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Abstract

In this paper we describe how rolling stock and passenger connections in a cyclic
railway timetable can be modeled in a flexible way within the model for the Periodic
Event Scheduling Problem (PESP). The PESP model was introduced by Serafini and
Ukovich (1989). Usually, PESP models assume that the constraints for rolling stock
or passenger connections specify in detail which trains should connect with each other.
However, the flexibility described in this paper allows the model to choose which trains
should connect with each other in a rolling stock or passenger connection. We express
the required number of train compositions in terms of the integer cycle variables
of the constraint graph. We also describe an abstract framework, demonstrating
that, under certain conditions, the extra flexibility can be modeled purely in terms of
PESP constraints. The concept of flexible rolling stock and passenger connections is
illustrated by an example based on three intercity lines of Netherlands Railways.

Keywords: Cyclic railway timetabling; Rolling stock and passenger connections; PESP.

1 Introduction

The Periodic Event Scheduling Problem (PESP), introduced by Serafini and Ukovich
(1989), can be used for the scheduling of a number of periodically recurring events. Railway
operators use the PESP model to develop cyclic timetables. The usual PESP model for
cyclic railway timetables uses fixed rolling stock and passenger connections to develop
the timetable. However, in this paper we describe how the rolling stock and passenger
connections can be modeled in a flexible way within the PESP model, thereby leading to
better timetables with respect to passenger connection times, running and dwell times, or
the number of train compositions required to operate the timetable.



In an instance of PESP, we are given a set V of events for which the event times
have to be determined. The events must be scheduled periodically with time period
T. That means that, if event j takes place at time 7;, it should take place at times
vy =21, =T, 7j,m;j+T,m; 42T, ..., as well. As a consequence, for each event j € V,
it may be assumed that 7; € [0,7).

The events are pairwise connected by a set of constraints, specifying that the difference
of the corresponding event times (modulo 7') must be in a certain time interval. That is,
there is a set of constraints A, where each constraint a € A is connected with a pair of
events j, k € V, a lower bound ¢, and an upper bound u,, specifying that

by < (mp— 15 —4y) mod T + £, < ug. (1)

In the following, the constraint (1) is also denoted as 7, — 7 € [{4; us|7. More general,
if U is a set of real numbers, then we use the notation Up for the set of real numbers
{reR|3z€Z:r—TzecU }, the periodized set of U.

In the context of cyclic railway timetabling, the events represent the departures and
arrivals of trains at the stations. The constraints represent the process times, and are
typically used to model the following issues:

e Running times between two consecutive stations of the same train. Here often
Ly = ug, but in case of mixed traffic (e.g. passenger and freight trains) more flexibil-
ity may be needed to get a feasible solution (Kroon and Peeters, 2003);

e Dwell times of trains in the stations, where /¢, is either the time the passengers need
to board and alight, or some technical time (e.g. change of direction, train coupling
or sharing, change of locomotive), and u, is intended as a service commitment for
the through-passengers;

e Passenger connection times in stations, where £, models the minimum time that is
required to change from one train to an other, and u, is used as an explicit service
commitment for the most important transfers;

e Minimum headways on tracks, where —in the easiest case of two trains having the
same speed— ¢, is just the technical minimum headway, and u, := T — £, is used to
guarantee a minimum headway if the trains run in the reverse order;

e Synchronized departures, where two trains are assumed to provide a balanced service

on a common rail segment. Here typically £, = u, = %

In this paper, we show by a number of examples that a priori fixing the rolling stock or
passenger connections may lead to suboptimal results with respect to passenger connection
times, running and dwell times, and the number of train compositions required to operate
the timetable. It may even lead to infeasibility, although a feasible solution would exist
if the connections were selected otherwise. We express the number of train compositions
needed to operate the timetable in terms of certain cycle variables in the constraint graph.
We also present a general framework for describing the flexible connections in terms of
PESP constraints. Finally, we show the added value of the flexible rolling stock and pas-
senger connections based on a case involving three intercity lines of Netherlands Railways,
the largest operator of passenger trains in the Netherlands.



This paper is structured as follows. In Section 2 we describe some general properties of
PESP models. Section 3 deals with rolling stock connections, and with counting the num-
ber of train compositions needed to operate a timetable. Section 4 focuses on passenger
connections. Next, in Section 5 we describe the general framework for the flexible connec-
tions. In Section 6 we present the case involving the three intercity lines of Netherlands
Railways. The paper is finished with some conclusions in Section 7.

2 Properties of PESP

In this section we provide some basic properties of PESP that are used in the remainder
of this paper. In constraint (1) one may assume without loss of generality that 0 < ¢, < T
and 0 < uy — I, < T. Indeed, a constraint not satisfying the latter condition is void in a
periodic system with period 7. Note that it may happen that u, > T.

An instance of PESP can be represented by a directed constraint graph D = (V, A),
where the nodes correspond with the events and the arcs correspond with the constraints.
Each arc a € A is associated with a lower bound ¢, and an upper bound u,.

There may be several arcs between a pair of nodes, but the graph may not contain
loops. Furthermore, we may use the terms “events” and “nodes” interchangeably. The
same holds for the terms “constraints” and “arcs”.

In the following, we may also write (j, k) for an arc a € A that is directed from node
j € V tonode k € V, in particular if there is only one arc directed from node j to node k.

It is NP-complete to determine whether for a given constraint graph (D, ¢, u) there
exists a vector 7 satisfying constraint (1) for all arcs a € A (Odijk, 1996).

The constraint (1) is difficult to handle in MIP models. However, it is well known that
constraint (1) is equivalent to the following constraint (2):

by <1 — 15+ T X pa < Ug. (2)

Here p, € Z is an integer decision variable. Note that (1) is not completely equivalent to
the following constraint that is also often mentioned in the context of PESP models:

by < (mp —mj) mod T' < ug. (3)

For example, in constraint (3) an upper bound u, > 7" does not make sense.

Instead of describing the timetabling problem in terms of the events j € V and the
event times m; € [0,7'), one can also use the process times x, of the arcs a € A. Here
x4 represents the periodic time difference between the event times m; and 7 of nodes j
and k € V if arc a is directed from node j to node k. In that case, the process time x, is
defined as z, = (7 — mj —l,) mod T + [, from constraint (1) or as z, =7 —7; + T X pg
from constraint (2). A process time variable z, satisfies £, < x4 < uq.

When using the process times instead of the event times in the model, the cycles in the
constraint graph play an important role in deciding whether the process times provide a
feasible solution. A cycle C in the constraint graph contains forward arcs C* and backward
arcs C'~, such that changing the direction of the backward arcs leads to a directed cycle.
The following result is well known:



Proposition 2.1 (Liebchen and Peeters, 2009). Let (D, ¢, u) be a constraint graph repre-
senting a PESP instance, and x € Q. Then the following statements are equivalent:

o The vector x represents a feasible set of process times for the PESP instance.

o For every cycle C in D, we have

Z Ty — Z zq =1 X q¢ for some qo € Z, and F{ <z <u.
acC+ acC—

In particular, if x is a feasible solution, arc a is directed from node j to node k, and
arc b is directed from node k to node j, then x, + xp = 0 mod T". Thus, if 0 < x4, 2y < T,
then x, + 2 = T. The following result of Odijk (1996) is used several times in this paper.

Proposition 2.2 (Odijk, 1996). Let (D,¢,u) be a constraint graph representing a PESP
instance. Then for any cycle C' in D, the following inequalities are valid

T DITED SR | EVEES Y D SRTED SR @

acCt aceC— acCt acC—

The integer variable g¢ corresponding to cycle C' will be called the integer cycle variable
of cycle C. Another property of PESP that we will often use in the remainder of this paper
is that it allows a process time between two events to lie in either of two periodic time
intervals. This property is illustrated in Figure 1.

Proposition 2.3 (Peeters, 2003). If 0 < {1 < uy < ly < ug < T, then the constraints
T —1j € [l1;ur]r VR —7j € [lo;uslr are equivalent to the constraints m, —m; € [£1;u2|T A
M — T € [ﬁg;ul —I—T]T.

O

Figure 1: A union of two periodic time intervals is also the intersection of two periodic
time intervals.

This property can be generalized easily to more than two periodic time intervals. Thus
in a PESP model certain disjunctive constraints can be replaced by conjunctive constraints.
A further relevant property of the integer cycle variables g¢ is that they indicate the
periodic order in which the events of the corresponding cycle take place, as is expressed



in the following proposition. By definition, the events j, k and [ take place in the periodic
order j — k — 1 if (m, — mj) mod T' < (m — mj) mod T'. Note that the events j, k and !
take place in the periodic order j — k — [ if and only if they take place in the periodic
order k — [ — j if and only if they take place in the periodic order [ — j — k.

