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In-Depth Analysis of Pricing Problem Relaxations
for the Capacitated Arc-Routing Problem

Claudia Bode, Stefan Irnich
Chair of Logistics Management, Gutenberg School of Management and Economics,

Johannes Gutenberg University Mainz, Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

Recently, Bode and Irnich (‘Cut-First Branch-and-Price-Second for the Capacitated Arc-Routing Prob-
lem’, Operations Research, 2012, doi: 10.1287/opre.1120.1079) presented a cut-first branch-and-price-second
algorithm for solving the capacitated arc-routing problem (CARP). The fundamental difference to other
approaches from the literature for exactly solving the CARP is that the entire algorithm works directly on
the typically sparse underlying graph representing the street network. This enables the use of highly efficient
dynamic programming-based pricing algorithms for solving the column-generation subproblem also known
as the pricing problem. The contribution of this paper is the in-depth analysis of the CARP pricing problem
and its possible relaxations, including the construction of new labeling algorithms for their solution, theoret-
ical complexity results, and comprehensive computational tests on standard benchmark problems. We will
show that a systematic variation of different relaxations provides a powerful approach to solve knowingly
hard instances of the CARP to proven optimality.

Key words: CARP, column generation, branch-and-price, pricing problem, relaxations

1. Introduction

The capacitated arc-routing problem (CARP) is the fundamental multiple-vehicle arc-routing problem
with applications in waste collection, postal delivery, winter services and more (Dror, 2000; Corberán and
Prins, 2010). Recently, Bode and Irnich (2012) presented a new exact solution approach based on an aggre-
gated, non-symmetric formulation that was derived via a Dantzig-Wolfe decomposition of the well-known
two-index formulation (Belenguer and Benavent, 1998). For its solution, violated valid inequalities as well
as missing variables are generated dynamically. The corresponding cut-and-column-generation algorithm as
a whole exploits the fact that the underlying CARP graph is sparse (exploitation of sparsity is an idea that
was originally coined by Letchford and Oukil (2009)). Note that any approach using a transformation of
the CARP into a node-routing problem results in dense graphs (Baldacci and Maniezzo, 2006; Longo et al.,
2006; Bartolini et al., 2012). Using the one-index formulation of the CARP, some relevant valid inequalities
are computed a priori in the initial cutting phase. This provides a very fast warm-start of the column-
generation process. Due to direct use of a sparse network for fast pricing, the proposed column-generation
algorithm often produces strong lower bounds in relatively short computation time for many instances from
the literature. Integrated into branch-and-bound, the approach becomes a cut-first branch-and-price-second
algorithm. The computation of integer solutions then benefits from the non-symmetric formulation and, in
particular, from an effective branching scheme.

The contribution of this paper is the in-depth analysis of the CARP pricing problem and its possible
relaxations, including the construction of new labeling algorithms for their solution, theoretical complexity
results, and comprehensive computational tests on standard benchmark problems. Using pricing problem

Email addresses: claudia.bode@uni-mainz.de (Claudia Bode), irnich@uni-mainz.de (Stefan Irnich)
Technical Report LM-2012-06 November 17, 2012



relaxations is a standard technique in column generation (Lübbecke and Desrosiers, 2005; Desaulniers et al.,
2005) because pricing problems in routing applications are typically strongly NP -hard elementary shortest-
path problems with resource constraints (ESPPRC, Irnich and Desaulniers, 2005). In fact, many successful
column-generation approaches play with the trade-off that different pricing problems relaxations offer (Irnich
and Villeneuve, 2006; Baldacci et al., 2011b). Stronger relaxations produce tighter lower bounds, but come
at the cost of being harder to solve leading to longer computation times in the pricing subproblem. The
branch-and-price approach in (Bode and Irnich, 2012) made use of just one relaxation producing 2-loops free
tours (Benavent et al., 1992). This relaxation is particularly beneficial because it is compatible and at the
same time indispensable for branching on followers. Actually, branching on followers and non-followers is the
only effective technique known to guarantee the integrality in branch-and-price when pricing is performed
on the original sparse network.

Bode and Irnich (2012) already showed that pricing relaxations based on k-loop elimination produce
better root node lower bounds. However, for these and other possible relaxations it remained unclear how
integer solutions can be computed using the aforementioned branching scheme. This paper is intended to
fill the gap by showing how different pricing relaxations can be made compatible with the requirements
imposed by branching. We will discuss and empirically analyze the trade-offs between hardness of pricing
and strength of lower bounds for various pricing relaxations. As a result, we are able to compute new best
lower bounds and optimal solutions for several knowingly hard CARP instances from the benchmark sets of
Eglese and Li (1992), Brandão and Eglese (2008), and Beullens et al. (2003).

The remainder of this paper is structured as follows: The next section defines the CARP and briefly
summarizes the cut-first branch-and-price-second approach presented in (Bode and Irnich, 2012). Section 3
presents the pricing problem, and discusses well-known and also new pricing relaxations. Several acceleration
techniques for solving the shortest-path subproblems via dynamic-programming labeling algorithms such as
bidirectional pricing, bounding, and scaling are summarized and adapted to the new relaxations in Section 4.
In Section 5, we presents comprehensive computational results and final conclusions are drawn in Section 6.

2. Cut-First Branch-and-Price-Second for the CARP

The CARP has been introduced by Golden and Wong (1981) and studied intensively both from a heuristic
and exact algorithm point of view. Heuristics and metaheuristics are essential for computing good upper
bounds. Some prominent and successful approaches from the literature include approaches based on tabu
search (Brandão and Eglese, 2008), genetic or memetic algorithms (Lacomme et al., 2001; Fu et al., 2010),
guided local search (Beullens et al., 2003), variable neighborhood search (Polacek et al., 2008), ant colony
optimization (Santos et al., 2010), and many more. A survey on heuristic methods is (Prins, 2013). On the
other hand, there are several approaches for computing good lower bounds. Pure polyhedral approaches
to the CARP are discussed in (Letchford, 1997; Belenguer and Benavent, 1998, 2003; Ahr, 2004). At
the moment, it seems that the most successful exact solution approaches are all based on a combination
of cut-and-column generation. Gómez-Cabrero et al. (2005) and Martinelli et al. (2011a) proposed column
generation-based algorithms, where either initially computed cuts are added to the column-generation master
program or a cutting-plane algorithm is applied during and after the column-generation process. Thereafter,
a branch-and-bound procedure follows in (Martinelli et al., 2011a). Their branching scheme is not complete
meaning that they can only guarantee integer deadheading flows, but route variables may remain fractional.

Complete exact methods were recently presented in (Bartolini et al., 2012; Bode and Irnich, 2012). The
first method consists of computing a cascade of non-decreasing lower bounds, enumerating all routes with
reduced cost smaller than the integrality gap of upper bound minus the best lower bound, and finally solving
the master program with a (general purpose) mixed integer-programming solver. Note that Bartolini et al.
(2012) make intensive use of a transformation of the CARP into a generalized vehicle-routing problem
(GVRP) so that route generation is performed on a dense graph. In contrast, the sparsity of the CARP
network is heavily exploited by Bode and Irnich (2012), where in the first phase a cutting-plane algorithm
is applied to initialize the column-generation master program and in the second phase the branch-and-price
algorithm is executed. This general approach will be explained in detail in Sections 2.2 and 2.3.
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A comprehensive overview on exact CARP approaches is given in (Belenguer et al., 2013) and recent
surveys on both heuristic and exact approaches are (Wøhlk, 2008; Corberán and Prins, 2010).

2.1. Notation and Definition of the CARP
For the formal definition of the CARP, we assume an undirected and simple graph G = (V,E) with

node set V and edge set E. In applications, this graph G is typically sparse so that |E| ≤ ∆|V | holds for
a small number ∆ > 0. A distinguished node d ∈ V is given representing the depot. All edges e ∈ E have
an associated non-negative integer demand qe ≥ 0 and those with positive demand form the subset ER ⊆ E
of required edges. Required edges have to be served exactly once. All edges e ∈ E, either required or not,
can be traversed without providing service (=deadheading). CARP costs consist of two components, that
is, service costs cserve for servicing required edges e and deadheading costs ce for all edges e deadheaded.

A tour is an Eulerian subgraph (V ′, E′) of G with V ′ ⊆ V and E′ ⊆ E, where d ∈ V ′ holds and E′

may contain copies of edges. In fact, E′ is a multi-set. By definition, a Eulerian subgraph is connected
and all its nodes have an even and positive node degree. A feasible tour serves a subset Es ⊆ E′ with
demand

∑
e∈Es

qe not exceeding the vehicle capacity C. It is assumed that all other edges Ed := E′ \ Es

are deadheaded (counting copies appropriately). Moreover, it must be elementary meaning that Es is a
simple set and does not contain copies of parallel edges. An optimal CARP solution is a cost-minimal set of
feasible tours such that every required edge e ∈ ER is serviced by exactly one tour. Note that there might
exist a huge number of Eulerian paths for a given Eulerian subgraph, i.e., the same feasible tour might be
represented by several possibilities of traversals.

