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Abstract

In the paper by Cominetti and Correa (2001) [Common-lines and passenger assignment in
congested transit networks. Transportation Science 35 (3), pp 250-267], an extension to the
common-lines problem for general multidestination networks under congestion is analyzed.
Their transit equilibrium assignment model allows for a full representation of congestion
effects caused by the variation of effective frequencies experienced by passengers at transit
stops. This model is the first to address these characteristics consistently with the concept
of strategies. In a subsequent paper by Cepeda et al. (2006) [Cepeda, M., Cominetti, and
R. Florian, M. (2006) A frequency-based assignment model for congested transit networks
with strict capacity constraints: characterization and computation of equilibria. Trans. Res
B 40, 437-459], the computation of equilibrium is performed heuristically by the minimization
of a gap function, using the method of successive averages. In this paper, a reformulation
of this congested transit equilibrium assignment model is performed, demonstrating that
the problem can be expressed as an equivalent variational inequality. The case of strictly
capacitated transit networks is explored under the scope of this new reformulation, and new,
broader conditions for the existence of solutions to this congested transit assignment model
are determined.

1 Introduction

The development of transit assignment models of increasing complexity has been driven mainly by the
inclusion of congestion effects caused by the complexity of passengers’ behavior and limitations in the
physical capacity of transportation vehicles. However, public transportation is seen as an appropriate way
to mitigate the increase in demand for transportation and its associated environmental effects. Despite
this observation, the development of congested transit assignment models has previously received less
attention when compared, for example, with traffic assignment models. Thus, the number of contributions
in the field of transit assignment can be considered more limited than in the case of traffic assignment
models and in the applications that require them, such as matrix adjustment methods and continuous
network design problems. One explanation for these limitations stems from the compact formulation of
user equilibrium using variational inequalities (VIs) for the traffic assignment problem, as shown in Smith
(1979). This VI formulation, has not been achieved for previous transit assignment models but in their
simpler instances. Advantages for using VI formulations are also discussed in Marcotte (1995).

A brief description of the evolution of transit assignment models will be presented at this point.
The paper by Chriqui and Robillard (1975) introduced the notion that passengers can select a subset of
attractive lines and board the first vehicle arriving at a stop to minimize the expected sum of waiting
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plus travel times. An extension of this idea was explored by Spiess (1984) and by Spiess and Florian
(1989), who introduced the notion of strategy as the choice of an attractive set of lines at each stop. The
resulting model seeks to minimize the expected value of the total travel time. Nguyen and Pallotino (1988)
interpreted a strategy as a hyperpath, i.e., an acyclic directed graph that leads to a destination. In these
models, the only aspect of congestion under consideration is the association of discomfort functions with
transit line segments, enabling the resulting equilibrium model to be formulated as a convex programming
problem. In these models, waiting times are underestimated because it is not assumed that passengers
will board the first vehicle after their arrival at the stop, but will probably have to wait for subsequent
vehicles because of congestion.

The first transit network model that takes into account limitations in line capacity can be credited
to De Cea and Fernández (1993), who concentrate on the congestion effects at transfer nodes by means
of BPR -like functions. Both existing passenger flows on the lines prior to boarding and boarding flows
are taken into account. Nevertheless, this model allows line capacity to be exceeded, and the formulation
does not take into consideration any queuing theory at stops.

Cominetti and Correa (2001) develop a general frequency-based transit equilibrium model with arbi-
trary functions that model travel times and effective frequencies. These authors analyzed the common-
lines problem presented by Chriqui and Robillard and formulated it as a fixed-point problem without
proposing an algorithm to solve it, although they proved that solutions do exist. As a continuation of this
work, Cepeda et al. (2006) showed that the model of Cominetti and Correa (2001) can be formulated
equivalently as the minimization of a non-differentiable and non-convex gap function. They solve the
problem heuristically using an adaptation of the method of successive averages and show the compu-
tational viability of their approach on large transit networks. In this paper, we refer to this model as
the Cominetti-Correa-Cepeda-Florian model (C3F). The main contribution of this paper is to show that
the C3F model can be reformulated as a VI problem, thus expressing in a very compact and convenient
form the congested transit equilibrium assignment based on strategies for its analysis and algorithmic
treatment. From the perspective of the variational inequality formulation stated in the paper for the C3F
model, it is shown how the MSA heuristic method used by Cepeda et al. (2006) can be interpreted as a
method to find a solution of a fixed- point inclusion. This reformulation as a fixed-point inclusion problem
also arises directly from the VI reformulation conducted in this paper. The algorithmic consequences of
the new V.I. formulation are examined in a subsequent paper. The case of transit models with high levels
of congestion is analyzed when effective frequency functions (efff) are present that impose sharp implicit
capacity constraints. For these problems, it is shown that solutions of the C3F model are strictly under
capacity bounds.

The paper is organized as follows. Section 2 presents basic notations and definitions. Section 3
summarizes the current state of development of a congested transit assignment model consistent with the
concept of strategies as analyzed by Cominetti and Correa (2001), and particular attention is paid to the
contribution by Cepeda et al. (2006). In section 4, it is rigorously proved that the minimization of the
gap function in Cepeda et al. (2006) is equivalent to a generally nonmonotone V.I. problem. In section 5,
the question of the existence of solutions to the newly reformulated V.I. is examined for two cases. In the
first case, no strict capacity bounds on transit lines are imposed, and efff’s are assumed to remain positive
in the space of flows, although they may decrease conveniently for high transit volumes. In the second
case, the presence of strict capacity bounds imposed when efff’s vanish is addressed. For this important
case, assumptions ensuring the existence of solutions for the capacitated transit assignment model are
developed under the scope of the new V.I. reformulation, and it is shown that, under these assumptions,
flows on transit lines are under capacity, avoiding the occurrence of infinite travel times. In both cases,
conditions for the existence of solutions of the congested transit assignment model are broader than the
conditions shown by Cominetti and Correa (2001). Finally, section 6 presents the main conclusions of
the paper.

2 Basic notation and a network model

The transit network is represented by means of a directed graph G = (N,A), where N is the set of nodes
and A is the set of links. Generic nodes in N will be represented by the symbols i, j. A link will usually
be represented by the symbol a and explicitly by (i, j) or (i, ja), depending on the context.

It will be assumed that there exists a subset C of nodes on which trips may originate and/or end.
Passenger trips are associated with origin-destination pairs of nodes (i, d), both i, d ∈ C. The number of
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trips from i to d will be denoted by gdi . By W , the set of active origin-destination pairs ω = (i, d) on the
network is denoted, i.e., those pairs for which some trip exists: gdi > 0.

W
∆
= { (i, d) ∈ C × C | gdi > 0 } (1)

The set of destinations in the network will be denoted by D.

D
∆
= { d ∈ C | ∃(i, d) ∈W } (2)

and the set of origin nodes for a fixed destination d ∈ D will be denoted by O(d)

O(d)
∆
= { i ∈ C | (i, d) ∈W } (3)

Often, when referring to a given destination d ∈ D, the set of nodes in the network excluding desti-
nation d will be denoted by Nd, i.e., Nd = N \ {d}. In general, for a node i ∈ N , the set of emerging
links will be denoted by E(i), and the set of incoming links by I(i). The network will be considered in its
detailed expanded form, following Spiess (1984) and Spiess and Florian (1989), as shown in figure 1. In
this representation, transit stops are associated with a node for which some of the outgoing links will play
the role of boarding links to a transit line, and some of the incoming links will play the role of alighting
links from a transit line. Each transit line with vehicles halting at the stop will have a single boarding
link from the stop and a single alighting link to the stop. Non-boarding or non-alighting links incoming to
or outgoing from nodes representing transit stops will model connections to other transportation modes,
such as pedestrian or pedestrian connections to other transit stops.

Because the model can be stated as a multi-destination network flow, vda will denote the flow at link
a ∈ A with destination d ∈ D. Then, the following notation will be used for the various types of vector
flows and origin-destination volumes:

• vd
i = (..., vda, ...; a ∈ E(i)) ∈ IR

|E(i)|
+ , i ∈ N , d ∈ D is the vector of flows with destination d at

emerging links of node i.

• vdi =
∑

a∈E(i) v
d
a is the total inflow through node i ∈ N with destination d ∈ D. Notice that no

confusion may arise between vdi and vda because indexes are always properly declared in formulas
and when mentioned in the text. Furthermore, index a is shorthand for an ordered pair of indexes
(i, j), both in N .

• vd = (...,vd
i , ...; i ∈ N) ∈ IR

|A|
+ , d ∈ D.

• v = (...,vd, ...; d ∈ D) ∈ IR
|A| |D|
+ .

• v =
∑

d∈D vd ∈ IR
|A|
+ is the vector of total flows on links, and va =

∑
d∈D v

d
a, a ∈ A.

• gd = (..., gdi , ...; i ∈ O(d)) ∈ IR
|O(d)|
+ , d ∈ D

• g = (..., gd, ...; d ∈ D) ∈ IR
|W |
+ .

