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Single-Leg Airline Revenue Management With Overbooking

Nurşen Aydın, Ş. İlker Birbil, J. B. G. Frenk and Nilay Noyan
Sabancı University, Manufacturing Systems and Industrial Engineering, Orhanlı-Tuzla, 34956 Istanbul, Turkey

Abstract: Airline revenue management is concerned with identifying the maximum revenue seat allocation poli-

cies. Since a major loss in revenue results from cancellations and no-shows, overbooking has received a significant

attention in the literature over the years. In this study, we propose new static and dynamic single-leg overbooking

models. In the static case we introduce two models; the first one aims to determine the overbooking limit and the

second one is about finding the overbooking limit and the booking limits to allocate the virtual capacity among

multiple fare classes. Since the second static model is hard to solve, we also introduce computationally tractable

models that give upper and lower bounds on its optimal expected net revenue. In the dynamic case, we propose a

dynamic programming model, which is based on two streams of events. The first stream corresponds to the arrival

of booking requests and the second one corresponds to the cancellations. We conduct simulation experiments to

illustrate the effectiveness of the proposed models.

Keywords: Revenue management; airline; overbooking; cancellation; static model; dynamic model; dynamic

programming; simulation

1. Introduction. Historically, airline industry plays the steering role in revenue management. This

can be attributed to the quick responses of the airline executives, who have realized the importance of

controlling the reservation process in order to increase their gains over a fiscal year. The main problem,

then and now, in airline revenue management is to determine how to reserve the seats for the requests

coming from the passengers. Naturally, the objective of this problem is to maximize the total revenue. We

refer to (Talluri and van Ryzin, 2005, Section 1.2) for a historical account of the role of airline industry

in revenue management.

Capacity allocation and overbooking are two main strategies used by revenue management specialists.

While capacity allocation deals with reserving seats for different fare classes, overbooking is concerned

with the number of additional booking requests to be accepted above the physical capacity. It is quite

common that a certain percentage of the accepted requests cancel before the departure time (cancella-

tions) or do not show-up at the departure time (no-shows). Consequently, the capacity becomes available

for boarding the overbooked passengers. Thus, overbooking is used by the airline companies to protect

themselves against vacant seats due to no-shows and late cancellations. On the other hand, it may also

happen that some of the reservations are denied boarding due to the lack of capacity at the departure

time. In such a case, the airline faces penalties like monetary compensations, and even worse, suffers from

bad public relations. Even though the overbooking decision involves uncertainties regarding the no-shows

and cancellations, accepting more booking requests than the available capacity is still a commonly-used,

profitable strategy because the revenue collected by overbooking usually exceeds the penalties for denied

boardings (Rothstein, 1985). The overbooking limit, which is also referred to as virtual capacity or total

booking limit, is the maximum number of booking requests an airline company is willing to accept. An

allocation policy specifies how to allocate this virtual capacity to each fare class. Although a common

practice is first setting the virtual capacity and then doing the allocations (c.f. (Belobaba, 2006)), this

heuristic approach in fact undermines the effects of these two decisions on each other. Therefore, it is

natural to study the joint capacity allocation and overbooking problem which is, in general, difficult to

solve largely because of the uncertainty in demand, no-shows and cancellations.

It is well known that many airline companies are interested in managing their revenues over a network

of flights. However, solving single-leg problems is still crucial because (i) the network based seat allocation

problems are quite difficult to solve, and hence, in practice, the methods that require solving a series of

single-leg problems are frequently applied; (ii) some small airline companies, like charter flight companies

commonly seen in Europe, accept booking requests only for single-leg itineraries.

Roughly speaking, in a static model one does not consider the dynamics of the stochastic processes

representing the booking requests and the cancellations over time. On the other hand, a dynamic model

accounts for the behavior of the system over time. In the remaining part of this paper, we propose new
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mathematical programming models for static and dynamic single-leg problems that involve no-shows,

cancellations, and hence, overbooking. Our first static model focuses on finding the total overbooking

limit for multiple classes under the assumption that the fare class requests are accepted as long as the

total number of reservations is below the total booking limit. This model allows for class-dependent

cancellations and no-shows. We discuss that the proposed model is general and the resulting problem can

be solved to optimality efficiently. To the best of our knowledge, our model is a first in the literature in

determining an optimal total booking limit under this broad setting. As a by-product of our approach, we

also discover that a well-known heuristic from the literature finds an optimal overbooking limit whenever

the particular parameters dictated by our analysis are used. In the second static model, which also

considers the class-dependent no-shows and cancellations, we determine simultaneously the total booking

limit and the partitioned allocation of the virtual capacity to each fare class. Arriving at a computationally

difficult model, we propose upper and lower bounding problems to obtain approximate solutions, which

have demonstrated promising performance in our computational study. Our last model involves a dynamic

setting based on two independent streams of events; arrivals of booking requests and cancellations.

Contrary to the static case, in the dynamic setting we deal with the class-independent show-ups and

cancellations. The proposed model, therefore, can be used as a heuristic in practice for the actual model

with class-dependent processes. We show that it is easy to solve the resulting problem with dynamic

programming. After characterizing the optimal policy, we also present the nested structure of the optimal

allocations.

The rest of the paper is organized as follows. Section 2 gives the literature review on static and dynamic

overbooking models. We introduce our static models in Section 3. This is followed by the dynamic model

in Section 4. We present our computational study in Section 5 and conclude the paper in Section 6.

2. Literature Review The early overbooking literature concentrates mainly on static models with

one or two fare classes and the objective of finding the overbooking limit. The first scientific work on

overbooking is proposed by Beckman (1958). Beckman proposes a static single fare class overbooking

model, which determines the overbooking limit by considering the trade-off between the lost revenue

due to empty seats at the departure, the total cost of denied boardings and the revenue generated by

the go-show passengers. The go-shows are the passengers who show up without any reservation at the

departure time. American Airlines adopted Beckman’s approach and implemented a related model in

1976 and then revised it in 1987 (Smith et al., 1992). Beckman’s work is succeeded by Thompson (1961),

who considers a practical model ignoring the probability distribution of demand and requiring only data

on the number of cancellations among the total number of reservations. Given the capacities for two fare

classes, Thompson aims at determining the overbooking amount for each fare class so that the probability

of overbooking equals to a specified value. He also supports his arguments by a statistical analysis of

the involved distributions. The works of Beckman and Thompson are refined by Taylor (1962). Like

Thompson, Taylor focuses on a service measure by constraining the number of denied boardings but

considers cancellations, no-shows and group sizes explicitly. This influential work of Taylor has attracted

the attention of various airlines. Consequently, the variants of this work are implemented, and then,

reported in a sequence of papers. The references and the details of this history are given by Rothstein

(1985).

In the first part of his thesis, Chi (1995) studies a static overbooking problem with multiple fare

classes and formulates it as a dynamic programming model. However, when cancellations and no-shows

are considered, the model suffers from the curse of dimensionality because one needs to keep track of the

number of reservations for each class. To overcome this difficulty, Chi proposes an approximate model

that can be solved in polynomial time. Coughlan (1999) also considers a overbooking problem with

multiple fare classes, but he assumes that the go-show passengers are given the empty seats at the same

price as in (Beckman, 1958). Unlike the majority of the studies in the literature, Coughlan does not use

a Poisson distribution to model the demand but makes the simplifying assumption that both the demand

and the number of bookings for each fare class are independent and normally distributed. Coughlan’s

discussion also supposes implicitly that the minimum of the demand and the number of bookings is also
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normally distributed; unfortunately, this supposition does not hold mathematically in general. Overall,

the author provides a closed form formula for the revenue function and applies heuristic search methods

to find a maximizer.

Several researchers have addressed dynamic overbooking models for single-leg problems. Generally,

the dynamic overbooking problem is modeled as a Markov Decision Process (MDP). Rothstein (1971)

proposes two such models, where only one fare class is considered. In the first model, the objective is

to find the optimal expected revenue after deducting the cost of denied boardings. Following the work

of Thompson (1961), the second model adds a constraint to limit the proportion of denied boardings.

Alstrup et al. (1986) also use a MDP to solve an overbooking model but this time with two fare classes

and the cost of downgrading (a cost that is incurred due to reserving cheaper seats for the passengers

requesting more expensive fare classes). In the second part of his thesis, Chi (1995) discusses two dy-

namic models with multiple fare classes. Although the first model incorporates the realistic setting of

cancellations occurring in time, it is computationally intractable. To ease the computational burden,

Chi then assumes in his second model that the cancellations occur right before the departure time. This

assumption allows him to solve the resulting model with an approximation similar to the one he uses

in the static case. Chatwin (1998) analyzes the optimal solution structure of a discrete time dynamic

single fare class overbooking model and discusses the conditions, under which a booking limit policy is

optimal. Subramanian et al. (1999) study a more general setting than Chatwin, where they analyze the

overbooking problem with multiple fare classes. The authors consider the arrival of a cancellation, the

arrival of a booking request and no arrival of any type as a combined stream and assume that at most

one of these events can occur at any discrete time epoch. Under this setting they present two models. In

the first model, the cancellation and no-show probabilities do not depend on the fare classes. They show

that the resulting problem can be equivalently modeled as a queuing system discussed in the literature

(Lippman and Stidham, 1977). In their second model, they relax the class independence assumption

and model a more general problem with class-dependent cancellations and no-shows. Unfortunately, the

resulting dynamic programming formulation cannot be solved efficiently because of the high-dimensional

state space. Chatwin (1999) examines a continuous-time single fare class overbooking problem, where

fares and refunds vary over time according to piecewise constant functions. In his model the arrival

process of requests is assumed to be a homogeneous Poisson process, and the probabilities to identify

the type of a request are independent of time. He assumes that the reservations cancel independently

according to an exponential distribution with a common rate, and the arrival process of requests de-

pends on the number of reservations. Under these assumptions, the author formulates the problem as

a homogeneous birth-and-death process and shows that a piecewise constant overbooking limit policy is

optimal. A closely related study is given by Feng et al. (2002). They consider a continuous-time model

with cancellations and no-shows. They derive a threshold type optimal control policy, which simply

states that a request should be admitted only if the corresponding fare is above the expected marginal

seat revenue (EMSR). Karaesmen and van Ryzin (2004) examine the overbooking problem differently.

Their model permits that fare classes can substitute for one another. They formulate the overbooking

model as a two-period optimization problem. In the first period the reservations are made by using only

the probabilistic information of cancellations. In the second period, after observing the cancellations and

no-shows, all the remaining customers are either assigned to a reserved seat or denied by considering the

substitution options. They give the structural properties of the overall optimization problem, which turns

out to be highly nonlinear. Therefore, they propose to apply a simulation based optimization method

using stochastic gradients to solve the problem.

In all of the above models probability distributions are used to model uncertainty in demand and

cancellations. Recent studies in revenue management focus on the availability of information. Adaptive

methods are used when there exists no or limited information about the demand. Most of these methods

assume that there is access only to samples from demand distributions. They mainly compute the booking

limits based on the past information but also react to the possible inaccuracies related to the estimates

of demand (van Ryzin and McGill, 2000; Huh and Rusmevichientong, 2006). Kunnumkal and Topaloglu

(2009) consider a capacity allocation problem with limited demand information and develop a stochastic
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approximation method to compute the optimal protection levels iteratively. They prove that the sequence

of protection levels computed by using their approach converge to the optimal ones. Birbil et al. (2009)

present a robust version of static and dynamic single leg problems. In their model, they take into account

the inaccuracies associated with the estimated probability distributions of the demand for different fare

classes. Ball and Queyranne (2009) use online algorithms to treat also a robust problem. In this way,

they eliminate the need for estimating the demand and present the closed-form optimal booking limits.

Lan et al. (2008) generalize Ball and Queyranne’s model by assuming that the demand for each fare

class lies in a given interval. By using relative regret and absolute regret as performance criteria, they

provide two capacity allocation models which differ in their objective functions. They show that these

two models can be analyzed in a unified manner and both models provide nested booking limits. In a

related work, Lan et al. (2011) formulate a joint overbooking and seat allocation model, where both the

random demand and no-shows are characterized using interval uncertainty. They focus on the seller’s

regret in not being able to find the optimal policy due to the lack of information. The regret of the

seller is quantified by comparing the net revenues associated with the policy obtained before observing

the actual demand and the optimal policy obtained under perfect information. The model aims to find

a policy which minimizes the maximum relative regret.