Proposition 2.4 (Peeters, 2003). If (D, ¢, u) is a constraint graph representing a PESP
instance, wherein nodes j, k and l are connected by arcs (j,k), (k,1), and (I, j) with upper
bounds less than T, then the corresponding events are scheduled in the periodic order
j— k —1if and only if the cycle variable of the directed cycle j — k — [ has value 1.

Note that, if the upper bounds on the arcs are less than 7', then the only other value
the cycle variable of the directed cycle j — k — [ may have is 2. In that case, the
corresponding events are scheduled in the periodic order j — I — k.

3 Rolling stock circulation

In this section we describe how flexible rolling stock connections at the endpoints of a train
line are helpful when minimizing the number of train compositions needed for operating
the timetable. We also describe how this minimization problem can be expressed in a
PESP model. We start with a simple example. This example considers a situation of a
line that is operated twice per hour. Note that, if all lines of the railway system have the
same frequency, then the situation can be simplified by using a smaller time period 7.
However that is usually not the case. The latter justifies the analysis in this paper.

3.1 Example

In this example we consider a train line that is operated twice per hour between the end
stations A and B with exactly 30 minutes between two consecutive departures in the same
direction from each (underway) station. The rolling stock on this line can be operated
with two separate circulations, or with one combined circulation, depending on the rolling
stock connections at the endpoints.

As a consequence, if one fixes the rolling stock connections at the endpoints a pri-
ori, then one may not end up with a timetable requiring the minimum number of train
compositions. Therefore choosing the rolling stock connections at the endpoints should
preferably be part of an optimization model aiming at minimizing the required number of
train compositions.

Suppose the running time in each direction of the line must be between 35 and 40
minutes, and the return time (or turn around time) at each endpoint must be between 10
and 25 minutes. Here the return time is the time between the arrival of a train and the
departure of the next train in the reverse direction. Then the minimum circulation time
of a train is 2 x (10 + 35) = 90 minutes, and the maximum circulation time of a train is
2 x (25 4+ 40) = 130 minutes.

Thus, in order to operate the line twice per hour takes at least 2 x 90 = 180 minutes
and at most 2 x 130 = 260 minutes. Since each train composition provides 60 minutes



per hour, it follows that in each feasible timetable at least [180/60] = 3 and at most
|260/60] = 4 train compositions are used for operating this line twice per hour.

0 30 0 30 0 30

0 35 B
A B
35 0
30 : 5
A B A
5 30
Figure 2: A periodic timetable that needs 4 train compositions

Figure 2 shows a periodic timetable in which the rolling stock connections in stations
A and B are such that there are two separate circulations, needing 2 x 2 = 4 train
compositions. The left part shows the constraint graph with departure and arrival times.
The right part shows the corresponding time-space diagram. The short transversal lines
in the left part of the figure indicate where the timetable crosses the end of the hour. For
example, the arcs in the lower circulation starting at ¢ = 30 and ending at ¢ = 5 cross
the end of the hour. The total number of these transversal lines indicates the required
number of train compositions. The right part of the figure indicates the circulation of a
single train composition with bold lines. In this timetable all return times are 25 minutes.

Note that also similar timetables with this structure of two separate rolling stock
circulations exist with different running and return times. In each separate circulation,
the lower bound on the sum of the process times equals 2 x 35+ 2 x 10 = 90 minutes, and
the upper bound equals 2 x 40 + 2 x 25 = 130 minutes. Thus operating one circulation
requires at least [90/60] = 2 and at most [130/60] = 2 train compositions: each feasible
solution has two train compositions, running times between 35 and 40 minutes in each
direction, and return times between 20 and 25 minutes at each endpoint, so that the sum
of the running times and the return times equals 120 minutes. Each timetable with this
structure that is operated twice per hour requires 2 x 2 = 4 train compositions.

Figure 3 shows a timetable with a combined rolling stock circulation that needs only
3 train compositions. Here the return times at the endpoints are just 10 minutes. This
timetable with 3 train compositions is more or less unique, as will be demonstrated next.

The dashed arc in the graph in the left part of Figure 3 represents a synchronization
constraint, specifying that the departures from station B should be 30 minutes apart. Note
that the graph contains two cycles consisting of the synchronization arc, two running time
arcs and two return time arcs. The lower bound on the sum of the process times on
these cycles equals 30 + 2 x 35 + 2 x 10 = 120 minutes, and the upper bound equals
30 + 2 x 40 + 2 x 25 = 160 minutes. Since Proposition 2.1 implies that the sum of the
process times along each cycle must be a multiple of 60 minutes, the sum of the process
times equals 120 minutes. Thus the running times and the return times are minimal.
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Figure 3: A periodic timetable that needs only 3 train compositions

That is, the running times are 35 minutes and the return times are 10 minutes. Thus the
timetable in Figure 3 is basically the only timetable with a single combined rolling stock
circulation, apart from trivial time shifts for all events.

This example shows that it is useful not to fix the rolling stock connections at both
endpoints of the line a priori: one should have a flexible rolling stock connection at one
endpoint of the line, and let the optimization model choose the rolling stock connection.
Obviously, adding a flexible rolling stock connection also at the other endpoint of the line
will not give any further reduction in the required number of train compositions.

If the arrival and departure times of the trains in station B are denoted by a; and dj,
respectively, then the flexible connections in station B can be described as follows:

(dl —ay € [10; 25]T AN do—as € [10; 25]T) vV (dl —ag € [10; 25]T AN do—ai € [10;25]T)

Furthermore, there are synchronization constraints as — a; € [30;30]7 and do — d; €
[30; 30] 7 for distributing the arrivals at station B and the departures from station B evenly
over the hour. Combining these sets of constraints, and using the result of Proposition
2.3, we get the following constraints:

di—aq € [10; 55]T AN di—aj € [40; 85]T AN di—ag € [10;55]T A dy—ag € [40;85]T
dy —aj € [10;55)p A do —ay € [40;85]7 A do—az € [10;55]p A do — ay € [40;85]p

These constraints allow the arriving trains in station B to connect to either of the departing
trains. The next question is: how to count the number of train compositions needed in
each of the two timetables? In Section 3.2 this number will be expressed in the cycle
variables of certain cycles in the constraint graph. |

Nielsen et al. (2006) consider the problem of minimizing the number of train com-
positions in the timetable of DSB S-train, the operator of local trains in the greater
Copenhagen area. Here train lines are operated three times per hour with exactly 20 min-
utes between two consecutive departures in the same direction from each station. They
consider these lines as having a periodic timetable with a period of 20 minutes. However,
they recognize that it may be useful to merge the rolling stock circulations of two lines



having the same origin and the same destination. This indeed leads to savings of a few
train compositions. Their model focuses on minimizing the return times of the trains at
the endpoints of the lines, thereby assuming that the running times of the trains are fixed.

A similar approach is used by Liebchen (2004, 2006), who focuses on minimizing the
number of train compositions required to operate the timetable of the Berlin Underground.
He also focuses on minimizing the return times of the trains at the endpoints. Moreover, he
shows that requiring symmetry for the timetable may lead to a higher minimum number
of train compositions. In another paper, Borndorfer and Liebchen (2008) compute the
minimum number of train compositions needed for operating a train line, both in case of
a periodic timetable and in case of an aperiodic one. They show that, if the timetable is
operated long enough, then the minimum number of required train compositions in the
periodic case is the same as in the aperiodic case.

3.2 Counting the number of train compositions

In this section we express the number of train compositions needed to operate the timetable
in terms of the cycle variables of certain cycles of the constraint graph, also in the case of
flexible connections. This expression can be used then in a MIP model to minimize the
number of train compositions needed to operate the timetable.

We assume that there are two trains per period from station A to station B and vice
versa. The two trains per period from station A to station B are called t; and t5, and the
trains in the reverse direction are called ¢; and %s.

We assume that in station A the trains turn on themselves. That is, in station A
arriving train ¢; returns as departing train ¢; (j = 1,2). We consider the following two
rolling stock circulations, based on the rolling stock connections in station B:

(¢): In station B, arriving train ¢; returns as departing train ¢; (j = 1,2).

(i7): In station B, arriving train ¢; returns as departing train t3_; (j = 1,2).

In the following, a; denotes the arrival time of train ¢; at station B, and d; denotes
the departure time of train ¢; from station B (j = 1,2). The arrivals of trains ¢; in station
B are related by a synchronization constraint with time window [s;35], with s < % <3,
and the same holds for the departures of trains ¢; from station B. Both turn around time
windows in station B are equal to [c; .

In this section we assume that s + = T, and that ¢ < s. The latter implies that,
for a fixed timetable, only one of the circulations (i) and (i) is feasible, as can be seen
easily. Indeed, ¢ < s implies that each train has departed from station B before the next
one arrives, so that at any point in time there is at most one train in station B. Note that
these assumptions also imply that ¢ +35 < T'.

