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The vehicle routing problem with divisible deliveries and pickups is a new and interesting model within
reverse logistics. Each customer may have a pickup and delivery demand that have to be served with

capacitated vehicles. The pickup and the delivery quantities may be served, if beneficial, in two separate visits.
The model is placed in the context of other delivery and pickup problems and formulated as a mixed-integer
linear programming problem. In this paper, we study the savings that can be achieved by allowing the pickup
and delivery quantities to be served separately with respect to the case where the quantities have to be served
simultaneously. Both exact and heuristic results are analysed in depth for a better understanding of the prob-
lem structure and an average estimation of the savings due to the possibility of serving pickup and delivery
quantities separately.
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1. Introduction
This paper focuses on an extension of the class of
vehicle routing problems (VRPs) known as vehicle
routing problems with deliveries and pickups (VRPDP).
The main difference between these problems and the
VRP is that customers may receive or send goods,
whereas in the VRP all customers just receive goods
from a depot. In the context of these problems, cus-
tomers who only receive goods are called delivery
or linehaul customers, whereas those only sending
goods are called pickup or backhaul customers—
in many applications, however, customers will both
send and receive goods. Given customer distances
and demands (these include both pickup and deliv-
ery demands), we must find a set of routes to min-
imise the total travelling cost while meeting customer
demands. The main constraint is that the capacity of
the vehicle cannot be exceeded; however, other con-
straints such as maximum distance or time windows
may exist. From a practical point of view, the VRPDP
fall within the field of reverse logistics, a field that
is gaining increasing importance because more peo-
ple are becoming environmentally conscious. From
a mathematical point of view, this problem is an
NP-hard combinatorial optimisation problem.

We assume that all delivery goods come from
depots and all pickup goods are taken to depots. This

excludes the possibility of goods travelling directly
from one customer to another and implies that deliv-
ery goods and pickup goods are not substitutable.
In the VRPDP the vehicle may often carry a mixture
of delivery and pickup goods: it starts from the depot
carrying only delivery goods; at some stage a mix-
ture of goods may occur; finally, the vehicle returns
to the depot carrying pickup goods only. At each cus-
tomer location the load on the vehicle may increase or
decrease, resulting in a fluctuating load. Hence, check-
ing feasibility must be carried out for each route leg.
Thus, the VRPDP is conceptually a harder problem
than the VRP, where checking feasibility only needs
to be done for the first arc of each route. In fact,
one of the main difficulties in solving the VRPDP lies
in checking load feasibility.

In this paper, we focus on an interesting, but
rarely addressed, model within the VRPDP, called the
VRP with divisible deliveries and pickups (VRPDDP),
comparing and contrasting it to its more com-
mon counterpart, the VRP with simultaneous deliv-
eries and pickups (VRPSDP). Because these are not
well-known VRP variants, and often the terminol-
ogy used in the subject literature is confusing, we
devote the next section to properly defining these
models.
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The aims of this paper will become clearer once the
problem is properly defined. As a quick summary, we
are interested in:

1. What characterises instances where the VRPDDP
is a more appropriate model than the VRPSDP?

2. What characterises the customers that are treated
differently in theVRPDDPascomparedto theVRPSDP?

3. What shapes do VRPDDP routes take? (Note that
unlike in the VRP, routes may take shapes other than
the classical “petals.”)

The next section presents a classification of the var-
ious VRPDP models and restates our aims in a more
precise manner. This is followed by a detailed litera-
ture review. Section 4 analyses the savings that can be
achieved in the VRPDDP with respect to the VRPSDP.
Section 5 presents a mixed-integer linear program
(MILP) formulation and an analysis of exact results,
whereas §6 analyses results found by a reactive tabu
search heuristic. An improved heuristic based on the
results of this analysis is given in §7. Finally, we
present some conclusions and future research direc-
tions in §8.

2. The Vehicle Routing Problem with
Divisible Deliveries and Pickups

In the VRPDDP, a set of customers is given, request-
ing a delivery and/or pickup service. A fleet of
homogeneous vehicles, located at a single depot, is
available to serve these customers. All delivery goods
come from the depot, and all pickup goods are trans-
ported to the depot. Each vehicle can transport both
pickup and delivery goods and has a maximum
capacity limit. Each pickup or delivery request has
to be satisfied by a single visit. However, a customer
requiring both a pickup and delivery service can be
served by two different visits. The objective is to find
a set of vehicle routes satisfying the demands of all
customers, never exceeding the vehicle capacity, and
such that the total distance travelled is minimized.

To better understand the structure of the VRPDDP,
we first put it into the context of other pickup and
delivery problems. Then, we discuss some research
issues and this will enable us to restate the research
aims of this paper more precisely.

2.1. Classification of VRPDP
A classification of vehicle routing problems with
deliveries and pickups can be given according to the
patterns of goods movement, the characteristics of the
customers, and restrictions on goods transported on
vehicles. Unfortunately, names of problem versions
in the literature are often confusing—different authors
may use the same term to mean different problems.
Although two recent reviews on the VRPDP both
present a clear taxonomy, their simultaneous appear-
ance means that the names adopted for the same

problem are often different. To help the reader, we
will make reference to both taxonomies. For the sake
of conciseness, we shall refer to Berbeglia et al. (2007)
as BCGL and to Parragh, Doerner, and Hartl (2008)
as PDH.

The first classification is according to the transport
pattern of goods.

1. In some problems, an item needs to be moved
from a customer to another customer. The depot here
serves as a base for the vehicles, but these leave the
depot empty and return empty. This transport pat-
tern is relevant to dial-a-ride and courier problems.
It is called “transportation between customers 4VRP
with pickup and delivery—VRPPD5” by PDH. BCGL
divides this problem into two classes called “many-
to-many” and “one-to-one” (referred to as “unpaired”
and “paired” by PDH). This is in fact a quite different
problem from the VRPDP as defined in §1. Because
vehicles perform pickups before deliveries, we prefer
to refer to this problem as the VRP with pickups and
deliveries (VRPPD) to distinguish it from the VRPDP.
For a review of the literature, we refer to the surveys
mentioned and do not consider this type of problem
any further.

2. Our focus is on the transport pattern where
all goods must either originate from, or be destined
to, a depot. Goods may not be taken directly from
one vehicle to another. In these problems, depots
serve as hubs or sorting centres. This is typical
in mail transportation or where there are two dis-
tinct types of goods (e.g., bottled drinks coming from
a depot and empty bottles returning there). It is
called “one-to-many-to-one” by BCGL and “transporta-
tion to/from a depot 4VRP with backhauling—VRPB5”
by PDH.

The second basis of our taxonomy is the character-
istics of the customers.

1. In some problems, customers may either receive
or send goods, but not both. These customers are
referred to as linehauls and backhauls, respectively.
BCGL refers to this problem class as single demands.

2. In other problems, there is at least one customer
who wishes to both send and receive goods. BCGL
refers to this problem class as combined demands.

Third, we may have some restrictions on the travel
pattern of the vehicles. One such restriction is that
a vehicle may not carry delivery and pickup goods
on board at the same time. (Otherwise, the phys-
ical design of the vehicles may necessitate having
to unload some recently picked-up goods to access
delivery goods that are stuck behind them on board,
leading to delays. This is known as the load-shuffling
problem.) The second restriction is that customers
may request that when a delivery is made to them
the pickup goods are taken away at the same time.
(A separate visit for delivery and pickup may be
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deemed inconvenient.) Clearly, the first restriction is
more applicable to the case of single demands and the
second to the case of combined demands. This yields
the following four classes of the VRPDP.

1. The vehicle routing problem with backhauling
(VRPB) arises when all customers are either linehaul
or backhaul, and delivery and pickup goods cannot
be transported together. This implies that each vehi-
cle tour visits linehauls first and then backhauls. PDH
calls this the VRP with clustered backhauls.

2. The vehicle routing problem with mixed deliveries
and pickups (VRPMDP) allows linehauls and back-
hauls to occur in any order on a vehicle tour. PDH
calls this the VRP with mixed linehauls and backhauls.

3. The vehicle routing problem with simultaneous deliv-
eries and pickups (VRPSDP) arises when customers
wish to both receive and send goods and specify that
the pickup must be taken away at the same time the
delivery is made. For this class of problems, the ter-
minology used in this paper is the same as that of
PDH.

4. The vehicle routing problem with divisible deliveries
and pickups (VRPDDP) allows two visits to a customer:
one for delivery and another for pickup. A cus-
tomer with two visits is referred to as a “split” cus-
tomer. Note that we still assume that all of the deliv-
ery to a customer is made in a single visit (and the
same for pickup). We also note that literature often—
confusingly—includes this problem class in the pre-
vious one. (The authors of this paper also referred to
this problem as VRPSDP previously. After all, here
customers simultaneously have delivery and pickup
needs, even if they may be served separately. The
recent PDH review suggested the term “divisible,” an
expression we gratefully adopt, because it points to
the essential difference between this problem and the
VRPSDP.)

Finally, we note that several articles in the literature,
especially those seeking theoretical results, restrict
themselves to the case of a single vehicle. This is
called the travelling salesman problem with deliver-
ies and pickups (TSPDP); its subproblems are referred
to by the abbreviations TSPB, TSPMDP, TSPSDP, and
TSPDDP.

2.2. Relationships Between Various VRPDP
Versions

It is important to note that the abovementioned prob-
lems are not isolated from each other. One particu-
lar observation—and a very important one for our
research—is that they may sometimes be modelled
in terms of another problem.

1. The VRPDDP may be modelled as a VRPMDP by
creating two fictitious customers, one purely linehaul
and one purely backhaul, co-located at the location

of each original customer. Note that this doubles the
number of customers that is likely to be detrimental
on any solution method (be it exact or heuristic).

2. The VRPSDP cannot be modelled as a VRPMDP
because the requirement of simultaneous service may
not be satisfied.

3. The VRPMDP may be modelled as a VRPSDP by
adding a pickup of zero to each linehaul and a deliv-
ery of zero to each backhaul. This does not make the
model unduly more complicated. (This also implies
that the VRPDDP may be modelled as a VRPSDP.)

4. Although the VRPB and the VRPMDP are totally
incompatible with each other, they may both be gen-
eralised to a model that is currently gaining recog-
nition, the VRP with restricted mixing of deliveries
and pickups (VRPRMDP), in which there is some
restriction on having a mixture of delivery and
pickup goods on board. Because this is not a well-
known version, we point the reader to Tarantilis,
Anagnostopoulou, and Repoussis (2012) and Nagy,
Wassan, and Salhi (2013) for further information.

5. While the “all-deliveries-before-pickups” as-
sumption is somewhat at odds with the VRPDDP and
wholly incompatible with the VRPSDP, the idea of
restricted mixing could be applied to the VRPDDP.
This is likely to force some customers to be served
twice.

2.3. Research Issues in the VRPDDP
A central research issue in the VRPDDP is the shape
of vehicle routes. Our terminology and discussion fol-
lows, to a large extent, the paper of Gribkovskaia
et al. (2007).

1. A Hamiltonian route is where all customers are
served simultaneously.

2. A double-path route begins with a path from the
depot traversing all customers belonging to the route
making deliveries only, then follows this path in the
opposite direction making pickups only. (In such a
route, only one customer is served simultaneously,
and no delivery and pickup goods are ever carried
together.)

3. A lasso route consists of three segments: The first
contains deliveries only. In the second segment, both
deliveries and pickups are made. The third segment
follows the path of the first in the reverse direction,
satisfying the pickup needs of these customers.

4. A figure-of-eight route is similar to a Hamiltonian
one, except that a single customer is served twice.

5. A general route is one of no predetermined
shape. Note that all the previous route shapes assume
that customers are not split between routes; if they
are, the route shapes are deemed to belong to this
category.
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The following observations were made by re-
searchers on the VRPDDP.

1. Comparing the best route length for different
route shapes for the same problem instance, general
is better than lasso, which is better than Hamiltonian,
which is better than double path (Gribkovskaia
et al. 2007).

2. Although the optimal general solution is better
than the optimal lasso one, the special lasso structure
allows for faster heuristics. Thus, in practice, better
lasso solutions than general ones may be found in the
same computing time (Hoff et al. 2009).

3. Relatively few customers are served twice in
good-quality solutions. Often only one customer
is served twice with a figure-of-eight route shape
(Gribkovskaia et al. 2007).

4. Lasso solutions were found to be beneficial
in combating the load-shuffling problem, because
their structure means that free space is created on
the initial deliveries-only route segment (Hoff and
Løkketangen 2006).