In the present study, we develop new static and dynamic overbooking models and their associated solu-

tion methods. In the static case we discuss two models both of which allow class-dependent cancellations

and no-shows. The first model can be seen as a generalization of the single fare class model discussed

in Phillips (2005). The second static model aims at determining both the total booking limit and the

partitioned allocation of the virtual capacity to each fare class. We then propose a discrete-time dynamic

model based on independent streams of arrivals of booking requests and cancellations. Our modeling

approach differs from the one based on a combined stream of events (Subramanian et al., 1999) by allow-

ing the arrival and cancellation processes to be independent. In particular, we assume that requests for

different fare classes arrive according to independent nonhomogeneous Poisson processes. Moreover, the

number of cancellations in any time period, given that there are n number of accepted requests at the

beginning of that time period, is a binomially distributed random variable with n independent trials and

a period-dependent cancellation probability. Thus, as desired, the arrival process of the booking requests

are independent of the number of reservations whereas the cancellation and no-show probabilities depend

on the total number of reservations.

3. Static Overbooking Models. In this section, we propose two static risk-based overbooking

models and analyze them in-depth to obtain efficient solution methods. The risk-based models try to

determine a policy considering the trade-off between the potential revenue from accepting an additional

request and the cost of an additional denied service. The objective of our first static model is to find

an optimal booking limit maximizing the expected net revenue under the assumption that the greedy

policy—that is, a request for any fare class is accepted as long as the total number of reservations is

below the overbooking limit— is applied. In this model, the probabilistic information comes from the

aggregate demand for all fare classes. However, we assume that each booking request belongs to a fare

class with a certain probability. Finding an optimal total booking limit in this way is useful in practice,

since the overbooking limit can be used as an input to some well-known allocation methods. This kind of

heuristic approach first determines the total booking limit and then uses one of the well-known capacity

allocation methods, like the famous EMSR heuristics (Belobaba, 1987, 1989), to calculate the nested

protection levels for different fare classes. In our second model, on the other hand, the probabilistic

information is related to the demand for each fare class. We try to determine both the total booking

limit and the partitioned allocation of the virtual capacity to each fare class in such a way that the

expected net revenue is maximized. Since the second static model is quite hard to solve, we introduce

two computationally tractable models that give upper and lower bounds on the proposed model’s optimal

expected net revenue.

In the subsequent discussion, we consider a flight with a known seat capacity of C and do not assume

that the booking requests for different fare classes arrive in a certain order. In the first model, the
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booking requests for m different fare classes are accepted until the total booking limit b ≥ C is reached,

whereas in the second model the booking decisions are based on the capacity allocated to each fare class.

An accepted request becomes a reservation and a reservation may cancel at any time before departure

or may not show up without cancelling. Let βs
i > 0 denote the probability that an accepted fare class

i request shows up at the departure time. For the remaining fare class i reservations, if we denote the

probability of a cancellation by δi, then a fare class i reservation cancels with probability βc
i := (1−βs

i )δi.

We assume that a fare class i cancellation is refunded a percentage αi of the corresponding ticket price

ri, and no-shows do not receive any refund. If the number of shows exceeds the capacity C, then exactly

C shows will be on the flight and the rest will be denied boarding. For each denied service, the airline

incurs a denied service cost of θ > 0. We refer the interested reader to (Chatwin, 1999) for a discussion

on fare class-independent compensation for a denied boarding. In our study, the total booking limit and

the individual booking limits are allowed to be infinite; an infinite value corresponds to accepting all the

booking requests. Let Z̄+ = Z+ ∪ {∞} denote the set of extended natural numbers. Aside from this

notation, the random variables and the vectors are denoted by uppercase and lowercase boldface letters,

respectively. If X and Y are random variables, then X =d Y means that the cumulative distribution

functions of X and Y are identical. To simplify the exposition, we also denote max{x, 0} by [x]+.

3.1 Total Booking Limit. In this section, we propose a model to determine a total booking limit

b ≥ C. We consider a model, where the probabilistic information is the random total booking requests,

and denote this non-negative integer valued random variable by D. We assume that D has a finite first

moment and each booking request belongs to a certain fare class according to a multinomial selection

mechanism with given probabilities. These probabilities can be estimated using historical data about

the overall market share of each fare class. In particular, each arriving request is for fare class i with

probability pi, i = 1, . . . ,m. Clearly, pi ≥ 0 and
∑m

i=1 pi = 1. Thus, we assume that the random fare

class i demand, denoted by Di, has a binomial distribution with D independent trials and the success

probability of pi (see Appendix A for an introduction to the Bernoulli selection scheme). We consider the

greedy policy of accepting a booking request for any fare class as long as the total booking limit b is not

reached. Under this policy the random total number of reservations is given by N(b) := min{b,D}. Let

B(p, k) denote a binomially distributed random variable with k independent trials each having a success

probability of p and Dr
i designate the random number of reservations for fare class i. Since our policy

accepts any request until the booking limit is reached, it is easy to prove the following lemma, which

implies that the joint distribution of the random vector (Dr
1, . . . ,D

r
m) follows a multinomial distribution

with N(b) independent trials and the success probabilities pi, i = 1, . . . ,m.

Lemma 3.1 Under the greedy policy, it follows that Dr
i =d B(pi,N(b)).

Proof. Let Dr
i denote the random number of fare class i reservations. By the definition of the total

booking limit b and the used policy, we obtain for every integer k satisfying k ≤ b− 1 and y ≤ k that

P(Dr
i = y | N(b) = k) = P(Dr

i = y | D = k) =

(

k

y

)

pyi (1− pi)
k−y . (1)

It also follows for every y ≤ b that

P (Dr
i = y | N(b) = b) = P (Dr

i = y | D ≥ b) =
P(Dr

i=y,D≥b)
P(D≥b)

=
∑∞

k=b
P(Dr

i=y,D=k)

P(D≥b) =
∑∞

k=b
P(Dr

i=y|D=k)P(D=k)

P(D≥b)

=
∑∞

k=b (
b

y)p
y
i
(1−pi)

b−y
P(D=k)

P(D≥b) =
(

b
y

)

pyi (1− pi)
b−y .

(2)

Applying now relations (1) and (2) yields the desired result. �

As discussed at the beginning of Section 3, we distinguish between a no-show and a cancellation to

obtain an explicit expression of the revenue obtained from each reservation. By Lemma 3.1 and the

properties of the Bernoulli selection mechanism as discussed in Appendix A, the random number of fare



6 Aydın, Birbil, Frenk and Noyan: Airline revenue management with overbooking
Sabancı University, c©August 8, 2012

class i shows and fare class i cancellations are given by B(βs
i pi,N(b)) and B(βc

i pi,N(b)), respectively, (c.f.

(Thompson, 1961; Chatwin, 1998; Coughlan, 1999) for similar uses of the Bernoulli selection scheme).

Hence, for a given booking limit b the random total revenue generated by any fare class i reservation is

given by

riB(pi,N(b))− αiriB(βc
i pi,N(b)),

where αiri denotes the refund paid for a fare class i cancellation. Introducing now

τi = ri(1− αiβ
c
i ), i = 1, . . . ,m, (3)

the expected total revenue over all reservations becomes
∑m

i=1
piτiE(N(b)). (4)

To incorporate the penalty cost of overbooking, we first observe adding up all the shows that the total

number of denied boardings equals
[

∑m

i=1
B(βs

i pi,N(b))− C
]+

.

Since the binomial random variables B(βs
i pi,N(b)), i = 1, . . . ,m, arise within a multinomial selection

experiment with independent trials from the same population, we obtain
[

∑m

i=1
B(βs

i pi,N(b))− C
]+

=d
[

B
(

∑m

i=1
βs
i pi,N(b)

)

− C
]+

. (5)

Then, using relations (4) and (5) the expected net revenue is obtained as

ψ(b) :=
∑m

i=1
piτiE(N(b))− θE

(

[

B
(

∑m

i=1
βs
i pi,N(b)

)

− C
]+

)

and the optimal booking limit is found by solving

max{ψ(b) : b ≥ C, b ∈ Z̄+}. (PT )

To analyze the global properties of the function b 7→ ψ(b), we first observe that ψ(b) = E(f(N(b)))

with f : Z+ → R given by

f(x) =
∑m

i=1
piτix− θE

(

[

B
(

∑m

i=1
βs
i pi, x

)

− C
]+

)

. (6)

By Lemma B.2 it follows that the function x 7→ E([B(
∑m

i=1 β
s
i pi, x) − C]+) is discrete convex, and this

implies that the function x 7→ f(x) is discrete concave. Therefore, by Lemma B.3 the optimal solution of

max{f(b) : b ≥ C, b ∈ Z̄+}

coincides with the optimal solution of problem (PT ). Then, by using the discrete concavity of the function

f , an optimal solution to (PT ) is given by

bopt = inf{b ≥ C : f(b+ 1)− f(b) < 0}. (7)

Here we use the convention that the infimum of the empty set is equal to infinity. Introduce βs :=
∑m

i=1 β
s
i pi and let Uk, k = 1, . . . , b + 1, be a sequence of independent standard uniformly distributed

random variables. Furthermore, let 1A be the indicator random variable of the event A, i.e, it takes value

1 if the event A occurs, and 0 otherwise. Then, by relation (6) and the representation of a binomial

distributed random variable given in (26) we obtain for every b ≥ C that

f(b+ 1)− f(b) =
∑m

i=1
piτi − θE

(

1{Ub+1≤βs}

)

E

(

1{
∑

b
k=1

1{Uk≤βs}≥C}

)

=
∑m

i=1
piτi − θβs

P

(

∑b

k=1
1{Uk≤βs} ≥ C

)

=
∑m

i=1
piτi − θβs

P (B(βs, b) ≥ C) .
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This shows using θβs > 0 that

f(b+ 1)− f(b) < 0 ⇔ P (B(βs, b) ≥ C) >
µ0

µ1
,

where

µ0 =
∑m

i=1
piτi and µ1 = θβs. (8)

Therefore, by using (7), the optimal solution to our optimization problem becomes

bopt = inf

{

b ≥ C : P (B(βs, b) ≥ C) >
µ0

µ1

}

. (9)

A surprising consequence of this result is that the optimal total booking limit does not depend on the

probability distribution function of the total demand D. It is also easy to see that the optimal solution

to our overbooking problem is to set b = ∞ when µ0 − µ1 ≥ 0. An intuitive interpretation of this result

is as follows: Since the expected net revenue per fare class i reservation is at least equal to τi − θβs
i , the

expected net revenue per reservation is given by
∑m

i=1
pi(τi − θβs

i ) = µ0 − µ1.

This expression being non-negative shows that for the risk-based objective, it is always profitable to

accept all requests despite the overbooking cost. Thus, the total booking limit should be set to infinity.

When µ0 − µ1 < 0, there exists a finite optimal solution bopt ≥ C.

We next provide a computationally efficient iterative method to calculate the optimal total booking

limit. To determine bopt, we need to evaluate iteratively for b ≥ C the increasing sequence

γb = P (B(βs, b) ≥ C) .

For b = C, it is obvious that

γC = P (B(βs, C) ≥ C) = (βs)C .