Figure 4 illustrates the situation in a constraint graph. The dashed arc from node d; to
node ds is a synchronization arc. The four arcs from an arrival node to a departure node
are connection arcs, describing the connections of the arrivals to the departures. In the
left part of Figure 4, cycle C; describes the circulation of the trains ¢; and ¢; in circulation
(1) (j = 1,2). Cycles Cy and Cs play a role in the further analysis: cycle Cy consists of
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Figure 4: Constraint graph for trains t; and ¢; (j = 1,2); Right: Cycle C3

the nodes aq, di, and dy and the three arcs in between. Cycle C5 consists of the nodes ao,
dy, and dy and the three arcs in between.

In the right part of Figure 4, cycle C3 shows the circulation of the trains ¢; and ¢; in
circulation (i7). Now the choice between the circulations (i) and (i7) can be modeled by
the following constraints:

(di —ay € [gelr N dy—ag €lcelr) V (di—az €gelr AN dy—a1 €[cer) (5)

Using the synchronization constraints as — a1 € [s,5| and d2 — d; € [s,5] and the
fact that, according to Proposition 2.3, in a PESP model disjunctive constraints can be
replaced by conjunctive constraints, constraint (5) is equivalent to constraints (6) - (9

)
7)
8)

)

AN di—as €lc+s;e+T|r

).
(6
(
(

Sl AN do—ag €lc+s;e+Tlr (9

Because of the constraints (6) - (9), there are actually two arcs and two associated
process time variables x;; and 7, between each pair of nodes a; and dj in Figure 4
(j =1,2 and k = 1,2). These process time variables have time windows z; 1 € [c;€ + 3]
and T € [c+ s;¢+ T]. This also means that the graph in Figure 4 contains more cycles
than it seems at first sight. For example, cycle Cy consists in fact of two cycles, since there
are two arcs between nodes a7 and dj.

For the choice between the two circulations (i) and (ii), however, we only need to
consider the cycles that contain the process time variables z;;: these variables lie in the
time windows [c; ¢ + 5], so they represent the actual turn around times. Note that the
other process time variables T j, are still needed for correctly modeling the choice between
the two circulations (7) and (7).

For j = 1,...,5, let g; be the integer cycle variable of cycle C;. Then the number of
train compositions needed to operate circulation (i) equals ¢ + ¢o. Similarly, the number
of train compositions for circulation (i7) equals gs3.



Next, consider the cycles Cy and Cs in Figure 4, and direct these such that the syn-
chronization arc appears forwardly in both cycles. Then both cycles consist of the forward
synchronization arc with time window [s, 5], and of a forward and a backward turn around
arc. Recall from the above that we consider these turn around arcs as corresponding to
process time variables x;, with time windows [c; ¢ + 5]. From Proposition 2.2 we obtain
the following bounds for the integer variables g4 and ¢s:

[C—FS—(C—FS) (10)

- (c+s)+8—0J

-‘SCM,%S{ T

Since, by assumption, s +35 = T and ¢ < s, we find that q4,¢q5 € {0,1}. The cycle
periodicity constraint for cycle Cy is @4, 4, + Tdy ,dy — Tay,d; = 1 X q4. Now we know that
the cyclic sequence a1 — dy — d2 occurs, if and only if x4, 4, + %4, dy + Tdp,a, = T. The
latter is equivalent to x4, 4, +ay dp + (T — Zay.dy) =T OF Tq, 4y +Tdy do — Tay,dy = 0. Thus
the cyclic sequence a; — dy — dy occurs if and only if g4 = 0. A similar result holds for
¢5- This can be summarized as follows:

~ | 1 if and only if the cyclic sequence a1 — do — dy occurs,
44 = 0 if and only if the cyclic sequence a; — di — do occurs.

| 1 if and only if the cyclic sequence as — d2 — d; occurs,
4= 0 if and only if the cyclic sequence as — dy — ds occurs.

Furthermore, we know that either z,, 4, € [¢;¢] and x4, 4, € [c + s;¢ + 5], or that
Tay,d, € [c+ 8¢+ 3] and x4, 4, € [c;€]. Obviously, the latter case corresponds to g4 = 1,
and the former to ¢4 = 0. Since a similar result holds for cycle Cj5, the above relations can
be restated as follows:

~ /1 if and only if circulation (i¢) is operated,
“=\ 0 ifand only if circulation (7) is operated.
(

[ 1 if and only if circulation (7) is operated,
%=1 0 ifand only if circulation (i7) is operated.

Thus ¢4 + g5 = 1. This means that we can use either g4 or g5 as a binary variable
to indicate which of the circulations (i) and (i7) is operated. Arbitrarily choosing g5 for
this role, the number IV of train compositions required for operating the timetable can be
expressed as follows:

N=g¢gx(@a+ae¢)+1-g)xg (11)

This expression states that, if circulation (i) is operated, then the number of required
train compositions equals q; + g2, and otherwise this number equals ¢g3. Next, we rewrite
the non-linear expression (11) into a linear one. To that end, let cycle Cg be the clockwise
directed cycle formed by the four connection arcs from each node a; to each node dy
(j =1,2 and k = 1,2) in Figure 4, and let gg be its corresponding integer cycle variable.
One can check that g3 = ¢1 + g2 + g6. That means that (11) is equivalent to

N=¢gx(g+e)+1-¢g)x@a+e+tewp)=qg+q¢+(1—0q)xg (12)

10



Furthermore, g = g5 — q4. Together with the earlier found equality g4 + g5 = 1, this
gives gg = 2¢g5 — 1. Substituting this into the above expression, we obtain

N=qg+@p+(1-¢)xgs=a+¢+1—-g)x(2¢g—1) (13)

In the latter expression, the term (1—gs) X (2¢5 — 1) has the value —1 whenever g5 = 0,
and it has the value 0 whenever g5 = 1; that is, (1 —¢5) X (2¢5 — 1) = —(1 — ¢5). Thus for
the considered situation in Figure 4, we have obtained the following result:

Proposition 3.1. If in station B there are two arriving and departing trains, ¢ < s < %,
and s+35 =T, then the number N of train compositions required to operate the timetable
described by the graph in Figure 4 equals g1 + g2 + g5 — 1.

If the trains belong to the same line, then one may assume that the timetable of the
trains t; and ¢; is very similar to that of the trains ¢, and ¢5. In that case we have ¢ = ¢o,
and hence the expression in Proposition 3.1 simplifies to 2¢; + g5 — 1.

Proposition 3.1 implies that the required number of train compositions equals g1 + g2
if circulation (7) is operated and q; + g2 — 1 otherwise. One may be tempted to conclude
from this that circulation (i) is always better than circulation (7). However, that is not
the case. Ome can only conclude from this that, if both circulations are feasible for a
fized timetable, then circulation (ii) is better than circulation (). However, since ¢ < s,
this situation cannot occur. In the general case, it is possible that both circulations are
feasible. In fact, it is not difficult to create instances for the following situations:

a
b
c
d

Circulation (7) is feasible and circulation (i¢) is not.

~ o~

Both circulations are feasible, and circulation (7) requires less compositions.

—~

Both circulations are feasible, and circulation (i7) requires less compositions.

):
):
):
):

—

Circulation (74) is feasible and circulation (7) is not.

With respect to cases (b) and (c), one can start with a circulation of type (i) with
q1 + g2 compositions, and variable g5 = 1. Then, when changing the circulation into a
circulation of type (i), variable g5 changes from 1 to 0. But at the same time, the variables
q1 and g2 may change as well. The net result in the expression ¢; + ¢2 + g5 — 1 may be
that the circulation of type (ii) requires more or less compositions than the circulation of
type (i), or the same number of compositions as the circulation of type ().

3.3 Three and more trains per period
The analysis of the previous section can also be extended to the case with three or more
trains per period between stations A and B. A description is provided in this section.

3.3.1 Three trains per period

In this section, trains ti, to and t3 run from station A to station B, and trains ti, to
and t3 run from station B to station A. The arrival and departure times of the trains in
station B are denoted by a; and dj, respectively (j = 1,2,3). We assume that trains do
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not overtake each other between their departure from station B and their next arrival in
station B. That is, we use the following FIFO assumption:

In station B, the departures of the trains take place in the cyclic order di — do — ds

if and only if the arrivals take place in the cyclic order a; — as — ag. (14)

Note that this condition is automatically satisfied in the case of two trains per period.
As in the previous section, in station A train ¢; returns as train ¢; (j = 1,2, 3). The rolling
stock circulation depends on the rolling stock connections in station B. We will prove that,
under a reasonable condition, there are only three circulations, namely:

(79): In station B, train ¢; returns as train ¢; (j = 1,2, 3),
(v): In station B, train ¢; returns as train £(;41) mod 3+1 ( = 1,2,3),

(v): In station B, train ¢; returns as train ¢; med 34+1 (J = 1,2, 3).