Some authors define the CARP for an unlimited fleet of vehicles (Belenguer and Benavent, 2003; Longo
et al., 2006; Bartolini et al., 2012), others fix the number of vehicles (Bode and Irnich, 2012; Belenguer and
Benavent, 1998). Here, the fleet size is also fixed to the minimum number K of required vehicles (computed
by solving a bin-packing problem) and we assume that each vehicle of the homogeneous fleet has capacity C
and is stationed at the depot d.

Throughout this paper, we use the following standard notation: Given a subset S ⊆ V , the cut set δ(S)
(the set E(S)) is the set of edges with exactly one (both) endpoint(s) in S. The subscript R indicates the
restriction to subsets of required edges so that δR(S) = δ(S) ∩ ER and ER(S) = E(S) ∩ ER holds. For
simplicity, the abbreviation δ(i) is used instead of δ({i}) (also δR(i) for δR({i})). Given a subset F ⊆ E
and any parameter or variable y, the term y(F ) stands for

∑
e∈F ye.

2.2. Cutting-Plane Generation: First Phase
The first phase of the algorithm presented in (Bode and Irnich, 2012) consists of the generation of a

relevant set of valid inequalities that are later added to the column-generation formulation. Solving the
following one-index formulation with a cutting-plane procedure, the added inequalities are those that are
binding at the end.

The one-index formulation was first considered independently by Letchford (1997) and Belenguer and
Benavent (1998). It can be used for computing lower bounds, which are known to be optimal or very tight
at least for small and medium-sized instances. However, the one-index formulation is a relaxation of the
CARP, since its associated integer polyhedron generally contains infeasible solutions. It uses aggregated
deadheading variables ye ∈ Z+ one for each edge e ∈ E. The attribute aggregated refers to the fact that ye
counts the deadheadings over edge e performed by all K vehicles together. The one-index formulation reads
as follows:

min c>y (1)
s.t. y(δ(S)) ≥ 2K(S)− |δR(S)| for all ∅ 6= S ⊆ V \ {d} (2)

y(δ(S)) ≥ 1 for all ∅ 6= S ⊆ V , |δR(S)| odd (3)

y ∈ Z|E|+ (4)

The objective (1) minimizes the costs of all deadheadings (note that service costs are constant and therefore
irrelevant for routing decisions). The capacity inequalities (2) require that there are at least 2K(S) traversals
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(services and deadheadings) over the cutset δ(S). Herein, K(S) is the minimum number of vehicles needed
to service the edges ER(S) ∪ δR(S). The number K(S) can be approximated by dq(ER(S) ∪ δR(S))/Ce
and computed exactly by solving a bin-packing problem. Furthermore, the odd-cut inequalities (3) ensure
for each subset S with an odd number of required edges in the cut δ(S) that at least one deadheading is
performed. Belenguer and Benavent (2003) introduced disjoint-path inequalities as another class of valid
cuts for the CARP. The idea is to consider not only the demand of ER(S) ∪ δR(S) but also the demand
on a path from the depot to the set S. The general form of all valid inequalities (including disjoint-path
inequalities) can be written as

∑
e∈E desye ≥ rs for s ∈ S where S is the set of all inequalities and des the

coefficient of edge e in a particular cut indexed by s.

2.3. Branch-and-Price: Second Phase
In the second phase of the algorithm presented in (Bode and Irnich, 2012), a restricted master program is

iteratively reoptimized and variables with negative reduced costs are generated at each iteration. To obtain
integer solutions a branching scheme is applied.

2.3.1. Master Program
The master program is derived by a Danzig-Wolfe decomposition from the two-index formulation by

Belenguer and Benavent (1998) extended by additional cuts from the first phase. Because a homogeneous
fleet of vehicles is assumed, an aggregation over all vehicles is applied. As a result, the column-generation
formulation contains two sets of variables. On the one hand, there are variables λr ≥ 0, one for every
efficient feasible route r ∈ Ω, where efficient means that no deadheading along a cycle in G is performed.
On the other hand, variables ze ≥ 0 for every edge e = {i, j} ∈ E indicate a deadheading along the cycle
(e, e) = (i, j, i).

Let x̄er and ȳer be the number of times a route r services and deadheads through an edge e, respectively.
The linear relaxation (MP) of the extensive formulation reads then:

min
∑
r∈Ω

crλr +
∑
e∈E

(2ce)ze (5)

s.t.
∑
r∈Ω

x̄erλr = 1 for all e ∈ ER (6)∑
r∈Ω

dsrλr +
∑
e∈E

(2des)ze ≥ rs for all s ∈ S (7)

1>λ = K (8)
λ ≥ 0, z ≥ 0 (9)

The objective (5) consists of minimizing the costs of the routes plus the costs of deadheading along simple
cycles. Each required edge must be covered by one route (6). Both route variables λr and cycle variables ze
are impacted by the additional cuts from phase one. For a specific cut s ∈ S, the route r ∈ Ω has the
coefficient dsr =

∑
e∈E desȳer, and the respective coefficient of the cycle variable ze is 2des. Thus, the

general form of cuts from the one-index formulation can be transformed into the reformulated cuts (7).
Since the number of vehicles is fixed, exactly K routes are used (8) and all variables are non-negative (9).

Note that the exact integrality condition for the integer master program (IMP) is neither λ ∈ ZΩ
+ and

z ∈ ZE
+ nor

ye =
∑
r∈Ω

ȳerλr ∈ Z+. (10)

The first condition is sufficient, but not necessary, because integer solution can sometimes be reconstructed
from fractional λ variables (Bode and Irnich, 2012). The latter conditions (10) are necessary, but not
sufficient, see Section 2.3.3 on branching.
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2.3.2. Pricing Problem
Because the restricted master program (RMP) is initialized with a proper subset of route variables λr,

missing variables with negative reduced costs must be priced out. In fact, the task of the pricing problem is
the generation of those variables. Let π = (πe)e∈ER

be the vector of dual prices for covering constraints (6),
β = (βs) the vector of dual prices for active valid inequalities (7), and µ the dual price to the generalized
convexity constraint (8). Reduced costs for service and deadheading are defined as follows:

c̃serve = cserve − πe for all e ∈ ER and c̃e = ce −
∑
s∈S

desβs for all e ∈ E. (11)

With binary variables xe for e ∈ ER indicating service and integer variables ye for e ∈ E for deadheading,
the pricing problem to (π, β, µ) is:

zPP (π, β, µ) = min c̃serv,>x+ c̃>y − µ (12)
s.t. x(δR(S)) + y(δ(S)) ≥ 2xf for all S ⊆ V \ {d}, f ∈ ER(S) (13)

x(δR(i)) + y(δ(i)) = 2pi for all i ∈ V (14)
q>x ≤ C (15)

p ∈ Z|V |+ , x ∈ {0, 1}|ER|, y ∈ Z|E|+ (16)

The objective (12) is the minimization of the reduced costs. Constraints (13) ensure connectivity of all
required edges serviced. An even node degree is guaranteed by (14) using auxiliary integer variables pi, one
for each node i ∈ V . Constraint (15) is the capacity constraint.

Obviously, whenever deadheading gives no profit, i.e., c̃e ≥ 0 for all e ∈ E, it is not efficient to have
cycles consisting only of deadheading. However, the two-index formulation, from which Bode and Irnich
(2012) derived the master program and pricing problem, allows deadheading cycles denoted as extended
k-routes in (Belenguer and Benavent, 1998). These extended k-routes correspond to extreme rays of the
polyhedron formed by (13)–(16). The variables ze in the master program (5)–(9) model cycles (e, e) = (i, j, i)
for each edge e = {i, j} ∈ E. Additional variables in this master problem (the primal problem) correspond
to inequalities in the associated dual problem. Therefore, the variables ze give dual inequalities of the form∑

s∈S desβs ≤ ce for all e ∈ E. These dual inequalities result in a stabilization of the dual variables βs
(Ben Amor et al., 2006). Moreover, the algorithmic advantage for pricing is the guarantee that the reduced
costs c̃e of deadheadings over all edges are non-negative. The algorithms presented in Section 3 substantially
rely on that property.

Note that optimal CARP tours require only the knowledge of the Eulerian subgraphs (V ′, E′) and the
partition of E′ into served edges Es = {e ∈ E : xe = 1} and deadheaded edges Ed. The pricing problem is
in fact not a routing problem, since the ordering of serviced and deadheading edges is irrelevant. However,
the only viable approach known to us for solving the pricing problem is to compute paths. Hence, we solve
a routing problem and herewith determine an ordering of serviced and deadheading edges. We will see that
this ordering is also crucial for the branching scheme presented in the next section. As pointed out earlier
by Bartolini et al. (2012), a feasible CARP tour can then be represented by several possibilities of traversing
the corresponding Eulerian subgraph.