Then, we obtain the recursive relation

γb+1 = γb + βs
P (B(βs, b) = C − 1) . (10)

Our proposed overbooking model is related to the single fare class model discussed in Section 9.3.2

of (Phillips, 2005). Actually, the optimal booking limit of our model with multiple fare classes is equal

to the booking limit obtained by the risk-based overbooking model with a single fare class, where the

price is µ0/β
s, the overbooking cost is θ and the show-up probability is βs. In Section 9.4.2 of the same

book, a heuristic is proposed to determine the total booking limit for multiple fare classes by reducing the

problem to a single fare class model. Basically, this method first estimates the values of the parameters

associated with a representative single fare class from the fare class-dependent parameters, and then,

solves the resulting single fare class model. As a direct consequence of this estimation, only a heuristic

method is obtained. Contrary to Phillips, we show in this paper that under a multinomial selection

scheme linking the overall demand to the demand for each fare class and the policy of accepting all

the requests until the total booking limit is reached, our proposed model determines the optimal total

booking limit. From a different angle, we can state that our analysis provides the values of the price,

show-up probability and overbooking cost parameters for which the heuristic proposed by Phillips is

exact. As mentioned before, our model can be used to provide the overbooking limit to the capacity

allocation heuristics like EMSR-a and EMSR-b. Since we allow class-dependent show-up probabilities,

our model could perform better than those standard static models that determine the total overbooking

limit when the show-up probabilities do not depend on the fare classes (Phillips, 2005). We note that the

performance of the proposed model depends on the accuracy of the estimation of the model parameters.

Among the parameters required to determine the optimal total booking limit (see (3),(8) and (9)), we

acknowledge that the parameters pi are the most challenging to estimate due to the non-availability of

proper historical data. As emphasized in (Talluri and Ryzin, 2004), typically, the data on the arrivals

is incomplete and only the purchase transaction data are available. In our case, suppose that the pi



8 Aydın, Birbil, Frenk and Noyan: Airline revenue management with overbooking
Sabancı University, c©August 8, 2012

parameters associated with more expensive fare classes, and consequently the parameter µ0 in relation

(8), are overestimated. Then, this shows by relation (9) that we may end up with a higher total booking

value.

We conclude this section with two further remarks: (i) The first static model in the airline revenue

management literature was proposed by Beckman (1958). Beckman considers the cost minimization for

a single fare class and provides a more complex analysis. He also observes that the overbooking limit

decision does not depend on the demand distribution. His model can also be analyzed with our simpler

approach. (ii) As it is common in the literature (Subramanian et al., 1999; Talluri and van Ryzin, 2005),

the expected total denied boarding cost may be given by an increasing convex function to represent

the need to offer higher levels of compensation or incur higher goodwill costs for each additional denied

boarding. Given the total booking limit b, this implies that for our model the denied boarding cost equals

E(c(N(b))), where c : Z+ → R is given by

c(x) = E(g(B(
∑m

i=1
βs
i pi, x)− C))

and g : R → R is an increasing convex function satisfying g(z) = 0 for every z ≤ 0. Again by Lemma B.2

the function c is discrete convex, and consequently, the function f : Z+ → R given by

f(x) =
∑n

i=1
piτix− c(x)

is discrete concave. Therefore, as in the previous model, one can show that the optimal booking limit is

in the form of (7).

3.2 Booking Limits for Individual Fare Classes. In this section we focus on a model, in which

the partitioned booking limits as well as the overbooking limit are determined. This modeling ap-

proach sets us apart from other methods using capacity allocation heuristics, like EMSR-a and EMSR-b

(Belobaba, 1987, 1989), after setting the overbooking limit. However, it is important to note that a

policy, which strictly maintains the partitioned booking limits, is rarely applied in practice because in

such a dynamic setting it is clearly suboptimal to reject a higher fare class request even if there is avail-

able capacity for lower fare classes. Therefore, the partitioned booking limits are used to obtain nested

booking limits or nested protection levels. Under a nested policy, higher fare classes are allowed to use

all the capacity reserved for lower fare classes. From this perspective, whenever the optimal partitioned

limits that are obtained in this section are used in a nested way, the resulting method becomes another

heuristic but it does not require a predefined overbooking limit.

We assume that the distribution of the demand for fare class i, denoted byDi, is known and E(Di) <∞

for all i = 1, . . . ,m. If bi is the partitioned booking limit for fare class i, then the random variable

Ni(bi) = min{bi,Di} denotes the number of reservations for fare class i. Using our notation in the

previous section, the random number of fare class i reservations that show up at the departure time and

the random number of fare class i cancellations are given byB(βs
i ,Ni(bi)) and B(βc

i ,Ni(bi)), respectively.

Since the random total number of denied boardings is equal to [
∑m

i=1 B(βs
i ,Ni(bi))−C]+, the expected

net revenue φ(b) for a vector b = (b1, . . . , bm) ∈ Z̄
m
+ is given by

φ(b) =
∑m

i=1
τiE(Ni(bi))− θE

(

[

∑m

i=1
B(βs

i ,Ni(bi))− C
]+

)

. (11)

Thus, we need to solve the following problem to obtain the optimal partitioned booking limits:

max{φ(b) : b ∈ Z̄
m
+}. (PI)

Observe that
∑m

i=1 bi defines the overbooking limit and as suggested, the problem (PI) provides the

optimal overbooking limit and the optimal partitioned booking limits simultaneously. Unfortunately,

due to the expected total overbooking cost, the expected total net revenue is not separable by the fare

classes and this makes it difficult to solve the optimization problem (PI) in an efficient way. Therefore,

we consider lower and upper bounding functions on the expected total overbooking cost and develop

computationally efficient methods to find approximate solutions to problem (PI).
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To compute a lower bounding function on the total expected overbooking cost, we use Jensen’s in-

equality which leads to

E

(

[

∑m

i=1
B(βs

i ,Ni(bi))− C
]+

)

≥
[

E

(

∑m

i=1
B(βs

i ,Ni(bi))− C
)]+

=
[

∑m

i=1
βs
iE (Ni(bi))− C

]+

.

This shows by relation (11) that for every b ∈ Z̄
m
+

φ(b) ≤
∑m

i=1
τiE(Ni(bi))− θ

[

∑m

i=1
βs
iE(Ni(bi))− C

]+

:= φU (b). (12)

Hence, an upper bound on the optimal objective value of problem (PI) can be obtained by solving the

optimization problem

max{φU (b) : b ∈ Z̄
m
+}. (PUB

I )

Although its objective function is not separable, it is still possible to use dynamic programming to solve

the problem (PUB
I ). For the solution method based on dynamic programming we refer to Appendix D.

Here we present a solution method based on a mixed-integer programming formulation, which is easier

to follow and seems to be computationally more efficient as demonstrated by our numerical experiments.

We introduce upper bounds on the booking limits to restrict the feasible region of the problem (PUB
I )

and formulate it as a mixed-integer linear program. In Appendix C, we propose a method to determine

the upper bounds, denoted byMi, i = 1, . . . ,m, so that the problem (PUB
I ) is solved to a desired accuracy

level. Utilizing the proposed method we obtain the upper bounds, and then, restrict the feasible region

of the problem (PUB
I ) to a box by enforcing the bounding constraints bi ≤ Mi, i = 1, . . . ,m. Let

us introduce the binary variables xij , i = 1 . . . ,m, j = 0, . . . ,Mi, where xij = 1 and xij = 0 imply

that bi = j and bi 6= j, respectively. Then, calculating the input parameters aij := E(Ni(j)) for all

i = 1 . . . ,m, j = 0, . . . ,Mi, we obtain an alternate formulation of the problem (PUB
I ):

maximize
∑m

i=1
τi
∑Mi

j=0
aijxij − θw (13)

subject to w ≥
∑m

i=1
βs
i

∑Mi

j=0
aijxij − C, (14)

w ≥ 0, (15)
∑Mi

j=0
xij = 1, i = 1, . . . ,m, (16)

xij ∈ {0, 1}, i = 1, . . . ,m, j = 0, . . . ,Mi. (17)

By constraints (16)-(17) and the definition of parameters aij , it is guaranteed for each fare class i that

exactly one of the binary variables xi0, xi1, . . . , xiMi
takes value 1 and

∑Mi

j=0 aijxij = E(Ni(
∑Mi

j=1 jxij)).

Let (x∗, w∗) be an optimal solution of the problem (13)-(17). Constraints (14) and (15), and the structure

of the objective function (13) ensure that

w∗ = [
∑m

i=1
βs
i

∑Mi

j=0
aijx

∗
ij − C]+.

Then, it is easy to show that the booking limits bi =
∑Mi

j=1 jx
∗
ij , i = 1 . . . ,m, provide an optimal

solution of the problem (PUB
I ) under additional bounding conditions. The number of binary variables is

∑m

i=1Mi ≤ mmax{M1, . . . ,Mm}. In practice, the number of fare classes is a reasonably small number

for a single leg problem, and therefore, the proposed formulation can be very efficiently solved by a

standard mixed integer programming solver such as CPLEX. We note that restricting the feasible region

by introducing sufficiently large bounds is not really a concern in determining the optimal policy. Having

bi =Mi at the optimal solution of the problem (13)-(17) would imply that, in practice, all of the booking

requests for fare class i are accepted, since Mi is in general a large number compared to the number

of arriving booking requests. However, forcing bi ≤ Mi leads to an error in calculating the objective

function value, since the function E(Ni(·)) : Ẑ+ → R is increasing, and so E(Ni(Mi)) < E(Ni(∞)). To

this end, we provide in Appendix C an analysis to determine the upper bound values in such a way

that the derivation from the optimal objective function value of the problem (PUB
I ) is at most mǫ for a

specified error tolerance ǫ.
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To compare the quality of the revenue obtained with the approximate optimization problem (PUB
I )

against that provided by the optimization problem (PI), we next find a lower bound on the optimal

objective function of the problem (PI). To compute an upper bounding function on the expected total

overbooking cost, let y = (y1, . . . , ym) ∈ Z
m
+ with

∑m
i=1 yi = C be a partitioned allocation of available

capacity C to each fare class. By the subadditivity of the function x 7→ [x]+, we observe that

[

∑m

i=1
B(βs

i ,Ni(bi))− C
]+

=
[

∑m

i=1
(B(βs

i ,Ni(bi))− yi)
]+

≤

m
∑

i=1

[B(βs
i ,Ni(bi))− yi]

+
.

Thus, for any partitioned allocation y such that
∑m

i=1 yi = C, yi ∈ Z+, we have

E

(

[

∑m

i=1
B(βs

i ,Ni(bi))− C
]+

)

≤
∑m

i=1
E

(

[B(βs
i ,Ni(bi))− yi]

+
)

,

and we obtain by relation (11) that

φ(b) ≥
∑m

i=1
τiE(Ni(bi))− θ

∑m

i=1
E

(

[B(βs
i ,Ni(bi))− yi]

+
)

:= φL(b,y). (18)

Hence, a lower bound on the optimal objective value of the problem (PI) is found by solving

max{φL(b,y) :
∑m

i=1
yi = C, b ∈ Z̄

m
+ , y ∈ Z

m
+}. (PLB

I )

Since the optimization problem (PLB
I ) is separable, it can be solved by dynamic programming. We

first observe that the problem (PLB
I ) is equivalent to the optimization problem

max{ρL(y) :
∑m

i=1
yi = C,y ∈ Z

m
+}

with

ρL(y) := max{φL(b,y) : b ∈ Z̄
m
+ }.

By the additivity of the function b →φL(b,y) given in (18) it follows that

ρL(y) =
∑m

i=1
ρi(yi)

with

ρi(yi) = max{τiE(Ni(bi))− θE( [B(βs
i ,Ni(bi))− yi]

+
) : bi ∈ Z̄+}.

Since the random variable B(βs
i ,Ni(b)) is bounded above by b and the function b → τiE(Ni(b)) is

increasing, we can restrict the feasible region {bi ∈ Z̄+} by adding the valid inequality bi ≥ yi and obtain

ρi(yi) = max{τiE(Ni(bi))− θE( [B(βs
i ,Ni(bi))− yi]

+
) : bi ≥ yi, bi ∈ Z̄+}.

Observe that the above problem is in the form of the problem (PT ) presented in the previous section.

Then, by using relation (9), the optimal solution of the above problem becomes

b∗i (yi) = min

{

b ≥ yi : P(B(βs
i , b) ≥ yi) >

τi
θβs

i

}

.

