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{archetti, speranza}@eco.unibs.it, {angel.corberan, isaac.plana}@uv.es, jmsanchis@mat.upv.es

September 26, 2012

Abstract

The Team Orienteering Arc Routing Problem (TOARP) is the extension to the arc
routing setting of the Team Orienteering Problem (TOP). In the TOARP, in addition
to a possible set of regular customers that have to be serviced, another set of potential
customers is available. Each customer is associated with an arc of a directed graph. Each
potential customer has a profit that is collected when it is serviced, that is, when the
associated arc is traversed. A fleet of vehicles with a given maximum traveling time is
available. The profit from a customer can be collected by one vehicle at most. The
objective is to identify the customers which maximize the total profit collected while
satisfying the given time limit for each vehicle.

In this paper we propose a formulation for this problem and study its associated poly-
hedron. We present some families of valid and facet-inducing inequalities that we use
in the implementation of a branch-and-cut algorithm for the resolution of the problem.
Computational experiments are run on a large set of benchmark instances.

Keywords: Team Orienteering Arc Routing Problem, Profits, Multi-vehicle, Facets,
Branch and Cut.

1 Introduction

A large number of papers have appeared in the literature studying routing problems where
the set of customers to be visited (nodes or arcs) is given a priori. In the situations modeled,
all customers to be visited are known at the time the optimization model is run. While
this is indeed the case in many practical problems, there are several other different practical
situations. For example, not all customers may need to be visited and instead have to be
selected from a set. In this paper we focus on an arc routing problem.

Let us consider the following situation. Nowadays it is more and more frequent for demand
for transportation services to be posted on the web, usually in specific databases, and carriers
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can respond to that demand and offer their services to some of these customers, possibly in
the framework of an electronic auction. Thus, from within a set of potential customers,
the carrier has to select those which are most convenient for him. In an electronic auction,
the carrier will make a bid for these potential customers. In a truck-load type of service, a
transportation service consists of reaching a node with an empty truck, filling the truck with
a load, traversing an arc and unloading the truck completely. A fleet of vehicles with limited
traveling time is usually available to perform the service. The carrier may need to take into
account a set of customers who need to be serviced because the carrier has regular contract
with them. This is, in fact, the most common situation. The carrier looks for additional
potential customers in order to fully use the unused traveling time of some of the vehicles.

The situation described above can be modeled as an arc routing problem with profits.
Given a directed graph, a profit is associated with each arc of a subset of the arcs (the arcs
which represent potential customers). A traversing time is associated with each of the arcs
of the graph. A fleet of vehicles, each with a limited traveling time, is available to perform
the service. The objective is to maximize the profit collected.

While a good number of papers are available on node routing problems with profits (see the
surveys [13] and [21]), very few are available on arc routing problems with profits. Malandraki
and Daskin [18] introduce the Maximum Benefit Chinese Postman Problem (MBCPP) on a
directed graph. Basically, in this problem several profits are associated with each arc, one
for each time the arc is traversed with a service, and the objective is to find a closed walk
with maximum profit. In [19] and [20], some heuristic algorithms for solving the MBCPP on
directed and undirected graphs are proposed, while in [10], the polyhedron associated with
the undirected MBCPP is studied and a branch-and-cut algorithm is proposed.

The Prize-Collecting Arc Routing Problem (PCARP), also called Privatized Rural Post-
man Problem, is a special case of the MBCPP in which only the edges in a given subset
have an associated benefit that can be collected just once. The PCARP is introduced in [4],
where an ILP formulation with binary variables is provided. In [3], an LP-based algorithm
for solving the problem on undirected graphs is proposed. A related problem, the Clustered
Prize-collecting Arc Routing Problem, is studied in [2] for undirected graphs and in [9] for
‘windy’ graphs. Other arc routing problems with benefits, such as the Profitable Arc Tour
Problem and the Undirected Capacitated Arc Routing Problem with Profits, are studied in
[14] and [6]. This last paper is the first one devoted to a multi-vehicle arc routing problem
with profits.

In this paper, we introduce another multi-vehicle arc routing problem with profits, the
TOARP. We study its associated polyhedron and propose a branch-and-cut algorithm for
its exact resolution. The remainder of the paper is organized as follows. In Section 2 we
define the problem and model it as an integer program. Sections 3 and 4 are devoted to
the polyhedral study of the problem. The proposed branch-and-cut algorithm is presented in
Section 5, while the computational experiments are described in Section 6. Finally, in Section
7 some conclusions are drawn.

2 The Team Orienteering Arc Routing Problem

We consider a directed graph G = (V,A), where V = {1, . . . , n} is the set of vertices and
A is the set of arcs. Vertex 1 is the starting and ending point of each tour. A subset AR

of A represents customers that have to be serviced obligatorily, while A′ ⊆ A represents the
set of potential customers. A nonnegative profit sij is associated with each arc (i, j) ∈ A′.
A traveling time tij is associated with each arc (i, j) ∈ A. A set of K vehicles is available
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to service the customers. Each vehicle can visit any subset of the obligatory and potential
customers within a given time limit Tmax. The profit from each potential customer can be
collected only once and by one vehicle at most. The objective of the Team Orienteering Arc
Routing Problem (TOARP) is to maximize the total profit collected while satisfying the time
limit Tmax for each vehicle.

In this paper it is assumed, without loss of generality, that all the vertices are incident
with arcs in AR ∪ A′. It can be seen that if G does not satisfy this condition, it can be
transformed into an equivalent graph which does.

We use the following notation. Given a subset of vertices S ⊆ V , let A(S) be the set of
arcs with both endpoints in S, A(S) = {(i, j) ∈ A : i, j ∈ S}. Similarly for A′(S) and AR(S).
The subgraph of G induced by the set of vertices S is denoted by G(S). Given two disjoint
sets S, T ⊆ V , we define (S, T ) = {(i, j) ∈ A : i ∈ S, j ∈ T} and (S : T ) = (S, T ) ∪ (T, S),
and δ(S) = (S : V \ S). Finally, given a set of arcs W ⊂ A and a vector x indexed by the

arcs in A, x(W ) =
∑
a∈W

xa.

We can formulate this problem by defining the following variables:

• For each (i, j) ∈ A and each vehicle k = 1, . . . ,K, let xkij be the number of times that
vehicle k traverses arc (i, j).

• For each (i, j) ∈ AR ∪ A′ and each vehicle k = 1, . . . ,K, let ykij be a binary variable
that takes value 1 if vehicle k services the customer (i, j), and value 0 otherwise.

The corresponding model is:

Maximize

K∑
k=1

∑
(i,j)∈A′

sijy
k
ij

s.t.:∑
j∈V \{i}

xkij =
∑

j∈V \{i}

xkji ∀i∈V, k = 1, . . . ,K (1)

∑
i∈V \S,j∈S

xkij ≥ yka ∀S⊂V \{1}, ∀a ∈ A′(S) ∪AR(S), k = 1, . . . ,K (2)

xkij ≥ ykij ∀(i, j)∈A′ ∪AR, k = 1, . . . ,K (3)

K∑
k=1

ykij = 1 ∀(i, j) ∈ AR (4)

K∑
k=1

ykij ≤ 1 ∀(i, j) ∈ A′ (5)∑
(i,j)∈A

tijx
k
ij ≤ Tmax k = 1, . . . ,K (6)

xkij ≥ 0 and integer ∀(i, j) ∈ A, k = 1, . . . ,K (7)

ykij ∈ {0, 1} ∀(i, j) ∈ A′ ∪AR, k = 1, . . . ,K, (8)

where (1) are the symmetry equations, connectivity constraints (2) ensure that each route
servicing at least one arc is connected and goes through the depot, constraints (3) force each
vehicle to traverse the arcs that it services, constraints (4) guarantee that each required arc
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in AR is serviced by exactly one vehicle, constraints (5) ensure that the profit from each
potential customer is collected by at most one vehicle, and constraints (6) limit the length or
time of each route.