Summarizing, the pricing problem asks for a feasible CARP tour with minimum reduced cost, where
reduced cost c̃serve and c̃deadhe for servicing and deadheading along each edge e ∈ E are given. Since service
variables xe are binary, no feasible CARP tour can perform a service for an edge more than once. This is
exactly the definition of an elementary CARP tour. Relaxing the elementarity constraint leads to easier
solvable subproblems at the cost of a generally weakened master program lower bound.

2.3.3. Branching
In order to obtain integer solutions, a hierarchical branching scheme was devised. It consists of three

levels of branching decisions: (1) branching on node degrees, whenever a node with a non-even degree
exists, (2) branching on edges with fractional edge flow, (3) branching on follower information, whenever
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the information if two edges are serviced consecutive is fractional. Note that the third branching decision is
applicable, since the pricing problem is solved as a routing problem, where an ordering of serviced edges is
determined. This decision guarantees integer route variables and can be handled by modifying the underlying
pricing network. Bode and Irnich (2012) showed that follower constraints in the branching part can be
handled in the pricing problem by adding edges that represent certain paths. On the other hand, non-
follower constraints are handled by associating the same task to the corresponding edges. Combinations of
several follower and non-follower constraints are more intricate to implement, but follow the same idea.

3. Pricing Problem Relaxations

Letchford and Oukil (2009) analyzed two mixed integer linear programming (MIP) models for solving
the elementary pricing problem (12)–(16). When solved with the general purpose MIP solver CPLEX, the
resulting computation times were prohibitively long. In principle, the pricing problem (12)–(16) is solvable
as an ESPPRC with tasks on service edges using known labeling techniques from the literature (see Irnich
and Desaulniers, 2005). However, as paths can become rather long, ESPPRC labeling still suffers from
extensive computation times.

Since the ESPPRC is stronglyNP -hard, different relaxations were considered in the literature. Letchford
and Oukil (2009) proved that the non-elementary relaxation of the pricing problem can be solved in pseudo-
polynomial time O (C(|E| + |V | log |V |)). Their labeling algorithm comprises two building blocks invoked
alternately, one is similar to standard labeling approaches for extending labels along service edges and the
other is a Dijkstra-like algorithm for extensions along deadheading edges. The Dijkstra steps rely on the
property that deadheading edges have non-negative reduced costs (this can be assured, see Section 2.3.2).

A stronger formulation than the non-elementary SPPRC results from the 2-loop-free (=task-1-cycle-free)
pricing relaxation already known for the CARP from the work of Benavent et al. (1992). Note that task-
2-loop-free pricing in the arc routing context allows paths containing task sequences of the form (a, b, a),
whereas (a, a) is forbidden. However, in the node routing context node-2-cycle-free pricing allows subpaths
(i, j, k, i) and forbids (i, j, i). Both strategies have in common requiring two paths to dominate a third
one (see Section 3.4 for further details) so that one must record, for every state, a best and a second best
label having a different last task. To distinguish between arc and node routing, we will always refer to
loop freeness in the arc-routing context. Comprehensive computational results with 2-loop-free tours were
already presented in (Bode and Irnich, 2012).

General requirements. We will now outline requirements on any relaxation of the pricing problem to be used
within the presented branch-and-price algorithm. In general, applying the suggested hierarchical branching
scheme with branching on non-follower constraints means that any pricing problem relaxation must be able
to handle two sets of tasks:

• tasks T E for modeling the elementary routes

• tasks T B for respecting non-follower constraints imposed by branching (2-loop-free tours)

The set T E models elementary routes, and due to network modifications in the branching phase, there can
be no, one or several tasks of T E (forming a task sequence) on a single edge. More precisely, edges modeling
deadheading have no task, the original service edges e ∈ ER have one task, and edges representing longer
paths have a task sequence.

By introducing another set T B of tasks, non-follower constraints can be handled in the pricing problem.
By associating the same task of T B with two different edges, it is guaranteed that any 2-loop-free path will
not serve the two edges consecutively (in either direction). For tasks T B , there can only be no or one task
per edge. Note further that any properly stronger relaxation, i.e., forbidding task loops up to a longer loop
length than two, also guarantees 2-loop-free paths. However, such a relaxation is too restrictive in the sense
that it would also exclude paths that are explicitly allowed in the non-follower branch, e.g., a path that
contains a single 3-loop.
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In essence, a shortest-path problem where paths are elementary w.r.t. T E and task-2-loop-free w.r.t.
T B must be solved. In the following, we will skip the ‘task-’ prefix. Consequently, 2-loop-free tours are
indispensable, since the only viable branching scheme (known to us) is based on follower and non-follower
constraints resulting in edges having identical tasks.

Let P be any path in G. The following attributes are associated with P in a labeling procedure:

i(P ) = the end node of path P
c̃(P ) = the accumulated reduced cost along P
q(P ) = the accumulated load along P
T E(P ) = the sequence of tasks from T E in the ordering as serviced by P
T B(P ) = the last task form T B serviced by P ; if P is a pure deadheading path then T B(P ) = ·

Note that we just need to keep track of the last task T B(P ) in any dominance algorithm, while for the tasks
T E(P ) the sequence, a part of the sequence or a subset of the tasks might be relevant depending on the
respective relaxation.

A feasible path P ending at i = i(P ) can be extended along an edge either deadheaded or serviced.
Any deadheading extension along an edge e = {i, j} ∈ δ(i) with associated reduced cost c̃e is feasible. The
resulting new path P ′ has the following attributes:

i(P ′) = j

c̃(P ′) = c̃(P ) + c̃e
q(P ′) = q(P ) (17)
T E(P ′) = T E(P )

T B(P ′) = T B(P )

On the other hand, a service extension along an edge e = {i, j} ∈ δR(i) with associated reduced cost c̃serve

is feasible if q(P ) + qe ≤ C holds. Moreover, in the ESPPRC case, the task sequences T E(P ) and T E(i, j)
must have no task in common, and T B(P ) 6= T B(i, j) needs to be fulfilled. If for one or both paths P and
(i, j) there is no last task in T B , indicated by ‘·’, then the latter condition is always considered true. The
resulting new path P ′ has the following attributes:

i(P ′) = j

c̃(P ′) = c̃(P ) + c̃serve

q(P ′) = q(P ) + qe (18)
T E(P ′) = (T E(P ), T E(i, j))

T B(P ′) = T B(i, j)

In the pure non-elementary case considered by Letchford and Oukil (2009), the attributes T E(P ) and
T B(P ) are completely ignored. Then, a path P dominates another path Q if i(P ) = i(Q), c̃(P ) ≤ c̃(Q), and
q(P ) ≤ q(Q) holds. The entire labeling procedure is summarized in Algorithm 1.

Some remarks about Algorithm 1 seem appropriate here:

1. In the non-elementary case, dominance is trivial. The set {P ∈ Pq : i(P ) = i, q(P ) = q} for a given
combination of i and q contains not more than a single path (sometimes no path). Whenever a new
path P ′ is created with load q, it replaces the existing one, say Q, only if it is cheaper, i.e., c̃(P ′) < c̃(Q).
If paths are stored in arrays (index by node i(P ) and load q(P )) this dominance step needs just
constant time O (1).

2. The use of a Fibonacci heap data structure (see Ahuja et al., 1993) guarantees the worst-case com-
plexity of O (|E|+ |V | log |V |) of the Dijkstra-like extensions.

3. The final filtering step is necessary, since the algorithm would otherwise output some paths that are
not Pareto-optimal. Note that the dominance procedure among all paths ending at the node d requires
O (C) time only because paths P with i(P ) = d are already sorted by q(P ) (by using the indexing).
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Algorithm 1: Efficient Pricing Algorithm O (C · (|E|+ |V | log |V |))
for q = 0, 1, 2, . . . , C do

// Dijkstra-like extensions
Let Pq be the (sorted) set of paths P with q(P ) = q
// Keep Pq always sorted w.r.t. c̃(P ) using a Fibonacci heap
for P ∈ Pq do

Extend P along deadheading edges e = {i, j} ∈ δ(i) where i = i(P ) using (17)
Add the new path P ′ to Pq

Apply dominance algorithm among Q ∈ Pq with i(Q) = i(P ′)

// Service extensions
Let Pq be the (unsorted) set of paths P with q(P ) = q
for P ∈ Pq do

Extend P along service edges e = {i, j} ∈ δR(i) where i = i(P ) using (18)
if new path P ′ is feasible then

// path P ′ has load q(P ′) = q + qe > q
Add the new path P ′ to Pq(P ′)

Apply dominance algorithm among Q ∈ Pq(P ′) with i(Q) = i(P ′)

// Filtering step
Apply dominance algorithm at destination node d among all paths P ending at d = i(P )

3.1. 2-Loop-free Paths
The necessary modification for pricing out only 2-loop-free tours is not complicated. In this case, the

tasks for non-followers T B are always a subset of the tasks T E so that it suffices to be 2-loop-free w.r.t.
T B . Therefore, a path P does not record the sequence T E(P ), but the node i(P ), the cost c̃(P ), the load
q(P ), and the last task T B(P ) serviced. A path P dominates a path Q if i(P ) = i(Q), c̃(P ) ≤ c̃(Q),
q(P ) ≤ q(Q), and T B(P ) = T B(Q), i.e., they have the same last task. Moreover, two paths P1 and P2

with T B(P1) 6= T B(P2) together dominate any other path Q if i(P1) = i(P2) = i(Q), c̃(P1), c̃(P2) ≤ c̃(Q),
q(P1), q(P2) ≤ q(Q) As a result, there are never more than two relevant paths P1, P2 with i(P1) = i(P2)
and q(P1) = q(P2), one with minimum cost and one with second best cost having a different preceding
task T B(P1) 6= T B(P2). Additional algorithmic tricks for implementing 2-loop elimination can be found in
(Kohl, 1995; Larsen, 1999).