This yields

ρi(yi) = τiE(Ni(b
∗
i (yi))− θE( [B(βs

i ,Ni(b
∗
i (yi))− yi]

+
). (19)

Therefore, the problem (PLB
I ) boils down to a simple allocation problem

max
{

∑m

i=1
ρi(yi) :

∑m

i=1
yi = C,y ∈ Z

m
+

}

that can be solved by dynamic programming with a one-dimensional state space, where the stages corre-

spond to the fare classes. The associated dynamic programming recursion can be formulated as follows:

We consider for j ∈ {1, . . . ,m} and n ∈ {0, 1, . . . , C}, the parameterized optimization problems

Rj(n) = max
{

∑m

i=j
ρi(yi) :

∑m

i=j
yi = n, yi ∈ Z+, i = j, . . . ,m

}

. (20)

By relation (20), the boundary condition for n ∈ {0, 1, . . . , C} becomes

Rm(n) = ρm(n).



Aydın, Birbil, Frenk and Noyan: Airline revenue management with overbooking
Sabancı University, c©August 8, 2012 11

Then, by the dynamic programming optimality principle, the recursive relation for every j ∈ {1, . . . ,m−1}

and n ∈ {0, 1, . . . , C} is given by

Rj(n) = max {ρj(yj) +Rj+1(n− yj) : yj ≤ n, yj ∈ Z+} .

Notice that this solution method requires evaluating the value of the function ρi(yi) given in (19) for all

i ∈ {1, . . . ,m} and yi ∈ {0, 1, . . . , C}. It is easy to find b∗i (yi) using the recursive relation (10). Then,

we need to efficiently calculate E( [B(βs
i ,Ni(b

∗
i (yi))− yi]

+
) for all yi ∈ {0, 1, . . . , C}. To achieve this, we

derive the distribution function of the bounded random variable Ni(bi) and compute P (B(βs
i , n) = k)

for n ∈ {0, . . . , bi} and k ∈ {0, . . . , n} using the following recursion:

P (B(βs
i , n) = k) = (1− βs

i )P (B(βs
i , n− 1) = k) + βs

i P (B(βs
i , n− 1) = k − 1)

with the boundary condition P (B(βs
i , 0) = 0) = 1.

We remark that the lower bounding problem (PLB
I ) has a nice interpretation. The decision maker first

determines the yi, i = 1, . . . ,m, values representing a partitioned allocation of the available capacity to

each fare class. Then, the risk she takes is the possibility of observing that the total number of fare class i

shows exceeds the preallocated capacity yi, in which case she ends up paying a penalty cost. This means

that a penalty is incurred even if a reservation occupies a preallocated seat belonging to a different fare

class. With this interpretation, it is clear that by solving the problem (PLB
I ), we obtain a lower bound on

the actual optimal expected total net revenue that would be secured by solving the actual problem (PI).

An interesting question at this point is how to formally estimate the error committed by solving (PLB
I )

or (PUB
I ) instead of the originally proposed problem (PI). We partially answer this question in the case

of the upper bounding problem by utilizing its continuous relaxation. The details of this analysis are

given in Appendix E, where the concluding result is summarized in Lemma E.3.

As discussed in the beginning of this section, the practitioners prefer to use the partitioned booking

limits in a nested way. Therefore, one can use the partitioned booking limits obtained by our lower and

upper bounding models to calculate the nested booking limits, or equivalently, the nested protection

levels that could be used in a dynamic setting. To be precise, the nested booking limit for fare class i is

determined as
∑i

j=1 bj , i = 1, . . . ,m. In fact, this shall also be our approach in our computational study

given in Section 5.

4. Dynamic Overbooking Model. We are next interested in solving the dynamic overbooking

problem, where the seats need to be allocated to the fare classes from the start of the reservation horizon

until the departure time. Since overbooking is allowed, the total number of reservations may exceed the

actual capacity but the consequences, like denying boarding or departing with vacant seats, are faced

at the time of departure. As time progresses during the reservation period the booking requests arrive

randomly, and when a request arrives into the system we need to decide whether to accept or reject that

request. The sequence of these accept or reject decisions leading to the highest net revenue is the optimal

policy that we are after in this section.

4.1 Dynamics of The System. We introduce a discrete-time dynamic overbooking model, where

time 0 represents the beginning of the reservation horizon and time T represents the departure time of

the flight. The request arrivals only occur at discrete time points tk = kh, k = 1, . . . ,K− 1, with h being

chosen sufficiently small, T = Kh, K ∈ N, and t0 = 0. At most one booking request occurs at each time

period Ik = [tk−1, tk).

A sample path of this discrete time arrival process is represented by a realization of a finite random

vector (ξ1, . . . , ξK−1), where ξk = i designates that a request for fare class i arrives at time tk, i ∈

{0, . . . ,m}, k = 1, . . . ,K−1. Note that a request for fare class 0 is also added to represent a no arrival at

a given time point. The probability that a request for fare class i arrives at time tk is pi(tk) := P(ξk = i),

i ∈ {0, . . . ,m}, k = 1, . . . ,K− 1. Clearly, pi(tk) ≥ 0 and
∑m

i=0 pi(tk) = 1 for all time points t1, . . . , tK−1.

To model the cancellation process, we assume that each reservation, independently of other reserva-

tions, cancels in period Ik with probability c(Ik), k = 2, . . . ,K. Thus, the number of cancellations in
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period Ik, given that there are n accepted requests at time tk−1, is a binomial distributed random variable

B(c(Ik), n). Consequently, the number of accepted requests just before time tk becomes B(1− c(Ik), n).

Observe that when

c(Ik) = 1− exp (−λch) ,

the cancellation process is represented by a homogeneous Markovian death process with departure rate

λc > 0, and hence, the cancellation probability does not depend on when the reservation was made.

This property is coined as “forgetfulness property” and it is empirically confirmed to hold in practice

(Rothstein, 1985).

As before ri is the price of a fare class i ticket, i = 1, . . . ,m. We also introduce r0 = 0 to represent

the price for the no-arrival case. Without loss of generality, we take r0 < r1 < . . . < rm. We assume

that each cancelled reservation receives a fixed refund of κ, and the airline incurs a fixed cost of θ for

each denied boarding. At each time epoch tk, we decide to accept or reject a possible request after the

number of cancellations in the time interval Ik is realized. We might observe some no-shows just before

the departure of the flight. It is assumed that the show-up probability of each reservation does not depend

on its fare class, and it is denoted by βs.

At this point we should note that some aspects of our model are covered by Subramanian et al. (1999)

and Chatwin (1999). Subramanian et al. consider the arrival of a cancellation, the arrival of a booking

request and no-arrival of any type as a combined stream. That is, they assume that only a booking request,

a cancellation or a null event (no booking request, no cancellation) can be realized at each time epoch.

This implies that the arrival and cancellation events are dependent and hence the probability measure

of the arrival process of requests depends implicitly on the total number of reservations. However, their

discretization approach allows for the independence of these two stochastic processes up to a o(h) error

in the associated probabilities, where h is the length of each time interval. In other words, in the discrete

time setting of their model the independence between the arrival and cancellation processes holds as h

goes to zero. On the other hand, our approach avoids this technical issue by modeling the arrival and

cancellation processes as two different streams and allows naturally the independence between these two

stochastic processes. Moreover, our alternative modeling approach yields a simpler mathematical proof of

the discrete concavity of the expected optimal net revenue as a function of the total number of reservations.

Chatwin (1999) avoids the discretization approach and assumes that the overall arrival process of the

requests is a continuous time homogeneous Poisson process, and the probabilities to identify the class of

a request are independent of time. Under this assumption, the arrival processes of requests for different

fare classes are independent homogeneous Poisson processes. Also he models the cancellation process as

a homogenous Markovian death process, and therefore, (although Chatwin applies the Bellman-Jacobi

differential approach) it is possible to use a regenerative approach to analyze his model. However, for

nonhomogeneous stochastic processes it is more difficult to apply the Bellman-Jacobi or regenerative

approach (essentially we need to use a two dimensional state space in our optimal control problem) and

since the corresponding continuous optimal value equation needs to be solved by discretization, it seems

to be more natural to start at the beginning with a discrete time nonhomogenous arrival process.

4.2 Analysis of The Proposed Model. We now present the detailed mathematical description of

the proposed dynamic model. Let us denote by t+k the time epoch just after an accept or reject decision

for a request that arrives at time tk, k = 1, . . . ,K−1. Similarly, the time epoch just after the departure of

the flight is denoted by t+K . Let Jk(n), k = 1, . . . ,K−1, denote the expected optimal net revenue from t+k
up to t+K given that the number of reservations at t+k is n. To determine Jk(n), n ∈ Z+, k = 1, . . . ,K−1,

we first observe that after an accept or reject decision at tk yielding a total of n reservations at time

t+k , the number of cancelled reservations in the interval Ik+1 is a binomially distributed random variable

B(c(Ik+1), n). Hence, the total number of reservations just before time tk+1 is B(1 − c(Ik+1), n). This

implies that the total number of reservations just before the departure time isB(1−c(IK), n) and the total

number of shows is given by B(βs(1− c(IK)), n). Then, by E(B(c(Ik), n)) = nc(Ik), the independence of

the arrival and cancellation processes and the dynamic programming optimality principle we obtain for
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every k = 1, . . . ,K − 2, and n ∈ Z+

Jk(n) = −κnc(Ik+1) + p0(tk+1)E (Jk+1(B(1− c(Ik+1), n)))

+
∑m

i=1 pi(tk+1)E (max {ri + Jk+1(B(1− c(Ik+1), n) + 1), Jk+1(B(1 − c(Ik+1), n))})

(PDM)

and the boundary condition

JK−1(n) = −κnc(IK)− θE
(

[B(βs(1− c(IK)), n)− C]
+
)

. (21)

Clearly, for n = 0 we obtain P (B(1− c(Ik+1), 0) = 0) = 1, and the above recursion reduces to

Jk(0) = p0(tk+1)Jk+1(0) +
∑m

i=1
pi(tk+1)max {ri + Jk+1(1), Jk+1(0)} .

We next obtain the optimal policy of the above dynamic programming model by showing that the

function n 7→ Jk(n) is a discrete concave function on Z+ for every k = 1, . . . ,K − 1.

Lemma 4.1 The function n 7→ Jk(n) is discrete concave on Z+ for every k = 1, . . . ,K − 1.

Proof. For ease of exposition we introduce the function n 7→ Γk+1(i, n) given by

Γk+1(i, n) :=







max {ri + Jk+1(n+ 1), Jk+1(n)} , for i ∈ {1, . . . ,m};

Jk+1(n), for i = 0,
(22)

Then, the recursion of the dynamic model (PDM) for every k = 1, . . . ,K − 2, becomes

Jk(n) = −κnc(Ik+1) +
∑m

i=0 pi(tk+1)E (Γk+1 (i,B(1− c(Ik+1), n))) . (23)

Using Lemma B.2, it follows that the function n 7→ JK−1(n) listed in relation (21) is discrete concave

on Z+. Suppose now for a given k+1 < K that the function n 7→ Jk+1(n) is discrete concave on Z+. Our

proof is then completed once we show that the function n 7→ Jk(n) is discrete concave on Z+. Applying

our induction hypothesis and Lemma B.1, we first obtain that the function n 7→ Γk+1(i, n) given in (22)

is discrete concave for any i ∈ {0, 1 . . . ,m}. This implies using Lemma B.2 that the function

n 7→ E (Γk+1 (i,B(1− c(Ik+1), n)))

is discrete concave on Z+ and by relation (23) the result follows. �

Let us now introduce

bki := max {n ∈ Z+ : ri ≥ Jk+1(n)− Jk+1(n+ 1)} .

Since a discrete concave function has decreasing differences by definition, it follows by Lemma 4.1 that

the following dynamic booking limit policy is optimal:

“accept the request for fare class i at tk ⇔ total number of reservations ≤ bki”

As the fares are assumed to be ordered, we then obtain the following nested structure:

bk1 ≤ bk2 ≤ · · · ≤ bkm.