2.4. Relationship to the Split-Delivery Vehicle
Routing Problem

In the VRPDDP more than one visit may be made to
a customer. This is similar to another growing topic
in the VRP literature, the split-delivery VRP (SDVRP),
where customers’ deliveries may be made in more
than one visit. Because in this paper we investi-
gate the similarities between these problems, it may
be helpful to summarise some observations on the
SDVRP, as follows.

1. The optimal route length of the SDVRP and
the optimal number of vehicles may be as little
as half of the corresponding VRP. It is suggested
that the route-length reduction achievable by split-
ting is because of the reduction of the number of
delivery routes (Archetti, Savelsbergh, and Speranza
2006, 2008).

2. There always exists an optimal solution of the
SDVRP where no two routes have more than one cus-
tomer in common, and the number of split customers
is less than the number of routes (Dror and Trudeau
1989; Archetti, Savelsbergh, and Speranza 2006).

3. A central research issue is to find the characteris-
tics of instances where splitting gives significant ben-
efits and the characteristics of the customers that are
likely to be split. Dror and Trudeau (1989) observed
that high demand is a good predictor for splitting,
and customers that are close to the depot have a
higher chance to be split. The computational experi-
ments of Archetti, Savelsbergh, and Speranza (2008)
suggest that splitting gives the largest benefit when
the average customer demand is between 50% and
75% of the vehicle capacity, and the demand variance
is small. The experiments do not suggest that cus-
tomer location is a useful predictor of splitting.

Finally, we note that pickups rarely feature in
SDVRP research. Mitra (2005, 2008) allowed splitting
in the VRPDDP (see §3 for more details). Mosheiov
(1998) modelled the split-delivery VRPMDP by creat-
ing di fictitious co-located customers each with unit
demand for each original customer of demand di,
resulting in a VRPMDP and a huge increase in prob-
lem size. Thangiah, Fergany, and Awan (2007) and
Nowak, Ergun, and White (2008, 2009) considered
splitting in the VRPPD—as mentioned in §2.1, this is
a quite different problem from the VRPDP.

2.5. Research Aims
Having defined the problem properly, we can now
restate our research aims more precisely.

1. What characterises instances where splitting gives
significant cost reductions? This will show in which
situations the VRPDDP is applicable. Because the
VRPDDP is harder to solve than the VRPSDP, if an
instance appears to yield a Hamiltonian solution any-
way, it will be easier to solve it straightaway as a
VRPSDP. Previous studies on the SDVRP show that
cost reductions of up to 50% are possible from the
VRP. Would the VRPDDP yield such improvements
as compared to the VRPSDP? Would the average
demand level be a predictor for cost reductions, as it
is in the SDVRP?

2. What characterises the customers that are being
served in more than one visit? On one hand, the answer
to this question will enable the logistics company to
focus on these customers and investigate any issues
of inconvenience arising out of two visits. On the
other hand, it will enable us to design more efficient
solution algorithms. As stated before, finding general
solutions to the VRPDDP can be time consuming. If
we could identify customers that are unlikely to be
served twice in good solutions, we could restrict our
problem by not allowing splitting for such customers.
Because one way of solving the VRPDDP is by con-
verting it into a VRPMDP, if instead of doubling the
size of the instance we could just duplicate those cus-
tomers into fictitious linehauls and backhauls that are
likely to be served twice, this would reduce the size
of the resulting VRPMDP. We hypothesise that cus-
tomers’ demands are likely to play a part. Do their
locations matter? Previous research on the VRPDDP
suggests that they do, but studies on the SDVRP sug-
gest that they do not.

3. What shapes do routes take? We wish to identify
a pattern (if there is any) of split and nonsplit cus-
tomers on a route. Again, such analysis will enable us
to design more efficient algorithms. If route shapes are
restricted to some given patterns, we can create al-
gorithms that are simple modifications of VRPSDP
methods, and thus faster than general VRPDDP al-
gorithms. Previous studies suggest that lasso and
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figure-of-eight route shapes often occur in good
VRPDDP solutions.

3. Literature Review
For the sake of conciseness, our review is restricted
to the VRPDDP only. For other VRPDP versions,
the reader is referred to the two comprehensive sur-
veys of the VRPDP by Berbeglia et al. (2007) and by
Parragh, Doerner, and Hartl (2008). The SDVRP is
reviewed by Archetti and Speranza (2008, 2012). For
a comprehensive introduction to vehicle routing, the
reader may wish to consult Toth and Vigo (2002).

Mosheiov (1994) addressed the TSPDDP by con-
verting it into a TSPMDP creating fictitious co-located
linehauls and backhauls. He proved that any tour can
be made feasible by reinserting the depot into a differ-
ent edge on the tour. This suggests a simple solution
approach: find the optimal TSP tour and insert the
depot to the nearest such arc that results in a feasible
TSPMDP tour. Optimality, of course, is lost: the near-
est such arc may be located very far from the depot.
An alternative insertion-based heuristic is also given.

Anily (1996) also decomposed customers with both
a pickup and a delivery demand into pairs of cus-
tomers. However, somewhat surprisingly, she also
assumed that all deliveries must be made before
pickups, yielding a VRPB model. This forces cus-
tomers with combined demands to be served twice,
unless they happen to be the last linehaul and first
backhaul. A region-division scheme called circular
regional partitioning is proposed. An assignment
problem is solved to connect linehaul and backhaul
routes.

Salhi and Nagy (1999) and Nagy and Salhi (2005)
modelled the VRPDDP directly. The problem is ini-
tially solved as a VRPSDP using a route-first, cluster-
second heuristic. The “divisible” aspect is accounted
for by a pair of improvement routines called neck
and unneck: the first splits a customer into a line-
haul and backhaul entity; the second merges these.
Neck inserts the backhaul entity into the best position
on the vehicle route, hence creating a figure-of-eight
shaped route. (It is noted that disabling these routines
solves the VRPSDP.) The improvement heuristic also
includes standard VRP routines such as 2-Opt, 3-Opt,
shift, exchange, and perturb. There are two more
VRPDP-specific routines, reverse and reinsert. Revers-
ing the direction of a route can reduce load levels;
this may enable a subsequent insertion of customers.
Reinsert, motivated by the work of Mosheiov (1994),
inserts the depot to its best possible position on a
route. One variant of the heuristic allows infeasible
solutions to occur subject to a penalty proportional to
the value of maximum load constraint violation in a
strategic oscillation framework. An insertion-based

method is also developed for comparison purposes. It
models the VRPDDP as a VRPMDP and is based on
the concept of inserting more than one backhaul at a
time, called cluster insertion. Both methods can also
cater for multiple depots.

Halskau, Gribkovskaia, and Myklebost (2001) intro-
duced the concept of lasso solutions (described
in §2.3). A lasso construction heuristic is proposed for
the TSPDDP. It builds a TSP route sequentially (using,
e.g., the nearest-neighbour method). Each time a load
feasibility violation is encountered, a sufficient num-
ber of pickups are removed from the beginning of the
route to eliminate the violation. Once all customers
are on the route, all removed pickups are served on
the return way, in the opposite order of deliveries.
This method can be adapted to turn a TSP tour into a
TSPDDP tour; one just needs to check the tour arc by
arc for feasibility violations. If one is encountered, this
idea is used to turn the Hamiltonian tour into a lasso.
For the VRPDDP, the authors suggest that a cluster-
first, route-second approach is best, because for each
cluster a TSPDDP can be solved using these ideas.

Mitra (2005, 2008) allows splitting in the VRPDDP,
i.e., both deliveries and pickups may be split into sev-
eral visits. Mitra (2005) presents a simple construction
heuristic; Mitra (2008) a parallel clustering heuristic.
The experiments do not show a clear indication for
the benefits of splitting.

Hoff and Løkketangen (2006) investigated the
TSPDDP with restricted mixing. In their model, a mix-
ture of delivery and pickup goods is only allowed
if there is sufficient free space to combat the load-
shuffling problem. They suggest that lasso solutions
are beneficial for this model, because the load level
on the vehicle can decrease on the outbound spoke
of the lasso until sufficient free space is available for
deliveries and pickups to be carried out simultane-
ously. Initial solutions are found using the algorithm
of Mosheiov (1994); these are then improved using a
tabu search method based on the 2-opt operator. The
authors found that lasso solutions can be an accept-
able compromise between the reduction of route
length and the complications due to load shuffling.

Gribkovskaia et al. (2007) discuss various route
shapes that may occur in the TSPDDP (our terminol-
ogy in §2.3 is based to a large extent on this paper).
Some theoretical properties of these route shapes are
presented. An initial TSP solution is found using near-
est neighbour or sweep. This tour is then converted to
a number of TSPDDP solutions by removing one of its
edges. These solutions follow the TSP tour until the
removed edge, then return to the first customer, move
to the last customer, then follow the TSP tour back-
wards until the other side of the removed edge, and
finally return along the tour to the depot. Such tours
have far too many double visits, and hence a merging
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procedure is used to eliminate them; each vertex is
scanned in turn, and if it can feasibly be served in just
one of the directions (forward or backward), then
it will be bypassed in the other direction. A shift
operator is applied to improve on the best result
found. The authors also present a tabu search meta-
heuristic. This finds an initial TSPSDP solution using
Mosheiov’s (1994) reinsertion heuristic. The objective
function caters for feasibility violation by means of a
penalty term. The neighbourhood structure consists of
the operators neck and unneck, whereas a reoptimisa-
tion procedure based on shift is carried out after each
improving move, or periodically. The results show
that the best solutions are often non-Hamiltonian;
such solutions for most instances contain just one cus-
tomer who is served twice, in a figure-of-eight shape.

Gribkovskaia, Laporte, and Shyshou (2008) tackled
the TSPSDP with selective pickups. In this model all
deliveries must be served, but pickups are optional.
Each pickup generates a certain revenue; balanc-
ing the revenue from these pickups and any detour
needed to serve these pickups, forms the objective
function of the model. A classical heuristic is given,
based on an initial Hamiltonian solution. Each cus-
tomer may be assigned one of three states: simul-
taneous delivery and pickup, separate delivery and
pickup, delivery only—if a customer’s status can be
changed from delivery only to simultaneous with-
out creating a feasibility violation, then this is done.
Improvement operators include shift, neck, unneck,
and “shifting pickups”: changing the status of a
simultaneous customer to separate, if it helps, turns
the status of some other customer from delivery only
to simultaneous. The tabu search metaheuristic of
Gribkovskaia et al. (2007) is also modified to cater for
this model.

Hoff et al. (2009) extend the model of Hoff and
Løkketangen (2006) to the case of several vehicles.
A tabu search metaheuristic creating lasso solutions
is proposed based on the operators shift and swap,
and 2-opt as postoptimiser. Infeasible solutions are
allowed and attract a penalty. The authors compare
the lasso solutions on the one hand to VRPSDP solu-
tions, and on the other hand to general (no prede-
termined route shape) solutions. The latter are found
by converting the VRPDDP to a VRPMDP. This dou-
bles the size of the instance and, the authors observe,
slows down the heuristic.

4. A Theoretical Analysis
of the VRPDDP

The focus of this section is a worst-case analysis of the
VRPDDP with respect to the VRPSDP. We also inves-
tigate whether certain properties of the SDVRP hold
true also for the VRPDDP. Throughout this analysis,
we assume that the triangle inequality holds.

4.1. The VRPDDP vs. the VRPSDP
The VRPDDP is a “relaxation” of the VRPSDP in the
sense that each customer requiring both pickup and
delivery services can be visited twice. This allows a
higher flexibility in the design of the vehicle routes,
and thus can decrease the corresponding cost. It is
interesting to know by how much the cost can be
reduced. The following theorem shows the maximum
saving that can be achieved by separating the pickup
and delivery services. Let z4P5 and k4P5 denote the
minimum route length and the minimum number of
vehicles, respectively, for problem P .

Theorem 1. The ratio z4VRPSDP5/z4VRPDDP5 ≤

2 and the bound is tight. Moreover, k4VRPSDP5/
k4VRPDDP5≤ 2 and the bound is tight.

Proof. To prove the bound, we will proceed as
follows: We will consider an optimal solution (w.r.t.
z or k) to the VRPDDP. Starting from this solution,
we will construct a feasible solution to the VRPSDP
having a route length that is at most the double of
z(VRPDDP) and having at most double k(VRPSDP)
vehicles.

