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Abstract

In this paperwe investigate a bottleneck model in which the capacity of the bottleseck
assumed stochastic and folloavaniform distribution. he commuters’ departure time choice

is assumed to follow the user equilibrium principle according to mgaodst. The analytical
solution of the proposed model is derived. Both the analytical and numerical results show that
the capacity variability would indeed change ¢hmmuters’ travel behavior by increasing the

mean trip cost and lengthening the peak period. We then design congestion pricing schemes
within the framework of the new stochastic bottleneck model, for both a time-varying toll and

a single-step coarse toll, and prove that the proposed piecéwisevarying toll can
effectively cut down, and even eliminate, the queues behind the bottleneck. We also find that
the single-step coarse toll could either advance or postpone the earliest departure time.
Furthermore, the numerical results show that the proposed pricing sclcamandeed
improve the efficiency of the stochastic bottleneck through decreasing the ’systeah

travel cost.

Key words:bottleneck model; stochastic capacity; departure time choicgestion pricing

1. Introduction

The well known bottleneck model was originally developed by \éigKi969). This model
formulates the commuterdrip schedule duringa morning rush hour. In the model, it is
assumed that the commutetsavel cost consists of two components: the cost of travel time
(including free flow travel time and queuing time) and the cost of schedule delay from early
or late arrival at the workplace. The departure time choice follows the user equilibrium (UE)

principle, i.e., all commuters experience the same travel cost no matter when they leave home.
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The simplicity of this single bottleneck model provides a theoretical base to gain qualitative
insights into alternative policy measures such as congestion pricing and metering, and several
studies have since extended the basic single bottleneck model (see comprehensivénreviews
Arnott et al. 1990a, 1998; de Palma et al. 20%inith (1984) and Daganzo (1985) proved the
existence and uniqueness of the bottleneck equilibrium. Arnott et al. (1993) and Braid (1989)
extended the basic bottleneck model to consider elastic demand, whilst Lindseyg2004
Ramadurai et al (2010) developed a single bottleneck model with heterogeneous commuters.
Most of the existing literature, however, is based on deterministic settings, with either a
fixed capacity and demand (Vickrey 1969; Arnott et al. 1990b; Lindsey 2004; Huang and
Lam 2002), ora pre-defined elastic demand function (Arnott et al. 1993; Yang and Huang
1997). In reality, not only destravel time increase with traffic volume, but there is also a
wide range of randomness in the micro behavior of traffic and traffic conditions. Variations in
the behavior of individual drivers, in the performance of vehicles, in weather and lighting on
driving conditions, etc, all contribute to the unpredictability or the unreliability of travel time.
Variation in road capacity may also occur for physical and operational reasons, such as road
works, accidents, vehicle breakdown.. It is intuitive to represent the above-mentioned
variations and their impacts on network performance using probability distributions (Chen et
al. 2002). Arnott et al. (1999) considdrithe case where the ratio of demand to capacity is
stochastic and examined the effect of information on total social cost. Fosgerau (2008)
derived a closed form expression for the expected cost in a bottleneck model with stochastic
capacity and demand, assuming linear scheduling costs. Siu and Lo (2009) investigated the
random travel delay in a single bottleneck wahheterogeneous population and arrival
probability constraint. Li et al. (2008) developed numerical methods to solve a bottleneck
where daily capacity is distributed uniformly between an upper and a lower bound. Arnott et
al (1999) proved the existence of equilibrium for a general distribution of capacity. eilowev
Fosgerau and Jensen (2008) subsequently proved that, in a bottleneck with stochastic demand

and supply and assuming the last user always departs after the preferred time, the equilibrium

condition may not exist. Lindsey (2009) studied the cost recovery problem from congestion

tolls when the bottleneck capacity is random. Fosgerau (2010) investigated the distribution of
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delays in a congested facility with random capacity and demand. Lindsey (1994, 1999
examined the properties of no-toll equilibrium and system optimum in a bottleneck model
with a given joint probability distribution of capacity and demahuhdsey’s analysis focused
on a general distribution of road capacity. In contrast, Peer et al. (2010) investigated the
capacity changes within peak periods using the bottleneck model.

It is widely recognized that congestion pricing is an effective method to reduce traffic
congestion. Vickrey (1969) proposed an optimal, contindionsvarying toll scheme which
was shown to have eliminated the queuing delay at the bottleneck. Arnott et al.)(1990b
developed an optimal time-varying toll aral one-step coarse toll foa deterministic
bottleneck such that the average cost excluding the toll is minimal under time-variable toll.
Laih (1994, 2004) developed a multi-step toll scheme for a single bottleneck, and analyzed
the amount of queue reduction and the effects of the toll scheme on equilibrium commuting
behavior. Knockaert et al. (2010) studied a single-step coarse toll with inelastic demand.
Recertly, Lindsey et al. (2012) proposed a braking model in which drivers approaching a
tolling point wait until a toll is lowered from one time-step to another. They showed that such
braking model would lengthen the peak period with earlier departure and later arrival.

Comparatively, congestion pricing under uncertainty has received relatively little attention.
Lindsey (1994, 1999nvestigated optimal pricing and information provision under stochastic
bottleneck capacity conditions. He found that, itime-varying toll is implemented, the
optimal departure is a non-decreasing function with time over the peak period and the toll
chargeds a concave function with time. Under the assumption of a two-point distribution of
capacity, the peak starts earlier. Daniel (1995) used a discrete Markov Chain to model the
expected optimal congestion toll with arrival time uncertainty. Following the perspective of
Henderson (1974) to efficiently manage urban traffic congestion through pricing, Lam (2000)
developed anodel with congestion uncertainty in a network with parallel bottlenecks. Yao et
al. (2010) considered travel cost uncertainty and stochastic tolling as a foundation for
introducing congestion derivatives.

In this paper, we focus on the morning commuting problem along a single highway with

stochastic capacity. We limit our analysis to dexgay fluctuations in capacity, and assume



that the capacity within the day is constant and that the bottleneck is severely congested over
the peak period. The capacity fluctuation leads to variability in queue length behind the
bottleneck and to variability of travel time angtcost, which in turn directly influences the
commuters’ departure time choice behavior. This problem is formulated as a bottleneck
model with stochastic capacitWe derivethe model’s analytical solution and investigate the
properties of the model. More specifically, we conduct detailed analysis of the equilibrium
cost patterns. A similar stochastic bottleneck model has been developed by Li et al (2008),
who analyzed two equilibrium cost patterns for expected early arrivals and expected late
arrivals. In this paper, we consider four possible departure-time intervals in a very congested
bottleneck when users always arrive early, can arrive early or late, always arrive late and incur
a queuing delay, or always arrive late and may not incur a queuing delay.

The solution of the proposed model shows that the capacity variability of the bottleneck
leads to significant changes in departure time patterns, which are different to those derived
under deterministic conditions. In a deterministic bottleneck model, an individual can choose
either to depart in the tails of the rush hour when travel time is low and pay the penalty of
arriving at work early or late, or to depart during the peak when travel time is high but
schedule delay cost are low. In other words, under the deterministic equilibrium, schedule
delay early and schedule delay late cannot occur simultaneously for a given departure time
(Arnott et al. 1990b). We demonstrate that with stochastic capacity, commuters departing at
the same time during the peak can experience early or latal alepending on the capacity
on the day.

Furthermore, we investigate a time-varying toll and a single-step coarse toll within the
framework ofthis stochastic bottleneck model. The time-varying toll is shown to effectively
reduce, and in certain conditions even eliminate, the queues behind the bottleneck without
changing the commutérmean trip cost. Howevetime-varying pricing scheme is perceived
as unpredictable by the general public and has practical difficulties to implement as it requires
continuously changeable charges. A main contribution of this paper is the development of a
single-step coarse toll which levies a positive, constant charge during a pre-determined time

period, andwe analyze its impact on the commutedeparture-time choice. The results



suggest that the single-step coarse toll may either advance or postpone the earliest departure
time. Both pricing schensare shown to improve the efficiency of the stochastic bottleneck
through decreasing the systantotal travel cost.

The rest of this paper is organized as follows. In the next section, we provide an overview
of the deterministic bottleneck model. The commutessel costs and departure time choice
in a single bottleneck with stochastic capacity are formulated in Section 3. We also examine
the models properties in this sectioin Sections 4 and 5, we develop a time-varying toll and
a single-step coarse toll. Numerical examples are presented in Section 6 to illustrate the

properties of the proposed model. Finally, section 7 concludes the paper.

2. Overview of the Bottleneck M odel with Deter ministic Capacity
Let us take a highway with a single bottleneck connecting a residential distric edgtfiral
business district (CBD). Let be the capacity of the bottleneak, the free flow travel time

of the highway, andN the travel demand from the residential district to the CBD.

Throughout this paper, we sgt_=0 for simplicity andthis will not change any properties of

the bottleneck model.

By definition, the cumulative departurét) can be formulated as follows:

R(t) = j: r(X)dx, 1)
wherer(x) is the departure rate at time instant andt, the earliest time with positive

departure rate.