3.2. ng-Route Relaxation
The ng-route relaxation by Baldacci et al. (2011b) has been successfully applied for solving several

VRP variants using cut-and-column generation approaches. The relaxation is parameterized and defined
by neighborhoods Ni, one for each node i ∈ V . In the CARP case, Ni ⊆ T E , i.e., tasks of service edges
define the neighborhoods and herewith the relaxation. The principle of the ng-route relaxation is that
the full sequence T E(P ) of served tasks associated with a path P is replaced by a subset T E

NG(P ) of the
tasks T E(P ) in the sequence. It means that some of the tasks from the sequence T E(P ) are disregarded
and also the ordering of the tasks is disregarded.

The subset T E
NG(P ) ⊆ T E is defined recursively with the extension of a path P ending at node i = i(P )

along an edge e = {i, j} ∈ δ(i). Any deadheading extension is allowed, and the new task set for the resulting
path P ′ = (P, e, j) is

T E
NG(P ′) = T E

NG(P ) ∩Nj .

In contrast, the extension along the service edge is considered feasible w.r.t. (Ni)i∈V if and only if

T E
NG(P ) ∩ {T E(i, j)} = ∅,
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and, in this case, the new path P ′ has the task subset

T E
NG(P ′) = (T E

NG(P ) ∪ {T E(i, j)}) ∩Nj ,

where {T E(i, j)} denotes the set of tasks in the service sequence (i, j).
The interpretation of this ng-route relaxation is that the neighborhoodsNi work as filters: Any task t ∈ T E

serviced along a path P is disregarded whenever t /∈ Ni for a node i that is visited after that service. Hence,
a repeated service becomes possible then.

Dominance between two paths must consider the subset of tasks. A path P dominates another path Q
if i(P ) = i(Q), c̃(P ) ≤ c̃(Q), q(P ) ≤ q(Q), and T E

NG(P ) ⊆ T E
NG(Q) holds. It can therefore happen

that there exist O (2|Ni|) different undominated paths P at a node i(P ) with identical load q(P ) = q for
q ∈ {0, 1, 2, . . . , C} given.

Obviously, setting all neighborhoods as large as possible, i.e., Ni = T E , solves the elementary case,
ESPPRC, where no loops w.r.t. to any task are allowed. In the general case, however, an ng-route relaxation
does not ensure that every feasible path does not contain a 2-loop w.r.t. T B . Therefore, the 2-loop freeness
w.r.t. T B has to be guaranteed additionally. Combining an ng-route relaxation w.r.t. T E and 2-loop-free
routes w.r.t. T B is straightforward using both types of associated attributes. The number of different
undominated paths P at a node i(P ) with identical load q(P ) = q can now grow by a factor of two, to
O (21+|Ni|).

3.3. Partial Elementary
The concept of partial elementarity was presented by Desaulniers et al. (2008) and applied to the VRP

with time windows (VRPTW). Partial elementarity is a special case of an ng-route relaxation where all
neighborhood sets Ni = N are identical for all nodes i ∈ V . Thus, elementarity w.r.t. the subset N ⊂ T E

must be ensured.
The same attribute updates and dominance rules as for ng-route relaxation are applied. Again 2-loop

freeness w.r.t. T B is not fulfilled automatically, therefore, the partial elementarity relaxation w.r.t. T E

and 2-loop-free routes w.r.t. T B have to be combined. This increases the maximum number of different
undominated paths P at the same node and with identical load to O (21+|N |).

3.4. k-Loop-free Paths
It is known that solving an SPPRC with k-loop elimination is a good compromise between solving

ESPPRC and SPPRC. Note that a path is k-loop-free if it does not contain a task loop of length k or
smaller, e.g., for k = 3 no 3-loops and no 2-loops. A general labeling algorithm for k-loop-free SPPRC was
presented by Irnich and Villeneuve (2006). At the time of its invention, it proved to be highly successful for
computing optimal solutions to some knowingly hard VRPTW instances.

In (Bode and Irnich, 2012), computational results for solving the linear relaxation of the column-
generation master program with k-loop-free pricing were presented. Due to the incompatibility of non-
follower branching with simple k-loop elimination for k ≥ 3, however, the algorithm by Bode and Irnich
(2012) did not provide results for branch-and-price.

3.5. (k, 2)-Loop-free Paths
This section contains new theoretical results for labeling procedures that simultaneously consider two

sets of tasks for which loop freeness must be guaranteed. In our CARP application, paths are desired to
be k-loop-free w.r.t. tasks T E , where we would like k > 2 to be as large as possible (of course there is the
trade-off between strength of the relaxation and effort for pricing), and need to be exactly 2-loop-free w.r.t.
the tasks T B . Generalizing, we will derive results for a combined (k1, k2)-loop elimination for the tasks sets
T 1 and T 2. For simplicity, we abbreviate paths feasible w.r.t. both tasks sets T 1 and T 2 as (k1, k2)-loop-free
paths.

It is rather simple to define attribute updates and extension rules for (k1, k2)-loop elimination. The crucial
part for an effective labeling algorithm is however the definition of a dominance relation. Straightforward
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approaches define dominance only between paths taking the last k1−1 tasks of T 1 and k2−1 tasks of T 2 into
account. This is rather easy, but turns out to be ineffective due a possible number of O (|T 1|k1−1 · |T 2|k2−1)
labels at the same node and with identical load; see also (Irnich and Villeneuve, 2006) where this point
is discussed for node-k-cycle elimination. Therefore, the decisive point is the development of effective
dominance rules guaranteeing a small number of labels.

Such an effective dominance rule, based on the one for simple k-cycle elimination proposed by Irnich
and Villeneuve (2006), does not only compare pairs of paths. Instead, several paths together may be
needed to dominate another path. In the following, we will distinguish between paths and labels. The
paths are represented by labels, but labels may contain additional attributes needed to efficiently test for
domination. Moreover, paths can mutually dominate each other, while we will make sure that dominance is
uni-directional among labels. This can be achieved using a unique identifier (an ID) for each label, which
breaks ties whenever two label with identical resources are compared (in the CARP, the resources are reduced
costs and load; for a more detailed discussion of that point see (Irnich and Villeneuve, 2006, p. 393f)).

The dominance principle says that labels L1, . . . , Ls (s ≥ 1) representing paths P1, . . . , Ps dominate a
label L representing path P if

1. P1, . . . , Ps and P share the same end node denoted by i(P1) = · · · = i(Ps) = i(P ).
2. Every feasible completion Q of P to the sink node, i.e., (P,Q) is a feasible path, must also result in a

feasible path (Pj , Q) for at least one path Pj , j ∈ {1, . . . , s}.
3. The cost of (Pj , Q) must not exceed the cost of (P,Q) for all j ∈ {1, . . . , s}.

As a consequence, the label L does not need to be considered in a labeling algorithm because it can never
produce a better feasible extension to the destination node than possible with at least one extension of the
labels L1, . . . , Ls. It is however crucial that the labels L1, . . . , Ls are kept.

The second condition (2.) is typically replaced by a (sufficient) condition that is easier to check, involving
resource consumptions and task loops. In fact, all paths P1, . . . , Ps must have not larger loads and reduced
costs than P , i.e.,

q(P1), . . . , q(Ps) ≤ q(P ) and c̃(P1), . . . , c̃(Ps) ≤ c̃(P ), (19)

while feasibility regarding tasks loops is not checked via resources.
The fundamental idea for (k1, k2)-loop elimination is to efficiently encode the set of possible extensions

of a path. For this purpose, let E(P ) denote the set of loop-free extensions of the path P . E(P ) solely
considers task loops and not resource consumptions. The second condition above is fulfilled for P1, . . . , Ps

and P if (19) and
s⋃

i=1

E(Pi) ⊇ E(P ) (20)

holds. We will now describe how to encode this condition in order to handle two sets of tasks efficiently.