In any other circulation than (iii), (iv) and (v), the three arriving trains would be
split into a subset of two trains and one single train. In station B, the single arriving
train ¢; returns as departing train ¢;, and the other two arriving trains turn on each other.
However, if the synchronization constraints are strong enough, then such a timetable is
not feasible, as is shown in Proposition 3.2.

Proposition 3.2. If in station B there are three arriving and three departing trains, ¢ < s,
and the FIFO condition (14) holds, then any other circulation than circulations (iii), (iv),
or (v) is infeasible.

Note that Proposition 3.2 does not state that any of the circulations (iii), (iv), or (v) is
feasible. It only states that any other circulation is infeasible.

Proof. Suppose the circulation is different from circulations (ii7), (iv), or (v). Then there
is one arriving train ¢; in station B that departs as train ¢;, and the other two arriving
trains turn on each other. Without loss of generality, train ¢; departs as train t1, a; = 0,
di € [¢,¢], az € [8,3], and a3 € [T —35,T — s].

Then, because of the FIFO condition (14), d2 € [c+s,¢+3], and d3 € [T—5+c¢, T—s+¢|.
Note that T—s+¢ < T'. As a consequence, we have ds—ag = (d3—dg)+(da—ag) > s+c¢ > ¢.
Thus train ¢3 cannot return as train f in station B. It follows that train ¢; returns as train
t; (j =1,2,3). Hence, contrary to the assumption, we have circulation (747). |

Circulation (ii1), together with some additional arcs and cycles, is shown in Figure 5.
In this figure, cycle C; represents the circulation of trains ¢; and ¢; (j = 1,2,3). In order
to keep the figure as simple as possible, it has been split into two parts. Note that in the
right part of the figure, trains to and to were swapped with trains t3 and 3.

Circulations (iv) and (v) are shown in Figure 6. Cycle C4 belongs to circulations (iv),
and cycle Cy belongs to circulation (v).

As before, the synchronization constraints are indicated by dashed arcs in Figure 5.
The synchronization constraints are twofold, and have intervals [s; 5] or [T —3;T — s]. We
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A Train t; Train t;
C , ,
Y Traint G Traint;
A Train t, C Train t,
C Traint, 8 Traints
Train t, Train t,
A Cy 3 C, o2
Traints Traint.
Ce=Cy+Cg+ Cy—Cyp Cs=C;+C+Cy—Cyy

Figure 5: Constraint graph for trains t; and ¢; (j = 1,2, 3)

Train t; Train t;
A . ,
Traint Trainty
A Train t, Train t,
Traint, Traints
A Train t; Train t,
Traints Traint,

Figure 6: Cycles Cy and C5 belonging to circulations (iv) and (v), respectively

assume s < % <'5. The connection constraints are threefold, and have time intervals [c; €],

[c+s;¢475], or [T —5+¢;T—s+7¢|. Again we assume ¢ < s, so that there is at most one
train at the same time in station B.

Cycle Cj is the clockwise oriented cycle consisting of the six connection arcs in the left
part of Figure 5 from the arrival nodes to the departure nodes. Cycles C7, Cg, and Cy are
the cycles consisting of one forward connection arc, one backward connection arc, and one
synchronization arc in the left part of Figure 5. These cycles are oriented in such a way
that the synchronization arc is directed forwardly. Cycle Ciq is the cycle consisting of the
three forward synchronization arcs. Cycles Cf, C%, Cg, C§ and Cf, are similar cycles in
the right part of Figure 5.

Let ¢; be the integer cycle variable corresponding to cycle C; (j =1,2,...,9), and let
q} be the integer cycle variable corresponding to cycle CJ/- (j=17,...,10). In the following,
we do the calculations with the cycles in the left part of Figure 5, but the same results
hold for the cycles in the right part of the figure.

From the structure of the cycles, it follows that ¢4 = g1 + ¢2 + ¢3 + q¢, and ¢g =
g7 + qs + q9 — qi0, and g0 = 1 or 2. Furthermore, the FIFO condition (14) implies that
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q7 = g8 = q9. Now using the result of Proposition 2.2, we get

(T—s+c)+(T—S)—6J
T

[C+s—(T—s+c)

- (15)

-‘ < q7,48,q9 < {

Using the fact that ¢ < s and that s < %, it follows that 0 < ¢; <1 (j =7,8,9), and in
the same way it follows that 0 < q;- <1(j=1,8,9). By the same arguments as in Section
3.2, we get the following result:

| 1 if and only if the cyclic sequence a; — di — d3 occurs,
® 0 if and only if the cyclic sequence a; — d3 — d; occurs.

, | 1 if and only if the cyclic sequence a1 — di — da occurs,
=910 ifand only if the cyclic sequence a; — do — d; occurs.

Thus circulation (z¢) is operated if g9 = g5 = 1, circulation (iv) is operated if gg = 0
and gy = 1, and circulation (v) is operated if gg = 1 and ¢j = 0. If g9 = ¢j = 0, then
either of the two circulations (iv) or (v) can be operated, depending on the values of
the synchronization arcs. Thus, if the binary variables R3, R4, and Rs5 are introduced to
represent which of the three circulations is operated, we get:

R3+ R4+ Rs=1 and R3<qy and R3<qy and Ry <1—q9 and R; <1—g¢, (16)

Now the required number N of train compositions equals ¢ + g2 + ¢3 in circulation (iii),
g4 in circulation (iv), and ¢ in circulation (v). This number N can be expressed as

N=Rsx(q1+q+q)+Rixq+Rsxqg=

Ryx(qi+q+¢q)+Rax(qn+q+a+4qs)+Rs X (1 +q2+ g3+ q5)-
Using R3 + R4+ Rs = 1, and g6 = g7 + ¢z + g9 — quo, and g5 = q; + g5 + ¢y — ¢}, and
q7 = g8 = q9, and ¢; = g3 = qy, we get:
N =qi+q+ g+ Ri x (3q9 — q10) + Rs x (3q9 — qlo)-
Since Ry =01if g9 =1 and R; =0 if ¢, = 1, we get:
N =q + g+ ¢ — Ry X q10 — R5 X qjo.

Now the problem is to linearize the expressions Ry X gi9 and Rs X ¢j,. We denote the
former by E4 and the latter by F5. Then we know that £y = 0 if R4 = 0, and E4 = qi9
if R4 = 1. Since g9 = 1 or 2, we have 0 < F,; < 2. Similar results hold for F5. Thus E4
and Fs can be described as follows:

0 S E4 S 2R4 and 0O S qio — E4 § 2(1 — R4) (17)

0<E5 <2R; and 0<djy— E5 <2(1—Rs) (18)

Indeed, the first pair of inequalities in (17) implies Ey = 0 if Ry = 0. The second
pair of inequalities in (17) implies Ey = ¢ if R4 = 1. A similar result holds for FEj.
Altogether, we found the following result.
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Proposition 3.3. If in station B there are three arriving and departing trains, the FIFO
condition (14) holds, and ¢ < s < %, then the number of train compositions required to
operate the timetable equals q1 + qo + q3 — E4 — E5, where Ey and Es5 satisfy inequalities
(17) and (18), respectively, and where Rs, Ry and Ry satisfy inequalities (16).

Note that the right and the left parts of Figure 5 only differ in the order of trains to
and t3 and of trains t5 and 3. If these trains belong to the same line, then trains ¢ and
t3 can be considered as interchangeable, and the same holds for trains ¢5 and ¢3. Thus in
that case we may assume without loss of generality that the departures of the trains take
place in the cyclic order d; — d2 — d3. That is, ¢10 = 1 and ¢}, = 2. The number of train
compositions required to operate the timetable equals q1 + g2 + g3 — R4 — 2R5 then.

3.3.2 More than three trains per period

If the connection and synchronization constraints are strong enough, then the analysis for
three arriving and departing trains may also be applied to the case of any prime number p
of arriving and departing trains. Indeed, if ¢ < s and s < % < 3, then the circulations that
may exist in that case are comparable to the circulations for the case with three trains.
That is, there are either p separate circulations where arriving train ¢; returns in station
B as departing train ¢; (j = 1,...,p), or there is just one single circulation where arriving
train ¢; returns in station B as departing train Z(j;x) modp+1 (J = 1,...,p). The latter
type of circulation exists for k =0,1,...,p — 2.