We consider that the highway is congested during the rush hour and that the capacity of

the bottleneck will have been fully utilized from time The length of the queue behind the
bottleneck is therefore:
Q(t) =max{R(t)-s(t-1) .0 2

The travel time for travelers departing at timmequals the queuing time and can be

formulated as follows:



T(t) = %. 3)

The cost for commuters traveling from home to the CBD consists of two components: the
cost of travel time and the cost of schedule delay early or late. The total cost can be

formulated as follows:

Bt —t-T@), if £ 2t+T()
C(t)=aT(t)+ N (4)
y(t+T@® 1), if € <t+T()

wheret’ is the preferred arrival time (i.e. the official work start time),# and  denote the

values of travel time, schedule delay early (SDE) and schedule delay late (SDL)ivespec

In accordance with the empirical findings in Small (1982), the following relationship holds:

y>a>p[>0. (5)
To ensure the existence of a deterministic equilibrium, it is necessary to agsumethe

opposite case o < 4 is discussed in Appendix 1 of Arnott et al. (1985).

The equilibrium condition for commutérdeparture time choice in a single bottleneck is
defined as no commuter can reduce his/her travel cost by unilaterally altering his/her

departure time. This condition implies that all commuters incur the same cost, and therefore

travel cost is constant at all times while commuters are departingdCé)/dt= 0 if

r(t) > 0. Using this condition, we can obtain the commuteleparture rate during the rush

hour as follows (see Antt et al. 1990b for further details):

r(t):{“s/(a—ﬂ), if {,<t<t

as/(a+y), ify<t<t (©)

wheret, andt, are, respectively, the earliest and the laiests with positive departure rate,
andt, is the watershetime for departure rate changing (i.e. the departure time at which an
individual arrives at the CBD on time). The reasoning underlying this result is that the

departure rate function must be such that the marginal benefit from postponing the departure

by a unit of time equals the marginal cost. In the case of departure ptjoithe marginal



benefit from postponing the departure is the reduction in early arrivalﬂ(astT’(t)) and
the marginal cost is the increased travel time eoBit) , whereT'(t) denotes a time
derivative. Application of (3) then give(t) for t €[t,,t,). The reasoning for departing after
t. is analogous. The arrival rate at work, meanwhile, is constanbwger the rush hour. Thus,
a queue builds up linearly froy to t, and then dissipates linearly until it disappears afs
derived in Arnott et al. (1990b), we hatig=t"—yN/((B+7)s), t.=t +BN/((B+7)s)

andt, =t —,B;/N/((ﬁ+y)as).

3. Bottleneck Model with Stochastic Capacity

3.1. Assumptions

Throughout this paper, the following four assumptions are: used

(A1) Commuters are homogeneous with the same valtienefand the same values of
schedule delays.

(A2) The capacity of the bottleneck is constant within a day but fluctuates from day to day.
The variability of capacity is exogenous and independent of departure

(A3) The capacity is a non-negative stochastic variable changing around a erdain

capacity. Following Kuang et al. (2007) and Li et al. (2008), we assume that stochastic

capacity follows a uniform distribution within intervis, 5], wheres is the design capacity

and #(<1) is a positive variable which denotes the lowest rate of available capacity.

(A4) Commuters are aware of the capacity degeneration probability and their departure
time choice follows the UE principle in terms of mean trip cost.

Unlike the Vickrey (1969) model, we assume the capacity of the single bottleneck
stochastic, although the commutedeparture time choice is made deterministically based on
mean trip cost. The constant within-day capacity assumption (A2) implies that the current
model accounts for incidents happened before the pealedstarhen the first of theN

commuters departed), but not for incidents occurring during the peak period. The later was
7



investigatedby Fosgerau (2010) and Peer et al. (2010). We consider thabitheuters’
travel time and their schedule delays are both stochastic due to capacity fluctuations. We
assume further that the commuters learn the incident probability from theio-day-travel

(A4), and adjust their departure time in order to minimize their expected travel costs.

3.2. Stochastic Trip Cost Formulation

Under the stochastic condition, definitions(1)-(3) are still valid, and (4) can still be used to
calculate the trip cost of commuters departing at time instaHbwever, the trip cost is now

not deterministic but stochastic. For simplicity, we set the preferred arrival time as zero, i.e.,
t'=0. The mean trip cost with respect to departure time t under stochastic condition can be

formulated as follows:

E[C()]= E[«T()+ #SDE ) +7 SDL}]

= aE[T()]+BE| SDR) |+» B SDL}], 7)
where SDE(f) and SDL(t) are the schedule delay early and late for commuters departing at

time t, respectively, and can be expressed as follows:

SDE(f) = max{ 0T (t)- t: and SDL(t)=max{ 0;T ¢ }+t}. (8)

3.3. Stochastic Bottleneck M odel

The equilibrium condition for commutérdeparture time choice in a single bottleneck with
stochastic capacity is as followso commuter can reduce his/her mean trip cost by
unilaterally altering his/her departure time. This condition implies that the commoteas

trip cost is constant with respect to time instant if the departure rate is positive, i.e.,
dE[C(1)]/dt=0, if r(t) >O0. 9)

The calculation of the mean trip cost relies on the calculations of the mean travel time, the
mean schedule delay early and late. Because of theéodiay stochastic capacity of the
bottleneck, commuters departing at the same time may endure schedule delay early or late in
different days, and may or may not encounter queuing delays. In this paper, wa strgy
congested bottleneck, and there are in total four situations to be considered, each
corresponding to a time interval within which () users always arrive early, (1) depemling

8



capacity users can arrive early or late, (Ill) users always arrive late and incur a gledaing

and (IV) users always arrive late anddepending on capacity may or may not incur a
queuing delay. The fousituations occur consecutively, and we tsd,, t, to denote the
watershed lines which separate the four situations. The etbthtivation of departure rates
in these four situations can be found in Appendix A; we summarize the results below.
Situation I. Usersalwaysarriveearly in [t,,t,]
In this situation, no commuters experience schedule delay late subject to all possible
values of the capacity of the bottleneck. The departure rate in this ingerval

__a 5(1-9)
r(t)_a_ﬂ o Lstst, (10)

wheret, is the earliest time with positive departure rate and also the time with zero queue
length. The boundary condition for this situationSBE(t) =0 whens=6s, and we thus
haveR(t) = —t,65S.

Situation I1. Depending on capacity userscan arriveearly or latein (t,t,]

In this situation, both schedule delay early and late may occur. If the capacity of the
bottleneck is large enough, only schedule delay early will occur. On the other hand, schedule

delay late occurs when the capacity is small. The watershed capacity has to generate

T(t)+t=0,i.e.,,s=—R1)/t . The departure rate in this interval is

_ (04
- A+B(InR(t)+1)’

r(t) t<t<t,, (11)

where A=—(aIin@+pIn(-t5)+yIn(-t05)+(B+7))/(3-9) . B=(B+7)/(5-) .

The boundary condition for this situatios SDE(t,) = SDI(t) =0 whens='s, and so we
have R(t,) =—t,S.

Situation I11. Usersalwaysarrive late and incur a queuing delay in (t,,t,]

Similar to Situation |, in this situation all commuters experience schedule delay late

despite maximum bottleneck capacity. The departure rate in this interval
9



a §(l—l9)
a+y Ing*t’

r(t) = t, <t<t,. (12)

The boundary condition for this situationR§t,) =5(t,— ), i.e., the queuing length at time

t, equals to zero whea='s.

Situation V. Users always arrive late and — depending on capacity — may or may not
incur aqueuing delay in (t,,t.]

Similar to Situation II, theras a watershed capacity of the bottleneck such that the

queuing length falls to zero. The departure natdis interval is

(a+7)RM)/(t-t,)—(ab+7)3

(a+7)(InRM-In(63(t-1)))’ t,<t<t,. 13

r(t) =

The boundary condition for this situation ri¢t,) =0. Equally, we haveR(t,)=5(t—t),
where$=35(ab+y)/(a+7).
PROPOSITION 1. The following inequality holds,
S(t—-t,)< RO<3(tt), te[t,t]. (14)
PROOF. Since the queue may exist behind the bottleneck for Situation IV, we have

R(t) >9§(t— to), and the numerator ol 8) is thus positive. By definition, the departureerat

is non-negative, and the denominator of (13) must be non-negative. Additionally, we have

5(t—1,) < RY. Since R(t) =S(&— ) and the queue may not exist behind the bottleneck for
Situation IV, we haveR(t) <$(t—t,). This completes the proof.]
Since the departure ratgt) =0 if t >t,, the cumulative departure flow at timeequals

the traffic demand, i.eR(t.)=N=3§(t,—t). Therefore, we have =t,+N/5. Moreover,

the equilibrium condition of the stochastic bottleneck model impliesgp@(t))] = B G 1)]

=E[C(t, + N/§] =—tp. Thus, we have

1
t, =——— andt_ = 15
0 k —1 e (15)

w|Z
w|Z

&
-1
10



where$=3(af+y)/(a+y) and

(1-0)(B+7)s

=1- : 16
% (a+7)8(In5-Ing9) (16)
Using the boundary conditions of Situations |, I, and Ill, we obtain the watershed lines as
follows:
N N g N @)
S k-1 S k-1 S k-1
- = Iné 1-6
wherek, =1- % BOIno ,k2:a+ﬂ+y+(a+7)n andk, =1+ (1-6)(y+ B) |
a 1-0 a a(1-0) a(1-0)+(a+y)Iné

With the above derived boundary conditions of Situations I-IV, the cumulative departure

flows of a stochastic bottleneck are given igufe 1. The earliest time instant for commuters

leaving home ig,. It can be seen in Figure 1 that, at the beginning, commuters depart from

homeat a constant departure rate until the watershee instantt,. If the capacity of the

bottleneck equal®s, commuters departing at this time instant will arrive at their workplaces

on time. Afterwards, the departure rate will gradually decrease until the watdnsteed

instantt, . If the capacity of the bottleneck equals commuters departing at time instant

will arrive at their workplaces on time. Thereafter, the departure rate will remain constant

until the watershedime instantt, and the queuing length at this time instant will be zero.