3 The TOARP polyhedron

As with the Capacitated Vehicle Routing Problem polytope or the Capacitated Arc Routing
Problem polyhedron, determining the dimension of the polyhedron defined as the convex
hull of the TOARP solutions is a very difficult task, because it does not depend only on
the number of vertices and arcs, but also on the arc lengths tij , the number of vehicles K,
and the time limit Tmax. In some cases, the dimension could even be zero. The difficulty in
obtaining the dimension makes the task of proving that an inequality is facet-inducing for
the polyhedron almost impossible in general. However, if we remove the constraints (6) that
limit the length of each route, the resulting relaxed polyhedron can indeed be studied. We
think this is interesting because some of its facets can also be facets of the original TOARP
polyhedron and it is a way of guaranteeing the tightness of the constraints in the formulation
and of the valid inequalities we can find. Note that constraints (6) have the effect of cutting
off part of the relaxed polyhedron. The size of the part of the polyhedron that is cut off
depends on how tight the time limit for the routes is.

In what follows, we study the relaxed polyhedron defined by the convex hull of the vectors
(x1, y1, x2, y2, . . . , xK , yK) with (|A| + |AR| + |A′|)K components satisfying (1) to (5), (7),
and (8). We call such a vector a TOARP solution, although it can violate the time limit
constraints, and denote the resulting polyhedron by P. Note that solutions where a vehicle
tour xk is formed of several disconnected subtours, one of them connecting all the arcs it
services to the depot and the others traversing arcs not serviced by this vehicle are then
permitted. This property is needed for the convex hull of the TOARP solutions to be a
polyhedron. Note also that solutions where a given vehicle neither traverses nor services any
arcs are also permitted.

In this section we study the dimension of P and prove that most of the inequalities in the
formulation define facets of it. In the following theorems we assume that AR ̸= ∅. The proof
for the cases in which AR = ∅ is similar.

Theorem 1 If G is strongly connected then, for all K ≥ 1, the dimension of P is (|A| +
|A′| − |V |+ 1)K + |AR|(K − 1).

Proof: It can be proved that P is a polyhedron in ZK
(
|A|+|AR|+|A′|

)
. All its points satisfy the

|AR| linearly independent equations (4) and the K|V | equations (1), K|V −1| of which are
linearly independent. Therefore, dim(P)≤ (|A|+ |A′| − |V |+ 1)K + |AR|(K − 1).

To prove the equality, we have to find (|A|+ |A′| − |V |+ 1)K + |AR|(K − 1) + 1 affinely
independent TOARP solutions (or linearly independent, because 0 /∈ aff(P) if AR ̸= ∅).

Consider the (one vehicle) Directed General Routing Problem (DGRP) defined on the
graph G∗ = (V,A), where the set of required arcs is given by A∗

R = AR ∪ A′ and all the
vertices in V are required. Remember that the DGRP consists of finding a minimum cost
tour on a directed graph traversing each required arc and visiting each required vertex at
least once. If DGRP(G∗) denotes the associated polyhedron and given that the DGRP
is a special case of the Mixed General Routing Problem (MGRP), with E = ∅, we have
dim(DGRP(G∗))= |A| − |V |+ 1 [11].
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Let us denote m =dim(DGRP(G∗)). Since 0 ∈ aff(DGRP(G∗)), there are m linearly
independent DGRP tours z1, z2, . . . , zm on G∗ which traverse all the arcs in AR∪A′ and visit
all the vertices in V (and the depot in particular) at least once. From each DGRP tour, such
as z1, we can build the following TOARP solution for vehicle 1:

• x1 = z1, and y1a = 1 ∀a ∈ AR and y1a = 0 ∀a ∈ A′,

• x2 = · · · = xK = 0 and y2a = · · · = yKa = 0 ∀a ∈ AR ∪A′,

in which vehicle 1 traverses all the arcs in AR ∪ A′ as is done by z1, services all the arcs
in AR but none in A′, and the remaining vehicles do nothing. This is the first row of the
matrix in Figure 1, where for the sake of simplicity we suppose we have K = 3 vehicles.
A similar TOARP solution can be defined from each DGRP tour zi, i = 1, . . . ,m, thus
obtaining the first block row of the matrix. The same procedure can be repeated for each
vehicle k = 1, . . . ,K. These m×K TOARP solutions are represented in the first 3 rows of
blocks of the matrix in Figure 1, where a block with a large 0 or 1 represents a submatrix
with all its entries 0 or 1, respectively.

In the TOARP solutions represented in the last 3 rows of blocks of the matrix in Figure
1, each vehicle k traverses all the arcs in AR ∪A′ as is done by z1; for example, it services all
the arcs in AR plus exactly one arc in A′. Here, a block with a large I represents an identity
submatrix.

In the 4th and 5th rows of blocks, two different vehicles traverse all the arcs in AR ∪ A′

and jointly service the arcs in AR. Row 6 represents a TOARP solution in which all the
arcs in AR ∪ A′ are traversed by each one of the 3 vehicles. One of them services the first
required arc and another one services the remaining arcs in AR. These (|A| + |A′| − |V | +
1)K + |AR|(K − 1) + 1 TOARP solutions are linearly independent because the matrix has
full rank. Note that from the structure of the matrix we can assert that the result is also
true for any value of K≥2. �

In the following we assume that graph G is strongly connected. Moreover, as in the above
theorem, in the proof of the theorems in this section, the matrices will be represented for the
case with K = 3 vehicles, although the results are valid for any value of K.

Theorem 2 If G \ {(i, j)} is strongly connected, then inequalities xkij ≥ 0 are facet-inducing
for P for all (i, j) ∈ A \ (AR ∪A′) and for all k.

Proof: Let us consider, for example, x1ij ≥ 0. We will find d = dim(P) affinely independent

tours satisfying x1ij = 0. Since G \ {(i, j)} is strongly connected, xij ≥ 0 is facet-inducing
for DGRP(G∗) (see [11]), where G∗ = (V,A) is the graph with the set of required arcs
A∗

R = AR ∪ A′ and all the vertices in V are required. Hence, there are m = |A| − |V | + 1
affinely independent tours w1, . . . , wm satisfying xij = 0. Let us assume that w1, . . . , wm−1

are linearly independent. Furthermore, let z1, z2, . . . , zm be the m DGRP tours on G∗ defined
in the proof of Theorem 1. Then the TOARP solutions written as rows in the matrix in Figure
2 prove the result. �

Note 1 If (i, j) ∈ AR ∪ A′, then xkij ≥ 0 is not facet-inducing for P because it is dominated

by the corresponding inequality (3) xkij ≥ ykij .

Theorem 3 If G \ {(i, j)} is strongly connected, then inequalities ykij ≥ 0 are facet-inducing
for P for all (i, j) ∈ AR ∪A′ and for all k.
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x1 x2 x3 y1AR
y2AR

y3AR
y1A′ y2A′ y3A′

z1
... 0 0 1 0 0 0 0 0
zm

z1

0 ... 0 0 1 0 0 0 0
zm

z1

0 0 ... 0 0 1 0 0 0
zm

z1 z1
...

