and-whiskers plot: each box spreads from
the lower to the upper quartile and contains the median, the whiskers extend to
the minimum and maximum value omitting outliers, which are plotted individually.
Such plots are based on 1 000 random sample points s.

We can obtain a per-instance worst-case guarantee, i. e., an upper bound on the
search space size for any possible point-to-point query for a given fixed graph G.
We do this by executing a forward search and a backward search from each node
of G until the priority queue is empty, no abort criterion is applied. This approach
was first mentioned in [Sanders and Schultes 2006].

For the mobile scenario, we distinguish between four different query types:

(1) ‘cold’ : After each query, clear the cache. This way, we can determine the time
that is needed for the first query after the program is started and has an empty
cache.

(2) ‘warm’ : Perform two experiments with different sets of s-t-pairs in a row. We
measure only the second one to determine the average query time when the
device has been in use for a while.

(3) ‘recompute’ : We have pairs of queries. We only measure the second one and
clear the cache after each pair. The second query has the same target node but
another source node: We chose a random neighbour of a random node on the
shortest path of the first query.

(4) ‘w/o I/O’ : Select 100 random source-target pairs. For each pair, repeat the
same query 101 times; ignore the first iteration when measuring the running
time. This way, we obtain a benchmark for the actual processing speed of the
device when no I/O operations are performed.

For practical scenarios, the first and the third query type are most relevant; The
second query time is closest to the situation reported in related work.

7.5 Parameters

Despite the simplicity of the description of CHs, there are many parameters, i. e.,
the coefficients of the priority terms in the priority function for the node order-
ing (Section 3.3) and the local search limits for the contraction (Section 3.1). For
our aggressive variant we select parameters to minimise the query time and for
our economical variant to minimise the product of query time and preprocessing
time. Additionally to updating the neighbors, we always use lazy updates since
they decrease the query time more than they increase the preprocessing time, the
differences are around 15–20%. Our parameters have been determined by a man-
ual, systematic coordinate search. Figure 7 shows the development of the average
degree during node contraction for different hop limits. We see that for hop limits
below four, the average degree eventually explodes. We choose limits for the av-
erage degree that switch to a larger hop limit before this explosion. We refer to
[Geisberger 2008] for an in-depth description including a sensitivity analysis.

0 2 5 10 20 50 100 200 400 800 1600

3
4

5
6

8
10

15
20

size of remaining graph / 10 000

av
er

ag
e

de
gr

ee
1 hop
2 hops
3 hops
4 hops
5 hops
6 hops
no hop limit

Fig. 7. Average degree development for different hop limits on Europe.

Table I. Performance of various node ordering heuristics. Terms of the priority func-
tion: E=edge difference, D=deleted neighbours, S=search space size, W=relative
betweenness, V=

√
Voronoi region size, L=limit search space on weight calculation

(1 000 settled nodes), Q=upper bound on edges in search paths, O=original edges
term. Digits denote hop limits for testing shortcuts. The best performance in every
column is bold.

node hierarchy query nodes non- edges space

method ordering construc- [µs] settled stalled relaxed overhead

[s] tion [s] nodes [B/node]

E 13 010 1 739 670 1 791 1 127 4 999 -0.6
ES 5 355 123 245 614 366 1 803 -2.5

ESL 1 158 123 292 758 465 2 169 -2.5

ED 7 746 1 062 183 403 236 1 454 -1.3
EDL 2 071 576 187 418 243 1 483 -1.3

EDSL 1 414 165 175 399 228 1 335 -1.6

EO 5 979 758 250 617 395 2 119 -3.1
EOL 1 274 319 245 604 383 2 119 -3.1

EOSL 1 110 145 222 531 313 1 802 -3.0

e
c
o
n
o
m
ic
a
l

ED5 634 98 224 470 250 1 674 -0.6

EDS5 652 99 213 462 256 1 651 -1.1
EDS1235a 545 57 223 459 234 1 638 1.6

EDSQ1235a 591 64 211 440 236 1 621 2.0

EDOSQ1235a 555 59 198 435 241 1 540 1.5
EDOS1235a 498 53 200 438 239 1 514 1.1
EOS1235a 451 48 214 487 275 1 684 0.6

a
g
g
r
. EDSQL 1 648 199 173 385 220 1 378 -1.1

EVSQL 1 627 170 159 368 209 1 181 -1.7
EVOSQL 1 644 165 152 356 207 1 163 -2.1

a hop@degree limit: 1@3.3, 2@10, 3@10, 5

7.6 Standard Scenario

We start with evolving sets of priority terms and search space limits to get a deeper
insight into them, see Table I.