After t,, the departure rate continues to decrease with time till zero at time ifjstant

The above analysis is based on the assumption that the bottleneck is severely congested
due to heavy traffic demand relative to capacity. This assumption can be relaxpoesSéfe
the analytical results for ligat traffic demand in Appendix B and show that the second time
period with constant departure rate will disappear if the bottleneck is not very congested.

So far, we have taken the stochastic capadtize unique source of travel time variability.
In practice, travel demand may also be variable. Including an explicit represertghtion
stochastic demand to the existing model with stochastic capacity will introduce added

complexity for the theoretical analysis. Thus in this paper, we consider only the impaet of th

11



demand elasticity. The analytical solutions of a stochastic bottleneck with demand elasticity
are presented in Appendix C. The results show that the length of peak period with elastic
demand could either decrease or increase with incre@sirejue, depending on a demand

sensitivity to cost.

Equilibruim departure&(t)

----- Capaciy s e e B

8 Capacitygs i i
E T
H H 1 .

T
© : - ! i
o i 7 1 ! i
S H ’ . I |
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Figure 1 Equilibrium departures with stochastic capacity in a single bottleneck

3.4. Propertiesof the Stochastic Bottleneck Model

We present the following theorems and propositimngeveal some interesting properties of

the equilibrium solution of the proposed bottleneck model.
THEOREM 1. At equilibrium state, the expected trip cost for every commuter is a

strictly monotonically increasing function of the traffic demand, 8B[,C(t,)]/ON>0.

. N
PROOF.Since E[C(t,)] =-t,4 andt, = S(T—l) , then

=GO =g (19

w»

B
oE ON= . 19
[otl/oN= 755 (19)

12



To prove 0E[C(1))]/ON>0 , we only need to prové-k,>0. Since0<8<1 and

§=3(ab+y)/(a+y)>Hab+y0)/(a+y)=67, it can be shown thdh $—Ing5>0 holds

Thus, both the numerator and denominator of the second term on the right hand side of (16)

are positive.Therefore the right hand side off) is less than 1. Sd-k, > 0 holds. This

completes the proofl]
This theorem partly coincides with a property obtained by Fosgerau)(201® was
concerned with the marginal external social costs of capacity and demand with a general

distribution.
THEOREM 2. At equilibrium state, the departure rate is a monotonically decreasing

function of the departure tintg t €[t,, t.] .

PROOF.See Appendix DThis theorem coincides with Proposition 3 in Lindsey (1994).

PROPOSITION 2. When the value of the parameleapproaches to one, the stochastic
bottleneck model follows the deterministic model.

PROOF. According to the [Héspitals rule, we havelim, ;In6*=0 and

lim, ,(1-6)/Ing™" =1. Therefore,

N T __ﬁ ] L B

ims=s, Mk =lmk;=-"", Imk =limk, = (20)
and

asS/(a—p), ift,<t<t

limr(t) = /( ﬂ) _ b ! (21)

-1 asf(a+y), ift<t<t
Substituting (20) into (17), then the watershed times become:

A S A, S L (22)

p+r'S ,6’+7/a'§’ * e_ﬂ+}/§'
Substituting (22) into4d1), we obtain the same traffic flow pattern as for the deterministic

bottleneck model (6). This completes the prolaf.

PROPOSITION 3. With a fixed number of commuters, enlarging the value of the

13



parameterd will result in a decrease in the length of peak period.
PROOF. The definition of$ yields: d§/dd =a5/(a+y)> 0. This implies thats is a

monotonically increasing function &f. From (15), the length of peak period is as follows:

Nk NI _N (23)
Sk-1 k-1 %

t,—t, =

Since N is a positive constant, then-t, is monotonically decreasing with respez® . This

completes the proofl]

Under Assumption A3, the stochastic capacity follows a uniform distributione bet

the mean capacity anda parameter such that[e— v er \} By this definition, we obtain

S=et+ v, andd=(e-v)/(e+ V). With this new formulation of capacity distribution, we
obtain the following results.

PROPOSITION 4. When the value of the parameterapproaches to zero, the
stochastic bottleneck model follows the deterministic model.

PROOF. Since @ =(e—V)/(e+ V), when the value of the parameterapproaches to

zero, the parametef approaches to one. The rest of the proof is the same as that of
Proposition 2.[]

So far, we have provided two formulations of the uniform capacity distribution, i.e.

[65,5] and[e— v, e+ \]. It can be seen that, both the expectation and the variance of the

bottleneck capacity will change with whilst only the variance of the bottleneck capacity

will change withv. Thus, Proposition 4 slightly different from Proposition 2.

PROPOSITION 5.With a fixed number of commuters, enlarging the value of the
parameterv will result in a decrease in the length of peak period.

PROOF. Substitutings = e+ vand 8 =(e—v)/(e+ V) into $=35(ab+y)/(a+y) leads
to d§/dv=(y—a)/(y+a)> 0. This implies thas is monotonically increasing with respect
to v. According to (23), the length of peak perid-t, is monotonically decreasing with

respectto §. Therefore,t,—t, is also monotonicallydecreasing with respedbo v. This
14



completes the proofl]

4. Time-varying Toll

Arnott et al. (1990pdesignedan optimal time-varying toll under a deterministic bottleneck
capacity. They showed that the talbesn’t change the schedule delay costs, but can
completely eliminate the waiting time caused by queuing, and therefore the waiting time cost
could be replaced by toll charge. Using control theory, Lindsey (1994, 1999¢diéney
optimal pricing with stochastic bottleneck capacity condition. In this section, we investigate
time-varying toll in the case ad stochastic bottleneck capacity and a constant departure rate
over a fixed peak period (which is set to be the same as the peak period withoMYeoll).
show that under this tolling scheme, the queues can beagdugnificantly but not

eliminated completely unless the capagtgonstant.

4.1. A Time-varying Toll Scheme
Let commuters depart at a constant nates=35(a0+y)/(a+y). (7) gives the expected

travel cost function at departure tirhen the absece of toll. Hence, the time-dependent toll

can be formulated as
pt)=E[C()]- E[ (D], (24)

where the lowercase’ stands for the expected travel cost exclusive of the toll. Beeause
constant departure rate is used and the mean trip cost is kept unchanged, this scheme may
or may not be the first-best toll; therefore the optimal control theory method used by
Lindsey (1994, 1999) to solve thiene-varying toll problem is not required here.

Similar to the analysis for the no-toll equilibrium in Section 3, the morning commuting
problem with time-dependent toll can be analytically investigated for the following three
situations, each corresponding to a time interval: (I) users always arrive earlyp@hdiey

on capacity users can arrive early or late, and (lll) users always arrive late and incur a queuing

delay. In all three situations, queue may exist depending on the capacity valtjeahet,

have the same definitions @sthe previous sectiort, andt, now define the watershed time
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points between the above three situations. With a constant departure ratg})i€S,,

t e[t,, t.] , the cumulative departures at timean be easily computed

R(t)=3§(t-1). (25)
Substituting (25) into (2), the queue length becomes,

Q) =max{(5-9(t+t).G, = PSS (26)
Substituting (3), (25) and (26) into (4), we can obtain the expedgpedastin the absence of
toll, for each of the three time intervals separately.

Let E[C(f)]=—1,8, the time-varying toll can be formulated as a piecewise function,

corresponding to the three time intervgist ], [t,t,] and[t,t.] as

ﬂ(t_to)_(a_ﬂ)(t_to)fla teltyt,]
p) =<-a(t-t)&+B(t-t) & +(B+7 )t -y (t-to) &, teltyt)] (27)
—(B+7)to-(ab+7)(t-1)&, telt,t.]

where & =(5(Ins-In(039))-8+09)/(¥1-0)) . &=(3(Int,~In(t,~1))+3)/(¥1-0)) ,
&=350/(31-9)), & =5(In(5(t,— ) -In(1,93)-1) /(H(1-9)), & =(In5-In(69))/(1-0).

The detailed derivation of thiéme-varying toll is given in Appendix E. It can be proved

that as the value o approaches ongy(t) becomes the one with deterministic capacity as

derived by Arnott et al (1990b).