... 0 I 1-I 0 0 0 0
z1 z1

z1 z1

0 ...
... 0 I 1-I 0 0 0

z1 z1
z1 z1 z1 1 0 ... 0 0 1 ... 1 0 0 0 0
z1
... 0 0 1 0 0 I 0 0
z1

z1

0 ... 0 0 1 0 0 I 0
z1

z1

0 0 ... 0 0 1 0 0 I
z1

Figure 1: TOARP solutions to prove dimension.

Proof: For the arcs (i, j) ∈ AR, the proof is similar to that of Theorem 2 and is omitted
here. For the arcs (i, j) ∈ A′, note that in the matrix shown in Figure 1 there is only a non-
zero element in the column corresponding to arc (i, j) and vehicle k. If we remove the row
containing this non-zero element, we obtain a full rank matrix whose vector rows represent
TOARP solutions satisfying ykij = 0. �

Note 2 Inequalities ykij ≤ 1 are not facet-inducing for P because they are dominated by

inequalities ykij ≥ 0 and inequalities (4) or (5), either if (i, j) ∈ AR or (i, j) ∈ A′, respectively.

Theorem 4 Inequalities (3) xkij ≥ ykij are facet-inducing for P for all (i, j) ∈ AR ∪ A′ and
for all k if G \ {(i, j)} is strongly connected.

Proof: Let us consider, for example, x1ij ≥ y1ij . We will find d = dim(P) affinely independent

tours satisfying x1ij = y1ij . Again, since G \ {(i, j)} is strongly connected, xij ≥ 1, for each
(i, j) ∈ AR∪A′, is facet-inducing for DGRP(G∗) (see [11]). Hence, there are m = |A|−|V |+1
affinely independent (and linearly independent, because 0 is not in the affine hull of the facet)
tours w1, . . . , wm satisfying xij = 1. Then, from these tours we can construct the TOARP
solutions shown in Figures 3 and 4 for the case (i, j) ∈ AR and (i, j) ∈ A′ respectively, where
the columns corresponding to arc (i, j) are the first ones in each block. It can be seen that
the rank of both matrices is d− 1. �

Theorem 5 Inequalities (5)
∑K

k=1 y
k
ij ≤ 1, for all (i, j) ∈ A′, are facet-inducing for P.

Proof: We will find d = dim(P) affinely independent tours satisfying
∑K

k=1 y
k
ij = 1. Let

z1, z2, . . . , zm be the m DGRP tours on G∗ defined in the proof of Theorem 1. Then, from
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x1 x2 x3 y1AR
y2AR

y3AR
y1A′ y2A′ y3A′

w1

... 0 0 1 0 0 0 0 0
wm−1

z1

0 ... 0 0 1 0 0 0 0
zm

z1

0 0 ... 0 0 1 0 0 0
zm

w1 z1
...

... 0 I 1-I 0 0 0 0
w1 z1

z1 z1

0 ...
... 0 I 1-I 0 0 0

z1 z1
w1 z1 z1 1 0 ... 0 0 1 ... 1 0 0 0 0
w1

... 0 0 1 0 0 I 0 0
w1

z1

0 ... 0 0 1 0 0 I 0
z1

z1

0 0 ... 0 0 1 0 0 I
z1

Figure 2: TOARP solutions satisfying x1ij = 0.

these tours we can construct the TOARP solutions shown in Figure 5, where the columns
corresponding to arc (i, j) are the first in each block. It can be seen that the rank of this
matrix is d. Note that the first row in the rows of blocks 1, 2 and 3 is the same as the first
one in the last three rows of blocks. �

Theorem 6 Inequalities (2),
∑

i∈V \S,j∈S xkij ≥ yka , are facet-inducing for P for all S ⊂
V \{1}, for all a ∈ A′(S)∪AR(S) and for all k ∈ {1, . . . ,K} if subgraphs G(S) and G(V \S)
are strongly connected.

Proof: Let S ⊂ V \{1} and a ∈ A′(S) ∪ AR(S). Let us consider, for example, k = 1 and
a ∈ A′(S) (the case a ∈ AR(S) is similar). We will find d = dim(P) affinely independent
tours satisfying

∑
i∈V \S,j∈S x1ij = y1a. Let z1, z2, . . . , zm be the m linearly independent DGRP

tours on G∗ defined in the proof of Theorem 1. We define a DGRP instance G′ in which all
the arcs in A are required except those in δ(S) and the depot is a required vertex. Given
that subgraphs G(S) and G(V \S) are strongly connected, inequality

∑
i∈V \S,j∈S xij ≥ 1 is

facet-inducing for DGRP(G′) (see [11]) and there are m affinely and linearly independent
tours w1, w2, . . . , wm for the DGRP on G′ satisfying

∑
i∈V \S,j∈S xij = 1. Note that these

tours traverse only two arcs in δ(S) and therefore they are not able to service all the arcs in
δ(S) ∩ AR. Nevertheless, it can be seen that given any arc f ∈A′ ∪ AR\{a}, there is a tour
wi above that traverses arcs a and f (the fourth and fifth rows of blocks in the matrix in
Figure 6). It can be seen that the d vectors represented in the matrix in Figure 6 are linearly
independent feasible solutions for the TOARP and satisfy

∑
i∈V \S,j∈S x1ij = y1a. �
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x1 x2 x3 y1AR
y2AR

y3AR
y1A′ y2A′ y3A′

w1

... 0 0 1 0 0 0 0 0
wm

w1

0 ... 0 0 1 0 0 0 0
wm

w1

0 0 ... 0 0 1 0 0 0
wm

w1

... 0 0 1 0 0 I 0 0
w1

w1

0 ... 0 0 1 0 0 I 0
w1

w1

0 0 ... 0 0 1 0 0 I
w1

w1 w1 1 0
...

... 0 ... 1-I ... I 0 0 0 0
w1 w1 1 0

w1 w1

0 ...
... 0 1-I I 0 0 0

w1 w1

0 w1 w1 0 0 0 1 ... 1 1 1 0 ... 0 0 0 0

Figure 3: TOARP solutions satisfying x1ij = y1ij for (i, j) ∈ AR.

4 More valid inequalities

In this section, we present several families of valid inequalities for the TOARP, the K-C,
path-bridge, and max-length inequalities.

4.1 Path-bridge inequalities

Path-bridge (PB) inequalities were introduced by Letchford [17] for the undirected General
Routing Problem (GRP) and are based on the path inequalities for the Graphical Traveling
Salesman Problem proposed by Cornuéjols, Fonlupt, and Naddef [12]. They were extended
to the MGRP and, hence, to the DGRP in [11]. We first describe the PB inequalities for the
DGRP and then we will extend them to the TOARP.

Let G = (V,A) be a directed graph. Let us suppose that we have a subset AR ⊂ A
of required arcs and that all the vertices in V are also required. Let P ≥ 1 and B ≥ 0 be
integers such that P + B ≥ 3 is an odd number, and let n1, n2, . . . , nP be integer numbers

greater than or equal to 2. Let us define a partition
{
MA,MZ , {M s

q }
s=1,...,P
q=1,...,ns

}
of V satisfying

that all the required arcs are contained either in MA∪MZ or in a set M s
q and (MA,MZ)

contains a number B of required arcs. For the sake of simplicity we identify MA with M s
0

and MZ with M s
ns+1 for all s. Hence, a PB inequality is defined by P paths from MA to MZ ,

each of them with ns + 2 node-sets, and by B required arcs joining the sets MA and MZ ,
which form the bridge. This configuration is shown in Figure 7, where the number near each
couple of arcs joining sets M s

q ,M
t
r represents the coefficient bij associated with the variables

in the PB inequality corresponding to all the arcs (i, j) ∈ (M s
q ,M

t
r). These coefficients are

bij = c(M s
q ,M

t
r), where:

• c(MA,MZ) = c(MZ ,MA) = 1,
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x1 x2 x3 y1AR
y2AR

y3AR
y1A′ y2A′ y3A′

w1 1
... 0 0 1 0 0 ... 0 0 0

wm 1
w1

0 ... 0 0 1 0 0 0 0
wm

w1

0 0 ... 0 0 1 0 0 0
wm

w1 1 0 ... 0
... 0 0 1 0 0 ... I 0 0
w1 1

w1

0 ... 0 0 1 0 0 I 0
w1

w1

0 0 ... 0 0 1 0 0 I
w1

w1 w1 1
...