Encoding the Possible Extensions by Self-Hole Sets. There are two sets of tasks T 1 and T 2 for which loop
freeness has to be ensured. Let S be the set of all (k1, k2)-loop-free paths, i.e., k1-loop-free w.r.t. tasks in T 1

and k2-loop-free with respect to tasks in T 2. Let P,Q ∈ S be two feasible paths. Then, the concatenation
(P,Q) is also a path in S if and only if both (T 1(P ), T 1(Q)) is k1-loop-free and (T 2(P ), T 2(Q)) is k2-loop-
free. This condition holds if

(T 1(P ), T 1(Q)) = (. . . , t1k1−1, . . . , t
1
2, t

1
1, s

1
1, s

1
2, . . . , s

1
k1−1, . . .) with t1p 6= s1

q for all p+ q ≤ k1

and

(T 2(P ), T 2(Q)) = (. . . , t2k2−1, . . . , t
2
2, t

2
1, s

2
1, s

2
2, . . . , s

2
k2−1, . . .) with t2p 6= s2

q for all p+ q ≤ k2.

The relevant entries of T 1(Q) and T 2(Q) are the first k1 − 1 and k2 − 1 entries, and we denote these
by T 1

k1
(Q) and T 2

k2
(Q), respectively. Both sequences T 1

k1
(Q) and T 2

k2
(Q) always contain exactly k1 − 1 and

k2 − 1 elements, respectively, where missing tasks are represented by a ‘·’.
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We are able to express the above condition as

T 1
k1

(Q) 6= (·, . . . , ·, t1p,i, ·, . . . , ·) for all p with 1 ≤ p+ i ≤ k1

and
T 2
k2

(Q) 6= (·, . . . , ·, t2p,i, ·, . . . , ·) for all p with 1 ≤ p+ i ≤ k2,

where i refers to the ith position in the right-hand-side vector, and t1p,i and t2p,i have the value t1p and t2p,
respectively. The last k1 − 1 entries of T 1(P ), i.e., t1p with p ∈ {1, . . . , k1}, and the last k2 − 1 entries of
T 2(P ), i.e., t2p with p ∈ {1, . . . , k2} have to be compared with T 1

k1
(Q) and T 2

k2
(Q), respectively. It follows

that any extension Q of path P is infeasible if T 1
k1

(Q) or T 2
k2

(Q) matches with the respective tuple (still ‘·’
refers to an unspecified entry).

These infeasible extensions can be represented by set forms, a concept introduced first in (Irnich and
Villeneuve, 2006): The tuples on the right hand side of the above inequality are in fact set forms. The finite
union of such set forms defines the self-hole set H(P ).

Example 1. For (4, 2)-loop elimination in the CARP context, i.e., k1 = 4, k2 = 2, T 1
k1

= T E
4 and T 2

k2
= T B

2 ,
let path P have T E

4 (P ) = (a, b, c) and T B
2 (P ) = (α). It means that the last three required edges serviced

were the edges a, b, and c. In addition, we are in a branch of the branch-and-price search tree where a
non-follower constrained is active, e.g., say for the edges c and d, imposing that they have the new identical
task α assigned in order to prevent c and d being serviced consecutively.

Then, any extension Q produces a feasible path w.r.t. loop elimination if

(T E
4 (Q), T B

2 (Q)) 6= (·, ·, ·)(α), (a, ·, ·)(·), (b, ·, ·)(·), (·, b, ·)(·), (c, ·, ·)(·), (·, c, ·)(·), (·, ·, c)(·).

Equivalently, the self-hole set H(P ) of P is

H(P ) = (·, ·, ·)(α) ∪ (a, ·, ·)(·) ∪ (b, ·, ·)(·) ∪ (·, b, ·)(·) ∪ (c, ·, ·)(·) ∪ (·, c, ·)(·) ∪ (·, ·, c)(·),

where each set form encodes the set of task sequences matching the respective pattern.
For example, if a path Q1 produces the task sequence T E

4 (Q1) = (d, a, b) and T B
2 (Q1) = (β) then there

is no match with H(P ), and the extension (P,Q1) is feasible w.r.t. loop elimination. In contrast, for a path
Q2 with task sequence T E(Q1) = (d, e, c) there is a match so that (P,Q) is infeasible.

The representation of H(P ) as the union of set forms is quadratic in k1 and k2, i.e., up to k1(k1−1)
2 +

k2(k2−1)
2 different set forms are necessary to describe all infeasible extensions of path P .
Now we consider a dominance situation where (19) and (20) are fulfilled for dominating paths P1, . . . , Ps

and a dominated path P . By de Morgan’s law, we get
p⋃

i=1

E(Pi) ⊇ E(P ) ⇐⇒
p⋂

i=1

H(Pi) ⊆ H(P ) (21)

so that the condition (20) for loop-free extensions can be equivalently stated with the help of self-hole sets.
The point is now that any intersection of the self-hole sets, resulting on the right hand side, can be calculated
and represented as a union of set forms again.

Example 2. Continuing Example 1, let P ′ be another path with T E
4 (P ′) = (·, a, d) (just two edges serviced

along P ′) and T B
2 (P ′) = (β). The self-hole set of P ′ is

H(P ′) = (·, ·, ·)(β) ∪ (a, ·, ·)(·) ∪ (·, a, ·)(·) ∪ (d, ·, ·)(·) ∪ (·, d, ·)(·) ∪ (·, ·, d)(·)

Then, the intersection is of self-hole sets is

H(P ) ∩H(P ′) =(a, ·, ·)(α) ∪ (·, a, ·)(α) ∪ (d, ·, ·)(α) ∪ (·, d, ·)(α) ∪ (·, ·, d)(α)∪
(a, ·, ·)(β) ∪ (b, ·, ·)(β) ∪ (·, b, ·)(β) ∪ (c, ·, ·)(β) ∪ (·, c, ·)(β) ∪ (·, ·, c)(β)∪
(a, d, ·)(·) ∪ (a, ·, d)(·) ∪ (b, a, ·)(·) ∪ (b, d, ·)(·) ∪ (b, ·, d)(·) ∪ (a, b, ·)(·) ∪ (d, b, ·)(·)∪
(·, b, d)(·) ∪ (c, a, ·)(·) ∪ (c, d, ·)(·) ∪ (c, ·, d)(·) ∪ (a, c, ·)(·) ∪ (d, c, ·)(·) ∪ (·, c, d)(·)∪
(a, ·, c)(·) ∪ (·, a, c)(·) ∪ (d, ·, c)(·) ∪ (·, d, c)(·)
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The computation of the intersection of two unions of set forms, as in the above example, requires two
algorithmic components: First, set forms need to be tested for inclusion. For example, (a, ·, b, e)(α) is
included in (·, ·, b, ·)(α), while (a, e, b)(·) is not included in (a, ·, c)(·). It can be shown similarly as for simple
k-loop elimination, that this test requires only O (k1 + k2) time and space (Irnich and Villeneuve, 2006,
p. 398).

Second, proper intersections of set forms need to be computed. For two set forms s and t, the intersection
s∩t is either empty, whenever different entries are specified at the same position. For example, s = (a, b, ·)(α)
and t = (a, c, b)(α) result in s ∩ t = ∅. Moreover, by definition, the intersection is empty if an infeasible
loop is created, e.g., the intersection of (a, b, ·)(α) and (·, b, a)(·) is empty, while (a, b, ·)(α, ·) and (·, b, d)(·, ·)
have non-empty intersection (a, b, d)(α, ·). Here again, the computation including loop detection requires
only O (k1 + k2) amortized time and space. As a result, the computation of the intersection of two self-hole
sets, say with p and q set forms each, requires O ((k1 + k2)pq) amortized time and space; see (Irnich and
Villeneuve, 2006, p. 398) for details.

In order to know the overall time complexity, it is important to quantify the maximum number of
elements present in an intersection of two collections of set forms. The next paragraphs will give an answer.

Upper Bound on the Number of Set Forms in an Intersection of Self-Hole Sets. For simple k-loop elimination,
any collection of set forms resulting from the intersection of self-hole sets does not contain more than (k−1)!2

different set forms. This result is stated in (Irnich and Villeneuve, 2006, p. 399) for node-k-cycle elimination.
Notice that in node-k-cycle elimination all paths ending at the same node also share an identical last task
(corresponding to that node), which therefore can be omitted. Task-k-loop elimination ensures that there
are at least k−1 other tasks before a task is repeated. Therefore, in both cases, recording only k−1 elements
is sufficient to encode all relevant dominance information, which results in the stated complexity.

The result for combined (k1, k2)-loop elimination in SPPRC is the following:

Theorem 1. For combined (k1, k2)-loop elimination, the maximum number of different set forms needed to
represent any intersection of self-hole sets H(P1) ∩H(P2) ∩ · · · ∩H(Pl) of any set of l paths is (k1 − 1)!2 ·
(k2 − 1)!2 ·

(
(k1−1)+(k2−1)

k1−1

)
. This bound is tight.

A proof of this and all other theorems is included in the Appendix. The following example shows how
to construct instances where the bound is indeed tight.