With previous definitions, the feasibility set for the congested transit equilibrium problem can be
formulated as:

V
∆
=
⊗
d∈D

Vd (4)

where each set Vd is defined as:

Vd ∆
=

 vd ∈ IR
|A|
+

∣∣∣∣∣∣
∑

a∈E(i)

vda −
∑

a∈I(i)

vda = gdi i ∈ Nd,
∑

a∈I(d)

vda =
∑

i∈O(d)

gdi , v
d
a = 0, ∀a ∈ E(d)

 , d ∈ D

(5)
In addition, the feasible set V of total link flows v can be defined as:
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V ∆
=

{
v ∈ IR

|A|
+

∣∣∣∣∣ v =
∑
d∈D

vd, vd ∈ Vd

}
(6)

Boarding links a from stop i are associated with a unique transit line and have associated a non-
negative efff fa(·) : V → IR for that line, which will generally depend on the total flows of some neighbor
links and on the total flow of link a. Effective frequency are the inverse of the expected waiting time at
the stop until boarding onto a vehicle of the line. Because of the finite capacity of vehicles, this boarding
may not happen on the first arriving vehicle seen by the passenger. This gives rise to a bulk service type
of queuing process for passengers at stops. Mean waiting times for a boarding, or the inverse of effective
frequencies, will be denoted by σa(·) = 1/fa(·). Thus, the role of efff at boarding links is to model the
limitation in the capacity of transit vehicles. Although no predetermined functional form is assumed in
either Cominetti and Correa (2001) or Cepeda et al. (2006), it can be assumed that functions fa(·) are
finite for flows v ∈ V that verify some type of (typically linear) inequality ca(v) < c̄a, vanish at flows
that verify strict equality ca(v) = c̄a, have a maximum value for flows that verify ca(v) = 0 and remain
undefined at flows such that ca(v) > c̄a.

Travel times on links will be modeled by general functions ta(v), a ∈ A, which remain bounded on V,
i.e., 0 ≤ ta(v) < +∞, ∀ v ∈ V, a ∈ A.

The subset of nodes for which emerging links exist with a bounded from above (finite) efff on V will
be denoted by N̂ .

N̂
∆
= { i ∈ N | ∃a ∈ E(i), fa(·) < +∞ } (7)

For simplicity of formulas, the sets N̂d = N̂ \ {d}, d ∈ D and Â = { a ∈ A | ∃i ∈ N̂ , a ∈ Ê(i) } will also
be used. For nodes i ∈ N , the subset of emerging links with finite effective frequency will be denoted by
Ê(i):

Ê(i)
∆
=

{
{ a ∈ E(i) | fa(·) < +∞ } , i ∈ N̂

∅, i ∈ N \ N̂
(8)

and the set of boarding links at a stop i ∈ N̂ with positive destination flows will be denoted by:

Êd
+(i,v) =

{
a ∈ Ê(i) | vda > 0, i ∈ N̂

}
(9)

A strategy for passengers at node i ∈ N̂ will be represented simply by a subset of links E(i) ⊆ Ê(i).

Figure 1

Line segments as well as pedestrian, transfer and non-transit facilities will be represented by links
a ∈ A with either constant or flow-dependent travel time functions ta(·) and infinite frequencies, fa = +∞.
The same will apply for links a ∈ I(i) , i ∈ N̂ , representing alighting at stops.

For V.I. formulations used in the paper, the following notation will be used. If C ⊆ IRn is a convex
set, then for an operator Φ : IRn → IRn, a V.I. will be formulated in its classical form, i.e., find x ∈ C
so that Φ(x)⊤(x′ − x) ≥ 0, ∀x′ ∈ C. This VI will also be referred to as VI(Φ, C), and its solution set by
Sol VI(Φ, C).

In formulas or expressions describing optimization problems, the Min or Max operator will be sub-
scripted with vectors or variables that play the role of ”decision variables” or optimization variables
appearing in the body of the problem, with some or all of their sub/superscripts probably suppressed for
legibility. In this way, a clear distinction between optimization variables and parameters of the problem
can be made. Additionally, when considered convenient, immediately after a constraint, dual variables
or multipliers for that constraint may appear after a bar ”|”. In other words, v ≤ wr, | θ indicates that
θ is the dual variable for constraint v ≤ wr.

3 A brief summary of the C3F model

3.1 The common-lines problem with congestion

The C3F model can be considered an extension to the case of general multi-destination networks of the
so-called common-lines problem (CLP in the following) when effects of congestion are reflected as a drop
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of the line frequencies experienced by passengers. This problem can be summarized as follows. Let us
consider a simple network consisting of a single origin node connected to its destination by means of a set
of bus lines ν = 1, 2, ..., n with effective frequencies fν(·), which are decreasing functions of the boarding
flows vν , vanishing at a maximum flow or capacity v̄ν . Assume that the trip demand from origin to
destination is x =

∑n
ν=1 vν . Assume that tν < +∞ is the in-vehicle travel time for line ν from the origin

node to the destination. Then, users choosing to board on a subset of lines (or strategy) E will experience
an average origin-destination travel time given by:

TE(v) =
1 +

∑
ν∈E tν fν(vν)∑
ν∈E fν(vν)

(10)

Let yE denote the flow of users choosing strategy E . If Eν ⊆ P({1, ..., n}) is the set of strategies
containing line ν, then the total flow vν of line ν will be given by:

vν =
∑
E∈Eν

yE
fν(vν)∑

ν′∈E fν′(vν′)
, ν = 1, ..., n (11)

A vector y = ( ..., yE , ...; E ∈ P({1, ..., n}) ) of flow strategies determines a unique vector of line flows
(..., vν , ...; 1 ≤ ν ≤ n), and the concept of an equilibrium flow vector strategy y∗ is defined by:

y∗E > 0 ⇒ TE(v(y
∗)) = T̂ (v(y∗))

TE(v(y
∗))− T̂ (v(y∗)) > 0 ⇒ y∗E = 0

(12)

where T̂ (v)
∆
= Min E∈P({1,...,n}) {TE(v)} is the origin-destination minimum travel time at equilibrium. The

congested common-lines problem is examined in Cominetti and Correa (2001), in which the existence
of equilibrium solutions is proved to exist for any x ∈ ]0,

∑n
ν=1 v̄ν [, showing additionally that, in this

case, equilibrium solutions are such that vν < v̄ν and that consequently, origin-destination travel times
at equilibrium remain bounded. Also in Cominetti and Correa (2001), the equilibrium notion for the
congested CLP is extended to the case of general transit networks with multiple origin-destination pairs.

If we consider now the CLP for the case in which some of the lines, for example, lines n − k to n,
work with infinite frequency and finite in-vehicle travel times, T̂ (v) would need to be defined as:

T̂ (v)
∆
= Min

{
Min E∈P({1,...,n−k}) {TE(v)} , Minn−k+1≤ν≤n {tν}

}
(13)

However, the same concept of equilibrium expressed in (12) would be more difficult to define, although
in essence, it would also hold.

3.2 Notion of equilibrium on general multidestination networks. The C3F
model

Let us consider a general transit network with multiple origin-destination pairs. Using definitions in
section 2, let v be a feasible vector of per-destination flows, and let v be its corresponding feasible flow
vector of total flows. For vector v, consider the congested CLP at node i ∈ N for destination d ∈ D,
CLPd

i (v), with inflow vdi =
∑

a∈E(i) v
d
a. Assume for CLPd

i (v) constant travel times given by tda(v) and

effective frequency fda (·) for each link a ∈ Ê(i) obtained from fa(·) by considering it as a function only
of the flow vda and freezing all other flows.

Let V d,∗
i (v) be the set of equilibrium per-destination flow solutions of CLPd

i (v), and let

V ∗
CLP (v)

∆
=
⊗
d∈D

⊗
i∈N̂d

V d,∗
i (v) (14)

As a generalization of expression (10), now origin-destination travel times τ̃di (v), (i, d) ∈ W, for the
set of CLP’s CLPd

i (v), defined by vector flows v, are defined recursively by:
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τdi (v) =


Min
E(i) ⊆ E(i)


1 +

∑
a∈E(i)

(τdja(v) + tda(v))f
d
a (v)∑

a∈E(i)

fda (v)


0 if i = d

(15)

Definition 3.1 ( of C3F transit equilibrium ) A feasible flow v ∈ V is a transit network equilibrium iff
∀ d ∈ D and any i ∈ N̂ , i ̸= d, the flow vectors vd

i are local equilibrium solutions of the local common-lines
problem defined by the vector flow v itself, CLPd

i (v), at i for destination d, i.e.:

(...,vd
i , ...; i ∈ N̂ , d ∈ D) ∈ V ∗

CLP (v). (16)

The set of solutions for the previous fixed-point problem (16) will be denoted by V∗ on the space of
per-destination link flows and by V∗ on the space of total flows on links. Cominetti and Correa (2001)
prove the existence of solutions to the fixed-point problem stated in (16) under the following assumption:

Assumption 3.2 For any origin-destination pair, there exists at least a path on the expanded network
comprised of links with infinite frequency and bounded function costs.

Assumption 3.2 ensures that, no matter how large the origin-destination trip volumes may be, it will
be always possible to allocate them on the network without allowing for the infeasibility of the problem,
and consequently, origin-destination travel times will be bounded from above. Paths γ referred to in
assumption 3.2 play the role of unlimited capacity paths. Links in these paths may be transfer links from
stop to stop or simply pedestrian links from a realistic representation of an urban area. This is a device
frequently used by practitioners when modeling transfers from station to station, and the interactions
with the pedestrian network, which operates conjointly with the transit facilities.