... 0 I 1-I 0 ... 0 0 0
w1 w1 1

w1 w1

0 ...
... 0 I 1-I 0 0 0

w1 w1

w1 w1 w1 1 0 ... 0 0 1 ... 1 0 1 0 ... 0 0 0

Figure 4: TOARP solutions satisfying x1ij = y1ij for (i, j) ∈ A′.

• c(V s
q , V

s
r ) =

|q−r|
ns−1 for all q, r ∈ {0, 1, . . . , ns+1}, s∈ {1, . . . , P},

• c(V s
q , V

t
r ) =

1
ns−1 + 1

nt−1 +
∣∣ q−1
ns−1 − r−1

nt−1

∣∣ for all s ̸= t ∈ {1, . . . , P},
q ∈ {1, . . . , ns}, r ∈ {1, . . . , nt}.

and bij = 0 otherwise. The PB inequality is then

∑
(i,j)∈A

bij xij ≥ 1 +

P∑
s=1

ns + 1

ns − 1
+B. (9)

The right hand side of PB inequality (9) can also be written as

∑
(i,j)∈A

bij xij ≥ B +
P∑

s=1

2ns

ns − 1
− P + 1. (10)

The validity of the PB inequalities for the DGRP is based on the fact that all the DGRP
solutions must traverse all the required arcs in (MA :MZ) and visit all the vertex sets M s

q .

Consider now a TOARP solution (x1, y1, x2, y2, . . . , xK , yK). Note that a given vehicle
k ∈ {1, . . . ,K} is not obliged neither to traverse all the required arcs in (MA : MZ) nor to
visit all the vertex sets M s

q . Hence, only replacing each variable xij in the PB inequality (10)

by the corresponding variable xkij is not enough to obtain a valid inequality for P. Variables

ykij are also needed in order to know which required arcs in (MA : MZ) are traversed and
which vertex sets M s

q are visited by vehicle k. This leads to the disaggregate PB inequalities,
corresponding to a vehicle k ∈ {1, . . . ,K}, that we describe next.
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x1 x2 x3 y1AR
y2AR

y3AR
y1A′ y2A′ y3A′

z1 1
... 0 0 1 0 0 ... 0 0 0
zm 1

z1 1

0 ... 0 0 1 0 0 ... 0 0
zm 1

z1 1

0 0 ... 0 0 1 0 0 ... 0
zm 1

z1 z1 1
...

... 0 I 1-I 0 ... 0 0 0
z1 z1 1

z1 z1 1

0 ...
... 0 I 1-I 0 ... 0 0

z1 z1 1
z1 z1 z1 1 0 ... 0 0 1 ... 1 0 1 0 ... 0 0 0
z1 z1 z1 1 0 ... 0 0 1 ... 1 0 0 1 0 ... 0 0
z1 z1 z1 1 0 ... 0 0 1 ... 1 0 0 0 1 0 ... 0
z1 1
... 0 0 1 0 0 ... I 0 0
z1 1

z1 1

0 ... 0 0 1 0 0 ... I 0
z1 1

z1 1

0 0 ... 0 0 1 0 0 ... I
z1 1

Figure 5: TOARP solutions satisfying y1ij + y2ij + y3ij = 1, for (i, j) ∈ A′

Given a partition
{
MA,MZ , {M s

q }
s=1,...,P
q=1,...,ns

}
of V , let F ⊂ (MA : MZ)∩ (AR ∪A′) be such

that P + |F | ≥ 3 is an odd number and, for each s = 1, . . . , P , let Hs = {as1, as2, . . . , asns
} ⊂

AR ∪ A′ be such that each asq ∈ AR(M
s
q ) ∪ A′(M s

q ). Note that if vehicle k services the arc

asq, i.e., if y
k
asq

= 1, then vehicle k has to visit node M s
q . On the other hand, if the depot

1 /∈ MA ∪MZ but, say, 1 ∈ M t
r , then vehicle k is forced to visit set M t

r although it does not
service the arc atr. For each vehicle k we call disaggregate PB inequality:

∑
(i,j)∈A

bij x
k
ij ≥

(
2yk(F )− |F |

)
+

P∑
s=1

2

ns−1
yk(Hs)− P + 1, if 1 ∈ MA ∪MZ , (11)

and, if for example 1 ∈ M t
r , after redefining Ht = {at1, at2, . . . , atnt

} \ {atr} :

∑
(i,j)∈A

bij x
k
ij ≥

(
2yk(F )− |F |

)
+

P∑
s=1

2

ns−1
yk(Hs) +

2

nt − 1
− P + 1. (12)

We also consider PB inequalities related to a subset of vehicles. For a subset of vehicles
Ω ⊂ {1, . . . ,K} we call Ω-aggregate PB inequalities:

∑
(i,j)∈A

bij
∑
k∈Ω

xkij ≥
(
2
∑
k∈Ω

yk(F )− |F |
)
+

P∑
s=1

2

ns−1

∑
k∈Ω

yk(Hs)−P +1, if 1 ∈ MA ∪MZ ,

(13)
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x1 x2 x3 y1AR
y2AR

y3AR a y1A′ a y2A′ y3A′

w1 z1 1 0
...

... 0 0 1 0 ... 0
... 1 0

wm z1 1 0
z1

0 ... 0 0 1 0 0 1 0
zm

z1

0 0 ... 0 0 1 0 0 0
zm

wi z1 1 0
...

... 0 0 1 0 ... I
... 1-I 0

wr z1 1 0
wj z1 1 0
...

... 0 I 1-I 0 ... 0
... 1 0

ws z1 1 0
z1 z1

0 ...
... 0 0 1 0 I 1-I

z1 z1
z1 z1

0 ...
... 0 I 1-I 0 0 1

z1 z1
z1

0 0 ... 0 0 1 0 0 I
z1

wi z1 z1 0 1 0 1 1 0 ... 0 0 0 1 ... 1 0

Figure 6: TOARP solutions satisfying
∑

i∈V \S,j∈S

x1ij = y1a for a ∈ A′.

and, if 1 ∈ M t
r , after redefining Ht = {at1, at2, . . . , atnt

} \ {atr}, :

∑
(i,j)∈A

bij
∑
k∈Ω

xkij ≥
(
2
∑
k∈Ω

yk(F )− |F |
)
+

P∑
s=1

2

ns−1

∑
k∈Ω

yk(Hs) +
2

nt − 1
− P + 1. (14)

Theorem 7 Disaggregate PB inequalities (11) and (12) and Ω-aggregate PB inequalities
(13) and (14) are valid for P.