5. Computational Experiments. We devote this section to a computational study for discussing

different aspects of the models proposed in the previous sections. In particular, we conduct simulation

experiments to benchmark the policies obtained with our lower bounding model (PLB
I ), upper bounding

model (PUB
I ) and the dynamic model (PDM) against some well-known approaches used in the literature

(Lan et al., 2008, 2011). We next explain our simulation setup in detail and then present our numerical

results.
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5.1 Simulation Setup. We simulate the arrival of requests and cancellations over the discrete time

points tk, k = 1, . . . ,K − 1. The probability that there is a request for fare class i at time point tk
is pi(tk). If we accept a request for fare class i, then we generate a revenue of ri. Without loss of

generality, we take r0 < r1 < . . . < rm. Each accepted fare class i request cancels with probability ci(Ik)

in period Ik = [tk−1, tk), k = 2, . . . ,K. Hence, the number of fare class i cancellations at time point tk is

binomially distributed with a success probability ci(Ik+1). Each cancellation is refunded with an amount

of riαi, i = 1, . . . ,m. At the end of the reservation period, each reservation shows up with probability

βs
i and the penalty cost of denying boarding to a reservation for fare class i is νri.

To generate these arrival and cancellation probabilities we shall mimic the actual stochastic processes.

We assume that the booking requests arrive according to a homogeneous Poisson process with rate λa,

and the cancellations for fare classes i = 1, . . . ,m, are modeled by a Markovian death process with

departure rates λci . Then, we have for k = 1, . . . ,K − 1

p0(tk) = exp(−λah)

and

ci(Ik) = 1− exp (−λcih) .

Given a request arrives at time tk, this request is for fare class i with probability fi(tk) satisfying,

fi(tk) ≥ 0 and
∑m

i=1 fi(tk) = 1. In other words, upon an arrival at time tk, the different fare class

requests are generated according to a multinomial selection scheme with probabilities fi(tk), i = 1, . . . ,m,

k = 1, . . . ,K − 1. Assuming that in reality the lower fare class requests arrive more frequently in the

early periods than the higher fare classes, we set the multinomial probabilities as

fi(tk) =
πi(tk)

∑m

i=1 πi(tk)
, i = 1, . . . ,m,

where πi(tk) are simple linear functions. This way of setting the multinomial probabilities complies with

the desired demand pattern. As illustrated in Figure 1, we set

pi(tk) = fi(tk)(1 − p0(tk)), i = 1, . . . ,m, k = 1, . . . ,K − 1.

0 50 100 150 200
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1

2

3

4

5

6
x 10

−3

t

p i(t
)
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1
(t) p

2
(t) p

3
(t) p

4
(t)

Figure 1: An example of the changes in multinomial probabilities over time

To obtain the optimal booking limits of static models, we need to compute the demand probabilities

P (Di = k) for all i = 1, . . . ,m and k = 0, . . . ,K − 1. Since the arrivals are independent across time

periods, the total demand for fare class i is the sum of independent Bernoulli random variables with

success probabilities pi(tk), k = 1, . . . ,K − 1. We obtain these demand distributions by applying the
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well-known Fast Fourier Transform (FFT) method (see, e.g., Tijms, H.C, 2003). The distribution of the

total demand used by the EMSR-based heuristics is obtained by the FFT method as well, since the

random demands for individual fare classes are also independent.

In our simulation setup, the following class-dependent parameters are given: fares (ri), refund percent-

ages (αi), cancellation probabilities (βc
i ), and show-up probabilities (βs

i ). In order to test the performances

of the booking policies against varying arrival intensities, we use the load factor parameter ρ, which is

given by

ρ =
(K − 1)(1− exp(−λah))

C
. (24)

Observe that the numerator is the expected number of booking requests. To conform with our simulation

setup, we tie the arrival rate to a given load factor and obtain λa by solving (24) for a specified value

of ρ. When it comes to the cancellation rates, we assume that the behaviors of the customers towards

cancellation are independent of whether they have reserved a ticket or not. Using this assumption and

simple conditioning, we can relate the cancellation probabilities to the cancellation rates and acquire λci ,

i = 1, . . . ,m, from
∑K−1

k=1 (1 − exp(−λci (T − tk)))fi(tk)
∑K−1

k=1 fi(tk)
= βc

i , i = 1, . . . ,m.

Then, we obtain the probabilities pi =
E(Di)
E(D) , i = 1, . . . ,m, denoting the fractions of the aggregate demand

allocated to different fare classes.

Recall that in our dynamic model the cancellation and show-up probabilities do not depend on the fare

classes. By applying a simple conditioning, we estimate the class-independent show-up and cancellation

probabilities as

βs =

m
∑

i=1

βs
i pi and β

c :=

m
∑

i=1

βc
i pi, (25)

respectively. Using now the class-independent cancellation probability, we obtain the cancellation rate,

λc by solving
∑K−1

k=1 (1 − exp(−λc(T − tk)))

K − 1
= βc.

5.2 Numerical Results. In this section, we apply a benchmarking study including several ap-

proaches from the literature as well as our static and dynamic models. We also provide an experimental

design, similar to the one in (Topaloglu et al., 2012), for different parameters used in our simulation. All

the contender methods that we use for benchmarking apply the EMSR-b heuristic but they mainly differ

in terms of the way the virtual capacity is obtained:

⋄ EMSR/Risk: Our total booking limit given by relation (9) is used as the virtual capacity.

⋄ EMSR/MP: The virtual capacity is set according to the deterministic rule described by Belobaba

(2006). However, this rule requires a class-independent show up rate. Therefore, we use βs as

described at the end of the previous section and the virtual capacity is equal to C/βs.

⋄ EMSR/SL: The virtual capacity is based on a type-I service level constraint using the actual

capacity. This constraint imposes that probability of overbooking is less than or equal to 1.0e−3

(Phillips, 2005, Section 9.3).

⋄ EMSR/NO: Overbooking is not allowed. Therefore, EMSR-b heuristic is applied with the actual

capacity.

In the sequel, we simulate the arrival process for many replications and refer to the average revenues

obtained by the optimal policies of our static models (PUB
I ) and (PLB

I ) as UB and LB, respectively.

Likewise, we denote the average revenue of the dynamic policy obtained with our model (PDM) by DM.

We note once again that both of the static models provide partitioned booking limits but we use these

limits in a nested way in all our simulations.

In all our numerical experiments, we set the capacity of the plane, the planning horizon, the discretiza-

tion mesh lengths and the number of discrete time points to C = 150, T = 200, h = 1.0e−2,K = 20, 000,
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respectively. The refund percentages (α1, . . . , αm) and the cancellation probabilities (βc
1, . . . , β

c
m) are

evenly distributed in the intervals [0.00, 0.30] and [0.05, 0.17]. For our dynamic programming implemen-

tation to solve the DP model, an upper bound sufficiently larger than C was imposed on the total number

of reservations. This allows us to restrict the state space for computational purposes. In the implemen-

tation for solving the DP model, setting such an upper bound means that a booking request would be

rejected if the total number of reservations reaches this upper bound. As required by formulation (13)-

(17), we also need to impose an upper bound Mi on the booking limit bi for each i = 1, . . . ,m. To serve

this purpose, we choose sufficiently large Mi values by setting ǫ = 1.0e− 7 in Lemma C.1.

Our experimental design is based on various factors of the fares (ri), the overbooking cost θ, the load

factor ρ, the number of fare classes m, and the show-up probabilities (βs
i ). The lowest price is fixed to 50

and the prices of the other fare classes are evenly distributed in the interval [50, η50], where η ∈ {4, 7}

gives two sets of fares. For the proposed static and dynamic models the class-independent overbooking

cost is determined by

θ = ν

m
∑

i=1

ripi,

where ν ∈ {3, 5} is used to create two factors indicating low and high overbooking costs. We use load factor

values ρ ∈ {1.4, 1.8} corresponding to medium and high loads. We also apply sensitivity analysis with

respect to the number of fare classes selected as m ∈ {4, 8}. The last parameter set comes from the show-

up probabilities βs
• := (βs

1 , . . . , β
s
m). We give two sets of show-up probabilities to represent possibly low

and high show-up rates. These are βs
L := (0.95, 0.92, 0.80, 0.77) and βs

H := (0.98, 0.95, 0.83, 0.80) for m =

4; βs
L := (0.95, 0.93, 0.91, 0.89, 0.83, 0.81, 0.79, 0.77) and βs

H := (0.98, 0.96, 0.94, 0.92, 0.86, 0.84, 0.82, 0.80)

for m = 8. Under this setup, we evaluate the solutions of the contender approaches for all 32 test problem

instances. Then, the policies obtained by these solutions are compared for each instance by taking 50

simulation runs.

Table 1 presents the optimal objective function values of (PUB
I ) and (PLB

I ), where bU∗ and (bL∗,yL∗)

denote their optimal solutions, respectively. The last column gives the percentage gap between the

objective function values of these two bounding problems. As seen from this table, the relative differences

are mostly affected by the number of fare classes. Recall that (PLB
I ) partitions the actual capacity to

each fare class and incurs a penalty even if a reservation occupies a preallocated seat belonging to a

different fare class. This treatment of the capacity does not allow sharing the seats among the fare

classes efficiently. Consequently, the performance of (PLB
I ) deteriorates more than that of (PUB

I ) and the

percentage gap increases with a higher number of fare classes. The results also depict that the optimal

objective function value of (PLB
I ) decreases slightly as the overbooking cost coefficient ν gets higher.

On the other hand, the change in the optimal objective function value of (PUB
I ) is even less significant

when the overbooking cost becomes higher. Consequently, the percentage gap tends to increase with ν;

nonetheless, this change is quite minor. Regarding the impact of varying class fares, we observe that the

optimal objective function values of both models increase as the parameter η becomes larger. However,

the increase in the optimal objective function value is larger for (PLB
I ) compared to (PUB

I ). Therefore,

the percentage gap decreases as η gets larger.

Figures 2 to 5 present average net revenues over all simulation runs for the booking policies obtained by

the different methods for varying factors. In these figures, we compare the performances of the booking

policies obtained by our proposed models to those of the benchmarking methods with respect to high

and low show-up probabilities (denoted by H and L) and the overbooking cost coefficient, ν. The details

of these figures are given in Table 2, where the revenue obtained by the dynamic model is used as a base

approach to report the relative performances of the remaining approaches. Figures 6 and 7 depict the

number of seats overbooked by various methods averaged over all simulation runs. In these figures, the

number of fare classes is fixed, while the parameters (ρ,βs
•, η, ν) vary.

The first observation we have is that the proposed upper bounding model (PUB
I ) performs better than

all the EMSR-based heuristics for any combination of the parameters (Figures 2 to 5). On the other

hand, Figures 6 and 7 show that the upper bounding model (PUB
I ) overbooks on average more seats than
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Table 1: The optimal objective function values of PUB
I and PLB

I

Instances (a) (b)

m ρ βs
• η ν φL(b

L∗,yL∗) φU (b
U∗) ((b)− (a))/(a)%

4 3 21,444.88 22,815.67 6.39%

βs
H

4 5 21,337.41 22,815.67 6.93%

7 3 35,601.98 37,265.54 4.67%

1.4
7 5 35,464.30 37,268.98 5.09%

4 3 21,654.65 23,071.37 6.54%

βs
L

4 5 21,528.50 23,071.38 7.17%

7 3 35,834.72 37,527.54 4.72%

7 5 35,702.62 37,527.54 5.11%

4
4 3 24,434.11 26,106.48 6.84%

β
s
H

4 5 24,186.78 26,106.48 7.94%

7 3 41,014.06 43,672.63 6.48%

1.8
7 5 40,618.44 43,672.63 7.52%

4 3 24,904.36 26,674.35 7.11%

βs
L

4 5 24,622.59 26,674.35 8.33%

7 3 41,714.30 44,537.86 6.77%

7 5 41,277.23 44,537.86 7.90%

4 3 20,403.45 22,657.20 11.05%

β
s
H 4 5 20,215.49 22,657.20 12.08%

7 3 33,653.33 36,990.55 9.92%

1.4
7 5 33,396.48 36,990.55 10.76%

4 3 20,670.32 23,053.38 11.53%

βs
L 4 5 20,436.40 23,053.38 12.81%

7 3 34,022.66 37,502.04 10.23%

7 5 33,702.95 37,502.04 11.27%

8
4 3 23,141.81 25,606.24 10.65%

βs
H 4 5 22,873.36 25,606.24 11.95%

7 3 38,817.54 42,726.61 10.07%

1.8
7 5 38,399.12 42,726.61 11.27%

4 3 23,542.35 26,135.89 11.02%

βs
L 4 5 23,209.54 26,137.07 12.61%

7 3 39,384.75 43,504.99 10.46%

7 5 38,917.66 43,502.70 11.78%

the other solution methods. However, this excess overbooking compensates for the revenue loss due to

empty seats. We also observe the cases where the average revenues of the booking policies obtained by