Although (16) is a characterization of equilibrium in terms of a fixed-point problem, it was not
considered as an operative formulation to solve for solutions by Cepeda et al. (2006). Instead, building on
the results of Cominetti and Correa (2001), Cepeda et al. (2006) prove that their general multidestination
network equilibrium transit notion is equivalent to the minimization of the following non-convex, non-
differentiable gap function GCCF(v)

GCCF(v) =
∑
d∈D

[∑
a∈A

vdata(v) +
∑
i∈Nd

Max
a ∈ E(i)

{
vda
fa(v)

}
−
∑
i∈Nd

gdi τ
d
i (v)

]
(17)

over the feasible set of destination flow vectors V; in other words, solutions of (16) are also global minima
of the problem

Min
v ∈ V

GCCF(v) (18)

Then, in Theorem 3.2 in Cepeda et al. (2006), it is proved that the gap function GCCF vanishes at
equilibrium, as does each of its component functions Gd

CCF(v); in other words, GCCF(v) =
∑

d∈D G
d
CCF(v)

and

Gd
CCF(v)

∆
=
∑
a∈A

vdata(v) +
∑
i∈N̂d

Max
a ∈ Ê(i)

{
vda
fa(v)

}
−
∑
i∈Nd

gdi τ
d
i (v) = 0, v ∈ V∗, d ∈ D (19)

For the purposes of this paper, the following theorem from Cepeda et al. (2006) is also of interest.

Theorem 3.3 ( Theorem 3.1 in Cepeda et al. (2006) ) v ∈ V∗ iff v ∈ V and there exist numbers
αd
i ≥ 0 such that for all d ∈ D and i ̸= d

vda
fa(v)


= αd

i if ta(v) + τ̃dja(v) < τ̃di (v), case a)

≤ αd
i if ta(v) + τ̃dja(v) = τdi (v), case b)

= 0 if ta(v) + τ̃dja(v) > τ̃di (v), case c)

(20)
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4 An equivalent formulation of equilibrium by means of varia-
tional inequalities

The objective of this section is to prove formally that the C3F model exposed previously in section 3 can
be equivalently formulated as a VI in a finite dimensional space.

From an intuitive point of view, the role of paths described in assumption 3.2 is to guarantee that part
of the demand will be absorbed on these paths if necessary. If it is assumed that solution flows will be
bounded, then travel time on these paths cannot be +∞, in which case, it seems a reasonable conjecture
that efff’s fa(·) at C3F equilibrium flows will always remain strictly positive: fa(v

∗) > 0, a ∈ Ê(i), i ∈
N̂ . The reformulation as a V.I. of the C3F model will be performed in this section under the scope of
assumption 3.2. However, this does not imply that the resulting V.I. is only valid under assumption
3.2. In section 5, where conditions for the existence of solutions are examined, it will be shown that less
restrictive assumptions also guarantee the existence of solutions for this new V.I. formulation of the C3F
model, also ensuring that fa(v

∗) > 0, a ∈ Ê(i), i ∈ N̂ .
Consider the following linear programs (21) defined in variables θdi = ( ..., θda, ... ; a ∈ Ê(i) ), i ∈

N̂d, d ∈ D. Linear programs (21) are parametrized by flows v ∈ V. This parametrization defines an
optimal function value wd

i (v
d
i ) as follows:

wd
i (v

d
i ) = Max θd

i

∑
a∈Ê(i) v

d
aθ

d
a

s.t.
∑

a∈Ê(i) fa(v) θ
d
a = 1

θda ≥ 0

, i ∈ N̂d, d ∈ D (21)

Let Θd
i (v

d
i ) be the solution set of linear program (21) for d ∈ D, i ∈ N̂d, and let Θ(v) =

⊗
d∈D

⊗
i∈N̂d

Θd
i (v

d
i ).

Let T d(v, θd) = (...ψd
a(v, θ

d
a)...; a ∈ A), where functions ψd

a are defined as

ψd
a(v, θ

d
a) =

{
ta(v) + θda, a ∈ Ê(i)

ta(v) a ∈ E(i) \ Ê(i)
d ∈ D, i ∈ Nd (22)

It will be shown in this section that solution flows of the transit equilibrium model C3F satisfy the
following sets of relationships:

v ∈ V (23)

ta(v) = λdi − λdj + ξda − θda, d ∈ D, i ∈ N̂d, a = (i, j) ∈ Ê(i), (24)

ta(v) = λdi − λdj + ξda, d ∈ D, i ∈ Nd, a = (i, j) ∈ E(i) \ Ê(i), (25)

vda ≥ 0, ξda ≥ 0, vda ξ
d
a = 0, (26)

where, λdi will play the role of origin-destination travel times, as it will be shown later. The values of θda
are (generally non-unique) solutions of linear programs (21), and ξda values are simply dual variables of

non-negativity constraints on flow variables, vda ≥ 0. By convention, it is assumed that λdd
∆
= 0, ∀ d ∈ D.

It should be noticed that programs (21) are duals of the following ones:

wd
i (v

d
i ) = Min αd

i
αd
i

s.t.
vda
fa(v)

≤ αd
i , | θda, a ∈ Ê(i)

, i ∈ N̂d, d ∈ D (27)

so that optimal function values wd
i (v

d
i ) of linear programs (21) can be expressed also as:

wd
i (v

d
i ) = Max

a ∈ Ê(i)

{
vda
fa(v)

}
, i ∈ N̂d, d ∈ D (28)

The following complementarity conditions must hold for programs (27)

wd
i (v

d
i )fa(v)− vda ≥ 0, θda ≥ 0, d ∈ D, i ∈ N̂d, a ∈ Ê(i), (29)

(wd
i (v

d
i )fa(v)− vda) θ

d
a = 0 (30)
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where variables θda verify: ∑
a∈Ê(i)

fa(v) θ
d
a = 1 (31)

It will be assumed that there exist solutions for the system of equations (23) through (26). In fact,
this will follow automatically because it will be proved in theorem 4.5 below that solutions of the system
of equations (23) through (26) are global minima of the minimization problem (18) and vice versa. Let
us now consider the following sets for any feasible flow v ∈ V:

Êd
∗(i,v) =

{
a ∈ Ê(i) | wd

i (v
d
i ) =

vda
fa(v)

}
, d ∈ D, i ∈ N̂ (32)

Êd
+(i,v) =

{
a ∈ Ê(i) | vda > 0

}
, d ∈ D, i ∈ N̂ (33)

The following two properties are readily verified:

Property 4.1 Assume that v ∈ V. If, at a node i ∈ N̂ for d ∈ D, the total inflow at emerging links with
finite frequency is positive, i.e., vd

i =
∑

a∈Ê(i) v
d
a > 0, then Êd

∗(i,v) ⊆ Êd
+(i,v) ⊆ Ê(i).

Property 4.2 Assume that (v∗, θ, λ, ξ) is a solution of the system of equations (23) through (26). Then,
if v∗ =

∑
d∈D vd,∗ is the vector of total link flows, for any set E(i) of emerging links at node i ∈ N̂d, d ∈

D, such that Êd
∗(i,v

∗) ⊆ E(i) ⊆ Êd
+(i,v

∗), it must hold that∑
a∈E(i)

fa(v) θ
d
a = 1, d ∈ D, i ∈ N̂d (34)

Proof: Proof follows directly because of complementarity conditions (29) and (30) and dual feasibility
condition (31) at v∗. 2

The following lemma proves that solutions of the system of equations (23) through (26) are also global
minima of the gap function GCCF.

Lemma 4.3 Let θ ∈ Θ(v) be the solution set of linear programs (21), and assume that (v, θ, λ) verify
(23) through (26). Then, if v =

∑
d∈D vd,

1. the gap function GCCF vanishes at v, i.e., GCCF(v) = 0, with τdi (v) taken as λdi in (17)

2. the values of (λ,v) verify the following generalized Bellman relationships:

λdi = Min
{
λ̂di , λ̌

d
i

}
, i ∈ N, d ∈ D (35)

with

λ̂di =



Min

E(i) ⊆ Ê(i)


1 +

∑
a∈E(i)

(λdja + ta(v))fa(v)∑
a∈E(i)

fa(v)

 if Ê(i) ̸= ∅

∞ if Ê(i) = ∅
0 if i = d

i ∈ N (36)

λ̌di =


Min a∈E(i)\Ê(i)

{
λdja + ta(v)

}
if E(i) \ Ê(i) ̸= ∅

∞ if E(i) \ Ê(i) = ∅
0 if i = d

i ∈ N (37)

so that λdi ≡ τdi (v) as defined in (35), or equivalently in (15), and thus λdi can be interpreted as the

expected travel time to destination d ∈ D from node i ∈ N̂ , with the convention λdd = 0.

3. The gap function GCCF decomposes in GCCF(v) =
∑

d∈D G
d
CCF(v), where each of the functions Gd

CCF

vanishes at v, i.e., Gd
CCF(v) = 0.
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At this point, it must be remarked that expression (35) for origin-destination travel times is equivalent
to the one given in Cominetti and Correa (2001) or in Cepeda, Cominetti and Florian (2006), although
it appears to be differently formulated because of the explicit treatment for infinite frequency links given
in this paper.