Consider an optimal solution to the VRPDDP and
make a copy of each route. For each pair of identical
routes, we make the following modifications. Let the
first route visit all customers whose delivery belongs
to this route and whose delivery is no less than their
pickup (and skip the others). The order in which they
will be visited will be the same as the order in which
their deliveries were served in the original route. This
route is called route of type 1. The other route, called
route of type 2, stops at all customers whose pickup
belongs to this route and whose pickup is greater than
their delivery (and skip the others), again preserv-
ing the original ordering. In each visit, both delivery
and pickup requests will be served at the same time.
(Delete any vehicles containing no customers.) This
increases both the total route length and the number
of vehicles used by no more than a factor of two.

It remains to show that the corresponding solution
is a feasible solution to the VRPSDP. First, each cus-
tomer is visited only once. (Customers split between
routes are served by the route that originally served
the larger of the delivery and pickup requests; cus-
tomers split within a route are likewise served in a
single visit.) Second, if we consider the routes of
type 1, the delivery requests served are a subset of the
delivery requests served by the corresponding route
in the solution to the VRPDDP; thus, their sum does
not exceed the vehicle capacity. Also, as in routes of
type 1, all customers have delivery requests that are
greater than or equal to pickup requests, the load
on the vehicle is monotonously nonincreasing, and
thus the routes are feasible. Likewise, in routes of
type 2, the pickup requests served are a subset of the
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1

(C, 1)

(1, C)

�

�

Figure 1 An Illustration of Theorem 1

pickup requests served by the corresponding route
in the solution to the VRPDDP. Thus, their sum does
not exceed the vehicle capacity and with the load on
the vehicle being monotonously increasing, this is suf-
ficient to show feasibility.

To show that the bound is tight, consider an
instance where the depot is located in the centre of a
circle of radius 1. There are n customers spread out
along the circle at a distance � apart. Furthermore, let
there be n additional customers on a circle of radius
1 + �, perfectly aligned (along the radius) with the
other n customers. Each customer on the inner circle
has a pickup demand of 1 and a delivery demand
of C, where C is the vehicle capacity. Each customer
on the outer circle has a pickup demand of C and a
delivery demand of 1. We assume C ≥ 2n (see Fig-
ure 1). The optimal solution to the VRPSDP visits
all customers with out-and-back tours, which results
in a cost of 4n+ 2n� and requires 2n vehicles. On the
other hand, an optimal solution to the VRPDDP visits
two customers along the radius together, delivering
C to the closest customer and picking up C from the
farthest customer. The remaining demand, i.e., one
pickup unit for all customers on the inner circle and
one delivery unit for all customers on the outer circle,
is satisfied by one additional route. This results in a
cost of 2n+4n�+2 and requires n+1 vehicles. There-
fore, the ratio between z(VRPSDP) and z(VRPDDP) is
equal to 44n+2n�5/42n+4n�+2). For n going to infin-
ity and � going to 0, this ratio tends to 2. Similarly, the
ratio between k(VRPSDP) and k(VRPDDP) is equal to
2n/4n+15. For n going to infinity, this ratio tends to 2,
showing that by allowing splitting, improvements of
up to 50% may be achieved. �

4.2. The Concept of Detour Costs
The previous section gave an upper bound on
z(VRPDDP) and k(VRPDDP). It is easy to see that
a lower bound on these values can be found by

solving the corresponding VRP created by setting
all pickup values to 0. We define the detour cost
of the VRPDDP, ãz(VRPDDP), as the increase
in route length required to accommodate pickups, i.e.,
ãz(VRPDDP) = z(VRPDDP) − z(VRP); similarly for
the VRPSDP. Then, 0 ≤ ãz(VRPDDP) ≤ ãz(VRPSDP).
For the number of vehicles, the corresponding mea-
sure is the additional number of vehicles ãk(VRPDDP).

There are two benefits of using this measure rather
than total route length. First, if ãz(VRPSDP) = 0, it
is also clear that ãz(VRPDDP) = 0, and there is
no point in considering splitting. Such a situation
arises, e.g., when the pickup of every customer is
less than its delivery, because then z(VRPSDP) =

z(VRP). Second, comparing total route lengths may
be a misleading measure. If ãz(VRPSDP) is small,
then the reduction due to splitting z(VRPSDP) −

z(VRPDDP) will also be small. Using the reduc-
tion in detour cost, 4ãz4VRPSDP5 − ãz4VRPDDP55/
ãz4VRPSDP5, the improvement can be measured
in relative terms with respect to the maximum pos-
sible gaining, i.e., ãz4VRPSDP5, rather than abso-
lute terms. We now show that 4ãz4VRPSDP5 −

ãz4VRPDDP55/ãz4VRPSDP5 can be equal to 100%;
thus, the entire detour cost can be gained by con-
sidering divisible deliveries. This is also valid if
we consider the reduction in the additional num-
ber of vehicles, i.e., 4ãk4VRPSDP5 − ãk4VRPDDP55/
ãk4VRPSDP5. Consider the following example: Let
there be three customers placed on a straight line
at distances 1, 2, and 3 from the depot. Customer 1
has delivery of 1 and pickup of 3, customer 2 has
delivery and pickup both of 2, customer 3 has deliv-
ery of 3 and pickup of 1; vehicles have a capac-
ity of 3. The optimal VRP solution has two vehicles:
one visits customers 1 and 2, the other visits cus-
tomer 3; z(VRP) = 10. The optimal VRPSDP solution
has three vehicles, each visiting a single customer;
z(VRPSDP) = 12. The optimal VRPDDP solution has
two vehicles: one delivers to customer 2 and then vis-
its customer 1, the other visits customer 3 and then
picks up from customer 2; z4VRPDDP5=10. Therefore,
both 4ãz4VRPSDP5−ãz4VRPDDP55/ãz4VRPSDP5 and
4ãk4VRPSDP5−ãk4VRPDDP55/ãk4VRPSDP5 equal 1,
showing that—in terms of detour costs—allowing
splitting can improve the solution by 100%.

4.3. On Properties of the SDVRP
and the VRPDDP

Dror and Trudeau (1989) have shown that there
always exists an optimal solution of the SDVRP
where no two routes have more than one customer
in common. This property does not hold for the
VRPDDP as shown by the following example. Con-
sider a VRPDDP instance with four customers and
vehicle capacity equal to 10. Let the customers be
located on a straight line at distances 1, 2, 3, and 4
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from the depot. Let the delivery and pickup requests
of each customer be the following (the first figure
is the delivery request whereas the second is the
pickup request): (10, 1) for customer 1, (4, 5) for custo-
mer 2, (5, 4) for customer 3, and (1, 10) for customer 4.
The optimal solution uses only two vehicles and is
the only way to build the following two routes: the
first route serves customer 1 completely and then
the pickup requests of customers 2 and 3. The sec-
ond route serves the delivery requests of customers 2
and 3 and then serves customer 4 completely. Thus,
customers 2 and 3 are visited by both routes.

Archetti, Savelsbergh, and Speranza (2006) have
proved that there exists an optimal SDVRP solution
where the number of splits (defined as the number of
stops minus the number of customers) is always less
than the number of routes. This observation is also
not true for the VRPDDP, as shown by the previous
example (two splits, two routes). In fact, there is no
nontrivial upper limit on the number of splits: in the
example of §4.1, every customer is split in the optimal
solution.

5. A Mathematical Model and an
Analysis of Optimal Results

In this section we provide an integer linear program
(ILP) formulation for the VRPDDP and use this for-
mulation to solve some small instances.

5.1. An ILP Formulation for the VRPDDP
As pointed out in §2.2, the VRPDDP can be trans-
formed into a VRPMDP by creating a pair of fictitious
co-located customers (one purely linehaul, one purely
backhaul) for each customer. The drawback of this
approach is that the number of customers is doubled.
We have tried to model the VRPDDP directly. How-
ever, a flow-based formulation (which is preferable
because it has fewer variables than a three-index for-
mulation) could not capture the intricacies of two vis-
its made to a customer. An obvious approach would
be just to ensure the total flow from a customer equals
the total incoming flow minus delivery plus pickup.
However, this would actually allow the vehicle to
dump goods at a customer to be picked up later, pos-
sibly by another vehicle. More sophisticated ways of
accounting for two visits proved to be unable to solve
this issue. Hence, we modelled the VRPDDP as a
VRPMDP.

Let us introduce the following notation.

Sets
D = 809: the set of depots (consisting of a single

depot),
L = 81121 0 0 0 1n9: the set of linehaul customers,
B = 8n+ 11n+ 21 0 0 0 12n9: the set of backhaul

customers (backhaul n+ i is a copy of linehaul i),
V = D ∪ L ∪ B: the set of all vertices.

Input variables
dij : the distance between locations i and j ,
qi: the demand of customer i (this is a delivery

demand for i ∈ L and a pickup demand for i ∈ B),
C: vehicle capacity.

Decision variables
xij : indicator; equals 1 if there is a vehicle travelling

from location i to location j ; equals 0 otherwise,
Rij : the amount of delivery goods on board on arc ij,
Pij : the amount of pickup goods on board on arc ij.
The VRPDDP can be modelled as follows.

Minimise Z =
∑

i∈V

∑

j∈V

dijxij (1)

subject to
∑

i∈V

xij = 1 j ∈ L ∪ B1 (2)

∑

i∈V

xji = 1 j ∈ L ∪ B1 (3)

∑

i∈V

Rij − qj =
∑

i∈V

Rji j ∈ L1 (4)

∑

i∈V

Rij =
∑

i∈V

Rji j ∈ B1 (5)

∑

i∈V

Pij =
∑

i∈V

Pji j ∈ L1 (6)

∑

i∈V

Pij + qj =
∑

i∈V

Pji j ∈ B1 (7)

∑

i∈L∪B

P0i = 01 (8)

∑

i∈L∪B

Ri0 = 01 (9)

Rij + Pij ≤ Cxij i ∈ V1 j ∈ V1 (10)

xij ∈ 80119 i ∈ V1 j ∈ V1 (11)

Rij ≥ 0 i ∈ V1 j ∈ V1 (12)

Pij ≥ 0 i ∈ V1 j ∈ V0 (13)

We present next a brief line-by-line explanation for
this formulation.

(1) The objective is to minimise the total distance
travelled by the vehicles.

(2)–(3) Every customer is served exactly once.
(4)–(7) Flow conservation constraints. (These con-

straints also eliminate subtours.)
(8)–(9) Vehicles start with zero pickup load and fin-

ish with zero delivery load.
(10) Maximum capacity constraint.
(11)–(13) Set xij as 0–1 and Rij/Pij as nonnegative

variables.
This formulation is based on a two-index VRP for-

mulation. This is achieved by not identifying the vehi-
cle itself as this can be derived from the result. Our
proposed formulation requires 42n + 152 binary vari-
ables and 242n+152 continuous variables and is made
up of 42n+ 152 + 8n+ 2 constraints.
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In our experiments, we found the following addi-
tional equations/inequalities useful:

xii = 0 i ∈ V (no loops)1 (14)

x4n+i5i = 0 i ∈ L (no arc from a backhaul to
its corresponding linehaul)1 (15)

∑

i∈L∪B

x0i ≥
1
C

∑

i∈L

qi (minimum number of
vehicles required)1 (16)

xij + xji ≤ 1 i ∈ L ∪ B1 j ∈ L ∪ B (special case of
subtour elimination for sets of two customers)0 (17)

5.2. Experiments on Small Instances
Because there are no small-sized VRPDDP instances
in the literature, we modified some of the VRP
instances of Christofides and Eilon (1969), namely
CE22, CE23, CE30, CE30(3), and CE33. The num-
ber of customers is one less than the number of the
instance, i.e., they consist of 21, 22, 29, 29, and 32 cus-
tomers. (Two 29-customer instances exist: CE30 has
no restriction on the number of vehicles; CE30(3) has
the number of vehicles set to the minimum value
of 3.) We created VRPDDP instances from the VRP
instances as follows. Let the delivery demand of each
customer remain the same as its original demand
in the VRP instance. Let the pickup of the first cus-
tomer be qn and the pickup of the any other cus-
tomer i be qi−1, where qi is the original demand
of customer i. (We chose this scheme so that our
instances can be easily constructed by the reader.) The
resulting instances are referred to as CE22P, CE23P,
CE30P, CE30(3)P, and CE33P.