Using the edge difference (letter E) as the sole priority term yields a CH that
already answers a query in less than 1 ms. However, the preprocessing time is still
too large. Also regarding the cost of contraction as a priority term (letter S) results
in more than two times better node ordering time and 14 times better hierarchy
construction time. The imbalance between the improvement of those two parts
is due to the additional local searches during the node ordering, particularly the
initialisation of the priority queue takes more than 30 minutes. So we limit the
local searches (letter L), improving the node ordering time by an additional factor
of four.

Adding the deleted neighbours counter (letter D) accelerates the query, the av-
erage is below 200 µs. The algorithm in Line EDSL is a simple combination with
improved preprocessing, fast query times and negative space overhead for short-
est path distance calculation. We can achieve negative space overhead since in a
CH we need to store an edge only with one of its endpoints, even if the edge is
bidirected. Using the original edges term (letter O) as uniformity term decreases
preprocessing time and space but increases query time compared to the deleted
neighbours term. To significantly decrease the preprocessing time, we introduce a
hop limit to the local searches (digit 5) leading to a two times better node order-
ing time. Applying staged hop limits (digits 1235) shrinks the preprocessing time
below 10 minutes. The original edges term (letter O) can further improve pre-
processing, query and space overhead. After removing the contracted neighbours
counter (Line EOS1235, priority function = 190 · E + 600 ·O + S), we get our eco-
nomical variant. Its low preprocessing time of 7.5 minutes and the fast query time
of about 200µs provide the best balance. To further decrease the query time, we
first exchange the current uniformity term for Voronoi regions (letter V) combined
with the original edges term (letter O), and add a priority term to estimate the cost
of queries (letter Q) to decrease the query time (Line EVOSQL, priority function =
190 ·E+60 ·V+70 ·O+S+145 ·Q). This leads to our aggressive variant having 29%
faster query time then the economical variant, and a speedup of 40 000 compared
Dijkstra’s algorithm. However we need to invest more time into preprocessing.

Outputting Complete Path Descriptions. needs an average of 323µs for the ag-
gressive variant and 321µs for the economical variant. These unpacking times are
the fastest we have seen when no completely unpacked representations of shortcuts
are used (see Section 4.5). Since we store the middle node, the hierarchy construc-
tion and query time increases up to 13% and the space overhead reaches 6.2 B/node
and 10.3 B/node respectively. The comparatively large space overhead is owed to
the fact that we even use 12 B/node for non-shortcuts. If we would implement a
more sophisticated version with only 8 B/edge for non-shortcuts, we would achieve
a space overhead of only 1.2 B/node for the aggressive variant.

Local Queries. Since random queries are unrealistic for large graphs, Figure 8
shows the distributions of query times for various degrees of locality. We see good
query performance over all Dijkstra ranks and small fluctuations. This is further
underlined in Figure 9 where we give upper bounds for the search space size of
all n × n possible queries. We see a superexponential decay of the probability to
observe a certain search space size and a maximal search space size bound less than

●●●●●

●

●●●●●
●
●●
●
●
●●

●

●
●
●

●
●
●●

●●
●●

●●●
●
●

●

●
●●
●

●

●●

●

●

●
●

●

●●

●

●●
●●

●

●●●●●●

●●
●
●

●
●

●

●●
●

●
●●
●

●

●

●
●

●●
●

●

●●
●
●

●●
●●●●●

●●

●●●

●

●●
●
●
●
●

●

●

●●●●

● ●●
●●
●●
●
●

●

●

●

●

●

●
●●
●

●

●

●●●
●

●
●

●

●

●
●

●

●●

●

●

●●

●
●●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●●

●

●
●●
●

●
●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●●
●●

●

●

●

●

●
●
●

0
10

0
20

0
30

0
40

0

211 212 213 214 215 216 217 218 219 220 221 222 223 224

Dijkstra rank

qu
er

y
tim

e
[µµ

s]

CH aggressive
CH economical

Fig. 8. Performance of queries, where the target
is chosen by the Dijkstra rank from the source.

1
10

0
10

−
12

10
−

10
10

−
8

10
−

6
10

−
4

10
−

2

0 200 400 600 800 1000 1200 1400

%
 o

f p
os

si
bl

e
qu

er
ie

s

settled nodes

CH aggr.
CH eco.

maximum →→ 847 1322

Fig. 9. Upper bound for the worst per-
centages of queries.

2.4 times the size of the average actual searchspace sizes (see also Table I).

7.7 Comparisons

Speedup techniques for routing in road networks are usually compared against
each other in the three-dimensional space of preprocessing time, space overhead
and query time. Although there are many Pareto-optimal techniques (techniques
being better than any other technique for at least one dimension), CHs take a
particularly strong position. We compare the most successful speedup techniques
in Table II. For further algorithms we refer to [Delling et al. 2009; Bauer et al.
2010b]. We took the timings from several other papers that used roughly the same
hardware, so we can only do a rough comparison. Still, all techniques either use CHs
or are clearly dominated by a technique using CHs. CHs provide the lowest space
overhead, even lower than Dijkstra’s algorithm, and the fastest preprocessing times,
except Dijkstra’s algorithm. There are two kinds of algorithms with faster query
times. First, there are combinations of hierarchical techniques and goal-directed
techniques, of which the most successful ones are all based on CHs. Second, transit-
node routing (TNR), whose precomputation also relies on the CH node order for
best results (see Section 8). The combination of TNR + AF provides currently the
best query time.