Lindsey (1994, 1999) proved thatsocially optimal departure rate can be decentralized
using a time-varying toll. He showed that, in a special case of a two-point distribution of
capacity, when a time-varying toll is used to support the social optimum, the expected
individual trip costis greater than or equal to that in the absence oMlherein follow the
first-best system optimum strategy designed for the deterministic bottleneck (Arnott et al.,
1990b) and develop a time-varying toll for the constant departure rate over the peak period
which maintains the same mean individual trip cost. Thus, the proposed time-varying toll is in
fact a second-best system optimum strategy for the studied stochastic bottleneck. However,

suchatolling scheme may be more acceptable since the concept of the mean value is closer to
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reality.

4.2. Propertiesof the Time-varying Toll
This section presents the properties of the equilibrium solution undéntéarying toll.

We use subscripp to denote parameters or variables associated with this pricing scheme.

PROPOSITION 6.Under the time-varying pricing scheme, the equilibrium solution
results in shorter queue length andrstiotravel time than no-toll scheme, i.Q,(t) < Q(Y)
andT (t) <T(t) and the toll is non-negative, i.e., tgit) >0, vt e[t,,t,] .

PROOF. In Section 3, for time interviy,t,], the stochastic bottleneckas depicted as
a congested commuting system in which the inequ&ty > §( t— g) holds.In time interval
[t.,t.], commuters may experience queue only, yet we have the inegagtity é( t— g).
Hence, the inequalityR(t) > §(t—t,) is always true during the peak period. Comparing (2)
with (26), we have

QM) =max{R(t)-s(t-1).G= max(s 3( + ¢) .0= Q (1), & 5 (28)

Substituting (28) into (3)ve get the inequalityl (t) > T (t) .

Considering the mean trip cost function, we have

E[C()]=E[aT()-B(T()+ )+(T()+1t)|= E(a—B+7) WY+(r-B) 1]
E[(a—ﬂ—k}/)'l;(t)Jr(}/—ﬂ)t]
=E[aT,(0)-A(T,(+1)+7(T,0)+t)|=E[ (9]

So, p(t) = E[C(]—- E[ ( §]= 0 holds. The above completes the proof.

PROPOSITION 7.At either no-toll equilibrium or time-varying toll equilibrium, the
expected queuing time is identical for the last commuter who leaves home #t time

PROOF. The cumulative departures at tirjeis R(t,) = §(t,—t) at both equilibrium
states, and the queuing time for commuters who leave home at tfineguals
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T(t)= max{(é(te—lb)— St g))/ s,(}. Although departure rates are different in these two

equilibrium conditions, the expected travel times are identical, i.e.,

E[T(L)]= E[ max{s'[ Rt)- - $)].4]

R(t)

= [ (STRO-t+4) (9ds= [ (876 &= H- g+ ) (3o
~E[max{s*(s- 3(1- 4).4]- & T
This completes the proofl]

The above proof was based on a uniformly distributed capacity function. Here, we

consider more general distribution functions for the bottleneck capacity.f (3t be a

general probability density function of the bottleneck capacity&tite average capacity of
the bottleneck realized in no-toll equilibrium. We assume that the departure rate is a non-
increasing function of timé. Under this assumption, if the capacity is larger thamhen

both the queuing length and the queuing time of the last commuter will be zero. Then,
E[TW]=[ s [RO- €t~ 9] (3d < and E[T,(t)]=[ s*(5 $(¢- ¢ 1 3d  holds.
Since R(t,)=5(t— 1), then E[T(t)]= E['I;(te)]. Therefore, Proposition 7 continues to

hold when the bottleneck capacity follows other distribution functions.
In summary, undetime-varying toll scheme, the peak-period does not change and the
flow pattern is similar to that achieved in deterministic social optimum. However, queuing

delay and capacity underutilization can occur at any time.

5. Single-step Coarse Toll

The toll scheme formulated in Section 4 varies continuously over time. Such a complex
pricing structure is not very well accepted by travelers as they cannot predict the amount o
charging they would have to pay in advance. This impels researchers to develop more
practical tolling schemes, including one that varies in steps over time. In the context of
bottleneck problems, Arnott et al. (1990b) studiesihgple step toll, which has a positive and
constant value during a certain interval and zero otherwise. This has been refarsetkes
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step coarse toll in the literature.df> y, some drivers depart after the mass. This is the case

considered by Laih (1994). ik <y, no drivers depart after the mass which is the case

considered by Arnott et al (1990b). As explained by Arnott et al (1990b), the reason for a
mass of departures immediately after the toll has been lifted is due to the fact that the last
person to arrive before the toll is lifted must have the same trip cost as the first person to
arrive after the toll is lifted. The latter must therefore incur an additional travel time plus
schedule delay costs which are equal to toll, and as such is higher than the former. This is
impossible unless there is a mass of departures just after the toll is lifted. According to

empirical results (Small, 1982the shadow value of one minute late is significantly larger

than the shadow value of travel time, and hence we treat only thexeagehere, i.e., no

driver chooses to depart after the mass.

Similar to Arnott et al (1990b), we introduce here a coarse toll into the bottleneck model

with stochastic capacityit is assumed that a coarse toll equilibrium exists with capacity

n €[0S, . Commuters departing in intervl,t™] will be charged by a fixed tolt, here

t" andt™ denote the starting and ending points of the toll, respectively. The objective, in the
following subsection, is to find the optimal fee and time interval based on capacity
nelds,9.

5.1. Equilibrium Departure Pattern with a Coarse Tall

Intuitively, when the toll is set too high or the charging time interval is too long, there could
be times when no one utilizes the bottleneck. We aim to derive the optimal toll and the
optimal charging interval which would minimize the totedvel cost of the commuting

system.

We divide all commuters into three grougd$, commuters who go through the bottleneck
before the tolling periodN, commuters who have to pay constant toll when passing

through the bottleneck; and, commuters after the tolling period.
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Casel. Beforetolling period [t,t"]

Under equilibrium, the mean trip cost of the last commuter who does not need to pay the
toll should be the same as the trip cost of the first commuter who does. For this to happen,
there must be a period which has no departures between the two timeesidtanthe above
two commuters departed. This corresponds to a scenario whereby, early in the morning,
commuters depart at a high rate and pay noTalk departure rate is the same as that in the
no-toll equilibrium. Then, commuters cease to depart for a while and the queue dissipates
gradually as travelers are being served by the bottleneck. In equilibrium, the expected trip cost

of every commuter should be the same as that experienced by the first commuter, i.e.,
E[C()]=-123, (29)
wheret; denotes the departure time of the first commuter under the sieglesourse toll

regime. The departure rate follows that given by (10) and the boundary condition for this

group of commuterss:
Np =7n(t"-t)), (30)
wheren €[5, 9] is the bottleneck capacitin equilibrium, E[C(t(’))] = E[c(t*,n)]+r, where

E[c(t*,n)] is formulated in Appendix F. Therefore, the relationship betwgeti andr

can be formulated as follows:

&

I
+
—

T

(31)

wherey =(n(Inn-Inds)—(n-0%))/(Y1-0)).

Casell. Duringtolling period [t*,t7]

Commuters start to leave home when the progress of queue dissipation éatdmels
starting point of the tollt™. In the deterministic bottleneck model, the optimal single step toll
is timed such that the queue has just disappdarede time the toll kicks in. While, for the
stochastic model, the time when the coardeiddlifted is based on the capacipy The latter
does not represent the maximal capacity of the bottleneck, therefore the queue may not be
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eliminated completely. In this case, the toll is constant and hence does not affect the departure
rates. Then, when heavy congestion exists, we can derive the departure rates in fewasscene

in Section 3: (i) users always arrive early, (i) depending on capacity users careariyver

late, (iii) users always arrive late and incur a queuing delay, and (iv) users always arrive late

and- depending on capacitymay or may not incur a queuing delay. $S&émur scenes occu

consecutively, and we denadtg t,, t; as the new watershed lines which segatta¢ four

scenes.
Here, vwe present the departure rate functions for the first three intervals. The methods
used to obtain these functions are similar to those used in the no-toll equilibrium.

a S(-0)

r(t):mm, tE[tJr,tl'], (32)

(24
M=% B(INR(t)+1)’

telt,t)], (33)

where A and B are those defined in (11), and

o §(1—9)
a+y Ine*’

r(t) =

telt),t;]. (34)

In the fourth intervalt €[t;,t"], there is no schedule early but queue possibly exists.
Considering the boundary conditiar{t')=0 and the possible results of the bottleneck

capacityrn , we have

[Wé}/lnm, forteft, t], if n<$
rt) = (35)
R() . R(Y) . .
((t—t’)_sJ/ln(t—t’)%' forte [t,t ], otherwise

The total number of commutersiiti,t'] is

S(t-t), ifn<s
N, = (36)
S(t —t)-n(t' —1t), otherwise

In order to derive the optimal charging time interval, we design a pricing scheme as
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follows:
E[C(H]-E dt.nm)], (37)
E[C()]- E[ (t.7)]. (38)
In equilibrium, commuters will have the samnavel costs, i.e.E[ o(t',7) |= E| (t,7)]

holds for any value ofy under the coarse toll scheme. Following the definitions of