Proof: We will prove it for the disaggregate PB inequalities (11) with the depot 1 ∈ MA∪MZ

and corresponding, for example, to the vehicle k = 1. The proof in other cases is similar. Let
us call

b0 = |F |+
P∑

s=1

2ns

ns − 1
− P + 1 = |F |+

P∑
s=1

ns + 1

ns − 1
+ 1,

that is, the right-hand side of the PB inequality (10) for the DGRP. We distinguish several
cases.

Let (x1, y1, x2, y2, . . . , xK , yK) be a TOARP solution such that vehicle 1 services all the
arcs in F ∪H. Thus, vehicle 1 traverses all the arcs in F and visits all the sets M s

q . Given
that the PB inequality (10) is valid for the DGRP, vector x1 satisfies

∑
(i,j)∈A bij x

1
ij ≥ b0. On

the other hand, if vehicle 1 services all the arcs in F ∪H, then y1(F ) = |F | and y1(Hs) = ns

11
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Figure 7: Path-Bridge configuration.

for all s = 1, . . . , P . In this case, the right-hand side of the disaggregate PB inequalities (11)
takes the value(

2yk(F )− |F |
)
+

P∑
s=1

2

ns−1
yk(Hs)− P + 1 =

(
2|F | − |F |

)
+

P∑
s=1

2ns

ns−1
− P + 1 = b0,

and hence the TOARP solution satisfies inequality (11).

Let (x1, y1, x2, y2, . . . , xK , yK) be a TOARP solution such that vehicle 1 services all the
arcs in F ∪H except an arc f ∈ F . Therefore, vehicle 1 traverses |F | − 1 arcs in (MA : MZ)
and visits all the sets M s

q . Given that |F | − 1 + P is an even number, the way of doing
so minimizing the left-hand side of the constraint is to traverse the P paths once, with
value

∑P
s=1

ns+1
ns−1 , and the |F | − 1 arcs in (MA : MZ), with value |F | − 1. Hence, vector x1

satisfies
∑

(i,j)∈A bij x
1
ij ≥ b0 − 2. On the other hand, vector y1 satisfies y1(F ) = |F | − 1 and

y1(Hs) = ns for all s in this case, and the right-hand side of the disaggregate PB inequalities
(11) takes the value

(
2|F | − 2− |F |

)
+

P∑
s=1

2ns

ns−1
− P + 1 = b0 − 2,

and hence the TOARP solution satisfies inequality (11).

Let (x1, y1, x2, y2, . . . , xK , yK) be a TOARP solution such that vehicle 1 services all the
arcs in F ∪ H except an arc atj ∈ Ht. Therefore, vehicle 1 traverses all the arcs in F and

12



visits all the sets M s
q except set M t

j in the path t. The way of doing this minimizing the

left-hand side of the constraint, with value b0 − 2
nt−1 , is to traverse the other P − 1 paths

once, the |F | arcs in (MA : MZ) and the path t twice, except for the arcs incident with node
M t

j . Hence, vector x1 satisfies
∑

(i,j)∈A bij x
1
ij ≥ b0 − 2

nt−1 . On the other hand, vector y1

satisfies y1(F ) = |F | and y1(Hs) = ns for all s, s ̸= t, and, in this case, y1(Ht) = nt − 1.
Thus, the right-hand side of the disaggregate PB inequalities (11) takes the value

(
2|F | − |F |

)
+

P∑
s=1

2ns

ns−1
− 2

nt − 1
− P + 1 = b0 −

2

nt − 1
,

and hence the TOARP solution satisfies inequality (11).

In the same way, it can be seen that the inequality (11) is satisfied by TOARP solutions
in which vehicle 1 services any other number of arcs in F ∪H. �

4.1.1 2-PB and n-regular PB inequalities

We present here the special cases of PB inequalities in which P = 2, which are the only ones
that are separated in the branch-and-cut algorithm, and the regular ones, in which all the
paths are of the same length.

If P = 2, the 2-PB inequality can be expressed with integer coefficients by multiplying it
by (n1 − 1)(n2 − 1). For example, inequalities (11) with P = 2 can be written as:

(n1 − 1)(n2 − 1)
∑

(i,j)∈A

bij x
k
ij ≥ (n1 − 1)(n2 − 1)

(
2yk(F )− |F |

)
+

+2(n2 − 1)yk(H1) + 2(n1 − 1)yk(H2)− (n1 − 1)(n2 − 1). (15)

On the other hand, a PB inequality is called n-regular if all the P paths are of the same
length n. In this case, by multiplying it by n−1, inequalities (11) to (14) can be rewritten in
an easier way. For example, we can define H = H1 ∪ · · · ∪HP and inequalities (11) can be
written as:

(n− 1)
∑

(i,j)∈A

bij x
k
ij ≥ (n− 1)

(
2yk(F )− |F |

)
+ 2yk(H)− (n− 1)(P − 1). (16)

Note that coefficients in the regular case, (n − 1)bij , are also simpler: variables corre-
sponding to arcs in (V s

q , V
s
r ) have a coefficient equal to |q − r| and those corresponding to

arcs (V s
q , V

t
r ), s ̸= t, q, r ∈ {1, 2, . . . , n}, now have a coefficient equal to their ‘difference in

level’ plus two, |i− j|+ 2.

4.1.2 K-C inequalities

K-C inequalities are well-known families of facet-inducing inequalities for other Arc Routing
Problems. The name of this family of inequalities is motivated by the number of sets into
which V is partitioned, which is usually denoted by K. To avoid confusion with the number
of vehicles, in what follows we use the letter Q instead. A K-C inequality can be obtained as
a particular case of PB inequalities with P = 1. It is defined by a partition of V into Q+ 1
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sets {M0,M1,M2, . . . ,MQ−1,MQ}. Hence MA = M0, MZ = MQ and n = Q− 1. Given that
it is a regular PB, after multiplying by n − 1 = Q − 2, we call disaggregate K-C inequality
associated with vehicle k:∑

(i,j)∈A

(Q−2) bij x
k
ij ≥ (Q−2)(2yk(F )− |F |) + 2yk(H), if 1 ∈ M0 ∪MQ, (17)

and∑
(i,j)∈A

(Q−2) bij xkij ≥ (Q−2)(2yk(F )−|F |)+2+2yk(H \{ar}), if 1 ∈ Mr, r /∈ {0, Q}, (18)

where Q ≥ 3, F ⊂ (M0 :MQ) ∩ (AR ∪A′) with |F | ≥ 2 and even, and H = {a1, . . . , aQ−1}
with each ar ∈ AR(Mr) ∪A′(Mr). The coefficients (Q−2) bij of the variables in the inequal-
ity are shown in Figure 8, where each number represents the coefficient of the variable xkij
associated with the traversal of the corresponding arc:

(Q−2) bij =


Q− 2 if (i, j) ∈ (M0 : MQ)
|r − s| if (i, j) ∈ (Mr : Ms), {r, s} ̸= {0, Q}

0 otherwise.
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Figure 8: K-C configuration

We can also consider K-C inequalities related to a subset of vehicles Ω ⊂ {1, . . . ,K},
called Ω-aggregate K-C inequalities:∑
(i,j)∈A

(Q−2) bij
∑
k∈Ω

xkij ≥ (Q−2)
(∑

k∈Ω
2yk(F )−|F |

)
+
∑
k∈Ω

2yk(H), if 1 ∈ M0 ∪MQ, (19)

and, if 1∈Mr, r /∈{0, Q},∑
(i,j)∈A

(Q−2) bij
∑
k∈Ω

xkij ≥ (Q−2)
(∑

k∈Ω
2yk(F )− |F |

)
+ 2 +

∑
k∈Ω

2yk(H\{ar}). (20)
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4.2 Max-time constraints

In this subsection we introduce some valid inequalities that are derived from inequalities (6)
which limit the maximum length of the routes.