[RG: fix positions of tables and figures]

7.8 Other Inputs

We also tested our aggressive and economical variant on different road networks
and metrics to examine the robustness of CHs using the same parameters as for
the Europe road network. We can expect additional improvements if we were
to repeat the parameter search. The USA (Tiger) graph shows slightly larger
preprocessing times than the Europe graph but faster query times, those effects are
already known from HNR. The New Europe graph is a larger network thus requiring
more preprocessing time. The hierarchy construction time for the aggressive variant
is more than a factor 2 larger than expected. That is because the limit on the settled
nodes for the local searches during the priority calculation is too restrictive and does

Table II. Comparison of various speed-up techniques in the three-dimensional space of

preprocessing time, space overhead and query time. A technique is dominated by CHs
if CHs is better in every dimension. The best performance in every column is bold.

prepro. query dom.
time overh. settled time uses by

method data from [min] [B/n.] nodes [ms] CH CH

Dijkstraa [Bauer et al. 2010b] 0 0 9.11 M 5 591

bidir. Dijkstraa [Bauer et al. 2010b] 0 0 4.76 M 2 713

eco. CH this paper 8 0.6 487 0.21 X
aggr. CH this paper 27 -2.1 356 0.15 X
ALT-16b [Goldberg et al. 2009] 13 70 82 348 120.1 X
ALT-64a [Delling and Wagner 2007] 68 512 25 234 19.6 X
AFc [Hilger et al. 2009] 2 156 25 1 593 1.1 X
REALb [Goldberg et al. 2009] 103 36 610 0.91 X
HH [Schultes 2008] 13 48 709 0.61 X
HNR [Schultes 2008] 15 2.4 981 0.85 X
SHARCa [Bauer and Delling 2009] 81 14.5 654 0.29 X
bidir. SHARCa [Bauer and Delling 2009] 158 21.0 125 0.065 Xd

CALTa [Bauer et al. 2010b] 11 15.4 1 394 1.34 X
eco. CH+AFa [Bauer et al. 2010b] 32 0.0 111 0.044 X
gen. CH+AFa [Bauer et al. 2010b] 99 12 45 0.017 X
partial CHa [Bauer et al. 2010b] 15 -2.9 965 k 53.63 X
TNR this paper 46 193 N/A 0.0033 Xe

TNR+AF [Bauer et al. 2010b] 229 321 N/A 0.0019 Xe

a 2.6GHz AMD Opteron, SuSE Linux 10.3, 16GiB of RAM, 2×1MiB of L2 cache.
b 2.4GHz AMD Opteron, Windows Server 2003, 16GiB of RAM, 2MiB of L2 cache.
c 2.2GHz AMD Opteron, SuSE Linux 9.1, 4GiB of RAM, 1MiB of L2 cache.
d Dominated by CH+AF [Bauer et al. 2010b].
e Uses CHs to compute transit nodes.

not punish searches enough which have e. g. more than 2 million settled nodes in
an unlimited local search. The additional time for contracting such nodes is not
significant for node ordering, but for hierarchy construction. When we increase
the settled nodes limit to 3 000 nodes, it yields a construction time of 259 s, and
even reduces the node ordering to 2 047 s. For the distance metric, where each
edge represents the driving distance, there are no real fast routes that could be
preferred over other slower routes. It is less clear how to identify important nodes
and more shortcuts are necessary. Note that the experiments on the distance metric
of Europe were performed on a subgraph, the largest strongly connected component
consisting of 18 010 173 nodes and 42 188 664 edges due to availability.

7.9 Mobile Scenario

Unless otherwise stated, our experiments refer to the case that the path-unpacking
data structures exist, but are not used and 1 000 queries are performed. Instead of
giving the space overhead, the space consumption includes the graph itself. Note
that the query times always include the time needed to map the original source and
target IDs to the corresponding block IDs and node indices, while figures on the
memory consumption do not include the space needed for the mapping. The space
consumption for the mapping is excluded because in most practical applications
more sophisticated mappings are needed: For example street names are mapped to

Table III. Performance of different graphs and metrics.
travel time distance

Europe USA Tiger New Europe Europe USA Tiger

aggr. eco. aggr. eco. aggr. eco. aggr. eco. aggr. eco.