If p is a prime number, then in any other circulation than the two types sketched above,
the trains must be split into two or more subsets of unequal size that each have their own
circulation. However, if the connection and synchronization constraints are strong enough,
then this is infeasible, as can be proved in the same way as Proposition 3.2.

For a composite number of arriving and departing trains, the situation is different.
Then the trains can be split into two or more subsets of the same size that each have their
own separate circulation. For example, if there are four arriving and departing trains,
then there may be one circulation including all four arriving and departing trains, two
circulations including two arriving and departing trains each, or four separate circulations
including one arriving and one departing train each. In practical situations usually only
at most two of these circulations are feasible. Note that frequencies of four or more trains
on the same line hardly ever occur in practice.

4 Passenger connections

In this section we show that it is useful to model passenger connections also in a flexible
way, and to let the actual passenger connections between the trains be chosen by the
optimization model. In this sense, passenger connections are comparable to rolling stock
connections, but there are also differences. The main difference is that the rolling stock
connections have direct implications for the number of train compositions, and thereby for
the complete rolling stock circulation in the timetable. Passenger connections act more
locally: they just put additional constraints on the local arrival and departure times of
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the trains in the stations, so that passengers can easily transfer from one train to another
there. These constraints should be effective, but they should also be as much as possible
flexible, thereby not constraining the timetable more than necessary. In this section we
first go back to the example in Section 3.1.

4.1 Example

This example is an extension of the example in Section 3.1. In addition to the two trains
per hour between stations A and B, there is also a train between stations B and C, which
is operated once per hour in both directions. The running time between stations B and C
is 45 minutes in both directions. This train has a return time in stations B and C between
10 and 25 minutes. In station B, there must be a passenger connection with a duration
between 5 and 15 minutes from an arriving train from station A to the departing train to
station C, and also in the reverse direction.

2
A

38

32 . 10
A

8 :

Figure 7: A timetable with separate rolling stock circulations between stations A and B,
and passenger connections in station B with one of these circulations

Figure 7 shows the timetable that is obtained if two separate rolling stock circulations
are operated between stations A and B, and the trains to and from station C are connected
in both directions with the same circulation. The dashed arcs indicate these passenger
connections. In this case, the passenger connection times in station B are 15 minutes in
both directions. The thin dotted arc shows that the passenger connection from station C
to station A could have been chosen also in a different way, namely from the train arriving
from station C to the train in the other circulation departing to station A.

Note that in Figure 7 the running times between stations A and B have been stretched
from 35 to 38 minutes, because otherwise the return times in station A would become too
long, or the return time in station B of the train from and to station C would become too
short. Note further that, without loss of optimality, one passenger connection, in this case
from station A to station C, may be fixed a priori.

Figure 8 shows the timetable that is obtained if separate rolling stock circulations are
operated between stations A and B, and if the trains to and from station C are connected
with both circulations. Now the passenger connection times in station B are only 5 minutes
in both directions, without stretching the running times between stations A and B. Thus
this timetable is better than the timetable shown in Figure 7.
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Figure 8: A timetable with separate rolling stock circulations between stations A and B,
and passenger connections in station B with both circulations

20

Figure 9: A timetable with a combined rolling stock circulation between station A and B,
and flexible passenger connections in station B

Figure 9 shows the timetable that is obtained if the trains between stations A and B
are operated with a combined rolling stock circulation, and the train from station C to
station B is connected with one of the trains departing from station B to station A in an
optimal way. Now the passenger connection times in station B are 10 minutes in both
directions. However, as we have seen before, this rolling stock circulation between stations
A and B saves one train composition.

Finally, Figure 10 shows that a flexible passenger connection in station B can also be
achieved by having flexible rolling stock connections for the trains between stations A and
B at both endpoints of this line. The timetable shown in this figure is virtually the same
as the one shown in Figure 8. The flexible rolling stock connections at both endpoints of
the line make the two trains from station A to station B completely interchangeable, and
the same holds for the two trains from station B to station A. A drawback of this method
is that it makes counting the required number of train compositions more complex.

The foregoing examples showed that fixing either rolling stock connections or passenger
connections a priori may lead to a suboptimal solution. The examples also showed that
there is a trade-off between short rolling stock connections and short passenger connec-
tions: a timetable that is optimal for the passengers may require more than the minimum
number of train compositions, and vice versa.
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Figure 10: A timetable with flexible rolling stock connections in stations A and B, and
fixed passenger connections in station B

4.2 Model

Let the arrival and departure times in station B of the trains from and to station A be
denoted by ai, a2, di, and da, respectively, and let the arrival and departure time in
station B of the trains from and to station C be denoted by a and d. Without loss of
generality, we may assume that in station B the arriving train ¢; from station A connects
to the departing train to station C. This connection can be described by d — a; € [¢; ¢|7.
The flexible connection in station B in the other direction is represented as follows:

dy—a€lger V do—ac€lgdr (19)

As before, using the synchronization constraint do — dy € [s; 5|7, constraint (19) can
be rewritten as follows:

di—a€lge+slr N di—a€c+s;c+Tr (20)
dy—a€lc;e+3lr N do—a€lct+s;e+Tlr (21)

Constraints (20) and (21) in combination with the synchronization constraint do —d; €
[s; 8] guarantee that constraint (19) is satisfied, i.e. in station B the arriving train from
station C has a passenger connection with one of the two departing trains to station A.
The minimization of the connection times can be expressed as follows:

min wXx ((di—a+T xp1)+(de—a+T xXp2))+2wWx(d—a1+T Xp)

Here the integer variables p; are such that dj —a + 7T x p; € [c,e+ 3] (j = 1,2), and the
integer variable p is such that d —a; + T X p € [¢, ¢]. Furthermore, the parameters w and
w are weights representing the involved numbers of passengers.

Preferably, one would like to minimize only the “real” connection time, and not the
time between the arrival of the “other” train from station A and the departure time of
the train to station C. However, the fact that both connection times are included in the
minimization is almost equivalent, since the two connection times differ by a value in [s, .
Since this is usually a narrow interval, the two terms differ more or less by a constant term.
In order to compensate for this double counting, the parameter w is multiplied by 2.

If minimizing the number of train compositions needed for operating the timetable is
also part of the objective, then this can be included in the model as in Section 3.2.
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5 Generalization

In the previous sections we used the fact that the rolling stock and passenger connections
of a number of trains that arrive in a synchronized way to a number of trains that depart
in a synchronized way can be expressed in terms of a number of PESP constraints. In this
section this method is described in a more general way.

In particular, for the case that there are n arriving trains and m departing trains in a
station, we describe under which conditions it can be guaranteed by PESP constraints that
there will be G = ged(m,n) connections between the arriving and the departing trains.
The latter is the best one can hope for if the arriving and departing trains are more or less
evenly spread over the period [0,7"). Note that we allow slight deviations from an exact
even spread of the trains over the period.

Thus in a certain station we consider n arriving and m departing trains. Furthermore,
let 0 <a; <ag <...<a,<T be integers, and let the periodic set A = {a1,as,...,an}7
denote the arrival times of the arriving trains. The arrival times are evenly spread within
one period [0,7") in the following sense:

(k—=0T n

ap —a; € [—6;6]p VEk,(I=1,...,n. (22)

The tolerance ¢ satisfies 0 < 2nd < T, so that the periodized intervals in condition (22) are
disjoint. The periodic set of departure times of the trains D = {dy, ds, ..., dy,}r satisfies

(k—DT

dp —d; € +[-mnlp VEI=1,...,m, (23)

where 7 is such that 0 < 2mn < T'. In words, the conditions (22) and (23) ensure, up to
some positive tolerances (defined by § and 7n), that the arrival and departure times are
evenly spread in time with a specified frequency within one period (defined by n and m).

There are other formal conditions than condition 22 that can be used to represent the
intuitive requirement of evenly distributing a number of event times over the period. For
example, a less restrictive variant of condition (22) reads

T
ak—ak,leg—i—[—(S;(S]T Vk=1,...,n, (24)

where ag := a,. In the following, condition (22) defines periodic sets of class A, s, and
condition (24) defines periodic sets of class B, 5. Lemma 5.1 gives some relations between
the classes A,, s and B,, 5. The proofs are straightforward and omitted therefore.

Lemma 5.1. The following statements hold for all § > 0:
Apns CBps, n>1,
Ans=DBns, 1<n<3,
Ans # Bns, n >4,
Bus C Any if and only if > L%Jg,
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Lemma 5.1 shows that conditions (22) and (24) are very similar. In the remainder of this
section, we will use periodic sets of class A, 5. However, mutatis mutandis, the results are
also valid for sets of class B,, 5.

The following constraint on the arriving and departing trains defines a “connection”.

(t) There is an arriving train with arrival time ay, and a departing train with departure
time d; such that d; — ay, € [a; a + €.