These instances were solved using IBM ILOG
CPLEX (version 12.5) for the case of both VRPSDP
and VRPDDP. To calculate detour costs, the corre-
sponding VRP instances were also solved. The results
are shown in Table 1, with details of the routes given
in Table 2. CPLEX took between a few seconds and
about two hours to solve the VRP and between a few

Table 1 A Comparison of VRPSDP and VRPDDP Results on Small Instances

Instance CE22P CE23P CE30P CE30(3)P CE33P

VRP: z 4k5 375 445 569 435 503 445 534 435 835 445
VRPSDP: z 4k5 394 455∗ 597 435 545 445 578 435 844 445
VRPSDP: ãz (ãk) 19 415 28 405 42 405 43 405 9 405
VRPDDP: z 4k5 385 445 571 435 545 445 LB= 558 LB= 835

UB= 560 (3) UB= 842 (4)
VRPDDP: ãz (ãk5 10 405 2 405 42 405 26 405 7 405
Improvement in z (%) 2.28 4.36 0.00 3.11 0.24
Improvement in ãz (%) 47.37 92.86 0.00 40.91 22.22

Notes. z: total route length, k: number of vehicles, ãz = z − z(VRP), ãk = k − k(VRP), improvement:
4z4VRPSDP5 − z4VRPDDP55/z4VRPSDP 5 or 4ãz4VRPSDP5 − ãz4VRPDDP55/ãz4VRPSDP5, LB: lower bound,
UB: upper bound, ãz and improvement calculated w.r.t. upper bound.

∗If k is set to 4, the optimal value of z is 400.

seconds and 13 hours to solve the VRPSDP. How-
ever, it was unable to solve the VRPDDP formula-
tion directly except for n= 21 (two hours) and n= 22
(seven minutes), even when left to run for several
days. For n = 29 and n = 32 we employed the fol-
lowing heuristic to establish bounds. We clustered the
customers according to the routes they are on in the
VRP and the VRPSDP solutions. (We omit the pre-
cise details here.) For an upper bound, we allowed
splitting only for some clusters; clearly, a feasible solu-
tion to this is a feasible solution to the VRPDDP. For
a lower bound, we removed the pickup values of the
customers in some clusters. (Just as the VRP solu-
tion is a lower bound to the VRPDDP, a solution
in which some of the pickups are present and the
others removed, is a lower bound.) This procedure
yielded the optimal solution for CE30P and tight-
ened the bounds for CE30(3)P (3.6% gap) and CE33P
(8.3% gap).

Looking at Table 1, we can immediately see the
benefits of allowing splitting. For four out of five
instances, some cost reduction was achieved. (Note
that these are not specially designed instances.)
Although the improvements in terms of total route
length may appear rather small (up to about 4%),
the reduction in detour costs (which we believe to
be a better measure) is significant (between 22% and
93%). On these small instances, the number of vehi-
cles was unchanged except for CE22P (a reduction of
one vehicle). With just five instances, we cannot draw
any conclusions about which types of instances are
more likely to yield significant cost reductions due to
splitting.

Looking at the detailed solutions in Table 2, we
can see that very few customers (one or two) are
split (served twice) in the optimal solutions, in line
with the observations of Gribkovskaia et al. (2007).
Obviously, such a small study does not allow us to
draw wide-ranging conclusions, but we try to give
some tentative reasons why these customers ended
up being served twice, in the following.
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Table 2 Detailed Route Configurations for Small Instances

Instance VRPSDP routes VRPDDP routes

CE22P 0–9–7–5–2–1–6–0 0–10D–8–1–2–5–7–9–12P–0
0–12–19–21–17–0 0–12D–15–18–20–17–0
0–13–11–4–3–8–10–0 0–13–11–4–3–6–10P–0
0–16–20–18–15–14–0 0–16–19–21–14–0

CE23P 0–7–8–5–4–21–18–19–20–22–17–14–15–16–3–2–1–6–0 0–7–21–4–5–8–9–10P–13–0
0–10–13–0 0–10D–11–12P–0
0–12–9–11–0 0–18–19–20–22–17–14–15–16–3–2–1–6–12D–0

CE30P 0–2–5–4–3–20–0 (Optimal solution contains no split customers,
0–18–15–16–13–7–17–9–14–8–12–11–10–23–0 same as the VRPSDP solution shown to the left)
0–19–6–1–24–25–29–27–28–26–0
0–21–22–0

CE30(3)P 0–20–19–23–10–11–12–8–14–9–17–7–13–16–15–18–0 0–20–19–23–10–11–12–8–14–9–17–7–13–16–15–18–0
0–21–26–28–27–29–24–1–22–0 0–21–26–28–27–29–25–24–6P–4–22P–0
0–2–5–4–6–25–3–0 0–22D–2–5–1–6D–3–0

CE33P 0–4–7–9–8–32–11–12–0 0–4–6–7D–9–8–32–11–12–2–0
0–13–17–25–24–23–20–21–22–19–18–10–6–5–3–0 0–13–17–25–24–23–20–21–22–19–18–10–7P–5–3–0
0–26–27–16–28–29–0 0–26–27–16–28–29–0
0–30–31–14–15–1–2–0 0–30–31–14–15–1–0

Notes. D: delivery service only, P: pickup service only. Split customers are shown in bold.

—Customer 12 in CE22P was probably split
because it is relatively near the depot (11 units, aver-
age depot-to-customer distance being 28) and has
relatively large demand and pickup (22% and 20% of
the vehicle capacity, respectively).

—Customer 10 in CE23P was probably split
because it has an extremely large demand and a fairly
large pickup (91% and 24% of the vehicle capacity,
respectively).

—Customer 12 in CE23P was probably split
because it is very near the depot (seven units, average
depot-to-customer distance being 45).

—Customer 22 in CE30(3)P was probably split
because it is located on the straight line connecting
the depot and customer 2 (hence, no detour is needed
to serve it) and because it has a very large pickup
(33% of the vehicle capacity).

—Customer 7 in CE33P was probably split
because it is located in a dense cluster of customers
(there are five other customers within a radius of five
units, including one just one unit away).

—However, no obvious reasons spring to mind
regarding customer 10 in CE22P or customer 6
in CE30(3)P.

Finally, we note that the lasso route shape encoun-
tered by Halskau, Gribkovskaia, and Myklebost
(2001) is not present in our solutions: every split cus-
tomer is served by a different route for delivery and
pickup.

6. Computational Analysis of
Heuristic Results

We carried out our computational analysis on a
well-known data set and its variants, focusing on

the three research aims set in §2.5. The next section
explains and justifies our methodology and §6.2 intro-
duces our experiments. Sections 6.3–6.5 focus on each
of the research questions in turn.

6.1. Methodology and Justification
To compare the VRPSDP and the VRPDDP we pro-
ceed as follows:

Step 1. Solve the VRPSDP using a good-quality
metaheuristic.

Step 2. For each genuine customer, create two ficti-
tious customers, one purely delivery, the other purely
pickup.

Step 3. Starting from the solution found in Step 1,
solve the resulting VRPMDP using a good-quality
metaheuristic.
This is a valid approach, as discussed in §2.2, and in
line with previous studies, see, e.g., Mosheiov (1994),
Salhi and Nagy (1999), and Hoff et al. (2009). The
approach has the drawback of having twice as many
customers; however, our aim here is to analyse split
solutions with the view of creating more efficient
solution algorithms.

The prior analysis can be carried out by any good
method capable of solving the VRPSDP and the
VRPMDP. We chose the reactive tabu search (RTS)
metaheuristic of Wassan, Wassan, and Nagy (2008) in
Step 1 and the RTS method of Wassan, Nagy, and
Ahmadi (2008) in Step 3. Our choice can be justified
as follows:

—RTS in general is known to be a very efficient
metaheuristic (see Battiti, Brunato, and Mascia 2008).

—The algorithms of Wassan (2007); Wassan,
Wassan, and Nagy (2008); and Wassan, Nagy, and
Ahmadi (2008) give competitive solutions to the
VRPB, VRPSDP, and the VRPMDP, respectively.
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—Nagy, Wassan, and Salhi (2013) adapted the
Wassan, Nagy, and Ahmadi (2008) method to solve
an extension to the VRPMDP. On small instances, the
optimality gap was around 1%.

—On the instances of §5.2, RTS has always found
the optimal solution or the same upper bound as
CPLEX.

For the sake of conciseness, we do not present tech-
nical details of the two metaheuristics used here.

6.2. Computational Experiments
We chose one of the most commonly used sets of
VRPSDP test instances, namely, that proposed by
Salhi and Nagy (1999). This set originally contains
28 instances, ranging from 50 to 199 customers. Dis-
tances are Euclidean, and, to eliminate any prob-
lem associated with computer precision, are rounded
to the nearest integer. Note that instances 6–10, 13,
and 14 have a maximum time constraint, whereas
instances 11–14 are clustered. A particular character-
istic of this data set is that in some instances there are
pairs of customers located at the same coordinates.
In instances 4 and 9, customer pairs at the same loca-
tion are: 80 and 150, and 99 and 104. In instances 5
and 10, customer pairs at the same locations are: 3
and 158, 4 and 155, 10 and 189, 58 and 152, 80 and
150, 92 and 151, 99 and 104, and 138 and 154.

Our initial experimentation did not show signifi-
cant benefits of splitting; hence, we devised further
instances. Although various sets of instances were
tested, for the sake of conciseness and simplicity, here
we report on only two in detail. First, we noticed the
average demand and pickup values are very small
in the Salhi and Nagy (1999) data set, on average
4% of the vehicle capacity and none larger than 22%
of the vehicle capacity, leading to a few long routes.
Therefore, we kept the locations of the Salhi and Nagy
(1999) data set, but changed the delivery and pickup
values by multiplying all values by four and adding
0.1C. This new data set has delivery and pickup values
between 10% and 98% of the vehicle capacity, averag-
ing 26%, leading to many short routes. Second, noting
the example in §4 that gave a 50% cost improvement,
where the difference between delivery and pickup fig-
ures was large, we created such a data set. We added
0.75C to the delivery and 0.2C to the pickup of every
odd customer, and 0.2C to the delivery and 0.75C to
the pickup of every even customer. Coordinates were
retained. Thus, for every customer either the delivery
or the pickup value is between 75% and 97% of the
vehicle capacity, whereas the other value is between
20% and 42%. This means we expect several very short
routes. Thus, we finally created the following set of
three instances:

—Set 1: the original instances by Salhi and
Nagy (1999).

—Set 2: delivery and pickup values between 10%
and 98% of the vehicle capacity.

—Set 3: instances with delivery or pickup value
between 75% and 97% of the vehicle capacity.
The RTS algorithm was implemented in Fortran 90
and the experiments executed on a Sun-Fire-V440 with
UltraSPARC-IIIi Processor, CPU speed 1062 MHz, run-
ning Solaris 9. The total number of iterations was set
to 1,500 for all instances. All 28 instances of a set were
solved in about an hour, which is approximately two
minutes per instance (ranging from less than half a
minute to about six minutes). A brief analysis of com-
puting times is given in §7.

Tables 3 and 4 compare the simultaneous (Hamil-
tonian) and divisible (general) solutions for each in-
stance. The former were found using the RTS algo-
rithm of Wassan, Wassan, and Nagy (2008), with
exactly the same parameters as above. Because these
were taken as the initial solution to our RTS algo-
rithm, the VRPDDP solution will never be worse than
the corresponding VRPSDP solution. The VRP solu-
tions necessary for calculating detour costs in Table 4
were again found using the RTS algorithm of Wassan,
Wassan, and Nagy (2008), with zero pickup values.
Table 5 presents detailed VRPDDP solutions for the
instances with a positive improvement. These will
be analysed in §6.5 with regard to route shapes. It
shows that even in solutions where splitting gives an
improvement, only a minority of the customers are
served twice. All customers are tabulated in Table 6
and analysed (see §6.4) with the aim of finding out
why they were split.

6.3. What Characterises Instances Where Splitting
Gives Significant Cost Reductions?

Comparing VRPDDP to VRPSDP solutions (see
Table 3), on the instances of Set 1 more than one-third
(10 of 28, 36%) of the instances experienced some
cost reduction, although the average reduction was
only 0.16% (maximum 1.32%, on CMT2X). The num-
ber of vehicles was never reduced. We think this is
explained by the delivery and pickup figures being
too small, thus reducing the need for splitting.