node ordering [s] 1 644 451 1 684 626 2 420 657 5 459 2 853 3 586 1 775

l
e
n
g
t
h

hier. construction [s] 165 48 181 61 646 72 264 137 255 113

query [µs] 152 214 96 180 213 303 1 940 2 276 645 1 857

nodes settled 356 487 283 526 439 629 1 582 2 216 1 081 3 461
non-stalled nodes 207 275 157 309 247 351 658 962 485 2 100

edges relaxed 1 163 1 684 885 1 845 1 732 2 600 15 472 19 227 7 905 27 755
space ov. [B/node] -2.1 0.6 -2.6 -1.3 -2.0 -0.3 0.6 1.5 -1.5 -0.9

pa
t
h

hier. construction [s] 176 54 191 68 673 82 287 152 269 122
query [µs] 170 238 107 198 243 345 2 206 2 615 721 2 121

expand path [µs] 323 321 1 105 1 107 972 953 798 792 1 268 1 336
space ov. [B/node] 6.2 10.3 5.8 7.8 5.6 8.5 10.2 11.7 7.4 8.3
edges 21 23 21 26 21 24 21 29 22 40

edges expanded 1 370 1 369 4 548 4 548 4 139 4 136 3 291 3 291 5 128 5 128

Table IV. Building the graph representation. We give the number of nodes, the number of edges
in the original graph and in the search graph, the number of graph-data blocks (without counting

the blocks that contain pre-unpacked paths), the average number of adjacent blocks per block,
the numbers of internal edges, internal shortcuts and external shortcuts as percentage of the total
number of edges, the time needed to pre-unpack the external shortcuts and to build the external-

memory graph representation (provided that the search graph is already given), and the total
memory consumption including pre-unpacked paths.

|V | |E| |E∗| #blocks #adj. int. int. ext. time space

[×106] [×106] [×106] blocks edges shcs. shcs. [s] [MiB]

Europe 18.0 42.2 36.9 52 107 9.1 70.6% 32.2% 7.7% 123 275
USA 23.9 57.7 49.4 80 099 8.4 69.2% 33.7% 8.0% 186 400

New Europe 33.7 75.1 65.7 103 371 8.3 70.3% 32.7% 7.5% 210 548

edges.
In the following we use a block size of 4 KiB, that was found using experiments

with block sizes from 1 KiB to 64 KiB. This block size is optimal with respect to
both space consumption and query time. We use a cache size of 64 MiB. Additional
experiments indicate that reducing it to 32 MiB has negligible effect on the perfor-
mance of ‘warm’-queries. Even only 256 KiB of cache are sufficient to achieve the
performance of our ‘cold’ queries. Finally, we use a value of 1/16 for the next-layer
fraction from Section 4. This minimises query time and has only a small detrimental
effect on the space consumption for which even smaller values would be better.

Table IV gives an overview of the external-memory graph representation. Build-
ing the blocks is very fast and can be done in about 2–4 minutes. Although the
given memory consumption already covers everything that is needed to obtain very
fast query times (including path unpacking), we need 30% less space than the orig-
inal graph would occupy in a standard adjacency-array representation in case of
Europe. Most of the savings come from using less bits than the naive representa-
tion, but we also save space because CHs need to store bidirectional edges only at
one of their end points.

The results for the four query types are represented in Table V. On average, a

Table V. Query performance for four different query types.
cold warm recompute w/o I/O

settled blocks time blocks time blocks time time

nodes read [ms] read [ms] read [ms] [ms]

Europe 280 39.2 56.3 3.6 10.5 7.9 14.3 5.8
USA 223 30.1 43.6 4.4 9.8 6.1 13.1 4.1
New Europe 351 44.5 65.2 4.6 15.8 8.5 17.2 8.8

Table VI. Comparison between different variants of path unpacking.
Europe USA New Europe

time [ms] space [MiB] time [ms] space [MiB] time [ms] space [MiB]

(a) no path data 45.7 140 35.9 213 52.1 257
(b) length only 56.3 203 43.6 312 65.2 403

(c) first edge 56.4 203 43.8 312 65.3 403

(d) complete path 341.7 203 691.3 312 517.9 403
(e) compl. path (fast) 73.1 275 65.6 400 88.7 548

random query has to access 39 blocks in case of the European road network. When
the cache has been warmed-up, most blocks (in particular the ones that contain very
important nodes) reside in the cache so that on average less than four blocks have
to be fetched from external memory. This yields a very good query time of 10.5 ms.
Recomputing the optimal path using the same target, but a different source node
can be done in 14.3 ms. As expected, the bottleneck of our application are the
accesses to the external memory: if all blocks had been preloaded, a shortest-path
computation would take only about 5.8 ms instead of the 56.3 ms that include the
I/O operations. For comparison, on a PC (our 2 GHz Opteron), the same code runs
about 9 times faster (0.64 ms) – this is basically the speed difference between the
CPUs. The code for the standard scenario is another four times faster (0.15 ms)
– this is the overhead due to the compressed data structure. Using the naive data
structure in the mobile scenario would likely result in 1 block access per settled
node, resulting in about 7 times larger query time.