E[dt',n)] and E[d t,7)] in Appendix F, we derive the relation betweEnandt™ as

follows:
Forn<s§,
r(B+r)v _a\
__(a-py-p @) 9)
y+(a+y)¢
Forn>S
(a+y)p—(a-pB)y _a\
R Frllern)e-h) o)
}/+(a+7/)¢
wherey = n(lnn—lg(0§))—(77—¢9§) and ¢ = S(In é—lrl(e‘g)—(‘s— 79 . It can be seen that
5(1-0) 5(1-0)

the endingime of the toll depends on the startitigne of toll, the toll itself and the capacity
n.
Caselll. After tolling period

The toll is applied at™ and lifted att™. In the deterministic casé;, t~ andz should be
chosen so that the queue is zero at the moment the toll is applied and also immediately before

it is lifted (Arnott et al. 1990bjTo achieve equilibrium, there is a periefix adjacent to the

instantt™ without any departures, while a mass of individuals departs immediately after the

instantt™. Arnott et al. (1990b) showed that in the deterministic model, the relation between

the toll and the size of the masss 7 =(a+y)N,/(25). Similarly, in the stochastic model,
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it can be shown that
s N
r=(a+y) jegz—; f (s)ds, (41)
where f(s) is the probability density function of the bottleneck capacitiien for a

uniformly distributed capacity function, the number of commuters departing after the toll
becomes:

25(1-0)7

2:(In§—ln¢9§)(a+7/)' (42)

Using the conservation conditidd, = N—N,—N,, and substituting (30) an@6) into (42)

the toll start time can be found as:

gr = NZK? (43)
Ky
where
(B+7)$
7+(a+7/)¢’
25(1-0) +(ﬁ+}/)l//§—7](0{+7/)¢—m/ <8
o (INS—In63s)(a+y) y+(a+y)d (a-By-p 7
2 25(1-0) (B-a)ys ¥ , otherwise

(INs—InoS)(aty) r+(a+r)d (@a—pB)y—p
Hence, once the coarse toll and the paramgtare given, we can geét by (43),t™ by (39)
N, by (42), t; by (31), N, by (30), N,=N-N,—N,, as well as departure rates in all
intervals corresponding to the three cases discussed above. Ciearlinimize the total

travel cost of the system, the coarse toll and the parametbould be optimized.

5.2. An Optimal Coarse Tall
In this subsection, we try to find an optimal coarse toll scheme under stochastic capacity

the bottleneck model. Firstly, we design a system in such a way as to minimize the expected

systentrip costG(n,T), excluding toll, as follows:

min G(7,7)= E[C()) N-z N, (44)
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where E[C(1)] refers to the mean trip cost,the tdl and N >0,N, > 0. Substituting (29)

and (31) into (44), and observing the conservation Njle N-N,—N,, we can rewrite the

system trip cost as

"= (N=N, = N,)z. (45)

Gn,7)=—BN| —
=7 ((a—ﬂ)w—ﬁHj

ReplaceN, and N, by (30) and (42) respectively, and nafe= +t", Equation

(a-B)y-p

(45) becomes

G(n,r)=—ﬂNt+—MNr—rz{ dI Z5(1-9) } (46)

(@B —p (@-Bw—-B (nNS-Ing(a+7)

Let the first-order partial derivative with respectttobe zero,

0G(n,7) _ 0.
at+
(47)
Substitute (43) into (47) and nofe/ét™ = —«, /x,, we obtain
_ 22 N K2K1(a_ﬁ)lr//N
S Py
- n ~ 25(1-6) B
#2(N-r )Kl((a—ﬂ)y/—ﬂ (Ins—In (975)(05+7/)J_ 0 (48)
From(48), the optimalt™ can be derived as follows:
t'=g,(mN, (49)
_[rla-By /2 &P n _ B(9) 1
Wheregl(”)‘( (a-Pw—p 2 j/[(a—ﬂ)w—ﬂ (ns=nos)(a+7)) %
Substitute (49) into (43), the optimal coarse igll
7=0,(mN, (50)

1-x,0,() _

2

where g, (7) =

Finally, substitute (30), (31), (36), (49) and (50) into (44), the expected system travel
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cost (excluding toll) is worked out as follows:

G(n,7) = 9(7) N, (51)
where g(n) =—pg -2V gyl BO0) |
(a-B)yw-p (a=B)y-p (InsS-Ings)(a+y)| ="

The method to study the casew® y, i.e., some drivers depart after the mass, is similar

to the above (see Appendix G, for details).

The efficiency of the optimal single-step toll subject to stochastic capaaign be

measured as follows:

® :M1 (52)
! TCNT - TCrv

whereTC; andTC,, are the systein total travel cost (excluding toll) generated uraleo-

toll scheme andh time-varying toll scheme respectively, aii€, is the same a&(z,r)

which is definedn (44). The subscripy denotes the single-step coarse toll scheme. Also, the

efficiency of the single-step coarse toll based on optimal capacity can be compared with the

efficiency based on average capacity. However, it would be extremely difficult to obtain the

relative cost reductions analytically for aflyvalue inn €[6S, 9. In the following section,

we will numerically investigates, and the relative efficiency. The results are presented in the
last two columns in Table 4 and in Figure 11.

PROPOSITION 8. The optimal » determined by system optimal equilibrium is

independent ofN .

PROOF. From the above analysis, the function of the system travel cost excluding toll
can be formulate a&(n,7) = g(7) N>. In order to obtain the optimai-value, we have to let
the partial derivative of this function with respecttde zero, i.e.9(g(7) Nz)/an =0. This
meansog(n)/on =0. Sinceg(n) is independent oN, sois the optimal value of;. This

completes the proofl]
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PROPOSITION 9. In equilibrium, the earliest departure tifnender the single-step
coarse toll scheme is larger than that without toll, when pararmfietgrproaches to one.

PROOF. The earliest deparéutime without toll when paramete? approaches to one

has been shown in (22), i.deo,:—Lg. In the stochastic bottleneck model with single-

B+y S

=0 and

. . . Inny—-In@s)—(n-65s
step toll, lettingd approach to one, we havieny =Ilim 77( i — ) (77 )
01 0-1 5(1_9)

im ¢ —tim SN S=INTY=( 3 _,
01 01 S (1_ 6})

(B+7)S _p+r«

Then, limx, =lim S and
-1

ly+(a+y)p v

. 2 1 - . . . .
lim K’2:£ +—j§. Substituting them into the relevant equations presented in this

61 a+y ’B
section, we get:Lg,tgz— /4 §+ y—a r,t*:tg+£,t’:—ét*,
2(f+7) s (B+7)S (B+7)(a+7) y
and N, = ﬂ This clearly shows that
(a+7)

w N - B N_

B = = [ ==
B+y)s B+y)a+y) (B+y)S

“t,5.

Hence,t, >t, when§ approaches to one. This completes the praof

Proposition 9 presents another interesting result. That is, in equilibrium, the mean trip cost
generated by the optimal single-step coarse toll is less than that generated by no-toll
equilibrium, when parametét approaches to one. According to Proposition 2, the proposed
stochastic bottleneck model becomes the deterministic model when the value of pafameter
approaches to one. Hence, Proposition 9 also holds for the deterministic bottleneck model. It
should be noted, however, that this result does not always hold forébotredues. In the neéx

section, we present numerical examples (in Table 3) to illustrate this result.
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Figure 2 Mean trip cost and its components in no-toll equilibrium

6. Numerical Examples

In this section, we present numerical results for the stochastic bottleneck model without toll,
with a time-varying toll, and with a single-step coarse toll. Unless otherwise specified,

throughout this section, we adopt the following three parameter values from Arnott et al.

(1990b): o =6.4 $/hr, p=3.9 $/hr, y=15.21 $/hr, and consider the situation with

N =6000veh, S =4000veh/hr andd =0.9.

6.1. No-toll Equilibrium in the Stochastic Bottleneck

The differential equatis(11) and (13) are solved by the Euler method with step size equal to
0.005. Figure 2 shows the mean trip cost, mean travel time cost and the mean schedule delay
and early costs (SDE and SDL). It can be seen in Figure 2 that the mean trip cbts of
commuters are the same and equal to 4.98, but the commuters would endure a trade-off
between the cost of travel time and the cost of schedule delay. Note that the SDE and SDL
curves cross at a point where their costs are none zero and the travel time cost at the crossing
point does not reach the highest point. It is also worth noting that the waiting time cost is none
zero at the end of the peak period, which means that the queue still exists.

It is also interesting to investigate the impact of paramgten the solution of the
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stochastic bottleneck model. We change dhealue from 0.75 to 1.0 and solve the resultant

models. Table 1 lists the mean trip costs and the watershed time instants for défferent
values. It can be seen thatt, andt, =t, when&=1.0. This confirms Proposition 2. We
can also find from this table that the length of peak period increases @svdige decreases.
This is consistent with Proposition Since decreasing the-value is equivalent to increasing

the travel time uncertainty, this means that commuters would leave home tadiarid

potential losesdue to larger uncertainty.