Example 3. Consider a combined (3, 2)-loop elimination. Moreover, let P1, P2, and P3 be three paths with
no tasks in common. Thus,

H(P1) = (·, ·)(α) ∪ (a, ·)(·) ∪ (b, ·)(·) ∪ (·, b)(·)
H(P2) = (·, ·)(β) ∪ (c, ·)(·) ∪ (d, ·)(·) ∪ (·, d)(·)
H(P3) = (·, ·)(γ) ∪ (e, ·)(·) ∪ (f, ·)(·) ∪ (·, f)(·)

giving rise to

H(P1) ∩H(P2) ∩H(P3) = (γ)(a, d) ∪ (γ)(b, d) ∪ (γ)(c, b) ∪ (γ)(d, b) ∪ (α)(c, f) ∪ (α)(d, f)

∪(α)(e, d) ∪ (α)(f, d) ∪ (β)(a, f) ∪ (β)(b, f) ∪ (β)(e, b) ∪ (β)(f, b).

These are twelve set forms which is the maximum number (k1 − 1)!2 · (k2 − 1)!2 ·
(
k1−1+k2−1

k1−1

)
= (3 − 1)!2 ·

(2− 1)!2 ·
(

(3−1)+(2−1)
3−1

)
= 4 · 1 · 3 = 12.

Upper Bound on the Number of Paths with Identical Resource Vectors. The paragraph above presented
results on the number of set forms in an intersection of an arbitrary number of paths. The question
considered in this paragraph is about the maximum number of paths P with identical resource vectors (for
the CARP, with identical load q(P ), the costs c̃(P ) may differ). Let a collection of s paths P1, . . . , Ps with
identical resource vectors ending at a node i = i(P1) = · · · = i(Ps) be given. The corresponding labels can
be sorted in a unique way using the IDs of the labels so that the following ordering of the paths is given:

P1 ≺dom P2 ≺dom . . . ≺dom Ps,
12



meaning that, e.g., Ps is dominated by all other paths P1, P2, . . . , Ps−1. It follows for the intersections of
the self-hole sets of the dominating labels (P1 dominates P2, P1 and P2 dominate P3 etc.) that

I1 := H(P1) ⊇ I2 := H(P1) ∩H(P2) ⊇ . . . ⊇ Is :=

s⋂
i=1

H(Pi).

holds. Irnich and Villeneuve (2006) have shown that a path Pt can be discarded if It = It−1 holds. Therefore,
the maximum length of a properly decreasing chain of intersections of self-hole sets is a bound on the
maximum number of labels to consider with identical resource vector.

Theorem 2. A collection of s dominating paths P1 ≺dom P2 ≺dom . . . ≺dom Ps ending at the same node
is given. Let the intersections of the corresponding self-hole sets H(P1), H(P2), . . . ,H(Ps) form a properly
decreasing chain, i.e. H(P1) ) H(P1) ∩ H(P2) ) · · · ) ∩si=1H(Pi). Then, the length q of the properly
decreasing chain is bounded by α(k1, k2) = [k1 + k2 − 1] · (k1 − 1)!2 · (k2 − 1)!2 ·

(
(k1−1)+(k2−1)

k1−1

)
.

For the special case of a combined (k, 2)-loop elimination, i.e., for k1 = k and k2 = 2, the bound is
α(k, 2) = (k+ 1) · (k− 1)!2 · k = (k− 1)! · (k+ 1)!. In particular, we get the bounds α(3, 2) = 2 · 24 = 48 and
α(4, 2) = 6 · 120 = 720 for k = 3 and 4, respectively.

3.6. Scaling
Scaling of instances is a technique often used in approximation algorithms (Vazirani, 2001). Depending

on its concrete implementation, scaling can either provide relaxations or restrictions to a problem. Therefore,
lower and upper bounds can result.

In the vehicle routing context, scaling of the demand qi was e.g. considered by Fukasawa et al. (2006).
They use it as a heuristic, i.e., a restriction of the pricing problem. For a given scaling factor f , both the
demand and the capacity are modified via q′e = d qef e and C

′ = dCf e. Obviously, this scaling by factor f has
the potential to speed up a labeling algorithm by a factor up to f because the main loop in Algorithm 1 has
by the factor f less iterations.

On the other hand, scaling with q′e = b qef c and C
′ = bCf c constitutes a pricing relaxation. The expected

acceleration when solving the scaled instead of the original instance is also by the factor f .

3.7. Hierarchy of Pricing Relaxations
All presented pricing relaxations form a hierarchy of relaxations beginning with non-elementary pricing

as the weakest relaxation and ending with elementary pricing combined with 2-loop elimination as the
strongest. This hierarchy is shown in Figure 1. An arc connecting two relaxations indicates that the tail is a
stronger formulation than the head. For example, the relaxation with (4, 2)-loop-free routes is stronger than
with 4-loop-free routes and (3, 2)-loop-free routes. The relaxations on the right hand side are parameterized
with one or several neighborhoods N and (Ni)i∈V so that these boxes represent families of relaxations.
Inside each family, relaxations become stronger the larger the subsets N and Ni are (comparable only in
case of subset inclusions). Moreover, the ng-route relaxation is stronger than the relaxation with partial
elementarity whenever Ni ⊇ N holds for all nodes i ∈ V .

Shaded boxes ( ) identify those relaxations that are compatible with our complete branching scheme,
in particular, compatible with branching on followers and non-followers. On the other hand, framed boxes
( ) represent pricing relaxations applicable only at the root node (or as long as no branching on followers
and non-followers occurs).

4. Acceleration Techniques

To use acceleration techniques for fast pricing is essential for the effectiveness of the overall branch-
and-price approach as outlined by numerous researchers. Some ideas proven useful were summarized in
(Desaulniers et al., 2002; Irnich and Desaulniers, 2005). In our case, to run the full exact pricing routine
can be time consuming particularly for the (k, 2)-loop-free relaxation with larger k and the ng-route relax-
ations with larger neighborhoods (Ni)i∈V . To countervail slow pricing, we implemented heuristic and exact
acceleration techniques described in the following.
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Figure 1: Hierarchy of Pricing Relaxations

4.1. Pricing Heuristics
The heuristic labeling algorithms of Letchford and Oukil (2009) for non-elementary pricing can be

adapted to 2-loop elimination. They observed that good paths solving the pricing problem often start
with deadheading beginning at the depot, followed by a continuous service part, and finish with deadhead-
ing back to the depot. Their idea was that a heuristic pricer can restrict itself to assume this structure of
the resulting paths.

In order to eliminate 2-loops, a second type of heuristic occurs naturally. Recall that at every node
and for every current load, only the best and second best labels with different predecessor tasks have to be
stored. Keeping track of the best label only is the second heuristic. It is easy to adapt the same idea in case
of k-loop and (k, 2)-loop elimination. Only if the heuristics fail, the exact pricer is invoked.

4.2. Bi-Directional Pricing
As pointed out by Righini and Salani (2006), when solving elementary pricing problems with DP, the

number of generated states rapidly increases with the stage and the problem size. They proposed a bi-
directional labeling algorithm to partially countervail this effect. It outperforms standard mono-directional
pricing algorithms as proven for many node-routing applications. This technique can also be applied for all
pricing relaxations discussed in Section 3.

Specific to the CARP is that the underlying pricing network is undirected so that forward and backward
labeling are identical. Labels for both directions need to be calculated just once. Our critical and only
possible resource for bounding is the load. Therefore, we extend paths P only if the current load q(P ) is less
than or equal to dC/2e. Two generated labels are then combined similar to the procedure join presented
in (Righini and Salani, 2006). The main difference is that we merge two paths with common end node,
while Righini and Salani (2006) suggest merging over connecting arcs. Two specific implementation details
of bidirectional labeling are considered next.

2-Loop-free Paths. A special case occurs when 2-loop-free paths are generated. If the join procedure is
implemented in a straightforward fashion, its complexity is O (|V |C2) because up to 4(C+1)2 pairs of paths
need to be compared at each node. For the 2-loop-free relaxation, where the number of labels at a node
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does not grow but is constant for increasing values of the load q, preliminary tests have shown that the join
procedure dominates the run time. Therefore, a more efficient join is needed.

While the standard join finally guarantees the determination of all Pareto-optimal origin-destination
paths, we propose a more efficient variant of join with complexity O (|V |C), which does not guarantee the
determination of the complete Pareto frontier. Instead, it is ensured that a least-cost path and all Pareto-
optimal paths with load not exceeding C/2 are determined. (Generally, many more Pareto-optimal paths
are found.) As in the standard case, our join relies on the computation of a set of Pareto-optimal paths P
with load q(P ) ≤ dC/2e identified with mono-directional labeling. Then it works as follows: For every node
and for every value q = 0, 1, 2, . . . , dC/2e we determine a best path P (q)

1 and a second best path P (q)
2 with

q(P
(q)
1 ), q(P

(q)
2 ) ≤ q, where the last task of the best and the second best path must differ. Then, to generate

paths P with load q(P ) > C/2, a loop over all values q = 0, 1, 2, . . . , dC/2e is performed, and we merge, if
feasible, combinations of the paths P (q)

i and P (C−q)
j for i, j ∈ {1, 2}, i+ j ≤ 3 ending at the same node. This

requires only O (|V |C) time and space.
Note that it is non-trivial to transfer the idea to general (k, 2)-loop elimination for k > 2 because there

are generally more than two paths with identical load ending at every node. Therefore, the standard join
is used here.

ng-Route Relaxation. The half-way test is a component of the join procedure and assures that the same
path P with q(P ) > C/2 is not generated multiple times. In principle, this happens whenever P can be split
differently into P = (Q,R) with q(Q) > C/2. The half-way test proposed by Righini and Salani (2006),
in the node-routing context, requires that the split point is chosen as the first node on the path where the
critical resource exceeds the bound. In the CARP case, consider a path Q = (Q′, e, j) with last edge e ∈ E
and last node j. Then, the half-way test requires that the last edge is serviced so that q(Q′) ≤ C/2 and
q(Q) = q(Q′) + qe > C/2 holds. As a result, no path P is generated twice.