Path Unpacking. In Table VI, we compare five different variants of path
(not-)unpacking, using the first query type (‘cold’) in each case. First (a), we
store no path data at all. This makes the query very fast since more nodes fit into
a single block. However, with this variant, we can only compute the shortest-path
length. For all other variants, we also store the middle nodes of the shortcuts in the
data blocks. This slows down the query even if we do not use the additional data
(b). After having computed the shortest-path length, getting the very first edge
of the path (which is useful to generate the very first driving direction) is almost
for free (c). Computing the complete path takes considerably longer if we do not
use pre-unpacked path data (d). Pre-unpacked paths (e) somewhat increase the
memory requirements, but greatly improve the running times. Note that almost
half of the pre-unpacked paths are contained in other pre-unpacked paths so that
they require no additional space.

Table VII. Query performance of the dynamic mobile scenario depending on the number of edge

weight increases (× 10) on motorways. The column ‘affected queries’ gives the percentage of
queries whose shortest-path is affected by the changes. Also, we give the number of average
iterations for the cold case.

search space
affected dynamic CH (dynamic HNR) cold recompute average

|change set| queries touched nodes relaxed edges [ms] [ms] #iterations

1 0.4 % 349 (1 337) 1 190 (9 416) 94.4 23.2 1.0

10 5.7 % 397 (1 546) 1 320 (10 584) 134.1 23.6 1.1

100 40.0 % 1 311 (3 249) 4 130 (19 726) 184.5 30.4 1.4
1 000 83.7 % 6 573 (19 790) 23 459 (95 341) 698.6 74.0 2.7

10 000 97.9 % 70 179 (396 380) 297 539 (1 609 505) 14 871.4 930.5 7.9

●●●●●
●

●●●●●●●●●●●●●●
●
●●●●● ●●●●●●●

●●
●

●●●
●
●●●
●●

●
●●●●●●●
●●
●

●
●●
●●

●●

●
●
●
●
●●
●●
●
●
●
●●●●●
●●●
●●●●●●
●
●
●

●●
●
●●
●●●● ●●●

●●

●
●●●●●
●
●●●●●●●
●●●●●●●
●
●●●●●●●●● ●

●
●●●●●●●●●●●●●
●
●●●
●
●
●
●

●
●
●●

●

●●●●●●
●●

●

●●●●●

●

●●●●●●●●
●
●●●●
●
●

●
●
●●
●

●
●●
●
●
●

●
●●●
●
●

●

●

●●●●
●
●

●

●

●●
●
●●●●●●●

●
●●
●
●

●
●

●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●●

●●
●
●

●
●●

●●●

●
●

●

●

●

●

●

●

●●●
●

●

●●●●

●

●

●●
●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●
●

●

●●●

●●●●●●●
●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●●●●●●
●
●●
●
●

●
●●
●
●●●
●
●●●●●●

●
●
●

●

●

●
●●●●●●●●

●
●
●
●●●
●●●
●

●

●
●
●
●
●●
●●●●
●●

●●●●●

●

●●●

●
●
●●●●●●●
●
●●●●●●●

●

●●●●●●●●●●●●●
●
●●
●●
●

●
●
●●●●●●
●●●●●●●●●

●

●

●

●

●
●●
●

●

●
●
●

●

●●●●●●●

0
50

0
10

00
15

00
20

00
25

00

0
50

0
10

00
15

00
20

00
25

00

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

Dijkstra rank

qu
er

y
tim

e
[m

s]

cold
recompute

Fig. 10. Local queries after 1 000 changed edges.

7.10 Mobile Dynamic Scenario

We use the same settings as in the mobile scenario. Because our algorithm needs to
unpack the shortest path for every query, we decided to use pre-unpacked paths. In
Table VII we compare the performance of the mobile dynamic CH to the dynamic
HNR. Query times are only given for the CH since there exists no mobile implemen-
tation of HNR. We only changed motorways because lower ranked street categories
had little to no impact on the query performance. Changing only one edge yields
a lower performance compared to the mobile scenario. This is essentially caused
by the additional data that is stored in the graph. For a small amount of random
changes, the query times scale quite well, but they get out of hand when chang-
ing more than 1000 edges. The most important parts of the hierarchy have been
distorted by the changes. The dynamic CH show a behaviour similar to dynamic
HNR when comparing the search space. They do outperform them in every test
though. Figure 10 shows the effect on local queries. Long-distance queries are dis-
proportionately affected: The shortest path consists mostly of important edges and
therefore more changes must be taken into account. Because of this our algorithm
needs more iterations for them. Furthermore, some queries are especially affected
by the changes and need way more time than the average query.