Given a set of required arcs and a set of required vertices, remember that the Directed
General Routing Problem (DGRP) consists of finding the tour of minimum cost traversing
all the required arcs and visiting all the required vertices at least once. Let F ⊂ AR ∪A′ and
consider the DGRP instance in which the set of required arcs is F , the depot is considered
a required vertex and the costs of each arc (i, j) is tij . Then, let z(F ) represent the optimal
value of this DGRP instance. Note that, if z(F ) > Tmax then we have:

(1) A single vehicle k cannot service all the arcs in F and hence all the feasible solutions
satisfy

yk(F ) ≤ |F | − 1 k = 1, 2, . . . ,K. (21)

(2) If all the arcs in F are serviced, then at least two vehicles must enter S = V (F ) and,
therefore, all the feasible solutions satisfy

K∑
k=1

xk(δ(S)) ≥ 4

(
K∑
k=1

yk(F )− |F |+ 1

)
. (22)

In general, let p =

⌈
z(F )

Tmax

⌉
and suppose that z(F ) > (p−1)Tmax. Then,

∑
k∈Ω

yk(F ) ≤ |F | − 1 ∀ Ω ⊆ {1, 2, . . . ,K} such that |Ω| = p−1, and (23)

K∑
k=1

xk(δ(S)) ≥ 2 p

(
K∑
k=1

yk(F )− |F |+ 1

)
(24)

are valid inequalities for the TOARP.
Finally, consider, for instance, that K = 5 and p = 3. In this case, when all the arcs in

F are serviced, at least 3 vehicles must traverse the cut-set δ(S). Therefore, from any subset
with 4 vehicles, at least 2 vehicles must traverse δ(S), and from any subset with 3 vehicles, at
least one vehicle must traverse it. In general, let r be any integer such that p− (Kr) ≥ 1 and
r ≤ K. For any subset with r vehicles, Ω = {k1, k2, . . . , kr} ⊆ {1, 2, . . . ,K}, the following
inequality is satisfied by all the feasible solutions:

∑
k∈Ω

xk(δ(S)) ≥ 2 (p− (K − r))

(
K∑
k=1

yk(F )− |F |+ 1

)
. (25)

Inequalities (23) are called max-time y-constraints, since they are related to y variables
only, while inequalities (24) and (25) are called max-time x-constraints.

5 The branch-and-cut algorithm

In this section we present a branch-and-cut algorithm that incorporates separation algo-
rithms for the inequalities described in this paper as well as a lower bound obtained by the
metaheuristic algorithm presented in [5].
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5.1 Antisymmetry constraints

Note that given a feasible solution for the TOARP, if the routes associated with two different
vehicles are switched, another feasible solution is obtained. Therefore, we have a very large
number of equivalent solutions, which hinders the resolution of the problem. To avoid this,
we present a set of constraints based on those proposed in [15].

Let us suppose we order the required and optional arcs as a1, a2, . . . , aK , . . . , am, where
m = |AR ∪A′|. The following inequalities help to avoid the symmetry among the vehicles:

• If a1 ∈ AR, then we add the equation y1a1 = 1.

• If a1 ∈ A′, we add the equation y2a1 = 0 and the inequalities y2ai ≤
i−1∑
j=1

y1aj , ∀i = 2, . . . ,m.

• In any case, for each k = 3, . . . ,K, we add the equations ykai = 0, ∀i ≤ k − 1 and the

inequalities ykai ≤
i−1∑

j=k−1

yk−1
aj , ∀i ≥ k.

5.2 Initial relaxation

The initial LP relaxation contains symmetry equations (1), traversing inequalities (3), equa-
tions (4) and inequalities (5), ensuring that each required arc is serviced by exactly one vehicle
and each optional arc by at most one vehicle, inequalities (6) limiting the length of the routes,
trivial inequalities (xkij ≥ 0 and 0 ≤ ykij ≤ 1), a connectivity inequality (2) associated with
each connected component induced by the required arcs, and the set of antisymmetry con-
straints described above. For this last set of inequalities, the required and optional arcs are
ordered based on their distance to the depot. The arc that is farthest from the depot is
chosen as the first one in the permutation. The following ones are chosen so that the distance
to the depot and those already selected is maximal.

Furthermore, we add the max-time x and y-constraints associated with all the subsets of
1, 2, and 3 required and optional arcs, such that more than one vehicle is needed to service
them. Finally, if more than one vehicle is needed to service all the required arcs in the graph,
we add some more max-time x and y-constraints considering the cutsets defined by the depot
and some of its adjacent vertices.

5.3 Separation algorithms

In this section we present the separation algorithms that have been used to identify the
following types of inequalities that are violated by the current LP solution at any iteration
of the cutting plane algorithm: disaggregate and Ω-aggregate K-C and PB inequalities, and
max-time x and y-constraints. Heuristic and exact separation procedures for connectivity
inequalities (2) are described in [7].

Given an LP solution (x1, y1, x2, y2, . . . , xK , yK) ∈ R(2|E|+|ER|)K , we define the Ω-aggregate
vector xΩ associated with a subset Ω ⊂ {1, 2, . . . ,K} of vehicles as xΩ =

∑
k∈Ω xk and its

associated weighted graph as G
Ω
= (V

Ω
, E

Ω
, xΩ, yΩ), where V

Ω
, E

Ω
are the sets of vertices

and edges of the subgraph of G induced by the edges e ∈ E such that xΩe = xΩij + xΩji > 0,
plus the depot, if necessary. Note that both disaggregate and Ω-aggregate inequalities of
a given family can be separated with the same procedure, changing only the corresponding

input graph G
Ω
.
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5.3.1 Separation of K-C and 2-PB inequalities

The separation algorithms for disaggregate and Ω-aggregate K-C inequalities is similar to
that described in [7] for the Min-Max K-vehicles Windy Rural Postman Problem.

Figure 9: Construction of a PB in the separation algorithm.

A heuristic algorithm based on similar ideas to the ones implemented for the K-C sep-
aration has been devised for identifying violated 2-PB inequalities (with only two paths),
like those described in Section 4.1.1. More precisely, for a given Ω ⊂ {1, 2, . . . ,K} and its

associated weighted graph G
Ω
, the algorithm consists of several phases. Let C1, . . . , CR be

the connected components in G induced by the required and optional arcs.

• For each Ci, we try to partition it into two parts MA and MZ such that the number
of required and optional arcs with xΩ value near 1 is odd, and such that both MA and

MZ have at least two arcs in G
Ω
connecting two other different connected components.

• Given these seeds for MA and MZ , consider the graph obtained from G
Ω
by shrinking

the seeds and the remaining Cj into a single vertex each. To define the two paths
linking MA and MZ , we compute a tree by iteratively adding the edge of maximum
xΩ-weight not forming a cycle and not connecting the seeds (see Figure 9(a)). This
tree contains a path joining MA and MZ . We remove it and obtain a graph similar to
the one depicted in Figure 9(b), where MA and MZ are not connected. We complete
the tree with edges of maximum xΩ-weight until another path linking MA and MZ is
obtained (see Figure 9(c)). We iteratively shrink each vertex with degree one in the
tree into its unique adjacent vertex in order to obtain two paths joining MA and MZ

(see Figure 9(d)). Finally, all the isolated vertices are shrunk into an adjacent vertex
in the original graph G (see Figure 9(e)).
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• We now have a 2-PB configuration. Set F is formed of the required and optional arcs
in (MA,MZ) with xΩ value near 1. For each set M s

q not containing the depot, we select

the required or optional arc with maximum yΩ weight to define the sets H1 and H2.
The corresponding 2-PB inequality is checked for violation. If it is not violated, we try
to shrink the 2-PB configuration by merging some adjacent sets M s

q .