However, for the CARP and the ng-route relaxation, the half-way test is too restrictive. Again, we
assume constructing the path P = (Q,R) with Q = (Q′, e, j), i.e., last serviced edge e ∈ ER and last node j.
The critical situation is when extending Q to another node ` ∈ V and when a task e∗ ∈ T E

NG(Q) is not
contained in the neighborhood N`, i.e., e∗ /∈ N`. Thus, the information that the task e∗ was serviced along
Q is not recorded in a label ending at node `. Now consider the path P ′ = (Q, e′, `, e′, j) where the two last
extensions are deadheadings along the edge e′ = {j, `} ∈ E. The path P ′ dominates path Q w.r.t. resources
whenever the deadheading costs c̃j` = c̃e′ are zero. Moreover, it may properly dominate w.r.t. ng-neighbors
because e∗ /∈ N`. In this case, Q does not exist, but P ′ does not qualify as a forward path in join because
its last edge is deadheaded.

In fact, our first implementation contained the (incorrect) half-way test, and cost-minimal paths were
missing in very rare occasions. However, it happened that inconsistent bounds were computed in the branch-
and-price so that this subtle detail became a serious flaw.

Instead of applying the half-way test, we now store for every value q = 0, 1, . . . , C a minimum reduced
cost joined path and reconstruct on that basis only the Pareto-optimal paths. This is obviously a little less
efficient, but the only viable approach known to us.

4.3. Bounding
Bounding is intended to reduce the number of states to expand in a DP approach. It has become a key

technique for solving the TSP with time windows (Mingozzi et al., 1997; Baldacci et al., 2011c) and variants
of the VRP (Baldacci et al., 2009).

In the (E)SPPRC pricing context, for a partial path P at hand, the idea is to calculate a lower bound on
the (reduced) cost of any completion to the destination node. If the cost of the path P plus the lower bound
exceeds zero, path P can be discarded because it is useless for constructing negative reduced cost routes.

There is a trade-off between the quality of that lower bound and the time needed for its computation. In
general, any relaxation of an (E)SPPRC and backward paths generated as solutions to the all-to-destination
problem provide feasible lower bounds (for details see, e.g., Baldacci et al., 2011c). Note first that in the
CARP the network is fully symmetric so that forward and backward labeling is identical. Any relaxation
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solved with mono-directional labeling on the original network so provides lower bounds. The hierarchy of
relaxations depicted in Figure 1 offers numerous possibilities for pricing problem relaxations and proper
relaxations of these that in combination allow bounding.

For example, 2-loop-free pricing can be used for bounding purposes in combination with any other
relaxation compatible with branching. Additionally, (`, 2)-loop-free tours allow bounding for the (k, 2)-
loop-free relaxation if ` < k. Even more, in the ng-route relaxation with neighborhoods (Ni)i∈V , smaller
neighborhoods N ′i ⊂ Ni might be used for bounding. In all cases, we implemented bounding so that
the weaker relaxation provides a bounding function f(i, q) defined for every node i ∈ V and load q ∈
{0, 1, . . . , C}. The value f(i, q) is a lower bound on the reduced costs of feasible paths ending at node i with
not more than load q on board. When solving the stronger relaxation, any path P with c̃(P ) + f(i(P ), C −
q(P )) > 0 is identified being useless, and its label can be discarded.

5. Computational Results

This section reports computational results of the various pricing relaxations tested when solving the
respective linear relaxation and integer formulations of the CARP. The first benchmark set egl was intro-
duced by Eglese and Li (1992) and can be downloaded from http://www.uv.es/~belengue/carp/. This set
consists of 24 instances based on the road network of Cumbria. Group e consists of instances with 77 nodes
and 98 edges, whereas group s is larger and has instances with 140 nodes and 190 edges. Each group is
further split into four subsets m ∈ {1, . . . , 4}, where the number of required edges increases with m. On the
lowest level, each subgroup differs in the vehicle capacity, where three different sizes are assumed, indicated
by n ∈ {a,b,c}. Within each subgroup, the instances a have highest capacity tending to result in less but
longer routes, and instances c have lowest capacity resulting in more but shorter routes. Overall, instance
names are coded as follows: egl-lm-n with l ∈ {e,s}, m ∈ {1, . . . , 4}, and n ∈ {a,b,c}.

The second benchmark set bmcv consisting of 100 instances is obtained from the road network of Flanders,
Belgium (Beullens et al., 2003). These instances range from 26 to 97 nodes and 35 to 142 edges, where only
a subset of the edges is required. The instances were kindly provided by Muyldermans (2012) and comprise
four subsets. The underlying graph for individual instances of subset C and E is identical, but the vehicle
capacity is 300 for the C set and 600 for the E set. The same holds for the subsets of instances named D
and F.

5.1. Computational Setup
All computations were performed on a standard PC with an Intel c©CoreTM i7-2600 at 3.4 GHz processor

with 16 GB of main memory. The algorithm was coded in C++ (MS-Visual Studio, 2010) and the callable
library of CPLEX 12.2 was used to iteratively reoptimize the RMP. A hard time limit of four hours for
computation has been set for the column-generation and branch-and-price algorithms.

We tested both (k, 2)-loop-free and ng-route relaxations with several parameter settings. Within (k, 2)-
loop-free pricing we varied k ∈ {2, 3, 4} and the relaxation used for bounding. In detail, for (3, 2)-loop-free
pricing and ng-route relaxation we used the 2-loop-free relaxation and for (4, 2)-loop-free pricing we used
both the 2-loop-free and (3, 2)-loop-free relaxation for bounding. To shorten the notation, we will skip the
second entry because it is equal for all (k, 2)-loop-free relaxations. Therefore, in the following, k-loop is a
short-cut for (k, 2)-loop-free pricing. In the same spirit we write 4b2-loop as a short form of (4, 2)-loop-free
pricing with 2-loop-free bounding.

The choice of neighborhoods (Ni)i∈V has a great impact on the strength of the ng-route relaxation
and the computational effort needed in every pricing iteration. Because there is an exponential number of
possible choices, we decided to focus our analysis to the most influential parameter, which is the maximum
size of a neighborhood. Here we ran the algorithms with parameters nng ∈ {3, 4, 5, 6, 7, 8, 9, 10, 12, 15}
meaning that all neighborhood sizes |Ni| do not exceed nng, i.e., for |Ni| ≤ nng. To indicate the (maximum)
size of the neighborhoods, we write, e.g., ng6 whenever |Ni| ≤ 6.

There exist several methods of determining the concrete sets Ni. Desaulniers et al. (2008) proposed
an algorithm for partially elementary, i.e., Ni = N for all i ∈ V , in which iteratively the linear relaxation
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of the RMP is solved. As long as the neighborhood size |N | is smaller than a predefined maximal size
nmax and there exists a task cycle in the solution, this task is added to the neighborhood N . Tasks with
a large flow on cycles are chosen with priority. On the other hand, Baldacci et al. (2011b) use individual
neighborhoods Ni for every node i ∈ V . The sets Ni are pre-computed by adding a customer j to Ni if it
is among the nng nearest nodes to node i. We combine these two ideas because we dynamically generate
individual neighborhoods Ni (a similar idea was presented by R. Roberti in the presentation (Baldacci et al.,
2011a)). The procedure is summarized in Algorithm 2.

Algorithm 2: Generation of Neighborhoods (Ni)i∈V

Set Ni = ∅ for all i ∈ V
while do

Solve the current linear relaxation (the RMP) for the ng-route relaxation defined by (Ni)i∈V
for e ∈ T E do

Compute the set of all elementary cycles C with positive flow f(C) > 0 defined by task e
for cycles C do

if |Ni ∪ {e}| ≤ nng for all i ∈ V (C) then
Add cycle C to the candidate list C
Store with cycle C the task e = e(C), flow f(C) and its nodes V (C)

if |C| > 0 then
Determine cycle C ∈ C with maximum flow f(C)
Add task e(C) to the neighborhoods Ni of all nodes i ∈ V (C)

else
Stop!

Note that when adding new tasks to a neighborhood Ni, the resulting relaxation becomes more restrictive
so that a formerly feasible route r can become infeasible. Those routes that become infeasible have to be
removed from the RMP at the beginning of every main loop of Algorithm 2. Thus, the RMP first gets
smaller, while it increases again with every newly generated route.