Table 1 Influence of parameter & on the mean trip cost and the watershed time instants

0 E[C] to tl tz t3 te te _to
1.00 4.66 -1.19 -0.73 -0.73 0.31 0.31 1.50
0.95 4.81 -1.24 -0.76 -0.64 0.26 0.29 1.53
0.90 4.98 -1.28 -0.80 -0.55 0.21 0.27 1.55
0.85 5.16 -1.32 -0.85 -0.43 0.16 0.25 1.57
0.80 5.36 -1.37 -0.90 -0.31 0.11 0.22 1.59
0.75 5.58 -1.43 -0.95 -0.14 0.05 0.19 1.62

Figure 3 depicts the departure rates for diffe@ntalues. One can observe frotme
figure that the stochastic bottleneck model follows the deterministic model whénthleie
approaches to one. This is also consistent with Proposition 2. Figure 3 also shows that in
equilibrium the departure rate during the peak period is monotonamdtgasing with time,

which is consistent with Theorem 2.
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28



N=6000 veh

T

9000

v=0
v=100]
v=300 -

8000 an EmE EE EE EE e mmmmE

T

7000

T

6000

7

7

5000
4000

7

3000

7

2000

Equilibrium departure rate(veh/hr)

T 7
| o~
1 1

1000

" r—
\)
)

-2 -15 -1 -0.5 0 0.5
Departure time (hr)

Figure 4 Equilibrium departure rate for different Vv values

It is interesting to see the influence of the capacity variation on comrdégrarture time

choice. Considese[e— v e+ \} and let the mean capaci&=3000veh/hr, andgve solve the

resultant models with different values. The resulted equilibrium departure rates are shown
in Figure 4. It can be seen that the departure rates converge to that of the deterministic
bottleneck model when the-value approaches to zero, which is consistent with Proposition
4. One can also observe from Figure 4 that the equilibrium departure rate during the peak
periodis monotonically decreasing with time, which is consistent with Theorem 2.

Table 2 presents the mean trip cost and the watershed time instants with different
values. It can be seen that the length of the peak period decreases with inarezaung
This result is consistent with Proposition 5, and suggests that commuters would leave home

earlier when capacity variation increases.

Table 2 Influence of capacity variation vV on the mean trip cost and the watershed time instants

v E[C(1)] t, t, t, t, t t. —t,
0.00 4.46 -1.19 -0.73 -0.73 031 031 2.00
100.00 4.70 -1.20 -0.75 -063 026  0.28 1.48
200.00 4.73 -1.21 -0.76 -053 021  0.26 1.47
300.00 4.77 -1.22 -0.78 -0.43  0.16  0.23 1.45
400.00 4.81 -1.23 -0.80 -0.32 012 021 1.44
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6.2. Time-varying Toll in the Stochastic Bottleneck

We now consider éime-varying toll in the stochastic bottleneck. Figure 5 depicts the mean
travel times before and after implementing the time-varying toll for diffefenalues. The
no-toll travel times have a concave profile with the travel time peaked in the middle of the
departure time period, whilst the travel times undhae-varying toll are linearly increasing

with departure time. It can also be seen that the travel time with tolling are significantly lower
than those without tolling, suggesting that the time-varying toll can significantly reduce the
commuters travel time and the queue behind the bottleneck. Specifithlyqueue can be
completely eliminated when thé -value equals one. The mean travel time of the last
commuter does not change, no matter whether the toll is applied dhisois consistent with
Proposition 7. Théime-varying tolls for four differen® -values are shown in Figure Bhe

results confirm the Proposition 6, i.e., tirae-varying tolls are nonnegative.

N=6000 veh
l |5 |5 T

Mean travel time(hr)

Departure time (hr)

Figure 5 Travel time distributions with departure timeunder no-toll (the upper concave profiles) and time-varying

toll (the lower linear distributions)
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Figure 6 Time-varying toll for different & values

6.3 Single-step Coarse Tall in the Stochastic Bottleneck

For any givend-value, the systein totaltravel costs against parametgrand the minimum

are shown in Figure 7(a). The numbers in brackets represent the optwvaale and the

corresponding total system travel cost. We can see that the total travel cost decr@ases as
value increases. When tlievalue is one, the optimal departure rate equals the maximal

capacity. This result coincides with that of a single-step coarse toll in the deterministic

bottleneck model.

For comparison, @& solve the bottleneck model for an increased total number of

commuters, i.e., lettingN = 700Cveh. The results are presented in Figure 7(b) and they show

that, whilst the total system travel costs increased with laxgealue, the optimal; -values

do not change witlN value. This is consistent with Proposition 8.
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Figure 7 Total travel cost for different & and N values

We further investigate the difference between the earliest depargavith the single-

step coarse toll and that without, as denoted;byt,. Figure 8 shows the variation tjf—t,

with different values off8, y and@. Figure 8(a) shows that the valuetpf-t, can be either
positive or negative wheél = 0.7, implying that the single-step coarse toll can either increase
or decrease the commutetsavel cost when capacity variation is large. However, Figure 8(b)
shows that the value of —t, is always positive wher®=1.0 (i.e., the deterministic
bottleneck model), which is consistent with Proposition 9. Hence, the optimal single-step
coarse toll can reduce the commutdrg cost in the deterministic bottleneck modas lfas

been reported in Arnott et al. (199Bbwhilst for stochastic bottleneck, the toll can either

reduce or increase the trip costs.
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Figure 9 illustrates two examples in which the single-step coarse toll can either advance or
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Cumulative departures with different parameters of single-step coarse toll in equilibrium

postpone the earliest departutine. In Figure 9(a), with input data ofr=6.4 $/hr,

£ =1.0%/hr, y =8.5%/hr,  =0.7%/hr, S = 4000veh/hr andN = 6000veh, it can be seen that

the earliest departureme is advanced (i.e., moved earlier) after imposing the single-step

coarse toll. Whilst in Figure 9(b), with the input data @t 6.4 $/hr, g =3.9 $/hr,

y =15.21%/hr, #=0.9, S=4000veh/hr andN =6000veh, the earliest departutéme is

postponed when the single-step coarse toll is implemented.
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Finally, we present in Table 3 the commutensean trip cost andéh Table 4 the
systems total travel cost (excluding toll) when schemes of no toll, time-varying toll and
single-step coarse toll are separately applied in the stochastic bottleneck model. We can see
that both the system total cost and the individual mean trip cost increase with increasing
variation of the bottleneck capacity, regardless of the schemes adopteid.cbmsistent with
the theoretical analyses conducted in earlier parts of the paper. Bovallles analyed the
time-varying toll scheme leads to the lowest system total cost, followed by the single-step
coarse toll scheme, whilst the non toll scheme generates the highest cost. The numerical
results in Table 3 also confirm that the time-varying toll does not change the indiwidual
mean trip cost, but the single-step coarse toll can reduce the indigiduzdn trip cost. With
smaller@-values (i.e. larger capacity variations), the reduction becomes smaller. Table 4 also
presents the results for the single-step coarse toll scheme under an average capacity and as
expected, the system total travel costs under the optimal capacity are less than those under the

average capacity.

Table 3 Individual mean trip cost under three schemes

Individual’s mean trip cost ($)

0 Non toll Time-varying toll Single-step coarse toll
Optimal capacity Average capacity
1.00 4.66 4.66 4.46 4.46
0.95 4.81 4.81 4.62 4.61
0.90 4.98 4.98 4.79 4.77
0.85 5.16 5.16 4.98 4.95
0.80 5.36 5.36 5.18 5.14
0.75 5.58 5.58 5.40 5.34

Table 4 System total travel cost under three schemes and the efficiency of a coarse toll

Efficiency of a single-

Systenis total travel cost (excluding toll) ($) step coarse toll

0 Non ol Time-varying Single-step coarse toll Optimal Average
toll Optimal capacity Average capacity ~ c2Pacity capacity

1.00 27936.74 13968.37 20371.48 20371.48 54.2% 54.2%
0.95 28875.50 14738.73 21102.19 21125.88 55.0% 54.8%
0.90 29886.84 15612.44 21892.74 21944.14 56.0% 55.6%
0.85 30980.29 16598.36 22751.38 22835.26 57.2% 56.6%
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0.80 32167.25 17718.53 23688.03 23810.14 58.7% 57.8%
0.75 33461.50 19000.82 24714.74 24882.04 60.5% 59.3%

Figure 10 shows the percentage reduction in total travel cost (excluding tollatgeher
by single-step coarse toll scheme based on optimal capacity and average capagity, a
function of . The percentages are computed by using (52). It can be seen that the scheme
based on average capacity produces consistently smaller cost reduction than the scheme based
on the optimal capacity, and the difference increases with decreasmfue. Atd =0.75,

the difference is 1.2%. As the paramefempproaches to one, the differences disappears, and
the efficiencyw, value under both schemisH4.2% (see Table 4).

It is of interest to make a sensitivity analysis of the model parameters on the relative
efficiency gains of the different capacity-based coarse tolls. With the default values of

a =6.4 $/hr, g =3.9 $/hr, s=4000veh/hr, N =6000veh, we let the ratig’/ vary from

0.5 to 4. Figure 11 plots the relative efficiency of the average capacity-based single-step

coarse toll to the optimal capacity-based toll, i®,/w, where the subscripta and o
denote the average capacity and the optimal capacity respectiye{y; = a or o) is defined

in (52). It can be seen that the ratio approximates to 1 wijignis around 1.5.