Looking at the results of the instances of Set 2,
the situation changes. Route length, on average, is
reduced by 1.93% (maximum 6.16%) and the num-
ber of vehicles by 3.12% (maximum 8.57%). For every
instance, the route length was reduced; for 18 of 28
instances, the number of vehicles was also reduced.
This already shows that the savings achievable by
splitting are significant. (We note that in this data
set all delivery and pickup values are ≥ 001 C. On
a very similar data set, not reported here in detail
for the sake of brevity, where the range for deliv-
eries and pickups was between 0% and 88% (rather
than 10%–98%), the average saving by splitting was

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

86
.1

64
.5

2.
10

9]
 o

n 
16

 A
ug

us
t 2

01
6,

 a
t 0

9:
03

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Nagy et al.: The Vehicle Routing Problem with Divisible Deliveries and Pickups
282 Transportation Science 49(2), pp. 271–294, © 2015 INFORMS

Table 3 Comparison of VRPSDP and VRPDDP Results Based on Total Route Length

Set 1 Set 2 Set 3

VRPSDP VRPDDP Improvement (%) VRPSDP VRPDDP Improvement (%) VRPSDP VRPDDP Improvement (%)

Instance Size z k z k z k z k z k z k z k z k z k

CMT1X 50 478 3 478 3 0.00 0.00 11185 19 11169 19 1035 0000 21315 45 11943 35 16007 22022
CMT1Y 50 476 3 476 3 0.00 0.00 11101 18 11093 18 0073 0000 21245 45 11968 35 12034 22022
CMT2X 75 713 7 712 7 0.14 0.00 21074 38 11978 36 4063 5026 31586 74 31217 60 10029 18092
CMT2Y 75 694 7 694 7 0.00 0.00 21028 35 11903 32 6016 8057 31586 74 31292 63 8020 14086
CMT3X 100 727 5 726 5 0.14 0.00 21055 32 21009 30 2024 6025 41210 80 31805 69 9062 13075
CMT3Y 100 723 5 723 5 0.00 0.00 11884 28 11860 28 1027 0000 41146 80 31728 64 10008 20000
CMT4X 150 901 8 901 8 0.00 0.00 21884 47 21806 45 2070 4026 61263 121 51738 105 8038 13022
CMT4Y 150 859 7 859 7 0.00 0.00 21612 42 21605 42 0027 0000 61017 116 51328 97 11045 16038
CMT5X 199 11090 11 11083 11 0.65 0.00 31865 68 31843 68 0057 0000 81366 167 71554 147 9071 11098
CMT5Y 199 11053 10 11052 10 0.10 0.00 31403 59 31371 58 0094 1069 81080 163 71391 142 8053 12088
CMT6X 50 555 6 555 6 0.00 0.00 11185 19 11169 19 1035 0000 21315 45 11943 35 16007 22022
CMT6Y 50 556 6 556 6 0.00 0.00 11101 18 11093 18 0073 0000 21245 45 11968 35 12034 22022
CMT7X 75 899 11 899 11 0.00 0.00 21083 38 21027 36 2069 5026 31586 74 31217 60 10029 18092
CMT7Y 75 902 11 902 11 0.00 0.00 21028 35 11903 32 6016 8057 31586 74 31292 63 8020 14086
CMT8X 100 874 9 874 9 0.00 0.00 21055 32 21009 30 2024 6025 41210 80 31805 69 9062 13075
CMT8Y 100 867 9 867 9 0.00 0.00 11884 28 11860 28 1027 0000 41146 80 31728 64 10008 20000
CMT9X 150 11200 15 11193 15 0.59 0.00 21884 47 21806 45 2070 4026 61263 121 51738 105 8038 13022
CMT9Y 150 11215 15 11215 15 0.00 0.00 21612 42 21605 42 0027 0000 61017 116 51328 97 11045 16038
CMT10X 199 11439 19 11438 19 0.07 0.00 31865 68 31843 68 0057 0000 81366 167 71554 147 9071 11098
CMT10Y 199 11467 19 11452 19 1.03 0.00 31403 59 31371 58 0094 1069 81080 163 71391 142 8053 12088
CMT11X 120 11009 5 11009 5 0.00 0.00 31941 32 31894 31 1019 3013 101024 90 81608 77 14013 14044
CMT11Y 120 905 4 905 4 0.00 0.00 31333 29 31309 28 0072 3045 91727 89 81372 75 13093 15073
CMT12X 100 680 6 680 6 0.00 0.00 21609 37 21535 34 2084 8011 51328 83 41523 68 15011 18007
CMT12Y 100 632 5 632 5 0.00 0.00 21289 33 21233 32 2045 3003 51114 80 41304 68 15084 15000
CMT13X 120 11647 11 11644 11 0.18 0.00 31941 32 31894 31 1019 3013 101024 90 81608 77 14013 14044
CMT13Y 120 11710 12 11708 12 0.12 0.00 31333 29 31309 28 0072 3045 91727 89 81372 75 13093 15073
CMT14X 100 842 10 831 10 1.32 0.00 21609 37 21535 34 2084 8011 51328 83 41523 68 15011 18007
CMT14Y 100 854 11 854 11 0.00 0.00 21289 33 21233 32 2045 3003 51114 80 41304 68 15084 15000
Average 0.16 0.00 1093 3012 11069 16041

Notes. z: total route length, k: number of vehicles, improvement: 4z4VRPSDP5− z4VRPDDP55/z4VRPSDP5 or 4k4VRPSDP5− k4VRPDDP55/k4VRPSDP5.

only 0.60%. This shows that the absence of very small
deliveries and pickups is a significant factor for split-
ting to be useful.)

The best results were achieved on the instances of
Set 3: an average route-length reduction of 11.69%
and an average vehicle number reduction of 16.41%
were achieved. (Maximum values were 16.07% and
22.22%, respectively.) This is a very significant sav-
ing, especially when compared to the theoretical limit
of 50%. However, it is unlikely that such instances
occur in realistic situations. Already in this instance
set, most (78%) VRPSDP routes contain only a single
customer.

It does not appear that the presence of a maxi-
mum time constraint is a predictor of splitting. The
reduction in the number of vehicles was the same for
constrained and nonconstrained instances on all three
data sets. The difference in average reduction of route
length was insignificant. However, one should expect
that if there are very tight maximum time constraints
applied, then splitting is unlikely to be beneficial,
because vehicles will not be filled to capacity anyway.

There is some evidence that splitting gives more
benefit to clustered instances. On the instances of
Set 2, where there is a large variation in delivery
and pickup figures, and there are many short routes,
the reduction in the number of routes is 4.43% for
the clustered instances (as opposed to only 2.60%
for the nonclustered instances). On the instances
of Set 3, where customers have a large imbalance
between their delivery and pickup, the reduction
in route length is 14.75% for the clustered instances
(as opposed to 10.47% for the nonclustered instances).
This is sensible, because in clustered instances the
intercustomer distances, and hence the detour lengths
required to serve a customer twice, are small.

Using detour costs, rather than total route length,
puts a sharper focus on the improvements (see
Table 4). It transpires straightaway that in the in-
stances of Set 1 one reason why there was often no
improvement from splitting is that the detour cost ãz
was already zero. Of the 28 instances, eight have zero
detour cost, and thus no improvement from split-
ting was to be expected. An average improvement
in the detour costs of 17.57% is observed (including
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Table 4 Comparison of VRPSDP and VRPDDP Results Based on Detour Cost

Set 1 Set 2 Set 3

VRPSDP VRPDDP Improvement (%) VRPSDP VRPDDP Improvement (%) VRPSDP VRPDDP Improvement (%)

Instance Size ãz ãk ãz ãk ãz ãk ãz ãk ãz ãk ãz ãk ãz ãk ãz ãk ãz ãk

CMT1X 50 7 0 7 0 0000 — 104 0 88 0 15038 — 601 13 229 3 61.90 76.92
CMT1Y 50 0 0 0 0 — — 150 3 142 3 5033 0000 592 14 315 4 46.79 71.43
CMT2X 75 36 1 35 1 2078 0.00 221 2 125 0 43044 100000 11011 25 642 11 36.50 56.00
CMT2Y 75 40 1 40 1 0000 0.00 273 4 148 1 45079 75000 997 26 703 15 29.49 42.31
CMT3X 100 1 0 0 0 100000 — 290 3 244 1 15086 66067 11033 21 628 10 39.21 52.38
CMT3Y 100 0 0 0 0 — — 176 1 152 1 13064 0000 11026 23 608 7 40.74 69.57
CMT4X 150 27 1 27 1 0000 0.00 414 2 336 0 18084 100000 11585 31 11060 15 33.12 51.61
CMT4Y 150 12 1 12 1 0000 0.00 314 4 307 4 2023 0000 11396 28 707 9 49.36 67.86
CMT5X 199 42 1 35 1 16067 0.00 505 6 483 6 4036 0000 21138 45 11326 25 37.98 44.44
CMT5Y 199 91 2 90 2 1010 0.00 359 6 327 5 8091 16067 11973 45 11284 24 34.92 46.67
CMT6X 50 0 0 0 0 — — 104 0 88 0 15038 — 601 13 229 3 61.90 76.92
CMT6Y 50 0 0 0 0 — — 154 3 146 3 5019 0000 592 14 315 4 46.79 71.43
CMT7X 75 1 0 1 0 0000 — 222 2 166 0 25023 100000 11011 25 642 11 36.50 56.00
CMT7Y 75 4 0 4 0 0000 — 273 4 148 1 45079 75000 997 26 703 15 29.49 42.31
CMT8X 100 5 0 5 0 0000 — 290 3 244 1 15086 66067 11033 21 628 10 39.21 52.38
CMT8Y 100 0 0 0 0 — — 176 1 152 1 13064 0000 11026 23 608 7 40.74 69.57
CMT9X 150 29 1 22 1 24014 0.00 408 3 330 1 19012 66067 11585 31 11060 15 33.12 51.61
CMT9Y 150 0 0 0 0 — — 315 3 308 3 2022 0000 11396 28 707 9 49.36 67.86
CMT10X 199 19 1 18 1 5026 505 6 483 6 4036 0000 21138 45 11326 25 37.98 44.44
CMT10Y 199 56 1 41 1 26079 0.00 359 6 327 5 8091 16067 11973 45 11284 24 34.92 46.67
CMT11X 120 56 1 56 1 0000 0.00 866 7 819 6 5043 14029 21783 23 11367 10 50.88 56.52
CMT11Y 120 0 0 0 0 — — 227 3 203 2 10057 33033 21433 21 11078 7 55.69 66.67
CMT12X 100 45 1 45 1 0000 0.00 645 6 571 3 11047 50000 11677 22 872 7 48.00 68.18
CMT12Y 100 3 0 3 0 — — 157 3 101 2 35067 33033 11396 19 586 7 58.02 63.16
CMT13X 120 13 0 0 0 100000 — 866 7 819 6 5043 14029 21783 23 11367 10 50.88 56.52
CMT13Y 120 12 1 10 1 16067 0.00 227 3 203 2 10057 33033 21433 21 11078 7 55.69 66.67
CMT14X 100 19 0 8 0 57089 — 645 6 571 3 11047 50000 11677 22 872 7 48.00 68.18
CMT14Y 100 23 1 23 1 0000 0.00 157 3 101 2 35067 33033 11396 19 586 7 58.02 63.16
Average 17057 0.00 16028 34052 44.47 59.55

Notes. ãz: detour cost, ãk: additional number of vehicles, improvement: 4ãz4VRPSDP 5 − ãz4VRPDDP 55/ãz4VRPSDP 5 or 4ãk4VRPSDP 5 −

ãk4VRPDDP 55/ãk4VRPSDP 5.

two instances with an improvement of 100%). Because
ãk, the additional number of vehicles, was in most cases
0 or 1, it is not surprising that no reduction in the
number of vehicles was achieved by splitting. On the
instances of Set 2, an average improvement of 16.28%
is observed. In line with the observations of Archetti,
Savelsbergh, and Speranza (2008), this reduction is
likely to have been caused by a reduction in the num-
ber of vehicles: the average reduction in ãk is 34.52%.
Finally, on the instances of Set 3, average improve-
ments of 44.47% in ãz and 59.55% in ãk are achieved
when splitting is allowed. These large values show
very clearly the benefits of splitting.

6.4. What Characterises the Customers That Are
Being Served in More Than One Visit?

We hypothesised that the customers who are served
separately for delivery and pickup may have one or
more of the following characteristics: being near the
depot, having a large demand or pickup, or being
located in a densely populated area. (Our analysis
here is based only on the original Salhi and Nagy 1999

instances, because in the additional instances, too
many customers were split for a meaningful analy-
sis. In the extreme case of the example of §4.1, every
customer is served twice, and the analysis is trivial.)
Table 5 lists these characteristics for each of the 61
split customers. For each instance, the nearest 25% of
customers to the depot were classified as “near depot”
and the 25% of customers with the largest demand
as “large demand” (similarly for “large pickup”). The
final column classifies the customer as part of a clus-
ter. A customer is considered to be in a cluster if it has
at least five neighbours, where a neighbour is defined
as a customer that is within a distance of 10% of the
average depot-to-customer distance for that instance.