5.3.2 Separation of max-time inequalities

We separate max-time y-constraints (21), corresponding to a single vehicle k, and max-time
x-constraints (22), corresponding to the set of all the vehicles with procedures similar to those
presented in [8].

Briefly, inequalities (21) are separated as follows. Given an LP solution, for each vehicle
k, k = 1, . . . ,K, let {a1, a2, . . . , aq} be an ordered set of required and optional arcs such that
ykaj > 0.9 and yka1 ≥ yka2 ≥ . . . ,≥ ykaq . Then, let F = {a1, a2, . . . , af}, where f is the maximal

number such that
∑

a∈F yka > |F | − 0.5. Iteratively, for each required or optional arc a with
0.5 < yka < 0.9, we consider the set F = F ∪ {a}. Then the minimum number of vehicles
needed to service the arcs in F is computed by solving the associated DGRP. If this number
is greater than one, we have a violated max-time y-constraint. We also check the inequality
(22) corresponding to the set S′ of vertices incident with the arcs in F for violation.

The heuristic separation procedure for max-time x-constraints (22) starts by selecting a
vertex at random (in such a way that each vertex has a probability of being chosen which is
proportional to its distance to the depot). Then a sequence of vertex subsets is created by
adding a new vertex iteratively in such a way that

∑K
k=1 x

k(δ(S)) is minimum for the resulting
subset S. For each subset generated, we compute the minimum number of vehicles needed to
service all the required and optional arcs incident with vertices in S and the corresponding
inequality is checked for violation.

Since computing the minimum number of vehicles needed to service a given set of arcs
involves solving a DGRP exactly, we manage two lists containing the studied sets as in [8] in
order to minimize the number of DGRP solved.

5.4 The cutting-plane algorithm

At each iteration of the cutting plane algorithm the separation procedures are used in the
following specific order and the violated inequalities found are added to the LP relaxation:

1. Heuristic separation algorithm for connectivity inequalities (2) for each vehicle k.

2. Exact connectivity separation for those vehicles for which the corresponding heuristic
has failed.

3. Heuristic algorithms for separating disaggregate and Ω-aggregate K-C and 2-PB in-
equalities.

4. If no violated inequalities have been found so far, heuristic separation of max-time y-
constraints.

5. If no violated inequalities have been found so far, heuristic separation of max-time x-
constraints.

As far as the separation of Ω-aggregate K-C and 2-PB inequalities is concerned, we do
not know which is the best way to choose the set of vehicles to be aggregated. Given that
applying the separation procedures for Ω-aggregate inequalities for each possible combination
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of vehicles is computationally expensive, we proceed as follows. For any pair of vehicles
{k1, k2}, we apply the separation procedures for Ω-aggregate K-C and 2-PB inequalities only
when no violated disaggregate inequality of the same type has been found either for k1 or k2.
Moreover, for any subset Ω with 3 vehicles (if K ≥ 4), we apply the separation procedures
for Ω-aggregate inequalities only when no violated disaggregate nor Ω-aggregate inequalities,
with |Ω| = 2, associated with any of the 3 vehicles has been found. We proceed in a similar
way for subsets of 4 vehicles (if K ≥ 5). Additionally, the separation of the Ω-aggregate

inequalities is carried out only if the corresponding support graphs G
k
, k ∈ Ω, are connected.

Since the separation of max-time constraints is computationally expensive, it is only run
when no other violated inequalities have been found. Furthermore, when this separation
algorithm is executed for ten consecutive iterations in the same node, we proceed to branch.
When this happens or no violated inequalities are found by any separation algorithm, we
branch by using the Strong Branching strategy [1] implemented in Cplex, giving priority
to the variables associated with servicing the required arcs, then to those corresponding to
servicing the optional arcs, and finally to x variables.

6 Computational experiments

We present here the computational results obtained on a large set of instances based on well-
known ones from the literature. The branch-and-cut procedure has been coded in C/C++
using the Cplex 12.4 MIP Solver with Concert Technology 2.9 on a single thread of an Intel
Core i7 at 3.4GHz with 16GB RAM. Cplex heuristic algorithms and cut generation were
turned off. The optimality gap tolerance was set to zero, and strong branching and the best
bound strategies were selected. All the tests were run with a time limit of one hour.

6.1 Instances

Since there are no instances of the TOARP in the literature, we have generated TOARP
instances from undirected Rural Postman Problem (RPP) ones. Given an RPP instance,
we proceed as follows. For each edge {i, j}, two arcs (i, j) and (j, i) with the same cost
are generated. If the edge is non-required, both arcs are declared non-required too. If it is
required, one direction is randomly selected and the corresponding arc is declared required
(with probability p) or optional (with probability 1 − p), while the opposite one is declared
non-required. The profit associated with the traversal of an optional arc is defined as its cost.

The particular RPP instances we have used here are those proposed by Hertz et al. [16].
In these instances, vertices are points in the Euclidean plane and edge costs are defined by
the Euclidean distances. The set of edges is defined according to three different methods.
In the first method (R class instances) the edges are generated randomly in the plane. The
second method (G class instances) generates a set of edges with cost 1, defining a uniform
grid. The third method (D class instances) chooses edges defining a graph where all the
vertices have degree 4. From this set of instances, we have removed the smallest ones. From
each one of these 69 RPP instances we have generated 9 TOARP instances corresponding to
each combination of the values 0, 0.25, 0.5 and 2, 3, 4 for parameters p and K, respectively.
The characteristics of the 69 TOARP instances for each value of parameter p can be seen in
Table 1. Each row in this table shows the minimum and maximum number of vertices, arcs,
required arcs, and optional arcs for each group of instances.

The value of Tmax has been generated for each TOARP instance such that there is a
feasible solution servicing all the required arcs, but the optimal solution does not service all
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the optional arcs. The selection of these Tmax values is not trivial, since a large value would
allow all the profitable arcs to be serviced, making the problem similar to a DRPP with
a different objective function. On the other hand, a small value could make the problem
infeasible, as some of the required arcs could not be serviced. To overcome this issue, in
some cases it has been necessary to solve two instances of the Min-max K-vehicles DRPP
with the algorithm proposed in [8]. Given a directed graph, a subset of required arcs, and a
fixed number of vehicles K, this problem consists of finding a set of K routes servicing all the
required arcs such that the length of the longest route is minimal. Given a TOARP instance,
two Min-max K-DRPP instances are defined: one in which the required arcs are those in AR,
and a second one in which they are those in AR ∪A′. Then the value for Tmax is chosen as a
number between the costs of the optimal solutions of these two instances.

p = 0 p = 0.25 p = 0.5

Set # inst |V | |A| |AR| |A′| |AR| |A′| |AR| |A′|

R30 5 11-18 42-134 0 7-11 1-3 4-9 3-6 6-2
R40 5 13-25 68-266 0 8-18 3-5 3-15 4-8 1-11
R50 5 19-27 166-296 0 13-20 0-7 11-17 4-11 8-10

D36 9 17-36 96-270 0 10-38 2-10 6-30 6-20 4-23
D64 9 37-62 264-482 0 27-75 4-21 22-54 11-38 15-37
D100 9 68-100 544-846 0 50-121 9-28 37-95 26-64 20-70

G36 9 18-35 54-120 0 11-35 1-11 7-28 6-18 3-19
G64 9 34-62 128-228 0 24-68 3-22 20-50 10-15 12-38
G100 9 60-100 246-394 0 41-113 8-25 33-91 19-57 20-64

Table 1: TOARP instance characteristics

The set of 69×3 instances can be found in http://www.uv.es/corberan, as well as the
optimal value, when known, or the best feasible solution known and the upper bound obtained
at the root node for each instance and for each number of vehicles.