Here « is a positive value indicating the minimum time required for the connection,
and the nonnegative value € indicates the extent up to which the connection time between
the arrival and the departure can be stretched.

This section reformulates a more general form of this connection constraint (1) in terms
of PESP constraints. If there are n arriving trains and m departing trains, which are all
evenly spread over the period, then the best one may hope for is that there are ged(m,n)
connections between these trains. Theorem 5.3 is the main result describing when this
number of connections can be guaranteed. Proposition 5.4 shows the limitations to the
scope of the theorem.

In the following we assume that A = {a1,...,a,} is of class A, s and D = {dy,...,dn}
is of class A, . We also write G = ged(m,n) and L = lem(m,n). Furthermore, in the
remainder of this section, we assume that the non-negative parameters d, 7, and ¢ satisfy

T

Next, we write I;(n) = ((j — 1)%,]’%]. Then U]G:1 I;(n) = (0,n] provides a disjoint union
of the interval (0,n]. The following result of Lemma 5.2 is needed to prove Theorem 5.3.

Lemma 5.2. Suppose that condition (25) is satisfied, let A = {a1,...,an} be of class Ay s,
and let D = {dy,...,dm} be of class Ay, . Then for each integer p with 1 < p < L —1,
there exist at most G = ged(m,n) pairs (ag,d;), such that

T
dl—akE%+[—5—n+a,5+n+a+e]T:: W,

Proof. Assume that there exist G +1 pairs (k, ) such that d; —ay € W,,. This implies that
for some j with 1 < j < G, there exist two distinct k, k" € Ij(n) and some 1 < [,I' <m
such that d; — a;, and di — ajy € Wp,. On one hand, the latter implies that

(dy — ak) — (dv — aw) € [-26 — 2 — £,20 + 2n + €]r. (26)

On the other, since the arrival and departure times are of classes A, s and A,, ,, we have

(=0T, (K =WT

(dl — ak) — (dl’ — ak/) = (dl - dll) —+ (G/k/ — ak) S m n [—(5 — 0 + 7’]]T
Using mn = GL, the latter set equals
_nrt o™ L s
(=G + W =k)%) x 7+ =0 —m:6+r. (27)
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Observe that (I —1")& 4 (k' — k)% is not a multiple of L. Indeed, if (I 1) &+ (K — k)G =
oL = o3, then (K'—k)E = (om—I1+1")§. Since & and & do not have any common prime
factors, this would imply that & divides (k' —k), contrary to the fact that 0 < |k’ —k| < &.

Thus in (27) the set [—d —n; 0 +n]r is translated by the first term in (27) over at least
% units in positive or negative direction. Since, by assumption (25), % > 30 + 3n + ¢, the
two sets in (26) and (27) have a non-empty intersection. This contradicts the fact that
the number (d; — a) — (dy — ay) is an element of both sets. [

Theorem 5.3. Suppose that condition (25) is satisfied, let A = {aq,...,a,} be of class
Ans, and let D = {dy,...,dn} be of class Ap,y. Then the following two statements are
equivalent:

1. There exists a permutation m on the set {1,...,G} such that the following holds: For
Jj=1,...,G, there exists kj € I;(n) and l; € I(j(m), such that

di; — ag; € la;a+ €.

2. Forallk andl with1 <k <n and 1 <l <m, it holds true that

L—-1
T
dy—ay € U%+[*5*n+a,5+n+a+€]’f U o, a + €.
p=1

Moreover, statement 1 implies statement 2 also if condition (25) is not satisfied.

Proof. In order to prove that the first statement implies the second one, let 1 < k < n
and 1 <[ < m. Now we distinguish the following four cases.

1) In the case when | = [; and k = k; for some 1 < j < G, we have dj —ax € [o; a+¢€]p.
J J
7i) In the case when k = k; and [ # [; for some 1 < j < G, we can write
J J

(I —0)T

dy—ap = (dy — dy;) + (di; — ax;) € -

+[=n+an+a+elr

Using mn = LG, we can write

(l - lj)T (l — ZJ)TL T

m G L’

Since 0 < |l — ;| < m, we find that [ —; is not a multiple of m. Hence (Z_Clj)n is not

a multiple of L. Thus

(I—Iljn T T T
o X1 (p+qL) x 7 =71t

with integers ¢ and p satisfying 1 <p < L — 1.

(#3i) The case when | =[; and k # k; for some 1 < j < G is similar to case (77).
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(iv) In the case when k # kj and [ # [ for all 1 < j < G, we write

dl — ar = (dl - dlj) + (ak)j - ak) =+ (dlj - ak’j) €

l—=1,)T (kj—k)T
(=T )+[—5—n+a;5+n+a+s]T (28)
m n

with 0 < |l — ;| < m and 1 < j < G chosen in such a way that k € I;(n), so that

0 < |k — kj| < &. Note that such a j exists by definition of the sets I;(n).

Next, we prove, in the same way as in Lemma 5.2, that (I — ;)& + (k; — k)& is not
a multiple of L, and hence can be written as p + gL with integers ¢ and p satisfying
1 <p<L—1 Indeed, if (I — ;)5 + (kj — k)& would be a multiple of L = "2,
then for some integer o we would have (k; — k)& = (om —1+1;)&. Since & and &
do not have any common prime factors, this would imply that & divides (kj — k),
which contradicts 0 < |k — k;j| < &. Thus, with 1 <p < L — 1, we get in (28):

( _WZLJ')T L (K —nk)T

_ AT A S A
_((Z—ZJ)GJF(/@ k:)G)xL—L+qT.

These four cases prove the first implication. Note that we did not use condition (25) in
this proof. Hence this proof is also valid if this condition is not satisfied.

Next we prove the converse implication. There are L — 1 distinct sets W,. By Lemma
5.2, for p =1,...,L — 1, there are at most G pairs (k,l) with d; — a;, € W),. Thus there
are at most (L —1)G = LG — G = mn — G pairs (k,l) with d; — aj in the union Uﬁ;ll W

Using the same arguments as in the proof of Lemma 5.2, we can show that there are
at most G pairs (k,l) with d; — a, € [a;a + €]r. By exhaustion, each set W), contains
exactly G differences, and the set [a; a + |7 contains exactly G differences as well.

Thus we can write (k;,1;) € [o; o +¢]p with k; € I;(n) and [; € I;(m) for j =1,...,n.
Each I;(m) contains at most, and hence exactly one [;, so the mapping =, defined through
m(j) =1, is a permutation on the set {1,...,G}. This proves the theorem. [

Going back to the example described in Section 3.1, we have m =n = 2, § = n = 0,
a = 10 and ¢ = 15. Condition (25) is clearly satisfied in this case. We first have the
synchronization constraints:

as — a1 € [30; 30]T dy —dy € [30; 30}7*

According to Theorem 5.3, the constraints that must be satisfied here in order to have
two connections between the arriving and the departing trains are the following:

di —ai € [10; 25]T U [40; 55]T do — a1 € [10; 25}T U [40; 55]T
di —as € [10; 25]T U [40; 55]T do —ag € [10; 25}T U [40; 55]T

These disjunctive constraints can be replaced in the usual way by two conjunctive con-
straints, giving the same constraints that were described in the example in Section 3.1.
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Figure 11: Periodic time intervals

The case when T' =120, m =4, n =6, =n =1, « = 6 and ¢ = 3 provides the
most simple example where G = ged(m,n) = 2 > 1 and m is not a multiple of n, nor
vice-versa. Observe that the conditions of the theorem are satisfied. There are 11 distinct
and disjoint intervals of the form 10p + [4, 11]199 for 1 < p < 11, all disjoint from [6, 9]120,
see Figure 11. From the theorem we conclude that, if all differences d; — aj, are in the
union of the aforementioned intervals, there are two connections, i.e., differences in [6, 9]12¢.

If § = n = 0, then condition (25) is easily satisfied. Moreover, this condition is close to
being necessary for the statement of Theorem 5.3, as the following Proposition 5.4 shows.
Here two integers are called co-prime if their greatest common divisor is equal to one.