Proof of lemma 4.3: Because of (30) and (31),

wd
i (v

d
i ) =

∑
a∈Ê(i)

θdafa(v)w
d
i (v

d
i ) ≥

∑
a∈Ê(i)

θdav
d
a, i ∈ N̂ (38)

Because of linear programs (24) and the complementarities (26),

vda(ta(v) + λdj ) + vdaθ
d
a = λdi v

d
a, d ∈ D, i ∈ N̂d, a = (i, j) ∈ Ê(i) (39)

and thus, for a given destination d ∈ D, summing all the emerging links of node i ∈ N̂d,

wd
i (v

d
i ) +

∑
a∈E(i)

vda( ta(v) + λja) = λdi
∑

a∈E(i)

vda = λdi ( g
d
i +

∑
a∈I(i)

vda ) = λdi g
d
i +

∑
a∈I(i)

vdaλ
d
i , d ∈ D, i ∈ N̂d

wd
i (v

d
i ) +

∑
a∈E(i)

vdata(v) = λdi g
d
i +

∑
a∈I(i)

vdaλ
d
i −

∑
a∈E(i)

vdaλ
d
ja , d ∈ D, i ∈ N̂d (40)

whereas for a node i ∈ Nd \ N̂d∑
a∈E(i)

vdata(v) = λdi g
d
i +

∑
a∈I(i)

vdaλ
d
i −

∑
a∈E(i)

vdaλ
d
ja , d ∈ D, i ∈ Nd \ N̂d (41)

but ∑
i∈N

 ∑
a∈I(i)

vdaλ
d
i −

∑
a∈E(i)

vdaλ
d
ja

 = 0, d ∈ D (42)

where it has to be taken into account that λdd
∆
= 0 and vda

∆
= 0, ∀ a ∈ E(d). Then, summing from (40)

and (41) for i ∈ N and taking into account (42)

Gd
CCF(v)

∆
=
∑
a∈A

vdata(v) +
∑
i∈N̂d

wd
i (v

d
i )−

∑
i∈Nd

λdi g
d
i = 0 ⇒ GCCF(v) = 0 (43)

where, because of (21), wd
i (v

d
i ) = Max

a ∈ Ê(i)

{
vda
fa(v)

}
, and assertions 1 and 3 of the lemma have been

proved.
Now, the equivalence between variables λdi and origin-destination travel times τdi (v) will be proved.

Assume vdi > 0 and let d ∈ D and i ∈ Nd. Then, because of the complementarity conditions (26)

(ta(v) + λdj )fa(v) + θdafa(v) ≥ λdi fa(v), a = (i, j) ∈ Ê(i), i ∈ N̂d, d ∈ D, (44)

ta(v) + λdj ≥ λdi , a = (i, j) ∈ E(i) \ Ê(i), i ∈ Nd, d ∈ D (45)

where (44) is verified with equality if a = (i, j) ∈ Êd
+(i,v) ⊆ Ê(i). Now, let E(i) ⊆ Ê(i) be a subset of

links within a strategy at node i ∈ N̂d. Then,

λdi
∑

a∈E(i)

fa(v)
(1)

≤
∑

a∈E(i)

(ta(v) + λdja)fa(v) +
∑

a∈E(i)

θdafa(v)
(2)

≤ 1 +
∑

a∈E(i)

(ta(v) + λdja)fa(v) (46)

Now, let λ̂di and λ̌di be defined for a node i ∈ N and destination d ∈ D, as in expressions (36) and
(37). Because vdi > 0, some of the above inequalities (44), (45) must be verified as equalities, and because
of property 4.2, inequalities (1) and (2) in (46) must be verified as equalities for some E(i), if it is the
case that i ∈ N̂d. Then,
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λdi = Min
{
λ̂di , λ̌

d
i

}
, i ∈ N, d ∈ D (47)

whereas simply λdi ≤ Min{λ̂di , λ̌di } if vdi = 0. 2.
Thus, a solution (v, θ, λ) of (23) through (26) is such that v ∈ V∗ and λdi are the origin-destination

expected travel times from nodes i ∈ N to destinations d ∈ D. The following lemma proves that the
converse is also true.

Lemma 4.4 Let v∗ ∈ V∗; then, ∃θda, λdi ≡ τdi (v
∗), ξda ≥ 0 so that relationships (23) through (26) are

verified for v∗, and θda are, precisely, solutions of linear programs (21).

Proof: Because v∗ ∈ V∗, theorem 3.3 in Cepeda et al. (2006) states that for i ∈ Nd, ∃αd
i ≥ 0 that are

solutions of linear programs (27), i.e.: αd
i ≡ wd

i (v
d
i ). On the other hand, solutions of linear programs

(21) and (27) will verify complementary slack conditions (29), (30) and dual feasibility (31).

Now, let βd
a , arbitrary constants rdi > 0 and ηda

∆
= ta(v) + τdja(v)− τdi (v) + βd

ar
d
i so that for αd

i ≥ 0 the
following relationship is verified:

ta(v) + τdja(v)− τdi (v) = −βd
ar

d
i + ηda (48)

Case a) ⇒ vda
fa(v)

= αd
i then , βd

a > 0, ηda = 0, a ∈ Ê∗(i) (49)

Case b) ⇒


vda
fa(v)

= αd
i then

0 <
vda
fa(v)

<αd
i then

βd
a = 0, ηda = 0, a ∈ Ê∗(i)

βd
a = 0, ηda = 0, a ∈ Ê+(i)

(50)

Case c) ⇒ vda
fa(v)

= 0 then , βd
a = 0, ηda > 0, a ∈ Ê(i) \ Ê+(i) (51)

Relationships (49), (50) and (51) show that, as 0 < fa(v) < +∞,

(αd
i fa(v)− vda)β

d
ar

d
i = 0, αd

i fa(v)− vda ≥ 0, βd
a ≥ 0 (52)

and rdi > 0 can be chosen so that:

rdi
∑

a∈Ê(i)

fa(v)β
d
a = 1 (53)

Additionally, from (49), (50) and (51):

ηdav
d
a = 0, ηda ≥ 0, vda ≥ 0 (54)

Thus, it has been proved that relationships (24) through (26), are verified with θda = rdi β
d
a , ξ

d
a =

ηda, a ∈ Ê(i) and λdi = τdi (v), i ∈ N̂ and that rdi β
d
a solve linear programs (21). 2

From previous lemmas 4.3 and 4.4, the following theorem is derived:

Theorem 4.5 The following two statements are equivalent:

1. v ∈ V∗

2. The vector of flows v ∈ V, is a solution of (24) through (26), and θda, d ∈ D, a ∈ Ê(i), i ∈ N̂ are
solutions of linear programs (21)

and λdi are the expected origin-destination travel times from node i ∈ N to destination d ∈ D, defined
recursively by (15), i.e., λdi = τdi (v).
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4.1 Reformulation as a VI

Let us consider the convex and non-differentiable function Hn(·) : IRn → IR, Hn(x) = max 1≤ℓ≤n {xℓ}.
Let I(x) = { 1 ≤ ℓ ≤ n | xℓ = Hn(x) }. Then the convex subdifferential, ∂Hn(x), of function Hn(·) at a
point x ∈ IRn

+ is the set:

∂Hn(x) =

α ∈ IRn
+ |

∑
ℓ∈I(x)

αℓ = 1, αℓ = 0 if ℓ /∈ I(x)

 , x ∈ IRn
+ (55)

Now, let x(v) = (..., xdi (v), ... ; i ∈ N̂ , d ∈ D) with xdi (v) = (..., xda(v), ... ; a ∈ Ê(i)), d ∈ D, i ∈ N̂d

and xda(v) = vdaσa(v). Functions w
d
i (v

d
i ) can be rewritten as

wd
i (v

d
i ) = H|Ê(i)|(x

d
i (v)), d ∈ D, i ∈ N̂d (56)

Recall that because of assumption 3.2, it can be conjectured that fa(v) > 0 at the solutions of (23)
through (26) and σa(v) = 1/fa(v) < +∞, a ∈ Ê(i), i ∈ N̂ . Now, new variables ζda can be introduced,
whose relationship with θda’s is simply by means of θda = σa(v) ζ

d
a . Linear programs (21) can be now

restated as:

wd
i (v

d
i ) = Max ζd

i

∑
a∈Ê(i) v

d
aσa(v) ζ

d
a

s.t.
∑

a∈Ê(i) ζ
d
a = 1

ζda ≥ 0

, d ∈ D, i ∈ N̂d (57)

where ζdi = ( ..., ζda , ... ; a ∈ Ê(i) ), i ∈ N̂d, d ∈ D. Let Zd
i (v

d
i ), d ∈ D, i ∈ N̂d be the solution sets of

programs (57). Now, define Td(v, ζd) as

Td(v, ζd) = (...,Ψd
a(v, ζ

d
a), ...; a ∈ A) (58)

where Ψd
a are defined as:

Ψd
a(v, ζ

d
a) =

{
ta(v) + σa(v)ζ

d
a , a ∈ Ê(i)

ta(v) a ∈ E(i) \ Ê(i)
d ∈ D, i ∈ Nd (59)

With these new variables ζ and taking into account that Zd
i (v

d
i ) = ∂H|Ê(i)|(x

d
i (v)), system of equa-

tions (23) through (26) can be rewritten as:

v ∈ V (60)

ta(v) + ζdaσa(v) = λdi − λdj + ξda, d ∈ D, i ∈ N̂d, a = (i, j) ∈ Ê(i), (61)

ta(v) = λdi − λdj + ξda, d ∈ D, i ∈ Nd, a = (i, j) ∈ E(i) \ Ê(i), (62)

vda ≥ 0, ξda ≥ 0, vda ξ
d
a = 0, (63)

where ζdi are solutions of (57). Because λdi are origin-destination travel times (as shown in lemmas 4.3 and
4.4), system of equations (60) through (63) can be interpreted as a set of coupled variational inequalities
parametrized by ζ:

Find vd ∈ Vd so that, ∀ud,∈ Vd:∑
a∈A

Ψd
a(v, ζ

d) (uda − vda) ≥ 0, d ∈ D (64)

where, as usual, v =
∑

d∈D vd. Solutions ζdi of system (57) will also verify the following variational
inequalities parametrized by flows v:

Find ζdi ∈ Sd
i so that, ∀ zdi ∈ Sd

i :∑
a∈Ê(i)

xda(v) (z
d
a − ζda) ≤ 0, i ∈ N̂d, d ∈ D (65)
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Now, let S =
⊗

d∈D

⊗
i∈N̂d

Sd
i . Because H|Ê(i)|(·) is the support function of the simplex set Sd

i ={
α ∈ IR

|Ê(i)|
+ |

∑
a∈Ê(i) αa = 1

}
associated with node i ∈ N̂d and taking into account previous VIs (64)

and (65), the following VI is readily derived:

(VI)


Find (v, ζ) ∈ V × S so that, ∀ (u, z) ∈ V × S:∑

d∈D

∑
i∈Nd

 ∑
a∈E(i)

( ta(v) + sa(v)ζ
d
a )(u

d
a − vda)− yda(v)(z

d
a − ζda)

 ≥ 0

 (66)

where

yda(v) =

{
xda(v) = σa(v)v

d
a if a ∈ Ê(i)

0 if a ∈ E(i) \ Ê(i)
d ∈ D, a ∈ E(i), i ∈ Nd (67)

and

sa(v) =

{
σa(v) if a ∈ Ê(i)

0 if a ∈ E(i) \ Ê(i)
a ∈ E(i), i ∈ N (68)

The following is a restatement of previous theorem 4.5.

Theorem 4.6 The following two statements are equivalent:

1. v ∈ V∗

2. (v, ζ) ∈ V × S is a solution of previous VI (VI) in (66)

and λdi , the dual variables defined by the system of equations (60) through (63), are the expected origin-
destination travel times from node i ∈ N to destination d ∈ D, τdi (v), defined recursively by (35), (36),
(37) with λdi = τdi (v).

Remark 4.7 When frequencies fa(·) = ra, a ∈ Ê(i), i ∈ N̂ are flow independent and constant and
travel costs ta(v) at links a ∈ A have a diagonal and positive semi-definite jacobian, or equivalently,
ta(v) = ta(va), it can be shown that models developed in Spiess (1984) and in Spiess and Florian (1989)
are reproduced. If frequencies are constant, then xdi (v

d
i ) = (..., vda/ra, ...; a ∈ Ê(i)). Now, because of (28)

and (56):

∂wd
i (v

d
i ) =

 (..., ζda/ra, ...; a ∈ Ê(i) ) ∈ IR
|Ê(i)|
+ |

∑
a∈Êd

∗(i,v)

ζda = 1, ζda = 0, a /∈ Êd
∗(i,v)

 (69)

This implies that VI (VI) in (66) can be simply stated as:

v ∈ V (70)

ta(va) + (∂wd
i (v

d
i ))a = λdi − λdj + ξda, d ∈ D, i ∈ N̂d, a = (i, j) ∈ Ê(i), (71)

ta(va) = λdi − λdj + ξda, d ∈ D, i ∈ N̂d, a = (i, j) ∈ E(i) \ Ê(i), (72)

vda ≥ 0, ξda ≥ 0, vda ξ
d
a = 0, (73)

which are, in fact, first-order conditions of the following optimization problem for the semicongested
transit assignment problem in Spiess and Florian (1989):

Min v, w

∑
a∈A

∫ va

0

ta(α) dα+
∑
d∈D

∑
i∈N̂d

wd
i

s.t : va =
∑
d∈D

vda, a ∈ A

vda ≤ raw
d
i , a ∈ Ê(i), i ∈ N̂ , d ∈ D

v ∈ V

(74)
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Additionally, (70) to (73) are optimality conditions for the transit assignment model in Spiess (1984) for
ta(va) = ta = ctant, which will be designated by [PL](r, t):

[PL](r, t)

Min v, w

∑
d∈D

∑
a∈A

tav
d
a +

∑
d∈D

∑
i∈N̂d

wd
i

s.t : vda ≤ raw
d
i , a ∈ Ê(i), i ∈ N̂ , d ∈ D

v ∈ V

(75)

4.2 Relationship of GCCF with the primal gap function

The functional F (·, ·) : V × S → IRm ( m = |D| · |A| +
∑

d∈D

∑
i∈N̂d

|Ê(i)| ) for variational inequality
(VI) in (66) is:

F (v, ζ) =

(
Td(v, ζd) ; d ∈ D

−σa(v)v
d
a ; a ∈ Ê(i), i ∈ N̂d, d ∈ D

)
(76)

or more explicitly:

F (v, ζ) =

(
Fv(v, ζ)
Fζ(v)

)
=


ta(v) + ζdaσa(v) ; a ∈ Ê(i), i ∈ N̂d, d ∈ D

ta(v) ; a ∈ E(i) \ Ê(i), i ∈ Nd, d ∈ D

−σa(v) v
d
a ; a ∈ Ê(i), i ∈ N̂d, d ∈ D

 (77)

If now Q = V × S, x = (v, ζ), y = (u, z), then (VI) in (66) will be rewritten simply as: Find x ∈ Q
so that F (x)⊤(y − x) ≥ 0, ∀ y ∈ Q, and its primal gap function GP (x) will be:

GP (x) = Max y∈Q F (x)⊤(x− y) (78)

Let us, for simplicity, denote x = (v, ζ) and y = (u, z) for x, y ∈ V × S. Then, it must be noted that
if F (·) is the functional defined in (77),

x⊤F (x) =
∑
a∈A

vata(v) (79)

y⊤F (x) =
∑
a∈A

uata(v) +
∑
d∈D

∑
i∈N̂d

∑
a∈Ê(i)

σa(v)(ζ
d
au

d
a − zdav

d
a) (80)

The following theorem 4.9 states the relationship between the gap GCCF in Cepeda et al. (2006) and
the primal gap function GP for (VI) in (66). For convenience, the gap function GCCF(v) in (17) will
expressed as the difference of two functions, namely:

GCCF(v) = G
(0
CCF(v)−G

(1
CCF(v) (81)

where G
(0
CCF(v) and G

(1
CCF(v) are defined as:

G
(0
CCF(v)

∆
=
∑
d∈D

∑
a∈A

vdata(v) +
∑
i∈N̂d

Max
a ∈ Ê(i)

{
vda
fa(v)

} (82)

G
(1
CCF(v)

∆
=
∑
d∈D

∑
i∈Nd

gdi τ
d
i (v) (83)

and τdi (v) are the travel times from node i to destination d defined in (15). Function G
(1
CCF(v) is then

the total travel time spent on the network with constant travel costs at links fixed at t(v) and constant
frequencies fixed at f(v).

Lemma 4.8 Function G
(1
CCF(v) can be evaluated as the optimal objective value of the following program:

G
(1
CCF(v) = Min u∈V

∑
d∈D

∑
a∈A

ta(v)u
d
a +

∑
i∈N̂d

Maxa∈Ê(i)

{
uda
fa(v)

} (84)
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Proof: The optimization problem in the right-hand side of (84) is, in fact, the linear problem [PL](f(v), t(v)).
Because of duality in linear programming, its optimal objective function value is

∑
d∈D

∑
i∈Nd

gdi λ
d
i , being

λdi the travel time from node i to destination d. Because λdi = τdi (v), there follows (84). 2
As a consequence of previous lemma 4.8, another convenient way of expressing gap function GCCF will

be:
GCCF(v) = φ(v, v)−Min u∈V φ(u, v) (85)

where function φ(·, ·) is defined as:

φ(u, v)
∆
=
∑
d∈D

∑
a∈A

ta(v)u
d
a +

∑
i∈N̂d

Maxa∈Ê(i)

{
uda
fa(v)

} (86)

and obviously, G
(0
CCF(v) = φ(v, v), G

(1
CCF(v) = Min u∈V φ(u, v).

Theorem 4.9 Let v ∈ V be a feasible flow. Then,

GCCF(v) = Min ζ∈S GP (v, ζ) (87)

Proof:

Min ζ∈S GP (v, ζ) =

= Min ζ∈S Max u ∈ V
z ∈ S

∑
d∈D

∑
a∈A

ta(v)v
d
a +
∑
i∈N̂d

∑
a∈Ê(i)

(zdaσa(v)v
d
a − ζdaσa(v)u

d
a)−

∑
a∈A

ta(v)u
d
a

 (1)
=

=
∑
d∈D

∑
a∈A

ta(v)v
d
a +

∑
i∈N̂d

Maxa∈Ê(i)

{
σa(v)v

d
a

}−
− Max ζ∈S Min u ∈ V

∑
d∈D

∑
a∈A

ta(v)u
d
a +

∑
i∈N̂d

∑
a∈Ê(i)

ζdaσa(v)u
d
a

 (2)
=

=
∑
d∈D

∑
a∈A

ta(v)v
d
a +

∑
i∈N̂d

Maxa∈Ê(i)

{
σa(v)v

d
a

}−
− Min u∈V

∑
d∈D

∑
a∈A

ta(v)u
d
a +

∑
i∈N̂d

Maxa∈Ê(i)

{
σa(v)u

d
a

} (3)
= G

(0
CCF(v)−G

(1
CCF(v)

(88)

Equality (1) follows after maximizing in z terms
∑

a∈Ê(i)σa(v)v
d
az

d
a on simplex set Sd

i , i.e., linear programs

(57) with optimization variables zda instead of ζda . Equality (2) follows from the fact that Minu∈V Max ζ∈S

can be interchanged withMax ζ∈S Minu∈V because products ζdau
d
a are concave-convex and set S is bounded