We found that being near the depot is the most
important characteristic: about four-fifths (48 of 61,
79%) of split customers exhibit this characteristic. This
was expected, because it is easy to insert a near-depot
delivery to the beginning of a route or a near-depot
pickup at the end of a route without greatly increas-
ing the total distance travelled.
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Table 5 Characteristics of Split Customers

Instance Customer Near depot Large demand Large pickup Cluster

CMT2X 67 Yes Yes No No
75 Yes Yes No No

CMT3X 30 No Yes No No
CMT5X 10 No No No No

27 Yes Yes No No
28 Yes Yes No No
53 Yes No No No
60 No No No No
80 No No No No
111 Yes Yes No No
112 Yes Yes No No
138 Yes No No No
146 Yes No No No
150 No No No No
154 Yes Yes No No
156 Yes Yes No No
167 Yes Yes No No
189 No No No No
196 Yes Yes No Yes

CMT5Y 10 No No No No
28 Yes No Yes No
68 No Yes Yes No
156 Yes No Yes No
190 Yes Yes Yes No

CMT9X 1 Yes No No No
28 Yes Yes No Yes
53 Yes No No Yes
96 Yes No No Yes

104 Yes No No Yes
111 Yes Yes No Yes
138 Yes No No Yes
146 Yes No No No

CMT10X 28 Yes Yes No No
53 Yes No No Yes
80 No No No Yes
92 No No No Yes
111 Yes Yes No No
152 Yes Yes No Yes
156 Yes Yes No Yes
196 Yes Yes No Yes

CMT10Y 28 Yes No Yes No
53 Yes Yes No Yes
69 Yes No No Yes
96 Yes No No Yes

104 Yes No No Yes
111 Yes Yes No No
125 No No Yes Yes
138 Yes No No No
154 Yes No Yes No
199 No No No Yes

CMT13X 89 Yes No No Yes
99 Yes No No Yes

CMT13Y 39 No No No Yes
87 Yes Yes Yes Yes
90 Yes No Yes Yes
91 Yes No No Yes
92 Yes Yes No Yes
94 Yes No No Yes
97 Yes Yes No Yes
105 Yes No No Yes

CMT14X 43 Yes No No Yes

Having a high demand or pickup is also important:
about half (31 out of 61, 51%) of split customers have a
high demand or pickup. Because load feasibility is the
major constraint in our problem, such large customers
are the most difficult to place on a route. Hence, split-
ting them gives additional flexibility, and thus leads
to better solutions.

Being located in a densely populated area has also
proved to be a predictor for splitting: about half (29 of
61, 48%) of split customers have at least five other
customers nearby. This makes sense because in dense
clusters, making a detour to serve a split customer
yields only a small increase in route length.

Our hypothesis explained the occurrence of split-
ting for most (55 out of 61, 90%) split customers. We
then looked at the remaining six to see if any other
factor existed contributing to their splitting. For five
of them, we found that the reason they are served
twice is that they are co-located with another cus-
tomer. For a pair of co-located customers it makes
sense to first deliver to them both, then carry out
the two pickups, resulting in one or both of them
being split. For easier visualisation, such co-located
customers are highlighted in italics in Table 5. This
is a particular characteristic of the data set, but if
in practice such co-located customers exist, then they
are certainly good candidates for splitting.

Only one split customer (60 in CMT5X) is not
explained by any of the previous reasons. Therefore,
a promising avenue for further research would be to
consider splitting only for customers that exhibit one
of the abovementioned characteristics.

6.5. What Shapes Do Routes Take?
On the instances where splitting gives significant
benefits, the routes contain too few customers for a
meaningful analysis. Hence, in this section, again we
focus on the more realistic instances of Set 1. Table 6
presents all 119 routes on the instances where split-
ting occurred. The second column shows the num-
ber of split customers on a route, whereas the third
describes the shape of the route. We note that slightly
more than half the routes (68 out of 119, 57%) contain
one or more split customers. From now on, we look
only at these routes.

In line with expectations, nearly two-thirds (44 of
68, 65%) of routes contain just one split customer, with
very few (4 of 68, 6%) containing more than three.

Most routes (56 of 68, 82%) are in the shape of a
simple cycle, denoted by “C” in Table 3. (To avoid
confusion with the terminology of Gribkovskaia et al.
2007, we do not refer to such routes as Hamiltonian;
this term is reserved for routes where every cus-
tomer receives simultaneous service.) Having taken a
closer look at the remaining 12 routes, we saw that
the issue of co-located customers, a characteristic of
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Table 6 Detailed Configurations for Routes with Split Solutions

Instance t S Route

CMT2X 1 C 0–75P–68–2–62–73–1–43–41–42–64–22–61–28–74–0
1 C 0–75D–30–48–21–47–36–69–71–60–70–20–37–5–0
1 C 0–67P–34–52–27–13–54–57–15–29–45–4–0
1 C 0–67D–35–14–59–19–8–46–0

CMT3X 1 C 0–27–69–1–50–33–81–9–51–30D–32–90–63–10–62–19–11–64–49–36–47–46–45–17–84–5–60–89–0
1 C 0–28–76–77–3–79–78–34–35–71–65–66–20–30P–70–31–88–7–48–82–8–83–18–52–0

CMT5X 4 Y 0–132–69–162–101–70–30–20–188–66–128–160–131–32–181–63–126–90–108–189D–10D–189P–10P–31–167P–146D–0
1 C 0–111P–50–102–157–9–135–35–136–65–71–161–103–51–122–1–0
3 C 0–27P–176–33–81–120–164–34–78–169–129–79–185–196P–184–28P–0
5 Y 0–111D–76–196D–116–77–3–158–121–29–24–134–163–68–80D–150D–80P–150P–177–109–12–154P–0
1 C 0–53D–105–180–198–110–155–4–139–187–39–67–170–25–55–165–130–54–179–149–26–0
4 Y 0–28D–138P–154D–138D–195–21–72–197–56–186–23–75–133–22–41–145–171–74–73–40–53P–0
1 C 0–112D–183–94–95–117–97–87–172–43–15–57–178–115–2–58–152–0
1 C 0–137–144–42–142–14–38–140–44–119–192–91–61–85–93–59–104–99–96–6–112P–0
2 C 0–156P–13–151–92–37–98–100–193–191–141–16–86–113–17–173–84–5–118–60P–166–89–0
3 C 0–156D–147–60D–83–199–125–45–174–46–36–143–49–64–107–123–182–7–194–106–153–52–146P–0
2 C 0–27D–167D–127–190–88–148–62–159–11–175–19–168–47–124–48–82–8–114–18–0

CMT5Y 1 C 0–27–176–1–122–51–103–161–71–65–136–35–135–9–120–185–77–196–76–28P–0
1 C 0–167–127–190D–88–148–62–159–90–126–63–181–32–131–160–128–66–188–20–30–70–101–162–69–132–0
2 Y 0–153–106–194–7–82–48–47–36–143–49–64–107–175–11–108–10D–189–10P–31–190P–146–0
1 C 0–52–182–123–19–168–124–46–174–8–114–125–45–199–83–18–166–89–156D–0
1 C 0–156P–13–117–97–87–42–43–15–57–178–2–115–145–41–22–133–75–74–171–73–152–58–0
2 C 0–53–105–180–198–110–155–25–55–165–130–54–134–163–24–29–121–68P–116–184–28D–0
1 C 0–111–50–102–157–33–81–164–34–78–169–129–79–3–158–68D–150–80–177–109–12–138–154–0

CMT9X 1 C 0–27–127–31–10–108–90–63–126–107–19–123–146P–0
1 C 0–69–101–70–30–32–131–128–66–20–122–1P–0
1 C 0–9–13–35–136–65–71–103–51–1D–132–0
2 C 0–111P–50–102–33–81–120–34–78–129–79–3–77–28D–0
3 C 0–111D–76–116–68–121–29–24–134–150–80–12–138P–28P–0

CMT9Y 1 C 0–138D–109–54–130–55–25–149–26–0
1 C 0–53D–110–4–139–39–67–23–56–75–72–21–0
1 C 0–105–40–73–74–133–22–41–145–115–2–58–53P–0
2 Y 0–96D–104D–99–104P–6–0
1 C 0–96P–59–93–85–61–17–45–125–83–60–118–89–0
1 C 0–146D–52–106–7–82–48–124–46–8–114–18–0

CMT10X 2 L 0–28D–76–196D–77–3–158–29–121–68–116–184–28P–0
1 C 0–156D–112–183–96–99–104–93–85–61–173–5–147–0
1 Y 0–94–92D–151–92P–98–91–16–86–141–191–193–59–6–0
1 C 0–156P–13–87–172–42–142–43–15–57–144–137–0
1 Y 0–152D–58–152P–0
1 C 0–53D–180–198–110–4–155–25–55–165–130–54–179–149–0
2 Y 0–138–154–12–80P–150–80D–134–24–163–177–109–195–26–105–53P–0
2 C 0–111P–50–102–157–33–81–164–34–78–169–129–79–196P–0
1 C 0–111D–9–161–71–65–136–35–135–120–185–0

CMT10Y 2 O 0–166–199P–125D–45–125P–199D–18–0
2 Y 0–147–5–84–173–17–113–61–93–104D–99–104P–96D–6–0
1 C 0–183–96P–59–85–16–86–141–191–193–91–98–92–151–0
1 C 0–53P–2–115–178–57–15–43–142–42–172–144–137–0
1 C 0–53D–180–21–73–72–171–74–75–133–22–41–145–40–0
1 C 0–105–149–179–110–4–155–25–55–165–130–54–109–154D–0
2 Y 0–26–195–134–24–163–150–80–177–12–138D–154P–138P–0
1 C 0–196–77–3–158–79–129–169–29–121–68–116–184–28D–0
2 C 0–111D–50–102–157–33–81–120–164–34–78–185–76–28P–0
1 C 0–111P–9–135–35–136–65–71–161–103–51–0
1 C 0–27–176–1–122–128–66–188–20–30–69D–132–0
1 C 0–167–108–126–63–90–32–131–160–70–101–69P–0

CMT13X 1 C 0–99D–98–59–65–61–57–54–52–110–97–95–0
1 C 0–99P–40–43–45–48–51–50–49–44–41–37–0
1 C 0–109–26–32–35–36–34–31–28–23–20–89D–0
1 C 0–89P–114–17–22–24–27–33–30–25–19–16–0

CMT13Y 1 C 0–105D–106–103–73–76–77–78–80–79–68–98–99–0
2 C 0–94D–97D–115–40–43–45–59–57–54–52–53–0
3 C 0–94P–41–44–46–49–47–50–51–48–42–39P–97P–0
5 C 0–105P–107–104–116–110–39D–38–37–109–114–90D–91D–87P–0
1 C 0–92D–26–28–31–30–33–34–36–35–32–29–0
1 C 0–87D–17–16–19–25–22–24–27–23–20–21–0
3 C 0–86–85–84–5–4–3–6–118–18–90P–91P–92P–0

CMT14X 1 C 0–43D–42–44–45–46–48–51–50–52–49–47–0
1 C 0–67–65–66–62–74–72–61–64–68–41–43P–0

Notes. t : number of split customers on the route, S: route shape, C: cycle, Y: cycle with co-located customer pairs, L: lasso, O: other, D: delivery service only,
P: pickup service only. Split customers are shown in bold; co-located customers are shown in italics.
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instances 4, 5, 9 and 10, plays a part here. For exam-
ple, on a cursory look at the first route in CMT5X, it
appears that the route zigzags between customers 10
and 189. A closer look reveals that these customers
are located at the same coordinates. Hence, if we rep-
resent both with a single vertex, this route actually
will have a cyclical shape. To highlight this issue,
co-located customers are marked in italics in Table 6.
Routes that become cyclical, once visiting such cus-
tomer pairs is considered as a single stop, are denoted
by “Y .” Including such routes, all but two routes can
be described as cyclical shaped. This is a marked
difference to studies on the TSPDDP, where lasso
and figure-of-eight solutions are common. Of course,
in the TSPDDP, a customer cannot be split between
two routes, whereas in our experiments, if we disre-
gard co-located customers, only three customers are
served by the same vehicle for delivery and pickup,
whereas the remaining 46 are split between routes.

One of the remaining routes (the first route
in CMT10X) is lasso shaped, with one split customer
(28) that is served for delivery at the very beginning
of the route and for pickup at the very end. Between
these stops, there is one delivery-only customer and
nine nonsplit customers. The other route (the first
route in CMT10Y, 0–166–199P–125D–45–125P–199D–
18–0, length 58) has a more surprising shape and even
has a pickup before a delivery. On closer observation,
we notice that all its customers are placed nearly on a
straight line. Due to using integer distances, this tour
has the same length as the optimal (Hamiltonian) TSP
tour 0–166–199–125–45–18–0. The total of delivery and
pickup demand is much less than the vehicle capac-
ity; thus, the order of deliveries and pickups does not
matter.