6.2 Computational results

The average computational results obtained on this set of 207 instances for two, three and
four vehicles are shown in Tables 2 to 4.

Each one of these tables contains the results corresponding to a different class of instances:
R, D, and G. These results, grouped by instance size, have been arranged in matrices corre-
sponding to the different combinations of values for the number of vehicles K and parameter
p. The first row of each block shows the number of instances solved to optimality within the
time limit of one hour. The second row gives the average percentage gap between the upper
bound at the end of the root node and the optimal value (or the best known solution), while
the final gap is shown in the third row. The fourth and fifth rows report the average time and
number nodes, respectively, used by the branch-and-cut algorithm for the optimally solved
instances.

Overall, the results obtained are very good, especially when considering the great difficulty
of this problem, in which the length of the routes is not included in the objective function,
whose value is determined exclusively by the profit from the optional arcs serviced.

These results confirm a fact common to the resolution of most multi-vehicle arc routing
problems by branch-and-cut algorithms: the increasing difficulty of the problem with the
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number of vehicles. Particularly, we have been capable of solving 204 out of 207 instances
with K = 2 to optimality, 188 for K = 3, and only 157 for K = 4. Instances of class R are
easier to solve, mainly because of their smaller size and, we think, the random structure of the
graphs and the wide range of the costs of the arcs. If we examine the results corresponding
to classes D and G, it can be seen that the case where p = 0 is clearly more difficult than
the others. The reason for this behavior is that when there are no required arcs, the vehicles
have more options for constructing their routes and the solution set is larger. It is interesting
to note that this behavior is opposite to the one we have experienced with the metaheuristic
algorithm, as explained in [5].

Finally, we would like to note that although some gap values at the root node may not
seem very good, this is partly due to the fact that in some instances the profit from (and the
cost of) the arcs is quite large and the objective function only takes into account the profit
collected.

p = 0 p = 0.25 p = 0.5

R30 R40 R50 R30 R40 R50 R30 R40 R50

# of opt 5 5 5 5 5 5 5 5 5
Gap 0 6.2 6.7 9.5 2.0 10.2 8.2 0.0 9.2 130.3

K=2 Gap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Time 1.0 4.1 14.4 0.3 1.3 3.6 0.3 0.6 1.9
Nodes 1.4 19.0 50.2 0.0 9.0 16.8 0.0 1.6 5.8

# of opt 5 5 5 5 5 5 5 5 5
Gap 0 0.9 5.6 7.4 2.3 6.8 8.6 5.3 9.4 37.1

K=3 Gap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Time 0.3 13.9 18.9 0.5 9.1 14.9 0.5 5.9 3.0
Nodes 1.0 41.0 31.6 0.8 25.8 31.6 0.0 15.4 6.6

# of opt 5 5 5 5 5 5 5 5 5
Gap 0 0.0 1.3 5.6 0.0 2.0 8.4 0.0 2.1 1.7

K=4 Gap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Time 0.2 7.7 6.3 0.1 5.1 11.2 0.2 11.0 0.5
Nodes 0.0 22.0 6.8 0.0 22.8 29.8 0.0 27.0 0.2

Table 2: Computational results with R30, R40 and R50 sets of instances

7 Conclusions

In this paper we have introduced the Team Orienteering Arc Routing Problem, which is the
extension to the arc routing setting of the Team Orienteering Problem. For this problem
we have presented an integer programming formulation and studied the associated polyhe-
dron. From this polyhedral description we have devised and implemented a branch-and-cut
algorithm producing very good computational results on a large set of benchmark instances.

The TOARP has proven to be a very difficult problem. Being a multi-vehicle problem
with constraints limiting the length of the routes of the vehicles, it has the intrinsic difficulty
of capacitated arc routing problems. Moreover, it presents an objective function that does
not consider the route lengths, but only the profit collected from potential customers, while
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p = 0 p = 0.25 p = 0.5

D36 D64 D100 D36 D64 D100 D36 D64 D100

# of opt 9 9 9 9 9 9 9 9 9
Gap 0 4.9 2.7 0.8 5.1 2.1 0.9 10.6 2.8 2.0

K=2 Gap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Time 11.3 37.4 408.2 5.7 30.6 152.4 4.6 32.7 320.8
Nodes 34.1 169.8 438.9 33.2 192.4 261.8 21.4 138.4 407.9

# of opt 9 9 4 9 9 5 9 9 7
Gap 0 7.1 8.1 10.5 4.2 5.6 9.3 24.5 11.4 14.4

K=3 Gap 0.0 0.0 2.2 0.0 0.0 0.7 0.0 0.0 0.7
Time 68.2 382.6 1349.9 11.7 231.2 757.4 13.5 204.9 820.8
Nodes 93.7 763.3 1074.0 23.3 365.7 1336.6 28.3 461.0 1137.2

# of opt 9 5 2 9 7 4 9 7 5
Gap 0 4.7 6.7 7.9 5.6 7.8 7.8 5.4 10.3 7.2

K=4 Gap 0.0 1.3 4.6 0.0 0.6 3.0 0.0 0.3 3.4
Time 109.7 479.7 0.4 24.1 617.7 563.9 8.5 534.5 936.3
Nodes 75.1 715.0 392.2 31.0 1454.0 821.3 9.9 1655.4 589.6

Table 3: Computational results with D36, D64 and D100 sets of instances

p = 0 p = 0.25 p = 0.5

G36 G64 G100 G36 G64 G100 G36 G64 G100

# of opt 9 9 8 9 9 8 9 9 8
Gap 0 7.3 6.2 4.1 2.2 1.4 2.1 7.2 13.2 1.5

K=2 Gap 0.0 0.0 0.2 0.0 0.0 0.3 0.0 0.0 0.5
Time 4.8 7.4 48.1 0.8 1.5 10.8 1.1 2.3 8.4
Nodes 7.7 6.7 203.8 1.3 1.8 283.7 0.8 1.8 386.6

# of opt 9 9 5 9 9 6 9 9 8
Gap 0 6.3 7.6 5.5 7.0 11.1 5.0 9.6 9.4 6.4

K=3 Gap 0.0 0.0 1.4 0.0 0.0 0.9 0.0 0.0 0.6
Time 87.9 384.9 950.0 30.9 72.8 138.4 13.2 74.2 800.0
Nodes 224.3 287.7 566.9 40.9 202.2 204.2 15.7 144.7 313.6

# of opt 8 3 1 8 9 4 7 9 6
Gap 0 4.4 8.0 10.2 1.9 8.5 9.5 2.0 7.6 12.1

K=4 Gap 0.4 4.7 8.4 0.5 0.0 5.0 2.0 0.0 7.9
Time 118.0 32.3 0.3 19.0 164.1 498.7 0.3 121.0 439.7
Nodes 2310.1 752.0 585.8 2124.9 68.7 438.6 2726.3 49.2 109.9

Table 4: Computational results with G36, G64 and G100 sets of instances
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the time or length limit constraints consider all the arcs traversed by the vehicles. Despite
this, we have been able to solve instances with up to 100 vertices, 800 arcs, and 4 vehicles.
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