(PUB
I ) and (PDM) can become relatively close. We caution the reader that these relatively small gaps

between DM and UB implicitly demonstrates the importance of considering class-dependent show-up

and cancellation probabilities. Lacking this consideration, the dynamic model treats all cancellations and

no-shows the same way, and consequently, may fail to capture the actual dynamics of the system. As

Figures 3-5 illustrate, the lower bounding problem (PLB
I ) performs slightly better when the load factor

is high. As we mentioned before, (PLB
I ) is more conservative than the upper bounding problem and

its overbooking policy is based on reserving more seats only for the expensive fare classes. Therefore,

when the load-factor is high, it benefits from the increase in the number of booking requests for the

expensive fare classes and it makes more overbooking. Comparing the plots for (PLB
I ) in Figures 2 and

4 with those in Figures 3 and 5, we note that the average revenue obtained by solving (PLB
I ) is closer

to the revenue obtained by EMSR/SL for the lower load-factor value. However, it performs better and

the average revenues as well as the number of overbooked seats stay close to those of EMSR/Risk and



18 Aydın, Birbil, Frenk and Noyan: Airline revenue management with overbooking
Sabancı University, c©August 8, 2012

EMSR/MP when the load factor is high. As depicted in Figures 6 and 7, even there are instances when

(PLB
I ) overbooks more seats than EMSR/MP and EMSR/Risk on average. These instances correspond

to the cases where (PLB
I ) outperforms both EMSR/MP and EMSR/Risk. However, when the number of

fare classes increases, the performance of (PLB
I ) deteriorates even if the load factor is high (see Figures 3

and 5).

When we look into the performances of the EMSR-based heuristics, we observe that EMSR/Risk and

EMSR/MP are better than the remaining two heuristics, EMSR/NO and EMSR/SL. This difference

is more striking when the load factor is high and the show-up probabilities are low as designated by

Figures 3 and 5 (see also the rows corresponding to βs
L in Table 2). This behavior can be attributed

to the impact of overbooking. As illustrated by Figures 6 and 7, the differences between the average

number of seats overbooked by the different EMSR-based heuristics are more significant when show-up

probabilities are low. In those cases EMSR/Risk and EMSR/MP benefit more than EMSR/SL from the

extra revenue gained by the overbooked seats. The average revenue obtained by EMSR/MP is slightly

higher than that of EMSR/Risk. Unlike EMSR/Risk, EMSR/MP does not consider the overbooking

penalty when determining the virtual capacity. Therefore, the difference between the average revenues

of the policies obtained by these models increases with the overbooking cost factor. It turns out that

the proposed weighted average of the class-dependent show-up rates given in relation (25) captures the

nature of the show-up behavior accurately. We observe in our numerical study that EMSR/MP reserves

slightly more seats than EMSR/RISK (at most 3 seats over all instances), and these additional seats are

effective for collecting extra revenues from overbooking. This success of EMSR/MP is also in accordance

with the observation made in (Phillips, 2005, Section 9.3). Table 2 and Figures 2 to 5 illustrate that,

like our bounding models, the performances of the EMSR-based heuristics deteriorate with respect to

the dynamic model with a higher number of fare classes. The deterioration in the performances of the

EMSR-based heuristics can be explained by the fact that these heuristics are mainly based on comparing

two fare classes. To obtain such a structure, each fare-class is compared against the aggregation of the

classes with lower fares. As the number of fare-classes increases, the aggregation does not capture the

stochastic nature of the problem well. It is also important to note that the percentage gaps between DM

and the revenues of the remaining strategies are more striking when the load factor is high. This can be

due to the reactions of the models to the low fare class requests, especially, in the early periods. As the

load factor becomes higher, we observe many requests throughout the planning horizon. The dynamic

policy then reacts in a more conservative way and rejects the early low fare requests. Such behaviour

allows reserving seats for more expensive fare classes arriving in later periods, and hence, results with an

increase in the total revenue. However, working with aggregate demands, the static models cannot react

to the changes within different time intervals. Moreover, unlike the static models, the dynamic model

adjusts the booking limits by taking into account the reservations and cancellations that have already

taken place. It ends up overbooking more than the static solution methods, and consequently, the revenue

loss due to empty seats is counteracted by the gains from the overbooked seats.

We next report an encouraging result about the error we introduce by solving the upper bounding

problem. As in Lemma E.3, we denote the optimal solutions of the original static problem (PI) and the

continuous relaxation of upper bounding problem (RUB
I ) by b∗ and bR∗, respectively. Moreover, φU (b

R∗)

is the optimal objective value of the relaxed upper bounding problem. Table 3 shows the values of the

upper bound on the optimality gap (φU (b
U∗)−φ(b∗))/φ(b∗) given in Lemma E.3. These results indicate

that the error bound is mostly affected by the overbooking penalty and the load factor. We observe that

φ(
⌊

bR∗
⌋

) is significantly smaller when ν is higher, and consequently, the error bound increases as ν gets

higher. On the other hand, when the load factor is high, (PUB
I ) reacts in a more conservative way and

reduces the booking limits of cheaper fare classes. Therefore, the resulting overbooking cost decreases,

the revenue φ(
⌊

bR∗
⌋

) increases, and hence, the error bound decreases as the load factor gets higher. We

also observe that the error bound tends to decrease as η increases, since the relative increase in φ(
⌊

bR∗
⌋

)

is more than the increase in φU (b
R∗).
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Figure 2: Average net revenues (ρ = 1.4, m = 4)
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Figure 3: Average net revenues (ρ = 1.8, m = 4)
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Figure 4: Average net revenues (ρ = 1.4, m = 8)
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Figure 5: Average net revenues (ρ = 1.8, m = 8)
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Figure 6: Average overbooking amount (m = 4)
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Figure 7: Average overbooking amount (m = 8)
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Table 2: Percentage differences relative to the expected net revenue of (PDM) (C = 150)

Instances DM versus

m ρ βs
• η ν EMSR/NO EMSR/SL EMSR/MP EMSR/Risk LB UB

4 3 6.91% 6.29% 4.06% 4.31% 5.39% 2.02%

βs
H

4 5 6.46% 5.84% 3.59% 4.35% 5.52% 1.58%

7 3 4.04% 3.67% 2.67% 2.93% 3.78% 0.73%

1.4
7 5 3.76% 3.39% 2.39% 2.75% 3.59% 0.45%

4 3 7.88% 6.08% 3.82% 3.88% 5.66% 1.95%

β
s
L

4 5 7.61% 5.80% 3.54% 4.14% 6.13% 1.69%

7 3 4.79% 4.20% 2.65% 2.75% 4.23% 0.83%

7 5 4.53% 3.93% 2.38% 2.71% 4.26% 0.57%

4
4 3 12.48% 9.43% 5.61% 5.96% 4.94% 2.75%

βs
H

4 5 11.96% 8.89% 5.04% 6.19% 5.10% 2.19%

7 3 11.71% 8.92% 5.39% 5.83% 4.80% 2.23%

1.8
7 5 11.32% 8.52% 4.97% 6.26% 5.01% 1.81%

4 3 13.58% 8.43% 4.67% 5.08% 3.87% 2.37%

βs
L

4 5 13.16% 7.98% 4.21% 5.28% 4.91% 1.94%

7 3 12.69% 8.01% 4.54% 4.88% 4.37% 1.87%

7 5 12.40% 7.71% 4.23% 5.12% 4.56% 1.59%

4 3 10.01% 7.42% 4.25% 4.95% 6.67% 3.02%

βs
H 4 5 9.64% 7.04% 3.85% 4.86% 7.38% 2.61%

7 3 8.09% 6.11% 3.66% 3.75% 6.32% 1.94%

1.4
7 5 7.97% 5.98% 3.54% 4.45% 7.07% 1.82%

4 3 11.23% 7.14% 3.81% 4.09% 7.35% 2.54%

βs
L 4 5 10.90% 6.79% 3.45% 4.78% 7.59% 2.18%

7 3 8.68% 5.54% 2.82% 3.18% 6.20% 1.07%

7 5 8.43% 5.29% 2.55% 3.79% 6.67% 0.81%

8
4 3 11.72% 10.12% 6.22% 6.65% 6.84% 4.18%

β
s
H 4 5 11.45% 9.83% 5.92% 7.16% 7.63% 3.88%

7 3 10.46% 9.12% 5.93% 6.25% 6.66% 3.31%

1.8
7 5 10.13% 8.78% 5.58% 6.68% 7.51% 2.95%

4 3 13.15% 9.80% 5.48% 5.85% 6.26% 3.63%

βs
L 4 5 12.51% 9.15% 4.79% 6.19% 7.67% 2.95%

7 3 11.50% 8.78% 4.88% 5.09% 6.57% 2.55%

7 5 11.27% 8.54% 4.63% 5.99% 7.50% 2.31%

We conclude the presentation of our numerical results by reporting the wall-clock times of the proposed

solution methods. We used a computer with 2.4 GHz Intel Core 2 Quad processor and 3024 MB of RAM.

The codes are written in MATLAB 7.6.0 running under Windows XP operating system. EMSR/NO,

EMSR/SL, EMSR/MP, and EMSR/Risk heuristics require on average less than 0.1 seconds. It takes on

average 1.10 and 0.40 seconds to solve the lower and the upper bounding problems, respectively. Thus,

our heuristics are comparable to the widely-applied EMSR-based heuristics in terms of computational

efficiency. The most computational effort is invested in finding the optimal policy of the dynamic model,

which takes on average 2260 seconds. Clearly, this time depends on the mesh-size parameter h and the

length of the planning horizon T .

6. Conclusion In this study, we develop new optimization models for static and dynamic single-leg

revenue management problems that involve no-shows, cancellations, and hence, overbooking. In the static

case we discuss two risk-based models both of which allow class-dependent cancellations and no-shows.

Our first static model determines the optimal total booking limit under the greedy policy. Finding the
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Table 3: Bound on error introduced by solving (PUB
I )

Instances
φU (b

R∗) φ(
⌊

bR∗
⌋

)
Error

m ρ βs
• η ν Bound

4 3 22,818.62 21,269.03 0.073

βs
H

4 5 22,818.62 20,267.47 0.126

7 3 37,274.78 34,842.09 0.070

1.4
7 5 37,274.78 33,251.79 0.121

4 3 23,089.39 21,492.75 0.074

βs
L

4 5 23,089.39 20,440.34 0.130

7 3 37,545.56 35,020.98 0.072

7 5 37,545,56 33,349.93 0.126

4
4 3 26,139.73 24,669.71 0.060

βs
H

4 5 26,139.73 23,723.86 0.102

7 3 43,735.93 41,406.30 0.056

1.8
7 5 43,735.93 39,904.45 0.096

4 3 26,708.94 25,239.06 0.058

βs
L

4 5 26,708.94 24,282.21 0.100

7 3 44,589.74 42,258.88 0.055

7 5 44,589.74 40,739.57 0.094

4 3 22,666.43 21,031.50 0.078

βs
H

4 5 22,666.43 19,947.70 0.136

7 3 37,002.55 34,408.86 0.075

1.4
7 5 37,002.55 32,687.73 0.132

7 3 23,059.60 21,391.50 0.078

βs
L

7 5 23,059.60 20,287.86 0.137

7 3 37,513.66 34,868.28 0.076

7 5 37,513.66 33,115.64 0.133

8
7 3 25,614.71 23,985.24 0.068

βs
H

7 5 25,614.71 22,943.83 0.116

7 3 42,742.07 40,162.18 0.064

1.8
7 5 42,742.07 38,508.38 0.110

4 3 26,146.71 24,525.39 0.066

βs
L

4 5 26,146.71 23,478.70 0.114

7 3 43,525.34 40,956.54 0.063

7 5 43,525.34 39,294.34 0.108

optimal total booking limit under such a general setting is useful in practice, since the overbooking

limit can be used as an input to some well-known capacity allocation methods like the EMSR heuristics.