Finally, Table 5 summaries the systeiotal toll revenues under two tolling schemes in
a stochastic bottleneck model (with random capacity following a uniform distribution) vs a
deterministic bottleneck model (with a fixed average capacity). It can be seen that the total
revenue under both tolling schemes, regardless of the capacity models used, always increases
with decreasing value & . This suggests that a decline in capacity will increase the revenue
collected from tolling. Undela time-varying toll scheme, the revenue collected from a
stochastic bottleneck model is less than that from a deterministic bottleneck model with

average capacity. However, the contrary is true under a single-step coarse toll scheme.
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Table 5 System total toll revenue under two tolling schemes

Average Systenis total toll revenu¢s)

capacity Time-varying toll Single-step coarse toll
5(1+0)/2

Random Average Optimal Average
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capacity capacity capacity capacity
1.00 4000.00 13968.37 13968.37 6403.10 6403.10
0.95 3900.00 14136.72 14326.53 6618.98 6567.28
0.90 3800.00 14274.40 14703.54 6850.45 6740.10
0.85 3700.00 14381.94 15100.94 7099.30 6922.27
0.80 3600.00 14448.73 15520.41 7378.83 7114.55
0.75 3500.00 14460.68 15963.84 7672.92 7317.83

7. Conclusions

In this paper, we have extended the well-known Viclgdypttleneck model for studying the
commuters departure time choice behavior with a stochastic bottleneck capA@Etgssume
the bottleneck capacity follows a uniform distribution and the comniutiensarture time
choice followsUE principle in terms of their mean trip cost. Analytical solutions of the
stochastic bottleneck model have been derived, and numerical results for a range of different
scenarios produced. Both analytical and numerical results show that the consideration of
capacity uncertainty increases the commutersan trip cost and lengthens the peak period.
Further more, we have developed two tolling schemes for the stochastic bottleneck model,
namely the time-varying toll and the single-step coarse toll. We have shown that the proposed
piecewisetime-varying toll is non-negative and can effectively reduce, even eliminate when
the capacity is constant, the queues behind the bottleneck. We have also found that the single-
step coarse toll may either advance or postpone the earliest departure time. The numerical
resuls demonstrate that the system total travel costs (excluding toll) decrease under both
pricing schemes, suggesting that the schemes improve the efficiency of the stochastic
bottleneck.
In our future work, we plan to further extend the stochastic bottleneck model to consider
commuter heterogeneity, risk preference, demand uncertainty, multiple transport modes and

flexible work start times.
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Appendix A: Derivation of the departureratesin four timeintervals

There are four departure time intervals to consideft,ln,] , there is no schedule delay late, the

expected travel coss
E[C)]=a| [@+ {— tj f(s)d&ﬁj;—(@Jr gj f(3ds

where f (S) is the probability density function of the stochastic capacity, B(8) = :I/ (§— 49_5) . At

equilibrium, E[C(t)] must be constant, i.edE[ C(t)]/dt= 0 which directly leads to

() =% a S(l 19)

iy AR t, <t<t,.

In (t,,t,], both schedule delay early and late may occur, we then have

R .
R/t ( S jf(sd

[ (?Hoj f(s)ds.

E[C(y]= I[@Hb—t]f(s)d i

s

At equilibrium, i.e.,dE[C(t)]/dt= O, the above leads to

(24

"= A BInRO D)’

t, <t<t,,

whereA=—(a N6+ BIn(-t,5)+yIn(-t,05)+(S+7))/(5-"F) andB=(B+y)/(5-0).

In (t,,t;] with no schedule early, we have

E[C(9]= j(@ to—tj f(s)dayj;(¥+gj f(3de

At equilibrium, we get
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a §(l—l9)
a+y Ing*t’

r(t) =

t,<t<t,.

In (t,,t.], there is no schedule early but a queue may exist. We can find a wdteagacity of
the bottleneck such that the queuing length equals zerdR(tp= s( t— g), and hence the watershed

capacity isR(t)/(t—t,). We then have

R(1) R(t) s
E[C(t)]:j (R(t) _t] f(s)ds+;/j”o(R(t) gj f($d8k7/‘[w t( 3d .

t—to
The equilibrium condition leads to

(a+7)RM)/(t-t,)—(ab+7)3
(a+7)(INR®)-In(63(t-1) )

r(t) = t,<t<t,.

Appendix B: Analytical resultsfor light traffic demand

Following the method for analyzing the case of heavy traffic demand, here we iatectiig four
possible situations for light traffic demand during the peak pevigeluset,, t, andt, to denote the

watershed lines of tlsefour situations. The corresponding departure rates in these four timaister
are directly given as follows.

In [t,,t,] with no schedule late, we havét) :(a/(a—ﬂ))(§(1— )/In 0’1) and the boundary

condition STE(Q) =0.

In (t,,t,] with possible schedule either early or late, we hegy=a/( A+B(InR(t)+1)) and
the boundary conditiomR(t,) = (t,—t,)S whens='S;

In (t,,t;] with possible schedule either early or late apdssible queue, we have

(a—B)RO/(t-t,)—(a0-p)5S
(a+7)In(R()/05)—(a—B)In(t-t)—(y+B)In(-t)

r(t) =

The boundary condition isr(t)=0, if t>0 . Correspondingly, we haver(t,)=0 and
R(t)=3(t—1t) . where 3=3(ad—-p)/(a—p) and hencet,=t,. If r(t)=0, t<O0, the

boundary condition is thety = 0.
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In (t;,t.], there is no schedule early lgueue may exist. The departure rate in this interval is

(a+7)RM)/(t—t,)—(ab+y)S
(a+7)(INR®-In(35(t-1)))

r(t) =

The boundary condition isr(t.)=0 . Similarly, we have R(t)=35(t—t) , where,

§=3(ab+y)/(a+7).

Comparing the above results with those for heavy traffic demand, we can ste thdference
only occurs in the third possible situatidrhis suggests that commuters who are condéanith no
schedule early and queue would switch to the interval with possible schedule delay and possible

gueue because the system is not very congested.

Appendix C: Impact of demand elasticity
To simplify the analysis, the following linear demand function is adopted:

N = N0+b(CO—C),
where N, andC, are the reference demand and the reference trip cost respediivsly, positie

parameter which reflects the sensitivity of traffic demand to trip cast,Giis the mean trip cost
When b approaches zero, it becomes the case of fixed demand, andowilesns to infinity, it
becomes the case of perfectly elastic demand.

Substituting equation (18) into the above demand function and rearrangirgy #tee, we obtain

the total number of commuters as:

N = N, +bC,
1+bB/(8(1- k)

Substituting the above result into equation (23), we get the length of peak period,

¢ —tozﬂ— N, +bGC,

T8 Srbp/-k)
Define u(d) = 5+ hB/(1- k). Substitutingk, given in equation (16) anfi=S(af+y)/(a+y)

into u(@), we can obtain the first order derivativew(f)) with respect to? ,
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s (a+;/)(lné—ln(@‘s))—y(l—@)/&.
(a+7) (B+7) (1-0)°

The first term of the above equatisrright hand side is positive. In order to understand the second

u'() =

term, we denote/(e):(aﬂ/)(ln é—ln(@‘s))—y(l—é’)/@ and derive its first order derivative

with respect tod ,

s\ 1
V’(9)=(1— 3 j?y

Clearly V'(€) >0 holds becaus#s < 5. Therefore,v(#) is an increasing function with respect

to 6. Sincev(1) =0, thenv(#) <0 for all 6 (0,]].

(1-60)°(B+7) o3

If 0<b<
~v(0)B a+y

holds, theru’(8) > 0. This impliest, —t, is a monotonically

decreasing function of variabt. Otherwise,u’(d) <0 and t implies thatt, —t, is a monotonically

increasing function ofl . Intuitively, whilst both the elastic demand N and the random cap&eitg
both increasing witl¢, depending on the demand sensitivitythe amount of demand increase

with @ may be greater or lesser than that of capacity increase. Therefore,gthedfepeak period

t, —t, under elastic demand may also increase or decrease with respect to the ¥aldeménding

of the demand sensitivity to cost.

Appendix D: Proof of Theorem 2

According to equations (10), (1113 and @3), the departure rate(t) is continuous within each

of intervals[t,, t,), (t,,t,),(t,,t;) and(t;,t.]. From equations (11)1®) and (13), we have

. : 5(1-0) .
limr(t) =lim @ — ( _1) =lim r(f) ,
ot >t A+B(INR(t)+1) a-p Ind ot

_ 5(1-0) .

limr(t) = d - ¢ ( _1) =limr(t) ,
-t A+B(InR(t,)+1) a+y In6 -t

and
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_ (a+7)Rt)/(t,—t,)—(aB+7)5 _ o« 3(1-0) _lim ()
o (a+7)In(RE)/(65(4-1))) a+y Ing*  ox

Hence,r (t) is continuous within the intervdt,, t.] .