8. APPLICATIONS

Many-to-Many Shortest Paths. Instead of a point-to-point query, the goal of
many-to-many routing is to find all distances between a given set S of source nodes
and set T of target nodes. [Knopp et al. 2007] developed an efficient algorithm based
on HHs to compute them. The idea is to perform only |T | backward searches, store
the resulting search spaces appropriately and then perform |S| forward searches
that use the stored information on the backward searches to find the shortest path
distances. This works for any routing technique based on non-goal-directed bidirec-
tional search. CHs are particularly well suited because they have very small search
spaces and because for the backward search spaces we only need to store nodes that
are not stalled.

For our experiments, we do not use the aggressive variant but the method EVSQL
from Table I because it shows slightly better performance. In Table VIII we show
that CHs are more than two times faster than HNR, for small instances the factor
is not as large.

Table VIII. Computing |S| × |S| distance tables using CHs and HNR. The times for HNR are due
to [Schultes 2008] using an older compiler version that generates slightly slower code. All times
are given in seconds.

|S| 100 500 1 000 5 000 10 000 20 000

CH 0.4 0.5 0.6 3.3 10.2 36.6
HNR 0.4 0.8 1.4 8.5 23.2 75.1

Transit-Node Routing. We employ the method of [Geisberger 2008] to use the
nodes designated the most important by the node ordering to define the sets of
transit nodes. Compared to generous TNR based on HHs by [Schultes 2008], CHs
improve preprocessing time from 75 → 46 min, query time from 4.3 → 3.3 µs
and space consumption from 247 → 193 B/node. We have not yet implemented a
preprocessing completely based on CHs, so that it is too early to judge the whole
effect of CHs on preprocessing time but we hope for additional improvements.

Contraction of Other Graph Families. Node contraction works very well on road
networks with travel time edge weights, as only few shortcuts need to be added
during contraction. We observe that we need to add about as much shortcuts as
there are edges in the input graph. However, other graph families may require
much more shortcuts. [Bauer et al. 2010b] showed that it is a good idea to stop
contraction at some point and solely rely on goal-directed techniques for the core
of remaining nodes.

9. DISCUSSION

The key features of CHs are their simple concept and their practicability. The simple
query algorithm together with the highly engineered preprocessing form an efficient
basis for many hierarchical routing methods in road networks. We have currently
the fastest hierarchical, Dijkstra based routing algorithm with preprocessing times
of a few minutes and query times of a few hundred microseconds. Additionally, our
algorithm is the fastest implementation for the calculation of large distance tables

and is the preferred hierarchical method to use in combination with goal-direction
when low preprocessing and query times are desired. Our mobile implementation
is, as far as we know, the first implementation of an exact route planning algorithm
on a mobile device that answers queries in a road network of a whole continent
instantaneously, i. e., with a delay that is virtually not observable for a human
user. Furthermore, our algorithm is simple to implement on a mobile device, our
graph representation is comparatively small (only a few hundred megabytes), and
we efficiently handle increases of edge-weights, e. g. caused by traffic jams. These
facts suggest an application of our implementation in car navigation systems.

9.1 Ensuing Work

Contraction hierarchies also build the basis for routing algorithms beyond a sin-
gle static edge weight function. [Batz et al. 2009] successfully adapted CHs to
time-dependent road networks, where the travel time depends on the departure
time. [Geisberger 2009] researched CHs on time-dependent timetable networks.
And [Geisberger et al. 2010] extend CHs to the flexible scenario with two edge
weight functions, where the query returns the shortest path for a fixed ratio be-
tween both functions. This ratio is fixed separately before each query, but after
preprocessing. Flexible edge restrictions for CHs have been researched by [Rice
and Tsotras 2010]. A fast algorithm to solve the one-to-all shortest path problem
was presented by [Delling et al. 2010]. It processes a CH using a GPU to compute
all distances within a few milliseconds. [Abraham et al. 2010a] studied the com-
putation of a alternative routes and also considered CHs for a fast computation.
A first attempt grasp the theoretical performance of shortest-path speed-up tech-
niques, including CHs, was published by [Abraham et al. 2010b]. [RG: Anything on
labelset-algorithm? How to reference labelset-algorithm without having a techreport
from microsoft? It will take some more weeks until they have on.]

REFERENCES

Abraham, I., Delling, D., Goldberg, A. V., and Werneck, R. F. 2010a. Alternative Routes

in Road Networks. In Proceedings of the 9th Symposium on Experimental Algorithms (SEA),
P. Festa, Ed. Lecture Notes in Computer Science, vol. 6049. Springer, 23–34.