In the second static model, we determine both the total booking limit and the partitioned booking

limits. Arriving at a computationally difficult model, we propose upper and lower bounding problems to

obtain approximate solutions. As preferred in practice, we propose to use the partitioned booking limits

obtained by our upper and lower bounding models in a nested way. Thus, the resulting method becomes

a heuristic to obtain nested booking limits but it does not require a predefined overbooking limit like the

EMSR heuristics. In the dynamic case we propose a model based on two independent streams of events;

arrivals of booking requests and cancellations. Our modeling approach allows the arrival process of the

booking requests to be independent of the number of reservations. Moreover, the number of cancellations

in any time period, given the number of accepted requests at the beginning of that time period, is a

binomially distributed random variable. We show that it is easy to solve the resulting problem with

dynamic programming. After characterizing the optimal policy, we also present the nested structure of

the optimal allocations.
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We conduct a computational study to compare the performances of the booking policies obtained by

our proposed models to those of some well-known EMSR-based approaches used in the literature. The

numerical results demonstrate that the proposed upper bounding model outperforms the EMSR-based

heuristics for the generated test problem instances and perform reasonably well with respect to the DP

model. We also observe that the policies proposed by our upper bounding model are robust, even if we

switch from low to high show-up probabilities or increase the overbooking cost. On the other hand, the

performance of proposed lower bounding model deviates depending on the number of fare classes and

the load factor. We also derive bounds on the error introduced by solving the upper bounding problem

instead of the corresponding original static model. Computational experiments demonstrate that the

error bounds are tighter when the load-factor is higher. As a future work we are planning to study the

extensions of our proposed models in the network environment.
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Appendix A. Review on Bernoulli Selection Scheme. In this appendix, we first define a

Bernoulli selection type random variable. If X denotes the non-negative integer random size of a pop-

ulation, then the random variable B(p,X) denotes the total number within the population of size X

having a certain property under the condition that each member in the population has this property with

probability p independent of each other. Hence, the random variable B(p,X) is given by

B(p,X) :=







∑X

k=1 1{Uk≤p}, if X ≥ 1;

0, if X = 0,
(26)

where Uk, k ∈ N, is a sequence of independent standard uniformly distributed random variables, and the

random variable X is independent of the sequence Uk, k ∈ N. By relation (26), we obtain

E (B(p,X)) = pE (X) .

Furthermore, it is well-known that the generating function of the random variable B(p,X) is given by

E

(

zB(p,X)
)

= E

(

(1− p+ pz)
X
)

(27)

and

B (q,B(p,X)) =d B(pq,X)

for any 0 ≤ p, q ≤ 1 (Feller, 1968).

Appendix B. Results on Discrete Concave Functions. In this appendix, we shall mention

some results related to the discrete concavity (convexity) that are used in our analysis of the proposed

models. We start with a definition.

Definition B.1 A function f : Z+ 7→ Z is discrete concave if and only if the differences n 7→ f(n+1)−

f(n) are decreasing. A function f is discrete convex if and only if -f is discrete concave.

The proof of the following lemma is given by Lippman and Stidham (1977).

Lemma B.1 Let r ≥ 0 and f : Z+ 7→ R be a discrete concave function. Then the function h : Z+ 7→ R

given by h(n) = max{r + f(n+ 1), f(n)} is also discrete concave.

In the next lemma we derive an important property of expectations of discrete concave functions of the

random variable B(p, n).

Lemma B.2 If the function f : Z+ 7→ R is discrete concave (convex), then the function n 7→

E (f (B(p, n))) is also discrete concave (convex).
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Proof. We need to show that n 7→ E (f (B(p, n+ 1))) − E (f (B(p, n))) is decreasing (increasing).

By the definition of B(p, n+1) given in relation (26) and the conditional expectation formula we obtain

that

E (f (B(p, n+ 1)))− E (f (B(p, n))) = pE (f (B(p, n+ 1))− f (B(p, n)) |Un+1 ≤ p)

= pE (f (1 +B(p, n))− f (B(p, n)) |Un+1 ≤ p)

= pE (f (1 +B(p, n))− f (B(p, n))) .

(28)

Since B(p, n + 1) ≥ B(p, n) and f is discrete concave (convex) we obtain that n 7→ f (1 +B(p, n)) −

f (B(p, n)) is decreasing (increasing) and by relation (28) the result follows. �

For any non-negative random variable D, we define the random variable N(n) = min{n,D}.

Lemma B.3 If f : Z+ 7→ R is a discrete concave function and f(∞) := lim infn↑∞ f(n), an optimal

solution of the optimization problem max{f(n) : n ≥ C, n ∈ Z̄+} is also an optimal solution of the

problem max
{

E (f (N(n))) : n ≥ C, n ∈ Z̄+

}

.

Proof. The discrete concavity of f implies its discrete unimodality. If its unimodality point nopt

equals ∞, or equivalently, f is increasing, the desired result easily follows. On the other hand, if nopt is

finite, we obtain for every n ≥ nopt that

f(n+ 1) ≤ f(n) (29)

and for every n < nopt

f(n+ 1) ≥ f(n). (30)

By the definition of N(n) it follows that

f(N(n+ 1))− f(N(n)) = (f(n+ 1)− f(n))1{D≥n+1}.

This shows

E (f(N(n+ 1))− f(N(n))) = (f(n+ 1)− f(n))P(D ≥ n+ 1) (31)

and by relations (29),(30) and (31) we obtain

E (f (N(n+ 1))) ≤ E (f (N(n)))

for every n ≥ nopt, and

E (f (N(n+ 1))) ≥ E (f (N(n)))

for every n < nopt. Hence, nopt is also an optimal solution of max
{

E (f (N(n))) : n ≥ C, n ∈ Z̄+

}

. �

Appendix C. Determining Upper Bounds on The Booking Limits. In Section 3.2 we in-

troduce upper bounds on the booking limits to formulate the upper bounding problem (PUB
I ) as a

mixed-integer linear program. In this section, we propose a method to determine those upper bounds in

a proper way. Our objective is to restrict the feasible region of the upper bounding problem to a box. In

other words, we introduce bounding constraints bi ≤ Mi, i = 1, . . . ,m, in such a way that the error we

make in calculating the objective function is significantly small. Our proposed approach is based on the

next lemma.

Lemma C.1 Suppose that we consider the optimization problem max{h(b) : b ∈ Z̄
m
+} with

h(b) =
∑m

i=1
fi(bi)− g(b).

If the functions fi, i = 1, . . . ,m, and g are increasing and bounded, then for every ǫ > 0 there exists a

box B such that for every b ∈ Z̄
m
+ one can find a vector b̂ ∈ B ⊆ Z

m
+ satisfying

h(b)− h(b̂) ≤ mǫ.
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Proof. Since limb↑∞ fi(bi) = fi(∞), there exists for every ǫ > 0 some bi(ǫ) such that

fi(∞) ≤ fi(bi(ǫ)) + ǫ ∀i = 1, . . . ,m.

Consider the box B = {b ∈ Z̄
m
+ : bi ≤ bi(ǫ), i = 1, . . . ,m} and let b /∈ B. This shows that the set

I = {1 ≤ i ≤ m : bi > bi(ǫ)} is nonempty and take b̂ = {b̂1, . . . , b̂m} with

b̂i =

{

bi(ǫ) if i ∈ I

bi otherwise

Clearly b̂ belongs to B and b ≥ b̂. Using now the assumption that the functions fi, i = 1, . . . ,m, and g

are increasing and bounded we obtain

h(b)− h(b̂) =
∑m

i=1(fi(bi)− fi(b̂i)) + g(b̂)− g(b)

≤
∑m

i=1(fi(∞)− fi(b̂i)) + g(b̂)− g(b)

≤ mǫ,

and this shows the desired result. �

Observe that the objective function of the upper bounding problem can be written in the form of the

function h given in Lemma C.1:

φU (b) =
∑m

i=1
fi(bi)− g(b)

with

fi(bi) = τiE(Ni(bi)) and g(b) = θ
[

∑m

i=1
βs
iE(Ni(bi))− C

]+

. (32)

It is easy to see that the functions fi, i = 1, . . . ,m, and g given in (32) are increasing. Since we assume

that E(Di) <∞ for all i = 1, . . . ,m, the functions fi and g are bounded. Thus, for a specified error term

ǫ we can easily find some integer bi(ǫ) satisfying

fi(∞)− fi(bi(ǫ)) = τiE([Di − bi(ǫ)]
+
) ≤ ǫ ∀i = 1, . . . ,m. (33)

Then, by Lemma C.1, it is guaranteed that considering the feasible region B = {b ∈ Z
m
+ : bi ≤ bi(ǫ), i =

1, . . . ,m} instead of {b ∈ Z̄
m
+ } would result in a deviation of at most mǫ from the optimal objective

function value, i.e., φU (b)− φU (b̂) ≤ mǫ for any b̂ ∈ B and b ≥ b̂.

Appendix D. Alternative Solution Method for The Upper Bounding Problem. Although

its objective function max{φU (b), given in (12), is not separable, it is still possible to use dynamic

programming to solve the problem (PUB
I ). The main idea is to partition the set of integers into two sets.

Let

S1 =
{

b ∈ Z̄
m
+ :

∑m

i=1
βs
iE(Ni(bi)) ≥ C

}

and S2 :=
{

b ∈ Z̄
m
+ :

∑m

i=1
βs
iE(Ni(bi)) ≤ C

}

.

Clearly, S1 ∪ S2 = Z̄
m
+ . Therefore, we have

max{φU (b) : b ∈ Z̄
m
+ } = max {max {φU (b) : b ∈ S1} ,max {φU (b) : b ∈ S2}} .

Thus, to compute φU (b), we need to take the maximum of the objective function values of the following

two optimization problems

max {φU (b) : b ∈ S1} = θC +max
{

∑m

i=1
(τi − θβs

i )E(Ni(bi)) : b ∈ S1

}

(34)

and

max {φU (b) : b ∈ S2} = max
{

∑m

i=1
τiE(Ni(bi)) : b ∈ S2

}

. (35)

Note that both problems (34) and (35) are separable and they can be solved by dynamic programming.

However, we note that the implementation for solving problem (34) demands a special treatment. This

is because of the greater-than-equal-to constraint, since one can check this constraint at each stage only

when the bookings for all fare classes are known. To overcome this difficulty, we formulate (34) as a
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constrained shortest path problem and solve it using the well-known K-shortest path algorithm (Yen,

1971). This algorithm returns successively the first K paths from origin to destination on a graph. We

apply the same algorithm to return several paths in decreasing order of φU (b) values until we find the first

one that satisfies the constraint in (34). We also note that our upper bounding problem is similar to the

approximate model proposed in (Chi, 1995, Section 2.3.4). However, Chi applies one more approximation

to solve the resulting model, whereas we solve it to optimality.

Appendix E. Bounds on Error Introduced by Solving The Upper Bounding Problem.

Here we present bounds on the error introduced by solving the approximate optimization problem (PUB
I )

instead of the originally proposed problem (PI). To derive these bounds we use the optimal function

value of (PLB
I ) and the continuous relaxation of (PUB

I ) obtained by dropping the integrality restriction

on the booking limits:

max{
∑m

i=1
τiE(Ni(bi))− θ

[

∑m

i=1
βs
iE(Ni(bi))− C

]+

: b ∈ R̄
m
+}, (RUB

I )

where R̄+ = R+ ∪ {∞} denotes the set of extended non-negative real numbers.

We first present some simple structural observations about the optimal solutions, then derive an exact

analytical expression for them. This expression will allow us to obtain an upper bound on the error

(introduced by solving (PUB
I )) solely in terms of the problem parameters.