Proposition 5.4. Assume that the positive integers m and n are co-prime. Assume
further that the integers o, 6, m and € satisfy: 0 < 2nd6 < T, 0<2mn < T, 0<e <7,
d+2n+e< %, and 20 +2n+¢e > % Then the sets

kT - 1T
A:_{_g—n—a, (”””’“)+5+n|1ngn—1} ,
n mn T

and

v
D::{a, a—l——5,|1<l<m—1}
m T

satisfy A € A, 5, D € Ap, . Moreover,
T T
D-ACc|—-0-n+a;T——+d+n+a+e| . (29)
mn mn T

In this case, statement 2 in Theorem 5.3 holds, but statement 1 does not.
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Proof. We first prove that A € A, 5. Write a5, = ’%T —d—n—cfor1 <k<n-—1and

a, = 7(””7:”1” +0+mn. Then a; — ap, = (lfrlf)T for 1 < k <1 < n. Moreover,
- )T kT — k)T T
an_ak:M_7+25+Qn+5:u+25+2n+6——.
mn n mn

Observe that, by assumption, 0 < 20 + 29+ ¢ — % < d. This proves that A € A,, 5. The
proof that D € A,, , is straightforward and is omitted here.
Next we prove that D — A is contained in the right hand side of (29). First, note that

kT T r kT
D—AZ{a—+5+n+€, at+——06-—n at+t———+0+n,
n mn m n

T T
at+—+——-0-n—¢c|1<k<n-1,1<I<m-1; .
m  mn T

Furthermore, the assumption 2§ + 2n + ¢ > % implies that

mn—1 LT T T
U= || —+[-d-nt+ta;d+ntatelr=|— -3 —n+a;T — +6+n+a+s]
el mn mn mn T

Thus, since 6 + 1+ ¢ < %, the sets U and [o; a + €]p have an empty intersection. Using
the fact that In — km is not a multiple of mn for 1 <k <n—1and 1 <[ <m—1, it is not
difficult to verify that D — A C U. Thus the latter implies that statement 2 in Theorem
5.3 holds, but statement 1 does not. |

Observe that the case with T' = 60, m = 2, n = 3, a = 3, and § = n = ¢ = 2
is covered by Proposition 5.4. According to the description in Proposition 5.4, we have
A = {14,34,54} and D = {3,31} in this case. Thus there is no appropriate connection
with a time interval in [3, 5] from an arriving train to a departing train. This is caused by
the fact that the flexibility represented by the parameters d, n and ¢ is too large.

6 Application

In this section we illustrate the advantages of flexible connections by an application of
the PESP model to three connected intercity lines of Netherlands Railways. The Dutch
railway timetable is based on a cyclic timetable with a period of 7' = 60 minutes (Kroon
et al., 2009). Most lines are operated with a frequency of two trains per hour, but there
are also lines, for example freight lines, that are operated only once per hour. Therefore,
it is not possible to consider the timetable as having a period of 30 minutes.

In this example, we consider the intercity lines 800, 1900, and 2600. These lines
are all operated twice per hour in both directions between the stations Alkmaar (Amr)
and Maastricht (Mt) (800 line), between The Hague (Gvc) and Venlo (V1) (1900 line),
and between Amsterdam (Asd) and The Hague (Gvc) (2600 line), see Figure 12. In
Amsterdam, The Hague, and Eindhoven (Ehv) the lines have common stations, where
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Figure 12: The Dutch railway network with the 800, 1900, and 2600 lines

passenger connections in both directions are created. In Eindhoven, the current (2012)
timetable has cross-platform connections in both directions between the 800 line and the
1900 line. This means that passengers have a connection time in both directions equal
to three minutes. The maximum dwell time in Eindhoven is also equal to three minutes,
so the trains, respectively in the direction of Maastricht (800 line) and Venlo (1900 line),
or in the direction of Alkmaar (800 line) and The Hague (1900 line), have to arrive and
depart at exactly the same time in Eindhoven.

In the PESP model, each line is required to be operated with between 28 and 32
minutes between successive trains in the same direction, and the dwell times have to be
between 1 and 3 minutes at each intermediate station. We also use the rule that for each
trip the running time in one direction is the same as in the reverse direction. The return
times at the terminal stations are required to be between 10 and 25 minutes.

The passenger connection times in Amsterdam and The Hague are required to be
between 3 and 15 minutes, and in Eindhoven they must be between 3 and 20 minutes,
as will be explained later. All passenger connections in Amsterdam, The Hague and
Eindhoven are modeled with flexible connections. The rolling stock connections in the
northern terminal stations of the lines (Alkmaar for the 800 line, The Hague for the 1900
line, and Amsterdam for the 2600 line) are modeled with flexible connections. Recall that
it does not help to use flexible rolling stock connections at both terminal stations of a line.

We implemented the PESP model with flexible connections in OPL Studio 6.3. The
number of constraints of the model equals 474, the number of non-zeros equals 1596, and
the number of variables equals 470, with 120 binary variables, 156 integer variables and
194 continuous variables. So the instance is relatively small, but we use it mainly to
illustrate the advantages of the flexible connections. In a larger instance, these advantages
will be less obvious due to all kinds of other interactions and relationships.
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We used the MIP solver CPLEX 12.1.0 to find optimal solutions, thereby minimizing:

e the number of required train compositions (see Section 3.2), or

e the passenger connection times in Amsterdam, The Hague, and Eindhoven (see Sec-
tion 4.2), or

e the sum of the running times and the dwell times.

The third objective of the sum of the running times and the dwell times can be defined
by referring to (2). To that end, let A, be the set of arcs representing a trip of a train
from one station to another, and let A4 be the set of arcs representing a train dwelling in
a station. Then the sum of the running times and the dwell times is computed as:

Z (mpy —mj + T X pq)
a=(j,k)€ArUA4

A combination of the mentioned objectives can be handled by giving each objective
a certain weight. Furthermore, when minimizing either of the three objectives, the other
objectives are taken into account with a small weight in order to minimize them, given
the minimal value of the main objective.

6.1 Results

When using flexible connections, it turns out that the required number of train composi-
tions is either 27 or 28. However when some rolling stock or passenger connections are fixed
a priori, more compositions may be needed, see Section 6.2. With flexible connections,
using more than 28 compositions does not lead to any improvement in the objectives, so
we fixed the number of compositions to either 27 or 28, and then minimized the sum of
the running and dwell times, or the total passenger connection time.

’ Comp. ‘ Connect. Running Dwell R+D Return‘

R+D 27 152 1380 32 1412 208
R+D 28 168 1400 32 1432 248
Connection 27 100 1424 40 1464 156
Connection 28 48 1466 60 1526 154

Table 1: Results obtained in successive optimization runs

Table 1 shows per row the results obtained in each run, while minimizing either the
sum of the running and dwell times (rows “R+D”) or the total passenger connection time
(rows “Connection”), and at the same time fixing the number of compositions at 27 or 28.

Each row shows in horizontal direction the obtained results in each run: the total
number of compositions (“Comp.”), the total passenger connection time (“Connect.”), the
total running time (“Running”), the total dwell time (“Dwell”), the sum of the running
and dwell times (“R+D”), and the total return time (“Return”). Note that in all cases
the sum of the running, dwell and return times equals 60 times the number of train
compositions, as could be expected. Furthermore, in all cases the computation times are
shorter than 5 seconds, therefore we did not show them in the table.
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6.1.1 Running and dwell times

As can be seen in Table 1, when minimizing the running and dwell times, the running times
and the return times are larger in the case with 28 compositions than in the case with 27
compositions. In the timetable with 27 compositions, see Figure 13, all running and dwell
times are at their lower bounds. This timetable has one combined rolling stock circulation
(line 800). The timetable with 28 compositions, see Figure 14, has two combined rolling
stock circulations (lines 800 and 1900).

800 2600

+ 26 +
GVC
+ + 9 +
30 + + + 22 56 + 42
GVC
+ + + 39 +

1900

Figure 13: Results when minimizing R+D times with 27 compositions

When going from 27 to 28 compositions, the extra composition has to be added to
exactly one of the three lines. This line will be the one where adding the additional
composition leads to the least increase in running and dwell times. This is the timetable
that can absorb the largest part of the added 60 minutes in the return times. Note that
for each line an upper bound on the total return time is 4 x 25 = 100 minutes.

In the timetable with 27 compositions, the 800 line has a total return time of 92 minutes
(8 spare minutes), the 1900 line has a total return time of 60 minutes (40 spare minutes),
and the 2600 line has a total return time of 56 minutes (44 spare minutes). Thus at first
sight it seems optimal if the extra composition would be added to the 2600 line. However,
due to the passenger connection constraints, the 2600 line is not able to use all 44 spare
minutes in the return times to absorb the added 60 minutes of the extra composition.
Therefore, the extra composition is added to the 1900 line. This line is able to use all 40
spare minutes in its return times. The other 20 minutes are added to the running times.

Note that the rolling stock circulations of the 800 line and the 2600 line have the same
structure in the timetables with 27 and 28 compositions. The rolling stock circulation of
the 1900 line flips from two separate circulations to one combined circulation.
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800 2600

Figure 14: Results when minimizing R+D times with 28 compositions

6.1.2 Passenger connection times

When minimizing the passenger connection times, the obtained timetables differ mostly
with respect to the cross-platform connections in Eindhoven. Remember that, in order to
have a cross-platform connection, two trains of the two different lines have to arrive and
depart at exactly the same time in Eindhoven.