Equations (10) and (12) state that the departurer(deis constant during periods <t <t, and
t, <t <t,. Since departure ratg(t) is non-negative and is positive, the denominator of the right
hand side in (11) must be positive. Furthermore, sigte[0,1) and O<f <y , then

B=(B+7)/(5-39)>0. By definition, the cumulative departure floR(t) is non-decreasing

with respect to timd, thus the denominator of the right hand side of)(is non-decreasing with

respect to timd . Therefore, the right hand side of (11) is non-increasing with respéotet, i.e.,

the departure rate(t) is monotonically decreasing with[i,, t,] .
Let p(6) = ¥5-1+InS-In(gS) . Substitutingd=3S(ad+y)/(a+y) into p(d), we obtain

the first order derivative op(&) with respect td?,

' a Y
0) = - .
Po) a+y 0(abd+y)

It is clear thata+y >(af+y)6, for 0<@<1. Sincey >, we getp'(#)<0. So, p(d) is a
monotonically decreasing function of the paramefer Due to p(1)=0 and p(8) >0 for all
0 (0,1, we then have

2 >1- Ing;s_;’ :

Multiplying both hand sides of the above equatiort byt,, we get

5(t—1t)=>3(t= g)(l— |n6—§‘_j.

S

Substituting the second inequality of equation (14), Rét) SE( t— g), t e[t,, t.], into the above,

we obtain
§(t—t)> F{t)(l—lne—ij.
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From the first inequality of equation (14), i.8(t—1,) < R(1), te[t;,t.], we have

Ini—ln (t tO) <In R
s  os(t-t) O tt)
Combining the above equation with the one before it leads to
s(t-) R
which can be rewritten as
R(t)/(t=1) -8
INR()-In(05(t-1t)

R(t) > )(t—to): r(t-t,), telt,t].

Note that the above equality employs the definittoa S(af+y)/(a+y) and (13) forr (t).

The first order derivative of (13) is
dr®) _INREM-Ings(t-4)+ § = ) F{))_l—l{ ()t t)- F{)J el
ot (InR®-In(65(t-1,)))’ (t-t)° B

Thus, we can concluder (t)/dt < Ofor all t e (t,,t.].

In summary, the departure ratét) is monotonically decreasing within all four intervals and at
ther boundaries. Considering the continuity ift) for all t €[t,,t.] , we conclude that(t) is

monotonically decreasiwithin [t,,t.] . This completes the proof.]

Appendix E: Derivation of thetime-varying toll

There are three departure time intervals to be comsider [t,,t,], there is no schedule late

commuters departing at tintfemust arrive at destination early and may experience queue, then the

expected trip cost can be formulated
El(f] =« —(t t) f(3ds- ﬂj{ +B}f(f)d&ﬂf

§(Ins-In(635)-1)+03
=(a-p)(t-t,) 5(1-0) )

The boundary condition for this situation 8DE(t) =0, t, =t,($ -65)/ 5 whens= s, we then
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have R(t)) = —t,fs.

In (t,,t,], commuters departing home and traversing the bottleneck for work will ebditire

schedule delay early and late. If the capacity of the bottleneck isdamygh, only schedule delay

early will occur. On the other hand, schedule delay late occurs wheapheity is very small. The
watershed capacity satisficss*:—é( t— '5)/ t . therefore, the trip cost in the absemf toll can be

reformulated as

E[o(t)1=a;%S(t—to)f(Sdsrﬂ[Is<t_b>[ (t 5)+Bj (s |, W’%

)

5(t-%)

+yj % G(t—to)ﬂojf(s)ds

s

§(In&-In(03)-1)+0s s §(t—t)(Inty,—In(ty—t))+ s

=a(t-t) s@-0) s@-0)
. $(t—1)(In(&(t,— 1)) —In(t,F3)-1)- g3
4 5(1-0) '

The boundary condition for this case 8DE(t)= SDI(t)=0 when s=3%, we then have
R(t,) =—t,5, which meand, =0.
Commuters departing at tinjé,, t,] only experience schedule delay late. Thus, the mean trip

cost without toll can be formulated as
E[a ] = aj ) t to) f(9d s+y f(sU (S( I $)+ gjd &I:d%

_ (t-t))(ad+y)(Ins-In(03))
(1-9)

+71,.

The boundary condition for this caseRt.) = 3(t,— 1), i.e., the queuing length at timig equals
zero whens= 5.
Finally, by letting E[C(t)] =—1,4 and using (24), we can obtain the piecewise time-varying toll

asrepresented in (27).
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Appendix F: Derivation of the end time of tolling

For 7 <§, according to the definitions made fBf  t, 7)] and E[q(t, 77)], we have

El(t,mMl=aH T, 7] -FETLH +1]

(a—ﬂ)fjg(%—t* +E) T (9)ds— B[t f(9ds

(a=B)(t' —t5 )y —pt",
Elt, )] =aB Tl +yET L) +1]

=(a+7)| [/ N1+N°_S(t__%)f(s)ds+rw f(9ds| 7]t f(3d

s S n S g3

=(@+7)t" —t)y +(a+y)({t -t )g+t",

77(|n77—|n(«9§))—(77—9_s)

where y = §(1— 9)

. Substituting (31) into the above two equations

equalizing them, we get

BV (s be B\t
t‘=(a_’8)w_'8 (( y)e 'B)t

y+(a+y)¢

8(In5-In(69)—('s-679

where ¢ = §(1— 9)

For 7> §, similarly, we have

Bt )] =(a-p)(t ~§)w-pt,
E[o(t:n)]=(a+y)j§s[$—(r—%)]f(s}dswj; (3

:(a+;/)(t* —t6)¢+yt*,

e

}/+(0{+7/)¢
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Appendix G: Single-step coarsetoll when y <«

Lindsey et al. (2012) showed that in the deterministic model,<f and assuming the queue
from the mass departure has not yet dissipat@dmmupter who departs #} after the mass mus
experience the cost equal to the expected generalized cost of being in the mass,
7, +(o¢+7/)(N2—s(t{1 —t’))/‘s:yf +(a+y) N/(29). Similarly, in the stochastic model, we
have

f(s)ds=yt +(a+y)[ D2 f(g)ds

' s N,—s ',Jj—f
rtaen [ R

Then,

-1
t,:(aﬂ/) “12'”‘9 e
a 25(1-6)

Since the single-step coarse toll does not affect the departure rate of commuatergHeefnass
for either conditiona < ¥ and @ > y, we have the same departure rageshown in (32), (33), (34)

and (35) with respect to the corresponding time intervals. In stochastic modelatedwo possible

situations for commuters who depart after the mass. Wé,usedt; to denote the watershed lines of

departure timesN, and N, the number of commuters in these two situations, respectively.

!
S

Situation I. Users always arrive late [t(',,t ] Similar to the no-toll equilibrium, the departure

rate in this intervais

a $5(1-0)
a+y Ing™

r(t) =

.t <t<tl

The boundary condition for this situation I, + N, :§(§— t‘), i.e. the queue length at tintg
equals zero whes='S.

Situation Il. Users always arrive late and may or may not incur a queuing d{télytg]w. In this

interval, the queue length may fall to zero and the departure rate becomes
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R(t)—(NO+N1)_A R()—(Ny*+N,) ci .
( (t—t’) s}/ln (t—t’)9§ , forte[t,,t)], if n<$

((tR_(tt))_él/ln(t—F:(t))%’ for te [t,t.], otherwise

The boundary condition for this situationrigt,) =0, i.e., N, + N;+N, = é(l;— t‘) :

r(t) =

Using the boundary conditioh; + N, = §(§ - t’) and the constant departure ragd) in time

interval [t},t.], we can get

t

S

,  N—r(t)t;+st
o os-r(y)

Finally, combiningt; andt with (31), (36), (39), (40), (41) and substituting them into (44), and

letting the first-order partial derivative of (44) with respecttde zero, we obtain

t" = 91(77) N,
where
—ﬂ(éas—ﬂﬁl)/(:‘“z—ﬂdl) _61(2W§+(§9'2—n01)/(ﬂ+7)) if77<§
_ 204§(1_ lﬂ)) (W’\S(ﬂ +7/) + A$72_770-1) 2(‘//A$IB +7) +°8, _770-1) ’ -
91(77) = 1 V2

- —= , otherwise
S( i%_1) S0-4/(72_77

o=(a+y)y-B,0,=(a+y)p+y, oy=(a+y)p—p ando,=(a- L)y - .
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Figure and Table captions:

Figure 1 Equilibrium departures with stochastic capacity in a single bottleneck
Figure 2 Mean trip cost aiid components in no-toll equilibrium
Figure 3 Influence of parameter val@eon departure rate
Figure 4 Equilibrium departure rate for differantvalues
Figure 5 Travel time distributions with departure timeunder no-toll (the upper concave profiles) andatiyime
toll (the lower linear distributionsfFigure 6 Time-varying toll for differen values
Figure 7 Total travel cost for differe@t and N values
Figure 8 Difference between the earliest departure time with a single step coarse toll and that with no toll
Figure 9 Cumulative departures with different parameters of single-step coarse toll in equilibrium
Figure 10 Percentage reduction in travel cost (excluding toll) as a functédn of

Figure 11 Relative efficiency from a coarse toll upon average capacity against that upon optimal capacity

Table 1 Influence of parametér on the mean trip cost and the watershed time instants

Table 2 Influence of capacity variation on the mean trip cost and the watershed time instants
Table 3 Individuals mean trip cost under three schemes

Table 4 System total travel cost under three schemes and the ejfiencoarse toll

Table 5 System total toll revenue under two pricing schemes
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