Abraham, I., Fiat, A., Goldberg, A. V., and Werneck, R. F. 2010b. Highway Dimension,
Shortest Paths, and Provably Efficient Algorithms. In Proceedings of the 21st ACM–SIAM

Symposium on Discrete Algorithms (SODA), M. Charikar, Ed. SIAM, 782–793.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. 1993. Network Flows: Theory, Algorithms,

and Applications. Prentice Hall.

Bast, H., Funke, S., Sanders, P., and Schultes, D. 2007. Fast Routing in Road Networks with
Transit Nodes. Science 316, 5824, 566.

Batz, G. V., Delling, D., Sanders, P., and Vetter, C. 2009. Time-Dependent Contraction

Hierarchies. In Proceedings of the 11th Workshop on Algorithm Engineering and Experiments

(ALENEX). SIAM, 97–105.

Bauer, R., Columbus, T., Katz, B., Krug, M., and Wagner, D. 2010a. Preprocessing Speed-

Up Techniques is Hard. In Proceedings of the 7th Conference on Algorithms and Complexity

(CIAC). Lecture Notes in Computer Science, vol. 6078. Springer, 359–370.

Bauer, R. and Delling, D. 2009. SHARC: Fast and Robust Unidirectional Routing. ACM

Journal of Experimental Algorithmics 14, 2.4 (August), 1–29. Special Section on Selected
Papers from ALENEX 2008.

Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., and Wagner, D.
2010b. Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Algo-

rithm. ACM Journal of Experimental Algorithmics 15, 2.3 (January), 1–31. Special Section
devoted to WEA’08.

Delling, D., Goldberg, A. V., Nowatzyk, A., and Werneck, R. F. 2010. PHAST: Hardware-

Accelerated Shortest Path Trees. Tech. Rep. MSR-TR-2010-125, Microsoft Research.

Delling, D., Sanders, P., Schultes, D., and Wagner, D. 2006. Highway Hierarchies Star.
In 9th DIMACS Implementation Challenge – Shortest Paths, C. Demetrescu, A. V. Goldberg,

and D. S. Johnson, Eds.

Delling, D., Sanders, P., Schultes, D., and Wagner, D. 2009. Engineering Route Planning
Algorithms. In Algorithmics of Large and Complex Networks, J. Lerner, D. Wagner, and K. A.
Zweig, Eds. Lecture Notes in Computer Science, vol. 5515. Springer, 117–139.

Delling, D. and Wagner, D. 2007. Landmark-Based Routing in Dynamic Graphs. See Deme-
trescu [2007], 52–65.

Demetrescu, C., Ed. 2007. Proceedings of the 6th Workshop on Experimental Algorithms
(WEA). Lecture Notes in Computer Science, vol. 4525. Springer.

Demetrescu, C., Goldberg, A. V., and Johnson, D. S., Eds. 2009. The Shortest Path Problem:
Ninth DIMACS Implementation Challenge. DIMACS Book, vol. 74. American Mathematical
Society.

Dijkstra, E. W. 1959. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik 1.

Fu, L., Sun, D., and Rilett, L. R. 2006. Heuristic shortest path algorithms for transportation
applications: State of the art. Computers & Operations Research 33, 11, 3324–3343.

Geisberger, R. 2008. Contraction Hierarchies. M.S. thesis, Universität Karlsruhe (TH), Fakultät
für Informatik. http://algo2.iti.kit.edu/documents/routeplanning/geisberger_dipl.pdf.

Geisberger, R. 2009. Contraction of Timetable Networks with Realistic Transfers. Tech. rep.,
ITI Sanders, Faculty of Informatics, Universität Karlsruhe (TH).

Geisberger, R., Kobitzsch, M., and Sanders, P. 2010. Route Planning with Flexible Objective

Functions. In Proceedings of the 12th Workshop on Algorithm Engineering and Experiments
(ALENEX). SIAM, 124–137.

Geisberger, R., Sanders, P., and Schultes, D. 2008a. Contraction hierarchies source code.

http://algo2.iti.kit.edu/routeplanning.php.

Geisberger, R., Sanders, P., Schultes, D., and Delling, D. 2008b. Contraction Hierarchies:
Faster and Simpler Hierarchical Routing in Road Networks. In Proceedings of the 7th Workshop

on Experimental Algorithms (WEA), C. C. McGeoch, Ed. Lecture Notes in Computer Science,

vol. 5038. Springer, 319–333.

Goldberg, A. 2006. personal communication.

Goldberg, A. V. and Harrelson, C. 2005. Computing the Shortest Path: A* Search Meets

Graph Theory. In Proceedings of the 16th ACM–SIAM Symposium on Discrete Algorithms

(SODA). SIAM, 156–165.

Goldberg, A. V., Kaplan, H., and Werneck, R. F. 2006. Reach for A*: Efficient Point-to-Point

Shortest Path Algorithms. In Proceedings of the 8th Workshop on Algorithm Engineering and
Experiments (ALENEX). SIAM, 129–143.