Split customers tend to occur at the beginning or
the end of the routes—which makes sense as they also
tend to be near the depot. However, for about a quar-
ter of the routes (19 of 68, 28%), they occur midroute.

Future research on an improved solution algorithm
can benefit from these observations. Because cus-
tomers tend to be split between routes rather than
within a route, we should develop an operator that
can achieve this. For example, “splitshift” would
duplicate a simultaneous customer and insert either
its linehaul or backhaul into another route. (In this
case, customers would not be duplicated at the start
but by this operator.) Such an operator may work
best in an environment where infeasible solutions
are allowed, because it could help to achieve/restore
feasibility. Finally, we must allow split customers to
occur freely—allowing them to be placed only at
the beginning or the end of a route would be too
restrictive.

7. An Improved Solution Method and
an Analysis of Its Results

In this section, we utilise the observations of the pre-
vious section to create a VRPDDP-specific methodol-
ogy, and compare it against the method of solving
the VRPDDP as a VRPMDP with twice as many
customers.

7.1. An Improved Solution Method
Our method will be based on the following
observations:

—Doubling the number of customers slows down
any heuristic; it may be better to reduce the instance
size for only allowing splitting for some of the
customers.

—Most split customers occur near the depot.
—Many split customers have a high demand or a

high pickup.
—In the data set of our study, there are co-located

customers that were often served twice.
—Although many split customers are in a dense

cluster, this is a harder-to-identify aspect. Looking
back at the data analysed in §6.4 (Table 5), we can see
that 28 out of 30 split customers that were in a cluster
were already candidates for splitting for one of the
above reasons.

—Routes do not follow some particular shape
such as lasso, and split customers may occur in any
part of the route (although they often occur at the
beginning or the end).

—Most split customers are served by a different
route for delivery and for pickup.

These observations suggest a solution method
where, rather than duplicating all customers, we
duplicate only customers that are near the depot
(defined as the nearest 25% of customers) and the co-
located customers. Customers with high demand or
pickup may also be considered, but we need not con-
sider customers in dense clusters. If during the run
of the algorithm we wish to allow further customers
to be split, it is sensible to allow a splitting operator
that would move either the delivery or the pickup of
the customer to another route. (We note that merge
operators often accompany split operators; however,
it may be simpler to omit this.)

The backbone of the improved solution method will
still be the tried-and-tested reactive tabu search algo-
rithm of Wassan, Wassan, and Nagy (2008). The main
steps of the improved RTS-VRPDDP algorithm are
shown as follows.

Step 1: Initialisation phase
Step 2: Neighbourhood search phase
Step 3: RTS updating phase
Step 4: Fine-tuning phase
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These steps are explained in detail next. Note that
Steps 2–4 are repeated for a fixed number of
iterations.

The initialisation phase begins with duplicating some
of the customers. This means that for each customer
that lies near the depot or is co-located with another
customer, we create two fictitious customers: one with
zero pickup and the other with zero delivery. (How-
ever, if a near-depot or co-located customer happens
to have zero delivery or pickup, then it will not be
duplicated.) Optionally, we may also duplicate cus-
tomers with high demand or pickup (defined as being
in the top 25% when sorted according to either of
these values). We have two ways of obtaining an ini-
tial solution. Firstly, we may simply take the corre-
sponding VRPSDP solution as our initial solution, as
was done in §6. In the VRPDDP solution, each cus-
tomer that is duplicated will have its delivery entity
followed by its pickup entity. Second, we can use the
modified sweep method (see Wassan, Wassan, and
Nagy 2008 for details) to obtain a feasible solution
to the VRPDDP. Finally, reactive tabu search parame-
ters are initialised for parameter settings (see Wassan,
Wassan, and Nagy 2008).

The neighbourhood search phase of the algorithm
(Step 2) is built around two well-known moves,
namely shift and swap (for more details, see Wassan,
Wassan, and Nagy 2008) and an optional new opera-
tor called splitshift. Splitshift considers only customers
that are currently served in a single visit, splits them
into a delivery and a pickup entity, and inserts either
the delivery or the pickup entity (whichever gives
a better solution) to the best possible position on
another route. We note that no merge operator is
used; if a delivery and pickup entity of a customer
should find themselves next to each other in subse-
quent moves, this is fine by us, but we do not think
that a separate operator is required to bind them
together again. In Step 2, the entire neighbourhood
defined by the moves shift and swap is evaluated.
If the best move found is not tabu (see tabu defi-
nition later), or is tabu but surpasses our aspiration
criterion (i.e., it yields a better solution than the best
one recorded), it is carried out. Otherwise, the best
nontabu move is implemented. Note that the tabu
search framework allows for nonimproving moves.

In the reactive tabu search updating phase, we define
the tabu status of moves using a tabu list. If in Step 2
customer i was removed from route r (no matter by
which of the three operators), we put (i1 r) onto the
tabu list for the next tls iterations, where tls is the
size of the tabu list (also known as tabu tenure). This
means that customer i cannot re-enter route r unless
the aspiration criterion is met. If a splitshift operator is
applied, then either the delivery or the pickup entity
of the split customer (whichever was moved to a new

route) is placed on the tabu list; however, all of its
previous occurrences are removed from the tabu list.
The motivation for this is that the two customers are
different from their previous nonsplit incarnation and
should be allowed to be placed freely in subsequent
moves. The remainder of this phase is concerned with
dynamically updating the value of tls; this aspect
is carried out exactly the same way as in Wassan,
Wassan, and Nagy (2008), where the reader is referred
for further details. Moreover, the parameter settings
used in this research are the same as given in that
paper.

In the fine-tuning phase two operators, reverse and
local-shift (see Wassan, Wassan, and Nagy 2008 for
details), are applied, in turn, repeatedly to the two
routes that were affected in Step 2, until no improve-
ment is found. Note that tabu status of customers is
neither checked nor updated during this phase.

The different versions of our algorithm are created
as follows:

—Customers with high demand or supply are
duplicated (D) or not (N ).

—The initial solution is taken from the VRPSDP
solution (V ) or obtained by modified sweep (S).

—Operator splitshift is applied (A) or omitted (O).
This gives rise to eight versions, namely, DVA,

DVO, DSA, DSO, NVA, NVO, NSA, and NSO.

7.2. Computational Experiments
We again used the Salhi and Nagy (1999) data set and
its variants, as defined in §6.2. All instances in Set 1
and Set 2 were solved using all eight versions of our
new solution algorithm. We did not think that this
algorithm was appropriate to solve instances where
in the VRPDDP solution the vast majority of cus-
tomers would be split, such as those of Set 3. Our
experiments confirmed this hypothesis; on Set 3 the
new algorithm never improves on the original one.
Therefore, our analysis will be restricted to the first
two data sets. The algorithms were coded in Fortran
90 and run on the same computer as detailed in §6.2,
again for 1,500 iterations. We report on 2×8×28 = 448
experiments in total.

The results for the two sets are reported in Tables 7
and 8, respectively. Table 9 gives the computing times
for ease of reference, including computing times for
the VRP and VRPSDP. (We note that because we
already have the solution to the VRPDDP, versions
that use this as a starting solution do not recreate this,
but read it in from a data file. Hence, the solution time
of VRPSDP is not included in the computing times
of these versions.) In these tables and henceforth, we
refer to the methodology described in §6.1 of dupli-
cating all customers and solving the VRPDDP as a
VRPMDP as the “original” method. For each algo-
rithm version, we present the total route length z,
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Table 9 Computing Times (in Seconds)

Instances VRP VRPSDP Original DVA DVO DSA DSO NVA NVO NSA NSO

Set 1
CMT1X 28 32 34 33 31 35 34 31 31 32 33
CMT1Y 29 31 40 38 37 40 36 36 36 38 38
CMT2X 36 42 44 42 41 42 43 37 39 42 40
CMT2Y 33 38 51 47 47 49 46 47 46 47 49
CMT3X 163 174 142 133 140 139 135 130 127 131 132
CMT3Y 145 143 133 124 131 136 129 124 122 127 126
CMT4X 247 256 177 174 160 183 166 151 156 164 167
CMT4Y 182 264 172 156 167 180 165 157 149 170 159
CMT5X 306 257 340 320 336 352 336 310 305 315 339
CMT5Y 284 266 351 328 340 361 319 309 320 328 331
CMT6X 20 20 26 25 25 25 23 24 24 24 24
CMT6Y 21 25 26 25 24 26 24 22 24 25 25
CMT7X 24 21 50 46 45 50 48 46 43 49 45
CMT7Y 25 26 52 46 47 51 50 47 47 47 49
CMT8X 63 63 125 121 119 129 122 107 111 116 124
CMT8Y 66 68 128 123 127 131 126 119 119 117 116
CMT9X 92 93 186 173 173 183 179 169 164 174 181
CMT9Y 90 99 187 171 185 183 170 173 164 168 169
CMT10X 138 139 209 208 192 204 189 184 189 201 188
CMT10Y 127 150 201 191 186 202 181 188 186 183 194
CMT11X 43 215 161 154 149 153 151 138 147 156 156
CMT11Y 48 200 162 154 148 165 160 140 142 153 148
CMT12X 57 99 74 71 70 73 67 69 64 66 68
CMT12Y 63 102 78 73 75 77 74 70 72 77 72
CMT13X 45 65 134 131 132 128 130 116 114 125 131
CMT13Y 44 67 131 120 130 137 124 118 117 121 120
CMT14X 52 77 75 72 70 75 73 66 64 68 70
CMT14Y 52 75 80 72 75 77 74 71 74 73 72
Average 90 111 127 120 122 128 121 114 114 119 120

Set 2
CMT1X 5 26 29 26 25 30 28 24 25 26 28
CMT1Y 5 27 33 33 31 33 31 29 28 33 33
CMT2X 11 35 36 35 33 36 37 32 32 34 34
CMT2Y 11 32 41 41 39 41 38 41 39 40 42
CMT3X 27 156 114 115 119 112 116 113 104 116 112
CMT3Y 35 121 112 104 111 121 104 110 100 103 107
CMT4X 25 215 151 149 130 152 136 129 136 137 147
CMT4Y 26 220 140 127 133 144 138 139 126 142 131
CMT5X 39 220 285 279 295 295 300 277 261 275 303
CMT5Y 45 230 283 289 276 316 260 265 279 270 288
CMT6X 5 17 21 20 21 21 19 20 21 21 20
CMT6Y 5 21 22 21 20 21 19 19 19 21 20
CMT7X 10 17 44 39 38 42 39 40 35 39 38
CMT7Y 10 22 43 38 41 45 42 38 41 39 43
CMT8X 26 55 111 99 97 104 102 91 94 100 109
CMT8Y 21 60 113 102 102 108 101 98 98 104 94
CMT9X 48 77 149 153 153 157 153 150 140 156 149
CMT9Y 45 79 162 150 163 152 144 148 147 136 149
CMT10X 49 112 180 176 172 164 160 157 155 168 168
CMT10Y 47 130 174 157 151 164 151 160 160 153 155
CMT11X 27 179 144 132 129 127 125 122 127 137 127
CMT11Y 35 174 145 136 126 140 128 116 126 132 132
CMT12X 35 85 60 63 61 60 55 57 52 53 58
CMT12Y 38 90 65 61 63 64 59 58 58 66 60
CMT13X 35 52 108 107 117 112 108 102 93 112 113
CMT13Y 30 54 106 104 104 116 105 95 100 104 105
CMT14X 39 61 60 63 58 65 63 56 55 58 59
CMT14Y 45 66 65 61 64 63 61 61 63 59 60
Average 28 94 107 103 103 107 101 98 97 101 103
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the number of vehicles k, and the improvement
from the original method defined as (z(original) −

z(new))/z(original). To ease comparison, the results of
the original method are also displayed in the tables.
For each instance, the best improvement achieved
is tabulated in the penultimate column. Whereas
including detour lengths and improvements in ãz for
each algorithm version would have made the tables
very cumbersome, we decided to include the best
improvement in detour cost in the last column. This
is defined as (ãz(original) − ãz(best))/ãz(original).
(As ãz(original) −ãz(new) = z(original) − z(new), the
improvement in detour cost for each instance is just
a constant multiple of the improvement in route
length.) Our analysis will be based to a large extent
on three summary measures: the average of the per-
centage improvements, the number of instances for
which an improvement on the original method is
obtained, and the number of instances for which the
best results have been obtained. However, we only
count a result as “best” if it is strictly better than the
result of the original method—otherwise all versions
would appear “best” if no improvement was achieved
or even achievable, distorting the comparison of algo-
rithm versions. These measures are displayed for each
algorithm version in the last three rows of Tables 7
and 8.