Tables 2 and 3 show the arrival and departure times of the trains in Eindhoven when
minimizing the passenger connection times with 27 compositions and 28 compositions,
respectively. Here “ID” is the identification number for the two trains of the same line.

With 28 compositions, the cross-platform connections can be made in both directions.
However, with 27 compositions, a cross-platform connection can be made only in the
northern direction. Thus the main trade-off here is the one between the number of required
compositions and the total connection time.

If a cross-platform connection can be made in one direction, then the total connection
time in these connections is 2 x 2 x 3 = 12 minutes. Furthermore, with 27 compositions,
the total passenger connection time in the direction of Maastricht and Venlo equals 64
minutes (48 — 0 =12; 18 — 30 = 12; 59 — 19 = 20; 29 — 49 = 20).

Note that, if a cross-platform connection cannot be made in one direction, then the
total passenger connection time in the resulting connections equals 2x ((z+1)+(31—z)) =
64 minutes. Here z is the time between the arrival of a train of the first line and the first
successive arrival of a train of the other line. Thus 10 < z < 20, due to the maximum
connection time of 20 minutes in Eindhoven. The additional single minutes in the terms
(r+1) and 31 =30+ 1 are due to the dwell times in Eindhoven.

This also explains why the upper bound for the connection times in Eindhoven is 20
minutes instead of 15 minutes, as in the other locations. If the upper bound would be 15,
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Line Heading Direction ‘ ID  Arrival time Departure time

800 North Amr 1 0 3
800 North Amr 2 30 33
1900  North Gve 1 30 33
1900  North Gve 2 0 3
800 South Mt 1 48 49
800 South Mt 2 18 19
1900  South Vi 1 59 0
1900  South Vi1 2 29 30

Table 2: Connections at Eindhoven with 27 compositions

Line Heading Direction ‘ ID Arrival time Departure time

800 North Amr 1 59 2
800 North Amr 2 29 32
1900  North Gve 1 29 32
1900  North Gve 2 59 2
800 South Mt 1 47 50
800 South Mt 2 17 20
1900  South Vi1 1 47 50
1900 South V1 2 17 20

Table 3: Connections at Eindhoven with 28 compositions

then the cross-platform connections would be forced, which is too restrictive.

As was mentioned before, the main managerial question with respect to the passenger
connections in Eindhoven is whether the cross-platform connections are worth an addi-
tional train composition. In the current Dutch railway system, this question is answered
in a positive way, since the cross-platform connections are used by many passengers. In
fact, Eindhoven is an important hub in the connection between the southern part of the
Netherlands and the rest of the country.

Therefore, Table 4 shows the results after fixing the cross-platform connections in
Eindhoven and minimizing the passenger connection times (row “Connection”) or the
running and dwell times (row “R+D”). As can be seen, the number of compositions
equals 28 in both cases. Thus, if the cross-platform connections in Eindhoven are fixed,
then the next trade-off that must be made for the rest of the timetable is the one between
low passenger connection times and low running and dwell times.

’ ‘ Comp. Connect. Running Dwell R+D Return
Connection 28 48 1466 60 1526 154
R+D 28 110 1396 48 1444 236

Table 4: Results obtained when fixing the cross-platform connections
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6.2 A priori fixing

In order to show the advantages of the flexible connections, we will compare the results of
the flexible model with the results of three different models where the connections are fixed
a priori. In all models, the sum of the running and dwell times is minimized. In the first
model, the rolling stock connections are fixed such that there are three separate rolling
stock circulations. Secondly, a model is considered where the passenger connections at all
common stations are fixed such that the first train of a line has a passenger connection
with the first train of the other line. Finally, a model is considered where both the rolling
stock connections and the passenger connections are fixed in the above way.

Table 5 shows the results for the four cases. The vertical direction shows the mentioned
cases, where “Flexible” is the case where flexible connections are used, “Rolling stock”
is the case where only the rolling stock connections are fixed, “Passenger” is the case
where only the passenger connections are fixed, and “Pass + Roll” is the case where both
the passenger connections and the rolling stock connections are fixed. In the horizontal
direction the obtained results are shown. As can be seen, fixing only the rolling stock
connections already leads to worse results than using flexible connections on all objectives.
Fixing the passenger connections leads to even worse results for the running and dwell
times, and only the passenger connection times improved (as could be expected). Fixing
both passenger and rolling stock connections leads to infeasibility. These results clearly
demonstrate the advantages of the flexible connections.

’ ‘Comp. Connect. Running Dwell R+D Return‘

Flexible 27 154 1380 32 1412 208
Rolling stock 28 194 1418 46 1464 216
Passenger 29 77 1468 76 1544 196
Pass + Roll - - - - - -

Table 5: Fixing connections a priori

6.3 Sensitivity and Robustness

As was illustrated in the earlier sections, the flexible connections allow the existence of
timetables with rather different structures. For example, depending on the rolling stock
connections, a single combined rolling stock circulation may be operated on a train line, or
two separate rolling stock connections. Which of the two options is the better one depends
on the details of the input data. Changing the input data may flip the structure of the
timetable. Thus the timetable is rather sensitive with respect to the input data.

The sensitivity due to the passenger connections is most striking for the cross-platform
connections in Eindhoven. As was indicated, if the cross-platform connections can be made
in one direction, then the total connection time in these connections is 2 x 2 x 3 = 12
minutes per period. If the cross platform connections cannot be made in one direction,
then the total connection time in these connections is 2 x ((x+ 1)+ (31 —x)) = 64 minutes
per period, where 10 < z < 20. Again, whether or not the cross-platform connections can
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be made depends on the details of the input data. Changing the input data may flip the
structure of the timetable from a timetable with cross-platform connections to one without
cross-platform connections, or vice versa.

For example, if the minimum return time is decreased from 10 minutes to 9 minutes,
then it turns out that the cross-platform connections in Eindhoven can be made in two
directions with only 27 train compositions. In that case, one has a low number of compo-
sitions and short passenger connection times, but one possible jeopardizes the robustness
of the timetable. This is yet another trade-off than the ones mentioned before.

Indeed, if some process times (running and dwell times, return times, headway times)
are planned at (or even below) their technical minimum, then the resulting timetable will
not be robust. That is, small disturbances in the operations will lead to delays, and de-
lays cannot be recovered. Therefore, the robustness of a timetable is usually improved by
adding certain buffer times to the technically minimum process times. However, deter-
mining appropriate buffer times is out of the scope of the current paper. For a description
of a stochastic optimization model for determining appropriate buffer times in a cyclic
timetable, we refer to Kroon et al. (2008). The robustness of a timetable can be evaluated
by applying simulation models, see e.g. Hiirlimann (2001).

7 Summary and conclusions

In this paper we illustrated that a priori fixing rolling stock or passenger connections in
a PESP model may lead to suboptimal solutions if the involved trains are operated more
than once per hour. It may even lead to infeasibility for instances where a feasible solution
would exist if the connections were selected in the right way. These results were illustrated
by a case based on three intercity lines of Netherlands Railways, the largest operator of
passenger trains in the Netherlands.

Using the well-known method for translating pairs of disjunctive constraints in a PESP
model into pairs of conjunctive constraints, we described the rolling stock and passenger
connections in a flexible way, so that the model can choose between the different options.
For the cases of two and three trains per hour in both directions, we expressed the number
of train compositions needed to operate the timetable in terms of the cycle variables of
certain cycles in the constraint graph.

We also briefly indicated that, under certain conditions, the results for three trains
per hour are also valid for any prime number of trains per hour. For a larger composite
number n of trains per hour, which hardly ever occurs in practice, the situation is different,
due to the fact that in that case also other circulations exist than (i) one large circulation
containing n arriving and n departing trains, or (i7) n separate circulations of one arriving
and one departing trains.

Finally, for the case that there are n arriving trains and m departing trains, we de-
scribed under which conditions it can be guaranteed by PESP constraints that there will
be G = ged(m, n) connections between the arriving and the departing trains. This is the
best one can hope for if the arriving and departing trains are evenly spread in time.

The described flexible connections have been implemented in the DONS system. DONS
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is the automated timetabling system used by Netherlands Railways and ProRail for gener-
ating periodic timetables for the Dutch railway system (Hooghiemstra et al., 1999; Kroon
et al., 2009). ProRail is the manager of the Dutch railway infrastructure. CADANS, the
solver of the underlying PESP model, was developed by Schrijver and Steenbeek (1993).
The flexible connections in DONS are mainly passenger connections, but flexible rolling
stock connections can be applied as well. Due to the flexible connections, the underlying
PESP model turns out to be feasible more often, and the obtained solutions are usually
better than the ones obtained with a priori fixed connections.
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