Goldberg, A. V., Kaplan, H., and Werneck, R. F. 2007. Better Landmarks Within Reach.

See Demetrescu [2007], 38–51.

Goldberg, A. V., Kaplan, H., and Werneck, R. F. 2009. Reach for A*: Shortest Path Algo-

rithms with Preprocessing. See Demetrescu et al. [2009], 93–139.

Goldberg, A. V. and Werneck, R. F. 2005. Computing Point-to-Point Shortest Paths from
External Memory. In Proceedings of the 7th Workshop on Algorithm Engineering and Experi-

ments (ALENEX). SIAM, 26–40.

Gutman, R. J. 2004. Reach-Based Routing: A New Approach to Shortest Path Algorithms
Optimized for Road Networks. In Proceedings of the 6th Workshop on Algorithm Engineering

and Experiments (ALENEX). SIAM, 100–111.

Hilger, M., Köhler, E., Möhring, R. H., and Schilling, H. 2009. Fast Point-to-Point Shortest

Path Computations with Arc-Flags. See Demetrescu et al. [2009], 41–72.

Klunder, G. A. and Post, H. N. 2006. The Shortest Path Problem on Large-Scale Real-Road
Networks. Networks 48, 4, 182–194.

Knopp, S., Sanders, P., Schultes, D., Schulz, F., and Wagner, D. 2007. Computing Many-

to-Many Shortest Paths Using Highway Hierarchies. In Proceedings of the 9th Workshop on
Algorithm Engineering and Experiments (ALENEX). SIAM, 36–45.

Lauther, U. 2004. An Extremely Fast, Exact Algorithm for Finding Shortest Paths in Static Net-

works with Geographical Background. In Geoinformation und Mobilität – von der Forschung
zur praktischen Anwendung. Vol. 22. IfGI prints, 219–230.

Maue, J., Sanders, P., and Matijevic, D. 2009. Goal-Directed Shortest-Path Queries Using

Precomputed Cluster Distances. ACM Journal of Experimental Algorithmics 14, 3.2:1–3.2:27.

Rice, M. and Tsotras, V. J. 2010. Graph indexing of road networks for shortest path queries

with label restrictions. Proc. VLDB Endow. 4, 69–80.

Sanders, P. and Schultes, D. 2005. Highway Hierarchies Hasten Exact Shortest Path Queries.
In Proceedings of the 13th Annual European Symposium on Algorithms (ESA). Lecture Notes

in Computer Science, vol. 3669. Springer, 568–579.

Sanders, P. and Schultes, D. 2006. Engineering Highway Hierarchies. In Proceedings of the
14th Annual European Symposium on Algorithms (ESA). Lecture Notes in Computer Science,

vol. 4168. Springer, 804–816.

Sanders, P., Schultes, D., and Vetter, C. 2008. Mobile Route Planning. In Proceedings of the

16th Annual European Symposium on Algorithms (ESA). Lecture Notes in Computer Science,
vol. 5193. Springer, 732–743.

Schultes, D. 2008. Route Planning in Road Networks. Ph.D. thesis, Universität Karlsruhe (TH),

Fakultät für Informatik. http://algo2.iti.uka.de/schultes/hwy/schultes_diss.pdf.

Schultes, D. and Sanders, P. 2007. Dynamic Highway-Node Routing. See Demetrescu [2007],
66–79.

Thorup, M. 2004. Compact Oracles for Reachability and Approximate Distances in Planar

Digraphs . Journal of the ACM 51, 6, 993–1024.

U.S. Census Bureau, Washington, DC. 2002. UA Census 2000 TIGER/Line Files. http:

//www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html.

Vetter, C. 2010. Monav. http://code.google.com/p/monav/.

Volker, L. 2008. Route Planning in Road Networks with Turn Costs. Student Research Project.

http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/volker_sa.pdf.

Repository KITopen

Dies ist ein Postprint/begutachtetes Manuskript.

Empfohlene Zitierung:

Geisberger, R.; Sanders, P.; Schultes, D.; Vetter, C.
Exact Routing in Large Road Networks Using Contraction Hierarchies.
2012. Transportation science, 46
doi:10.5445/IR/1000028701

Zitierung der Originalveröffentlichung:

Geisberger, R.; Sanders, P.; Schultes, D.; Vetter, C.
Exact Routing in Large Road Networks Using Contraction Hierarchies.
2012. Transportation science, 46 (3), 388–404.
doi:10.1287/trsc.1110.0401

Lizenzinformationen: KITopen-Lizenz

https://publikationen.bibliothek.kit.edu/1000028701
https://publikationen.bibliothek.kit.edu/1000028701
https://publikationen.bibliothek.kit.edu/1000028701
https://doi.org/10.1287/trsc.1110.0401
https://www.bibliothek.kit.edu/cms/kitopen-workflow.php