Lemma E.1 Consider the index set I = {i : τi − θβs
i ≥ 0} and its complement IC = {1, . . . ,m} \ I.

(i) There exists optimal solutions b∗ and bR∗of the problems (PUB
I ) and (RUB

I ) such that b∗i = bR∗
i =

∞ holds for every i ∈ I.

(ii) If
∑m

i=1 β
s
iE(Di) ≤ C holds, then b∗ = (∞, . . . ,∞) is an optimal solution of both (PUB

I ) and

(RUB
I ).

Proof. Since the proofs for (RUB
I ) are similar, we only prove the results for (PUB

I ). To show (i) we

first observe that the objective function of (PUB
I ) can be written as follows:

φ(b) = min
(

∑m

i=1
(τi − θβs

i )E(Ni(bi)) + θC,
∑m

i=1
τiE(Ni(bi))

)

. (36)

Let b̂ be an arbitrary optimal solution of (PUB
I ) and consider the feasible solution b∗ ∈ R̄+ with

b∗i =

{

b̂i if i ∈ IC

∞ if i ∈ I.

Using the assumption that τi − θβs
i ≥ 0 for all i ∈ I we have

∑m

i=1(τi − θβs
i )E(Ni(b̂i)) ≤

∑

i∈IC (τi − θβs
i )E(Ni(b̂i)) +

∑

i∈I(τi − θβs
i )E(Di)

=
∑m

i=1(τi − θβs
i )E(Ni(b

∗
i )).

Similarly, by the positivity of the parameters τi, we have
∑m

i=1
τiE(Ni(b̂i)) ≤

∑

i∈IC
τiE(Ni(b̂i)) +

∑

i∈I
τiE(Di) =

∑m

i=1
τiE(Ni(b

∗
i )).

By plugging these inequalities into (36) we obtain φ(b̂) ≤ φ(b∗), which shows that b∗ is also an optimal

solution, and proves our claim.

To show (ii) we observe that if
∑m

i=1 β
s
iE(Di) ≤ C holds, the objective function of (RUB

I ) becomes
∑m

i=1 τiE(Ni(b)). Since the coefficients τi are nonnegative and the mapping b 7→ E(Ni(b)) is nondecreas-

ing, our claim follows immediately. �

In the next lemma, it is shown that an optimal solution of (RUB
I ) can also be easily obtained when

∑m

i=1 β
s
iE(Di) > C.
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Lemma E.2 Consider the continuous relaxation (RUB
I ) and assume that

∑m

i=1 β
s
iE(Di) > C holds.

(i) Suppose that the fare classes are indexed such that τ1
βs
1

≥ τ2
βs
2

≥ · · · ≥ τm
βs
m
. If τi − θβs

i ≤ 0 holds

for all i = 1, . . . ,m, then an optimal solution is given by

bR∗
i =























∞ if 1 ≤ i ≤ k∗ − 1

min{b ∈ R̄+ : E(Nk∗(b)) = yk∗} if i = k∗

0 if k∗ + 1 ≤ i ≤ m,

(37)

where k∗ = min{k :
∑k

i=1 β
s
iE(Di) ≥ C} and yk∗ =

C−
∑k∗−1

i=1
βs
i E(Di)

βs
k∗

.

We remark that C ≤ 0 implies bR∗ = (0, . . . , 0).

(ii) As before, consider the index set I = {i : τi − θβs
i ≥ 0} and its complement IC . There exists

an optimal solution bR∗ such that bR∗
i = ∞ holds for every i ∈ I, while (bR∗

i )i∈IC is an optimal

solution of the following residual problem:

max

{

∑

i∈Ic
τiE(Ni(bi))− θ

[

∑

i∈Ic
βs
iE(Ni(bi))− Ĉ

]+

: bi ∈ R̄+, i ∈ Ic
}

, (38)

where Ĉ = C −
∑

i∈I β
s
iE(Di).

Note that, since τi − θβs
i ≤ 0 holds for all i ∈ IC , the residual problem has an optimal solution

of the form described in part (i).

Proof. [(i)] We first prove that the problem (RUB
I ) has an optimal solution bR∗ which satisfies

µ(bR∗) :=
∑m

i=1
βs
iE(Ni(b

R∗
i )) = C. (39)

Consider an arbitrary optimal solution b̂.

Case 1: µ(b̂) ≤ C. Since µ is continuous and nondecreasing on R̄
m
+ , and µ ((∞, . . . ,∞)) =

∑m

i=1 β
s
iE(Di) > C, there exists some bR∗ ≥ b̂ satisfying µ(bR∗) = C. As the coefficients τi are

nonnegative, and the mappings b 7→ E(Ni(b)) are nondecreasing, we have

φU (b
R∗) =

∑m

i=1
τiE(Ni(b

R∗
i )) ≥

∑m

i=1
τiE(Ni(b̂i)) = φU (b̂).

It follows that bR∗ is also an optimal solution, which proves our claim.

Case 2: µ(b̂) ≥ C. Similarly to the previous case, µ ((0, . . . , 0)) = 0 implies that there exists some

bR∗ ≤ b̂ satisfying µ(bR∗) = C. Using the assumption that τi − θβs
i ≤ 0 for all i = 1, . . . ,m, we now

have

φU (b
R∗) =

∑m

i=1
τiE(Ni(b

R∗
i ))− θ

(

∑m

i=1
βs
iE(Ni(b

R∗
i ))− C

)

=
∑m

i=1
(τi − θβs

i )E(Ni(b
R∗
i )) + θC

≥
∑m

i=1
(τi − θβs

i )E(Ni(b̂i)) + θC =
∑m

i=1
τiE(Ni(b̂i))− θ

(

∑m

i=1
βs
iE(Ni(b̂i))− C

)

= φU (b̂).

It follows that bR∗ is also an optimal solution, which proves our claim.

By incorporating the valid equality (39) into (RUB
I ) we obtain the problem

max{
∑m

i=1
τiE(Ni(bi)) :

∑m

i=1
βs
iE(Ni(bi)) = C, b ∈ R̄

m
+}.

Since the mapping b 7→ E(Ni(b)) is continuous and nondecreasing for all i = 1, . . . ,m, we can apply the

change of variable yi = E(Ni(bi)). This leads to the continuous knapsack problem below, which has the

same optimal objective value as (RUB
I ).

max
{

∑m

i=1
τiyi :

∑m

i=1
βs
i yi = C, 0 ≤ yi ≤ E(Di)

}
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According to the ordering of the indices specified in the statement of the lemma, the optimal solution of

this problem is given by

y∗i =



























E(Di) if 1 ≤ i ≤ k∗ − 1

C−
∑k∗−1

i=1
βs
i E(Di)

βs
k∗

if i = k∗

0 if k∗ + 1 ≤ i ≤ m,

where k∗ = min{k :
∑k

i=1 β
s
iE(Di) ≥ C}. Applying the transformation bR∗

i = min{b ∈ R̄+ : E(Ni(b)) =

y∗i } we obtain the optimal solution given in (37).

Proof. [(ii)] By part (ii) of Lemma E.1, there exists an optimal solution bR∗ such that bR∗
i = ∞

holds for every i ∈ I. Utilizing this result the problem (RUB
I ) becomes

∑

i∈I
τiE(Di) + max{

∑

i∈Ic
τiE(Ni(bi))− θ

[

∑

i∈Ic
βs
iE(Ni(bi))− Ĉ

]+

: bi ∈ R̄+, i ∈ Ic}.

By dropping the constant term
∑

i∈I τiE(Di) we arrive at the residual problem (38).

�

As an immediate consequence of the above result, we obtain an analytical expression for the optimal

objective value of (RUB
I ).

Corollary E.1 Suppose that the fare classes are indexed such that τ1
βs
1

≥ τ2
βs
2

≥ · · · ≥ τm
βs
m
. Substituting

the optimal solutions characterized in Lemma E.2 into the objective function φU we obtain

φU (b
R∗) =











∑m

i=1 τiE(Di) if
∑m

i=1 β
s
iE(Di) ≤ C

∑

i∈I(τi − θβs
i )E(Di) + θC if

∑

i∈I β
s
iE(Di) ≥ C

∑k∗−1
i=1 τiE(Di) + τk∗yk∗ otherwise,

(40)

where k∗ = min{k :
∑k

i=1 β
s
iE(Di) ≥ C}.

Lemma E.2 states that according to the policy characterized by the solution of (RUB
I ), there is at

most one fare class for which booking decisions are made based on a finite positive booking limit. The

remaining fare classes are divided into two groups: for some classes all the booking requests are accepted,

while for the others all the requests are rejected. Since the optimal solution of (RUB
I ) can have a fractional

component associated with the index k∗, bR∗ might not be a feasible solution to (PUB
I ). However, we

can obtain a feasible solution by simple rounding:

⌊bR∗
i ⌋ :=







∞ if bR∗
i = ∞

⌊bR∗
i ⌋ otherwise.

(41)

We next derive upper bounds on the error introduced by solving (PUB
I ) instead of (PI).

Lemma E.3 Suppose that b∗, bU∗ and bR∗ denote the optimal solutions of the original problem (PI),

the upper bounding problem (PUB
I ), and the relaxed problem (RUB

I ), respectively. In addition, ⌊bR∗⌋ is

defined as in (41). If φ(
⌊

bR∗
⌋

) > 0, then the following relations hold:

0 ≤
φU (b

U∗)− φ(b∗)

φ(b∗)
≤
φU (b

R∗)− φ(b∗)

φ(b∗)
≤
φU (b

R∗)

φ(⌊bR∗⌋)
− 1. (42)

Since φU (b
U∗

) ≥ φ(b∗) ≥ 0, φU (b
U∗) ≤ φU (b

R∗), and φ(b∗) ≥ φ(⌊bR∗⌋) > 0, the assertion immediately

follows.
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Note that we have an analytical expression for the solution ⌊bR∗⌋ (see (37) and (41)). Thus, the upper

bound given in Lemma E.3 depends solely on the problem data and can be computed without performing

optimization.

In our computational study, we have observed that φ(
⌊

bR∗
⌋

) is positive for all the problem instances.

If the condition φ(
⌊

bR∗
⌋

) > 0 is violated, we can utilize the optimal solution of (PLB
I ), which we denote

by (bL∗,yL∗). Since φL(b
L∗,yL∗) ≥ 0 and φ(b∗) ≥ max{φ(⌊bR∗⌋), φL(b

L∗,yL∗)}, a generalized version

of (42) becomes

0 ≤
φU (b

U∗)− φ(b∗)

φ(b∗)
≤
φU (b

R∗)− φ(b∗)

φ(b∗)
≤

φU (b
R∗)

max{φ(⌊bR∗⌋), φL(bL∗,yL∗)}
− 1. (43)

The remaining challenge is to compute φ(⌊bR∗⌋) appearing in (42) and (43). Assuming that the

random demands for fare classes, Di, i = 1, . . . ,m, are bounded and independent, for a given booking

policy denoted by b ∈ Z̄
m
+ we can numerically calculate the value of the φ(b) using the FFT method

(see, e.g., Tijms, H.C, 2003). Basically, we need to compute numerically the distribution function of the

bounded random variable

∆(b) :=
∑m

i=1
B(βs

i ,Ni(bi)).

To achieve this, we compute the generating function of the random variable ∆(b). By the independence

of the random demand variables Di, i = 1, . . . ,m, and hence, the independence of the random variables

Ni(bi), i = 1, . . . ,m, and relation (27), we obtain the generating function as follows:

E(z∆(b)) = Πm
i=1E(z

B(βs
i ,Ni(bi)))

= Πm
i=1E

(

(1− βs
i + βs

i z)
Ni(bi)

)

= Πm
i=1Pi(1− βs

i + βs
i z),

where Pi(w) := E(wNi(bi)). Notice that Pi(w) can be easily calculated for given distributions of the

random demand variables Di, i = 1, . . . ,m. Since the random variable ∆(b) is bounded, we apply the

standard FFT method for a finite sequence using E(z∆(b)) and obtain the distribution function of ∆(b).

Then, we simply compute the challenging expectation E([∆(b)− C]
+
) appearing in the expected net

revenue function φ.
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