(see, for instance, corollary 37.3.2, page 393, in Rockafellar (1972)). Again, linear problems (57) appear.
The last equality (3) follows directly from previous lemma 4.8. 2

Proposition 4.10 ( Characterization of C3F equilibrium as a fixed-point inclusion ). Let [PL](r, t )) be
the linear program defined in (75) for the uncongested transit assignment model with constant frequencies
r and travel times t. Then, v∗ ∈ V∗ iff:

v∗ ∈ Sol( [PL](f(v∗), t(v∗) )) = Sol Min u∈V φ(u, v∗) (89)

Proof: Proof is immediate because of lemma 4.8 and the definition of gap function GCCF, which vanishes
at equilibrium points of the C3F model. 2

Remark 4.11 Notice that, in view of proposition 4.10, the MSA heuristic procedure to solve the C3F
model used in Cepeda et al. (2006) can be interpreted as the calculation of a solution for the fixed-point
point inclusion (89).
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5 Existence of solutions and capacitated models

Because it has been proved in previous sections that the C3F model can be formulated as a VI, in this
section, the question of the existence of solutions is explored from this perspective using general and well-
known results from the classical theory of variational inequalities. Assumptions required for the existence
of solutions are, under this scope, much less stringent than those stated in Cominetti and Correa (2001).
The existence of solutions for models with additional constraints on which travel time and efff functions
become +∞ on the boundaries imposed by these constraints is also analyzed in a very general setting.

Specifically for this section the following notations will be used:
IfM is a convex polyhedron, let vertex(M) and ray(M) denote its set of vertexes and rays, respectively,

and M̂ = Hull(vertex(M)) and
−→
M = Pos(ray(M)) denote the convex hull of all vertexes and the cone of

all rays, respectively, in the set M .
By Ba, Ba, IBa it will be denoted balls with radius a on IRn centered at 0, for n = |A|, |D| |A|, |D| |A|+∑

d∈D

∑
i∈N̂d

|Ê(i)|, respectively.
For a set M ⊂ IRn, its topological interior will be designated by intM , and its frontier will be

designated by fr(M), i.e., fr(M) = { y /∈ M | ∀ ϵ > 0, Bϵ(y) ∩M ̸= ∅ }. The Euclidean distance from a
point y ∈ IRn to M is denoted by dist(y,M).

Finally, recall that for a VI, find x ∈ M so that Φ(x)⊤(x′ − x) ≥ 0, ∀x′ ∈ M , it is known that if
solutions x∗ exist, then they verify the following inclusion (see, for example Goh and Yang (2002), page
194):

x∗ ∈ Sol Min x∈M x⊤Φ(x∗) (90)

Taking into account relationship (80), inclusion (90) for an arbitrary V.I. can be expressed for VI(F,V)
in (66) as: (

u
z

)
∈ Sol

(
Min v∈V v⊤Fv(u, z)

Min ζ∈S ζ
⊤Fζ(u)

)
(91)

The first linear program in (91) can be expressed as:

Min v∈V

∑
d∈D

∑
a∈A

ta(u)v
d
a +

∑
i∈N̂d

∑
a∈Ê(i)

zdaσa(u)v
d
a

 (92)

whereas the second one decomposes into:

Max ζd

∑
a∈Ê(i) u

d
aσa(u) ζ

d
a

s.t.
∑

a∈Ê(i) ζ
d
a = 1

ζda ≥ 0

, d ∈ D, i ∈ N̂d (93)

5.1 Models without explicit capacity bounds

In this subsection, congested models without sharp capacity bounds will be considered. These are models
with efff’s that decrease with increasing flows but do not vanish and with travel times that may increase
but remain finite at any point in the feasible set of flows V.

Theorem 5.1 Let ta(·), a ∈ A and σa(·), a ∈ Â be continuous and positive on V. Then, (VI) in (66) has
a nonempty set of solutions, and any solution v∗ ∈ V̂, i.e., it contains no cyclic flows on the expanded
graph.

Proof: Note that V may be an unbounded set because of possible cycles on the expanded transit network.
Consider now VI in (66) but defined on V′ = V ∩ C, where C =

⊗
d∈D Cd and Cd are boxes defined

as Cd = { vd ∈ IR|A| | 0 ≤ vda ≤ ρd, a ∈ A }. Bounds ρd are taken as ρd >
∑

(p,d)∈W gp,d. Because

functional (77) is continuous on V′ = V ∩ C, which is a convex and compact set, this newly defined
VI(F,V′) has at least a solution (v∗, ζ∗). Now, let ρ = |A|1/2(

∑
d∈D ρ

2
d)

1/2. To see that ∥v∗∥2 < ρ,
simply notice that v∗ must also be a solution of the linear problem

Min u∈V∩C

∑
d∈D

∑
a∈A

ta(v
∗)uda +

∑
i∈N̂d

∑
a∈Ê(i)

ζd∗a σa(v
∗)uda

 (94)
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Because ta(·), σa(·) > 0 and ζd∗a ≥ 0, cycles cannot appear on the solution of linear program (94),
which may be solved by decomposing it by destinations, and thus, v∗ ∈ V̂. Solution flows per destina-
tion vd∗ of (94) verify maxa∈A{vd∗a } < ρd and ∥vd∗∥2 < |A|1/2ρd, and therefore ∥v∗∥2 < ρ. Because
⊗d∈DBρd|A|1/2 ⊂ C ⊂ Bρ, and v∗ ∈ intC, v∗ must also be a solution of minimizing the objective function
in (94) over the set V ∩Bρ and (v∗, ζ∗) must be a solution of VI(F, (V ∩Bρ) × S), i.e., VI (66) defined
on (V∩Bρ)×S. Finally, applying theorem 4.2 in Kinderlehrer and Stampacchia (1980) (chapter 1, page
13), v∗ is also a solution of (VI) in (66). 2

Note that for congested models without sharp capacity bounds, it is not necessary that special paths
exist, similar to those described in assumption 3.2, and only continuity and positivity are required for
functions ta(·), a ∈ A, σa(·), a ∈ Â, on the space of acyclic path flows V̂.

5.2 Models with explicit capacity bounds

Generally, functions modeling effective frequencies fa(·) at stops depend on total flows on links close to
the boarding link a. When the C3F model must reflect the strict limitations of vehicle capacities, it seems
logical that effective frequencies depend on total flows of links a, c, b and e as shown in figure 2 below
and vanish when these flows are such that vehicle capacity is reached.

Figure 2.

In general, it seems reasonable to consider functional forms of the type:

fa(v) =


ϕa

(
va

µc− ve + va

)
if ve < µc

0 otherwise

(95)

where ϕa(·) is a decreasing function, c is the vehicle capacity and µ is a factor related to the time horizon
of the planning model being used. In general, the ratio ρa at boarding link a ∈ Ê(i), i ∈ N̂ is given by

ρa(v) =
va

µc− vm(a)
, (vm(a)

∆
= ve(a)− va) (96)

and can be interpreted as the loading factor of passenger queues that are boarding segment e at stop
node i. An explicit capacity limitation would then be ρa < 1, or equivalently, va < µc− vm(a). It seems
appropriate to use functions ϕa(·) so that ϕa(1) = 0. For example, Cepeda et al. (2006) consider in their
numerical tests efff, for which ϕa(x) = µ(1− xβ).

Motivated by previous considerations, although not limited at all by the functional forms presented
for the efff functions, consider now the case of a polyhedron X defined by explicit linear constraints that
(possibly) model capacity limits imposed at some links of the network. To avoid further complexities,
the case of nonlinear constraints has not been considered.

X
∆
= { u ∈ IR|D| |A| | Eu ≤ c } (97)

where matrix E = (..., Ed, ...; d ∈ D) ̸= (0) is composed of block matrixes Ed. E is a k × |D| |A|
matrix with elements edq,a ≥ 0 and c ∈ IRk, c > 0. Constraints defining set X can then be written as∑

d∈D

∑
a∈A e

d
q,au

d
a ≤ cj , 1 ≤ q ≤ k and intX = {u ∈ X |Eu < c }.

Assumption 5.2 We assume that V̂ ∩ intX ̸= ∅.

Assumption 5.3 Functions ta(·), a ∈ A and σa(·), a ∈ Ê(i), i ∈ N̂ are continuous, positive, and
< +∞ on V ∩ intX.

Consider v ∈ fr(V∩ intX), i.e., a feasible flow v on the frontier imposed by constraints that define X.
Then, the following two subsets of links in the expanded network associated with v will be used in this
subsection:

A∞
σ (v)

∆
= { a ∈ Â | σa(v) = +∞ } (98)

A∞
t (v)

∆
= { a ∈ A | ta(v) = +∞ } (99)
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If assumption 5.2 is verified, then, for ϵ, 0 ≤ ϵ ≤ ϵ0, consider

Xϵ
∆
= { u ∈ IR|D| |A| | Eu ≤ c− ϵ[1]k } (100)

so that V ∩ Xϵ is non empty. For convenience, consider functional F (·) defined in (77) in its block
components F (·) = (Fv(·), Fζ(·)).

Proposition 5.4 Assume that ray(V) ̸= ∅ (i.e., the expanded transit network contains cycles). Under

assumption 5.3, if −→w ∈ −→
V , then Fv(v, ζ)

⊤−→w > 0, ∀ (v, ζ) ∈ (V ∩ intX)× S.