In the next two sections we present an analysis
of these results. Section 7.3 compares the new algo-
rithm versions to each other to identify which aspects
make the algorithm more successful. Section 7.4 asks
whether the new algorithms are more efficient than
the methodology presented and analysed in §6.

7.3. An Analysis of the Different
Algorithm Versions

From the testing of the different versions we can
derive indications on which ones are best. Within the
eight versions of our algorithm, there are large vari-
ations. In Set 1, only DVA and NVA give positive
average improvements on the results of the original
algorithm (0.13% and 0.09%, respectively). In terms of
both the number of instances on which an improve-
ment is found and the number of instances for which
the best result is found, the versions where split-
shift is applied (DVA, DSA, NVA, and NSA) appear
the to be best. For the eight instances on which an
improvement is obtained, at least one of these ver-
sions arrives at the best result. Taking a closer look,
we can see that the reason DSA and NSA do not
give positive improvements on average is that their
average result is pulled down by the poor results on
instance CMT13X (and also CMT8X in the case of
NSA). In Set 2, five versions give positive average
improvements, with the approximately equal front-
runners being DVA, DSA, and NVA (with 0.67%,

0.64%, and 0.72%, respectively). For 16 of the 23 in-
stances on which an improvement is obtained, at least
one of these versions arrives at the best result. The
supremacy of these versions is also confirmed by both
the number of instances for which an improvement is
found and (except for DSA) the number of instances
for which the best result is obtained. NSA is clearly
in fourth place, with a 0.42% average improvement,
also according to the number of improved solutions
found. However, it often yields better results than
DVA, DSA, and NVA; it obtains the best results for
CMT2Y, CMT5Y, CMT7X, CMT7Y, and CMT10Y. (We
note that the best results for CMT3X and CMT8X
are obtained by otherwise poorly performing NVO
and NSO.)

If we had to work with just one version, it would
be DVA. It has the best average improvement on Set 1
and comes a close second-best on Set 2. Out of the
31 instances on the two data sets where a positive
improvement is obtained, DVA finds an improvement
27 times, is best 13 times, and lags behind the best
result on the other 18 instances by 0.69% on aver-
age. At the other end of the spectrum, we observe
NSO, which has several very poor results. In Set 2, for
nine instances it finds solutions more than 5% worse
than the original method, including two solutions
(CMT5Y and its capacitated counterpart CMT10Y)
that are nearly 30% worse. For most instances, NSO
gives worse results than the original method, except
for CMT13Y and CMT14X in Set 1 and CMT3X and
CMT8X in Set 2 (interestingly, for the latter two NSO
finds the best result).

We can explain these variations by looking at the
three aspects in which the algorithm versions dif-
fer. First, let us look at whether it is a good idea to
duplicate at the outset the customers with high deliv-
ery or pickup demand. The average improvement of
the versions that do so over both data sets is 0.06%,
whereas for those that do not do so is −0088%. (The
latter result may, however, be partly due to the very
bad results found by NSO.) The benefit of this idea
is also shown by the fact that DVA, DVO, DSA, and
DSO improve on the original method 86 times (out of
4 × 28 = 112 experiments), whereas the other four do
so only 55 times. However, when looking at the best
solutions found, the situation changes. The versions
where duplication of high delivery/pickup demand
customers occur find the best solution only 21 times,
whereas the others do so 24 times. This shows that
reducing the number of customers by duplicating
fewer customers at the outset may speed the algo-
rithm toward good-quality solutions; however, this
should be offset by allowing splitting of customers
during the run of the algorithm.
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Second, let us look at the initial solution—which
is better, starting from the VRPSDP solution or creat-
ing one using modified sweep? The average improve-
ment over both data sets of the versions that use
VRPSDP is 0.04%, whereas for those that use modi-
fied sweep it is −0082%. Looking at the best results
obtained, the VRPSDP-based solutions appear better
(27 best results) than the sweep-based ones (18 solu-
tions). However, if we look at the number of instances
where improvements are obtained, the two groups of
versions appear equally good (72 and 71 improve-
ments, respectively). Therefore, although using the
VRPSDP solution as the initial solution is preferred,
using sweep allows the search to traverse different
solutions and is as likely to find a relatively good-
quality solution as using VRPSDP. It seems that an
added advantage of using modified sweep is that the
VRPSDP solution need not be calculated. However,
in practice one would always be interested in finding
this solution. It also serves as an upper bound, which
is useful because sweep-based methods sometimes
(35 times out of 224 experiments) find a result that is
worse than the VRPSDP solution. (In fact, one should
also always solve the corresponding VRP instance;
this gives a lower bound and the detour cost. More-
over, if z(VRP) = z(VRPSDP), then there is no need to
solve the VRPDDP, because no splitting is needed.)

Finally, let us look at the benefits of the splitshift
operator. Here, at last, the situation is clear. Versions
that use this operator give an average improvement
of 0.36% over both data sets, whereas the others yield
an improvement of −1008%. Splitshift-based versions
find 80 improved solutions, 38 of which are best solu-
tions; the others only find 26 improvements, seven of
which are best results. Therefore, we can definitely
recommend the use of the splitshift operator. The rea-
son for its success is that it allows customers to be
split that are not near the depot or do not have a high
delivery or pickup demand; but does not unnecessar-
ily duplicate such customers.

Although the focus of this analysis was on route
length, because the algorithm is geared toward
minimising this, a few comments on the number of
vehicles are appropriate. Our experiments show little
variation in the number of vehicles found by different
versions of the solution algorithm. In Set 1, k differed
by no more than 1 from that found by the original
algorithm. In Set 2, with two exceptions, k differed by
no more than 2 from that found by the original algo-
rithm. (The exceptions were CMT5X and its capac-
itated counterpart CMT10X, for which the original
algorithm found a rather poor solution.) Normally,
changes in k followed changes in z, but there were
several examples in Set 2 (CMT2X, CMT3Y, CMT5Y,
CMT8Y, CMT10Y, CMT11X, and CMT13X), where z
increased yet k decreased.

Finally, we can see from Table 9 that there is very
little difference in computing times among the dif-
ferent versions—each take an average of about two
minutes per instance. Versions NVA and NVO appear
to be quickest, presumably due to having fewer cus-
tomers duplicated and not requiring to use modified
sweep for an initial solution.

7.4. Is the New Method Really
an “Improved” One?

Let us now compare the original method of duplicat-
ing all customers with the new algorithm. We have
already seen that some versions improve on the origi-
nal, on average. Looking at Tables 7 and 8, we see that
for every instance, except CMT2X of Set 2, a new best
solution was found. (On this instance even the best
result, found by NSA, is 1.26% worse than that of the
original method.) Moreover, we see that no version
is always as good as the original method, although
DVA is never more than 0.10% worse on Set 1 and (if
we discount CMT2X) never more than 0.67% worse
on Set 2. Likewise, no version is always worse than
the original one (although NVO only improves on the
original method for three instances out of 56). Look-
ing in more detail at the “best version” DVA, we
observe that it improves on the original method by
0.13% on Set 1 and 0.67% on Set 2, and finds improved
solutions for six instances (out of a possible 19) on
Set 1 and 21 instances on Set 2.

Comparing the results of the two data sets, we
notice that the improvements are much larger on
Set 2. This is due to the detour costs in Set 1
often being small, so there was only a small range
for improvement. Moreover, in Set 1, the measure
of “number of improved solutions” should be seen
in the light of the detour cost being zero for nine
instances; hence, improvements were only achievable
on the remaining 11 instances.

So far, we have looked only at improvements in z.
Previously, we have stressed the importance of the
detour cost ãz as a better indicator. However, when
comparing different algorithm versions it is simpler
to focus only on z, because the two measures are
just constant multiples of each other. Nonetheless,
we also included in Tables 7 and 8 some indication
of how much these improvements are in terms of
ãz, in the form of “best improvement in ãz.” Look-
ing at the last columns of these tables, we can see
that the improvements achieved by the new algo-
rithm are quite significant in terms of reducing the
detour cost—the average improvements on the two
data sets are 23.99% and 8.51%, respectively. (These
are the averages of the best improvements; the aver-
age improvement of the “best version” DVA is 17.01%
on Set 1 and 4.11% on Set 2.) In Table 7 one can also
easily identify the nine instances with ãz = 0 where
improvements could not have been achieved and
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the three instances (CMT7Y, CMT9X, and CMT14X)
where the new algorithm found a VRPDDP solution
with the same cost as the VRP solution, and thus
reduced the detour costs by 100%. In Table 8, the
best improvement in ãz was achieved on instances
CMT5X and CMT10X; the detour cost was reduced
by 32.48%.

One may elect to solve the VRPDDP eight times
using all the different algorithm versions and select
the best solution found. Looking at the penulti-
mate columns of Tables 7 and 8, we can see the
improvements that can be achieved by doing so.
The average improvement is 0.19% for Set 1 with
eight improved solutions and 1.16% for Set 2 with
23 improved solutions, clearly better than applying
just one of the eight algorithm versions. (This corre-
sponds to detour cost improvements of 23.99% and
8.51%, respectively.) This, of course, is quite time
consuming. Another approach would be to run our
algorithm just a few times. For example, the best
three-version combination appears to be DVA, DSA,
and NVA. This approach would yield the best solu-
tion for all instances but one in Set 1. (For CMT12X,
it lags behind the best solution found by 0.29%.) For
Set 2, it would yield the best solution for 20 instances
and lag behind the best solutions by up to 0.25% on
the others.

Finally, we can see from Table 9 that the new ver-
sions are slightly (about 5%) quicker, on average, than
the original method, although still somewhat slower
than solving the VRPSDP. Clearly, duplicating about
25% of customers yields a computing time between
no duplication (VRPSDP) and duplication of all cus-
tomers (the original method).

In summary, the new algorithm compares favour-
ably to the methodology of duplicating all customers
and solving the resulting VRPMDP, although the im-
provement is generally small. (However, even a small
improvement in z can be considerable in terms of ãz.)
Some variation was found among the different algo-
rithm versions, with versions using the operator split-
shift being clearly more efficient, and version DVA
appearing the best by a narrow margin.

8. Conclusions and Suggestions
We investigated the vehicle routing problem with
divisible deliveries and pickups (VRPDDP), a rarely
addressed extension of the VRP. We placed the
VRPDDP in the context of other VRP extensions
and presented both a MILP formulation and a reac-
tive tabu search metaheuristic. Our computational
experiments led us to the following four main
conclusions.

1. Serving customers twice can often reduce costs
and—perhaps even more importantly—the number

of vehicles required. It appears that the presence of
very small deliveries and pickups is not conducive
to splitting. Route length and the number of vehi-
cles are reduced considerably when the delivery and
pickup figures vary within a wide range. The bene-
fits of splitting are shown to be even more significant
for instances where there is a large difference between
delivery and pickup values. Splitting seems more ben-
eficial for clustered instances; however, the presence
of a maximum time constraint does not appear to be
a predictor for splitting.

2. Three important characteristics of customers
who are served twice were observed: they are near the
depot, they have a high delivery or pickup demand,
or they are located in a dense cluster of customers,
with the first factor being especially significant. These
observations lead us to believe that good solutions
could be achieved if we consider splitting only for
customers with such characteristics.

3. Almost all routes take the shape of a cycle,
with customers being split across (rather than within)
routes. Split customers very often, but not always,
occur at the beginning or the end of a route.

4. A promising method for solving the VRPDDP is
based on duplicating “promising” customers at the
outset and allowing splitting of the remaining cus-
tomers during the run of the algorithm. The results
of such a method compare favourably to the concept
of duplicating all customers and solving the VRPDDP
as a VRPMDP.

We plan to take this research forward as follows:
1. Extend the scope of our analysis to the split

delivery VRPDDP (see Mitra 2005, 2008), allowing
customers’ delivery and pickup requests to be served
in several visits.

2. Merging our lines of research in this paper and
in Nagy, Wassan, and Salhi (2013), we wish to investi-
gate the VRPDDP with restricted mixing. This model,
introduced by Hoff and Løkketangen (2006), forces
customers to be served separately to avoid situations
where there is a mixture of delivery and pickup goods
on board, but not enough space to have access to both
kinds of goods.
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