Proof: It suffices to notice that rays in
−→
V are made by flows on cycles on the expanded network and the

expression for Fv given in (77). 2
Consider now (VI) in (66) but defined on (V∩X)×S, and denote it by VI(F, (V∩X)×S), F (·) being

the functional defined in (77). The following lemma 5.5 is a preliminary result required in the proof of
theorem 5.8.

Lemma 5.5 Under assumptions 5.2 and 5.3, assume that for ϵ > 0, V∩Xϵ ̸= ∅. Then, VI(F, (V∩Xϵ)×S)
has a nonempty solution set, and if (v∗

ϵ , ζ
∗
ϵ ) is one such solution, then v∗

ϵ ∈ V̂ ∩Xϵ, i.e., it contains no
cyclic flows.

Proof: Consider C =
⊗

d∈D Cd, where boxes Cd are defined as Cd = { vd ∈ IR|A| | 0 ≤ vda ≤ ρd, a ∈ A }.
Bounds ρd, d ∈ D, are taken as ρd >

∑
(p,d)∈W gp,d. Then, VI(F, (V ∩ Xϵ ∩ C) × S)) has a solution

x∗ϵ = (v∗
ϵ , ζ

∗
ϵ ) because it is defined on a compact and convex set and because V ∩Xϵ ⊂ V ∩ intX, F is

continuous on V ∩Xϵ . Now, the following equalities must hold:

Min u⊤Fv(x
∗
ϵ )

(1)
=

u ∈ V ∩Xϵ ∩ C
Min u⊤Fv(x

∗
ϵ )− µ⊤(cϵ − Eu)

(2)
=

u ∈ V ∩ C
Min u⊤Fv(x

∗
ϵ )

u ∈ V ∩Xϵ
(101)

where cϵ = c− ϵ[1]k. Equality (1) follows by lagrangian duality. There must exist multipliers µ ≥ 0 such
that the second linear program in (101) has solutions verifying µ⊤(cϵ − Eu) = 0 and Eu ≤ cϵ and that
also solve the first linear program in (101). These solutions must lie in V̂ because, as a consequence of
proposition 5.4, costs of the second linear program are Fv(x

∗
ϵ ) + E⊤µ > 0 and thus the solutions lie in

V̂ ∩ Xϵ ∩ C. Equality (2) follows because bounds ρd will never be reached in a solution of the second
linear program in (101), and consequently, they will never be reached in solutions of the first. 2

Primal gap function GP for problem VI(F, (V∩Xϵ)×S) will also verify theorem 4.9 (simply consider
V ∩Xϵ instead of V in theorem 4.9). If functions ta(·) and inverse efff’s σa(·) are continuous and finite
on V̂ ∩ X, then theorem 4.9 will also apply for problem VI(F, (V ∩ X) × S). For these two problems,
the Cepeda, Cominetti and Florian gap function will be denoted by Ĝ ϵ

CCF(·) and ĜCCF(·), respectively. It
should be noted that the gap function ĜCCF(·) defined below in (103) for the capacitated case is of special
algorithmic interest.

The following relationships will be verified:

ĜCCF(v) = φ(v, v)−Min u∈V∩X φ(u, v), Ĝϵ
CCF(v) = φ(v, v)−Min u∈V∩Xϵ

φ(u, v) (102)

ĜCCF(v) = Ĝ
(0
CCF(v)− Ĝ

(1
CCF(v), Ĝϵ

CCF(v) = Ĝ
(0,ϵ
CCF (v)− Ĝ

(1,ϵ
CCF (v) (103)

where Ĝ
(0
CCF(v) = Ĝ

(0,ϵ
CCF (v) = G

(0
CCF(v) = φ(v, v), and

Ĝ
(1
CCF(v) = Min u∈V∩X φ(u, v), Ĝ

(1,ϵ
CCF (v) = Min u∈V∩Xϵ

φ(u, v) (104)

Note that g(ϵ)
∆
= Ĝ

(1,ϵ
CCF (vϵ) is a continuous function near 0 and that the point-to-set map ϵ 7→

Sol VI(F, (V∩Xϵ))×S is upper semi-continuous near 0 (as a direct consequence of theorem 2.2.2, page 14,
in Fiacco (1983)). Because of lemma 5.5, solution flows v∗ of VI(F, (V ∩Xϵ)× S) are such that v∗ ∈ V̂,
and thus an analysis based on acyclic paths, which is necessary for subsequent results in this subsection,
can be made. Consider Γω, the set of acyclic paths joining origin-destination pair ω ∈ W on the ex-
panded transit network, and let Hω be the polytope of the acyclic path flows joining origin-destination

pair ω ∈W : Hω
∆
= { h ∈ IR

|Γω|
+ |

∑
r∈Γω

hωr = gω }.
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Correspondingly, let Hd, d ∈ D and H be defined as Hd
∆
=
⊗

ω∈Wd
Hω, d ∈ D and H

∆
=
⊗

ω∈W Hω.
Let ∆ = ( ...,∆d, ...; d ∈ D) be the link path incidence matrix for the expanded transit network composed
of block matrices ∆d with columns associated with paths with common destination d ∈ D. Let also h =
( ...,hd, ...; d ∈ D) be a path flow vector with block components hd for flows on paths and Td(v, ζd) be the
link-cost vector defined in (58) with common destination d ∈ D and T(v, ζ) = ( ...,Td(v, ζd), ...; d ∈ D ).
Let the linear application w(·) : V → V ⊂ IR|A| be defined as w(v) =

∑
d∈D vd i.e., w(·) defines total link

flows v for per-destination flow vectors vd, d ∈ D. Per-destination flow vector vd will be expressed as

vd = ∆dhd, and a path-cost operator will be defined as J(h, ζ)
∆
= ∆⊤T(w(∆h), ζ), where component Cγ

of this operator for path γ in the set of paths Γω, for origin-destination pair ω = (i, d) ∈W is expressed
as Jγ(h, ζ) = Cγ(w(∆h), ζ), being:

Cγ(v, ζ
d) =

∑
a∈γ

Ψd
a(v, ζ

d), γ ∈ Γω, ω ∈W (105)

Then, variational inequality VI(F, (V ∩X)× S) or VI(F, (V ∩Xϵ)× S) can be expressed in terms of

path costs and path flows on HX
∆
= { h ∈ H | E∆h ≤ c } and Hϵ

X
∆
= { h ∈ H | E∆h ≤ c− ϵ[1]k } as

∆⊤
d T

d(w(∆h), ζd) = Λd +∆⊤
d ξ

d −∆⊤
d Ed θ̃ (106)

with complementarities hd ≥ 0, ∆⊤
d ξ

d ≥ 0 and h⊤d ∆
⊤
d ξ

d = 0, which are a consequence of complemen-

tarities vd ≥ 0, ξd ≥ 0, vd⊤ξd = 0. In turn, variables ζd = ( ..., ζda , ...; a ∈ Ê(i), i ∈ N̂d ) are solutions
of V.I.’s (65) with v taken as ∆h instead. The vector of multipliers Λd, d ∈ D in (106) is defined as
Λd = ( ..., λdi , ...; (i, d) ∈ W ) and θ̃ ∈ IRk is a non-negative vector of multipliers for constraints E∆h ≤ c
or E∆h ≤ c− ϵ[1]k.

Assumption 5.6 For any ω ∈ W , there exists at least a path γω so that any link a ∈ γω verifies that
travel time functions ta(·), a ∈ γω, and efff’s σa(·), a ∈ Â ∩ γω are continuous and finite on V̂ ∩X.

Assumption 5.7 For any v ∈ fr(V ∩ intX), A∞
t (v) ̸= ∅ and/or A∞

σ (v) ̸= ∅.

Theorem 5.8 Under assumptions 5.2, 5.3, 5.6, 5.7, consider problem VI(F, (V ∩X)× S).

1. If there exists a path γ from node i to destination d ∈ D comprised of links that are not included
in constraints Eu ≤ c defining set X, i.e., for any link a ∈ γ, edq,a = 0, 1 ≤ q ≤ k, then at a
solution v∗

λdi ≤ Cγ(v
∗, ζd∗) ≤

∑
a∈γ

(ta(v
∗) + σ̃a(v

∗)) (107)

and origin-destination travel time i→ d is finite.

2. Then, at solutions v∗ of problem VI(F, (V ∩X)× S), function Ĝ
(1
CCF verifies

Ĝ
(1
CCF(v

∗) ≤
∑
ω∈W

gωCγω (v
∗, ζd(ω)∗) ≤

∑
ω∈W

gω

(∑
a∈γω

(ta(v
∗) + σ̃a(v

∗))

)
(108)

where d(ω) is the destination of origin-destination pair ω ∈W and σ̃a(v) is defined as σ̃a(v) = σ(v)
if a ∈ Â and otherwise σ̃a(v) ≡ 0.

3. Problem VI(F, (V ∩ X) × S) has a nonempty solution set, and any solution x∗ = (v∗, ζ∗) is such
that v∗ ∈ V̂ ∩ intX. In other words, solution flows of VI(F, (V ∩X) × S) contain no cyclic flows
on the expanded graph and Ev∗ < c.

In addition, if previous assumptions 5.6, 5.7 hold, then origin-destination travel times are always finite,
independently of the level of demands gω, ω ∈W .

Proof: Let vd∗
ϵ , d ∈ D be a solution of problem VI(F, (V ∩Xϵ)× S). Because of lemma 5.5, v∗

ϵ ∈ V̂. Let

h∗d be path flows in Hϵ
X such that vd∗

ϵ = ∆dh
∗
d and let v∗ = w(∆h∗). Then, function Ĝ

(1,ϵ
CCF at v∗

ϵ for this
problem can be expressed as:

Ĝ
(1,ϵ
CCF (v

∗
ϵ ) =

∑
d∈D

Td(v∗ϵ , ζ
d∗
ϵ )⊤∆dh

∗
d =

∑
d∈D

h∗⊤d ∆⊤
d T

d(v∗ϵ , ζ
d∗
ϵ ) (109)
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Thus, (106) will hold at solution h∗ of problem VI(F, (V ∩Xϵ) × S) and for path γ ∈ Γω referred to
in point 1 of the lemma Ed∆γ = 0, and:

λdi = min γ′∈Γω{Cω
γ′(v∗ϵ , ζ

d(ω)∗
ϵ ) + ∆⊤

γ′E⊤
d θ̃ } ≤

∑
a∈γ

(ta(v
∗
ϵ ) + σ̃a(v

∗
ϵ )) (110)

Because no link in path γ is included in constraints Ev ≤ c and 0 ≤ ζda ≤ 1, inequality in (107) follows
for flows v∗ϵ . Now, because of (106) and complementarities,

h∗⊤d ∆⊤
d T

d(v∗ϵ , ζ
d∗
ϵ ) = h∗⊤d Λd − h∗⊤d ∆⊤

d Ed θ̃ ≤ h∗⊤d Λd (111)

Because Ĝ
(1,ϵ
CCF (v

∗
ϵ ) can be expressed as in (109), summing for d ∈ D in (111) there follows (108) for

function Ĝ
(1,ϵ
CCF at v∗

ϵ .

At equilibrium solutions, function g(ϵ)
∆
= Ĝ

(1,ϵ
CCF (v

∗
ϵ ) = G

(0
CCF(v

∗
ϵ ) is continuous. If it is taken into account

that functions G
(0
CCF and functions ta(·), σa(·) are continuous on V ∩ intX and also that the point-to-set

map ϵ 7→ Sol VI(F, (V ∩Xϵ))× S is upper semi-continuous near 0, it follows that,

ℓimϵ→0+G
(1,ϵ
CCF (v

∗
ϵ ) = G

(0
CCF(v

∗
0+) ≤

∑
ω∈W

gω

( ∑
a∈γω

(ta(v
∗
0+) + σ̃a(v

∗
0+))

)
< +∞ (112)

and results 1 and 2 in theorem follow. Because A∞
t (v) ̸= ∅ and/or A∞

σ (v) ̸= ∅, then all functions ta(·)
and σa(·) are finite at v∗

0+ /∈ fr(V ∩ intX).

Let ρ′ > max u∈vertex(V)∥u∥2 and ρ = (ρ′2 +
∑

d∈D |N̂d|)1/2. Because of lemma 5.5, v∗
ϵ ∈ V̂ ∩ intX

and ∥v∗
ϵ∥2 < ρ. Then,

v∗⊤
ϵ Fv(x

∗
ϵ ) = Min u⊤Fv(x

∗
ϵ ) =

u ∈ V ∩Xϵ

Min u⊤Fv(x
∗
ϵ ) =

u ∈ V
Min u⊤Fv(x

∗
ϵ )

u ∈ V ∩Bρ′
(113)

Because of (113) for any sequence {ϵℓ} → 0+, its associated sequence of solutions {xϵℓ} will have

a limit point x0+ = (v0+, ζ0+) ∈ Sol VI(F, ((V ∩ X) × S) ∩ IBρ) with v∗
0+ ∈ V̂, and as a consequence,

∥x0+∥2 < ρ. Applying theorem 4.2 in Kinderlehrer and Stampacchia (1980) (chapter 1, page 13), it

follows that x0+ ∈ Sol VI(F, (V ∩X)× S)) and v0+ ∈ V̂ ∩ intX. 2

Remark 5.9 Note that, as stated in subsection 4.1, finite inverse efff’s were guaranteed by assumption
3.2 and that positive efff’s in the solution were conjectured to state the presented reformulation as V.I.
of the C3F model. Now, under conditions for either theorem 5.1 or theorem 5.8, fa(v) = 1/σa(v) > 0.
Therefore assumption 3.2 can be replaced by those required in theorem 5.1 or theorem 5.8 according to
whether the model has no sharp capacity constraints or, on the contrary, these constraints appear in the
model.

Finally, taking into account theorem 5.1 and theorem 5.8 and previous remark 5.9, theorem 4.6 may
be expressed as one of the following two:

Theorem 5.10 If ta(·), a ∈ A and σa(·), a ∈ Â are continuous and positive on V, then equilibrium
flows v∗ for the C3F model exist such that v∗ ∈ V̂, and also solve VI(F,V). The converse is also true
and thus C3F model is equivalent to (VI) in (66), VI(F,V).

Theorem 5.11 If (explicit or implicit) sharp capacity constraints defining X as in (97) are such that
V̂ ∩ intX ̸= ∅, then

1. Suppose that travel time functions ta(·), a ∈ A, and efff’s σa(·), a ∈ Â are positive and continuous
on V ∩X. Then, any solution v∗ of VI(F,V ∩X) is such that v∗ ∈ V̂ ∩X.

2. Suppose that travel time functions ta(·), a ∈ A, and efff’s σa(·), a ∈ Â are positive and continuous
on V ∩ intX and that assumptions 5.6 and 5.7 hold. Then, equilibrium flows v∗ for the C3F model
exist and are such that v∗ ∈ V̂ ∩ intX.

In both cases origin-destination travel times are finite independently of the demands gω, ω ∈W .
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The following corollary is also a direct consequence of theorem 5.11 and lemma 4.8

Corollary 5.12 ( Characterization of C3F equilibrium as a fixed-point inclusion ). Under conditions of
theorem 5.11, v∗ is a solution of VI(F,V ∩X) iff the following fixed-point inclusion is verified:

v∗ ∈ Sol Min u∈V∩X φ(u,w(v∗)) (114)

where w(v∗) =
∑

d∈D vd∗.

For explicitly capacitated transit networks, result 3 in theorem 5.8 cannot be obtained by simply
imposing assumptions such as 5.7 on functions σa(·) and the stronger one in 5.6 is required, as the
following simple example shows.

Consider the small network shown in figure 3. In-vehicle times for lines 1 and 2 from A to C are 18
and 20, respectively. Boarding and alighting links are assigned a travel time function ta = 1. Effective
frequency functions for line 1 and 2 at stop node A are given by:

f1(v1) =

{
1/5 for v1 ≤ 60
max{1/5− 0.1(v1 − 60)2, 0} for v1 ≥ 60

f2(v2) =

{
1/6 for v2 ≤ 60
max{1/6− (v2 − 60)2, 0} for v2 ≥ 60

(115)

It is assumed that boardings to line 2 at B experience the same efff f2 as those at A. Origin-destination
flows are gAC = 100 and gBC = 160

11 + 1√
6
. Capacities imposed implicitly by efff’s are

√
2 + 60 for line 1

and 60 + 1/
√
6 for line 2. Note, that there is enough capacity on the network to allocate the demand.

After performing a congested transit assignment on the example network, average travel time from A to
C is 260

11 , and boardings at node A on lines 1 and 2 are v1 = 600
11 , and v2 = 500

11 , respectively. Boardings at
node B are 160

11 + 1√
6
and average travel time from B to C is ∞. Note that all efff’s remain uncongested.

Note also that adding a new link from B to C with a continuous, increasing and finite travel time function
would guarantee that origin-destination travel time from B to C would always remain finite by absorbing
part of the flow B → C, which now can only pass through line 2 to its destination.

Figure 3.

6 Conclusions and further research

In this paper, it has been proved that the equilibrium model for congested transit networks developed by
Cominetti and Correa (2001) and Cepeda et al. (2006) referred to in this paper as the C3F model, can
be formulated as a variational inequality problem. Previously, Cepeda et al. (2006) reformulated this
equilibrium model as the minimization of a non-convex and non-differentiable gap function and solved
it heuristically by means of the classical mean successive averages method. For proof of the equivalent
formulation in variational inequalities of the C3F model, partial results in Cepeda et al. (2006) have been
used. Conditions for the existence of results of the new VI reformulation of the C3F model are developed
in this paper, and the case of a strict capacity constrained congested transit model is examined. It is
proved that, under the assumptions shown in this paper, solutions exist and that transit volumes will
remain under capacity, avoiding infinite origin-destination travel times and completely saturated links.
Furthermore, it is shown that for this case, it is also possible to consider a gap function for the problem
that has been derived in a natural way from the one derived in Cepeda et al. (2006) for the uncapacitated
case. The contribution in this paper opens the door to the wide spectrum of algorithmic methods for
variational inequality problems in order to solve the C3F model, and an in-depth exploration of the
algorithmic alternatives opened by this reformulation in variational inequalities is a task that will be
developed in a forthcoming paper.
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Figure 1. The transit expanded network assumed in the model.

Figure 2. Links whose total flows intervene in the efff fa(·) for boarding link a.

Figure 3. An example showing that an apparently sufficient capacitated network for which
assumption 5.6 does not hold may have completely saturated links and ∞ origin-destination
travel times.
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Figure 1: The transit expanded network assumed in the model.
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Figure 2: Links whose total flows intervene in the efff fa(·) for boarding link a.
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Figure 3: An example showing that an apparently sufficient capacitated network for which
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