Finally, bidirectional labeling can be applied in every pricing algorithm. In the following, we indicate
bidirectional labeling with the term ‘BiDir’.

5.2. Impact of Acceleration Techniques
We start with analyzing the impact of the acceleration techniques presented in Section 4. In order to

measure the improvement of bounding and bidirectional pricing for different pricing relaxations, both the root
node and the full branch-and-bound tree were solved with no, one, or both techniques active. Computations
were performed for all 24 egl instances and the different relaxations. The improvement is then calculated
as the ratio of the time for pricing without acceleration and the time with one or both techniques active,
respectively, for each instance. For abbreviation, we refer to the these numbers as acceleration factors. For
not biasing the acceleration factors, we turned off all heuristic pricing procedures. Figures 2 and 3 show the
resulting box-and-whisker diagrams (McGill et al., 1978).

Comparing the results among the k-loop-free relaxations, bidirectional pricing has a higher impact the
larger k is. For 2-loop, the only acceleration technique is bidirectional pricing, where for the linear relaxation
(‘Root’) the median acceleration factor is 1.4 with 50% of the data lying in a very small range inside the
box. Figure 2a shows that the acceleration factor is slightly smaller considering the overall branch-and-price
tree (‘Tree’).

This median increases to 3.8 and 5.1 for 3-loop and 4-loop, respectively (see Figures 2b and 2c). For
these relaxations, bidirectional pricing has always an impact greater than one, nevertheless the data scatters
more. For example, for the instance e4-a solving the root node with bidirectional pricing is about 15 times
faster than with the basic 4-loop algorithm, and for the instance s4-c just 2.8 times faster. For indicating
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Figure 2: Impact of Bidirectional Pricing and/or Bounding for the (k, 2)-loop Relaxations: Box-and-Whisker
Diagrams of the Acceleration Factors

the spread of the data, the end of the whiskers show data that lying within the 1.5 interquartile range. Any
other data is outliers and they are represented by small dots.

Comparing the results over the full branch-and-bound tree solely using bidirectional pricing, there is an
improvement compared to the root node only for 4-loop pricing. However, combined with bounding the
positive impact of using acceleration techniques is strengthened. Sometimes a speed up factor of 36 can be
reached (instance s2-c in 4b2-loop pricing).

The impact of using bounding alone is very small, in particular for solving the linear relaxation (‘Root’).
The median within 3-loop pricing is only slightly above 1.0 and the lower whisker is ending at 1.0. There,
bounding has always a small but non-negative impact compared to 4-loop pricing. The median for bounding
with 2-loop and 3-loop bounding is 1.0 and 0.9, respectively. Hence, bounding alone often results in longer
computation times. Considering the whole branch-and-bound tree (‘Tree’), the acceleration factors are
slightly higher.

Finally, for the relaxation with 4-loop-free routes, the comparison of bounding with the 2-loop and 3-loop
shows a clear winner: 2-loop-free bounding is superior to 3-loop-free bounding meaning that slightly better
bounds are obtained.

The impact of bidirectional pricing and bounding is, at the root node, very similar for all tested ng-
route relaxations (see Figures 3a–3c). The median of all acceleration techniques is between approximately
1.5 and 2.0, and the dispersion of the data is not as high as for the k-loop relaxations. However, except
for solely bounding within ng6, there are instances where solving the root node takes longer than without
any acceleration techniques. Similar to k-loop, considering the full branch-and-bound tree, the impact of
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Figure 3: Impact of Bidirectional Pricing and/or Bounding for the ng-route Relaxations: Box-and-Whisker
Diagrams of the Acceleration Factors

bounding and/or bidirectional pricing is at least as good as at the root node, but often better. The only
exception is bounding within the ng7-route relaxation: The median is approximately the same comparing
the root node and the full tree, but there are instances (e.g., e1-b and e2-b) where solving the pricing
problem is up to five times slower than the basic ng7-route algorithm. In general, combining all presented
acceleration techniques for solving the branch-and-price part gives the best results. Therefore, all following
computational results are presented for combined bidirectional pricing with bounding.

5.3. Linear Relaxation Results
The focus of the following analysis is on lower bounds obtained with the linear relaxations (at the root

node). A comprehensive study for the egl instances and relaxations with k-loop elimination was already
presented in (Bode and Irnich, 2012). However, no acceleration techniques and no ng-route relaxations
were considered. Therefore, we will now present lower bounds and computation times for k-loop elimination
and ng-route relaxations with the presented acceleration techniques activated. Table 1 presents aggregated
results for the egl instances and Table 2 for the bmcv instances.

Table 1: Aggregated Linear Relaxation Results for egl Instances

2-loop 3-loop 4b2-loop 4b3-loop ng5 ng6 ng7
Minimum gap (%) 0.07 0.05 0.05 0.05 0.00 0.00 0.00
Average gap (%) 0.84 0.74 0.68 0.68 0.61 0.59 0.58

Maximum gap (%) 1.60 1.30 1.29 1.29 1.24 1.23 1.23

Minimum time (s) 9 22 21 26 63 67 65
Average time (s) 90 233 511 615 1,646 2,220 2,601

Maximum time (s) 294 837 4,151 3,660 10,507 10,016 14,306

Table 2: Aggregated Linear Relaxation Results for bmcv Instances

2-loop 3-loop 4b2-loop 4b3-loop ng5 ng6 ng7
Minimum gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average gap (%) 0.55 0.54 0.52 0.52 0.48 0.48 0.48

Maximum gap (%) 2.79 2.69 2.69 2.69 2.39 2.37 2.37

Minimum time (s) 1 3 2 2 2 2 2
Average time (s) 20 317 426 274 1,668 2,055 2,277

Maximum time (s) 194 22,760 14,914 12,902 14,373 14,288 14,253
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In preliminary computational tests we varied nng more widely including values between nng = 3 and
nng = 15. We tested the relaxations inside the overall branch-and-price algorithm and counted the number
of times that a specific relaxation produced the best lower bound at the time limit. It turned out that the
relaxations with nng ∈ {5, 6, 7} outperformed the others (except for some rare outliers). Hence, we report
results for ng-route relaxations only for the three parameters nng ∈ {5, 6, 7}.

Due to the integration of 2-loop-free pricing in ng-route relaxations (see Section 3), the lower bounds
obtained with any ng-route relaxation are always at least as good as the lower bounds with the 2-loop-free
relaxation. Therefore, a stronger relaxation results in better lower bounds, i.e., smaller gaps in the best,
average, and worst case. Some substantial improvements were observed, e.g., 69 units for the instances
egl-e2-c and egl-s1-c. For all relaxations, the minimum gap for the bmcv instances is zero meaning that
at the root node the gap is closed. As expected, solving the linear relaxation becomes more time consuming
for both increasing values of k and nng. However, bounds alone do not provide a comprehensive assessment
because, on the average, solving the root node with k-loop relaxation is significantly faster than with an
ng-route relaxation. Detailed results with lower bound values and computation times for all instances can
be found in the Appendix in Tables 6–8.

5.4. Integer Solution Results
Next we summarize integer results for the egl and bmcv instances. Given the time limit of four hours

(14,400s) for solving each instance, we report the number of instances solved to optimality (‘Num. opt.
sol.’), the number of instances where the respective relaxation produced the best lower bound among all
tested relaxations (‘Num best lb’), and the remaining gap at the end of the branch-and-price tree (using
the best known upper bound ub). Note that the node-selection rule was best first. Aggregated results are
presented in Tables 3 and 4, while detailed results for individual instances can be found in the Appendix in
Tables 9–11.

Table 3: Aggregated Integer Results for egl Instances

2-loop 3-loop 4b2-loop 4b3-loop ng4 ng5 ng6 ng7
Num. opt. sol. (all/a/b/c) 5/4/1/0 6/4/2/0 6/4/2/0 6/4/2/0 4/3/1/0 3/2/1/0 4/2/2/0 3/1/2/0
Num. best lb (all/a/b/c) 7/6/1/0 6/4/2/0 7/4/2/1 6/4/2/0 6/3/2/1 6/3/2/1 13/2/5/6 13/2/4/7

Average gap (%) 0.69 0.62 0.57 0.58 0.48 0.43 0.44 0.43
Maximum gap (%) 1.12 1.09 1.09 1.10 1.04 1.06 1.06 1.07

Table 4: Aggregated Integer Results for bmcv Instances

2-loop 3-loop 4b2-loop 4b3-loop
Num. opt. sol. (all/C/D/E/F) 75/17/21/15/22 75/17/20/16/22 76/17/19/19/21 76/17/19/19/21
Num. best lb (all/C/D/E/F) 85/21/23/16/25 72/17/19/14/22 72/17/18/17/20 67/17/16/15/19

Average gap (%) 0.31 0.34 0.42 0.41
Maximum gap (%) 1.48 2.03 2.23 2.26

ng5 ng6 ng7
Num. opt. sol. (all/C/D/E/F) 76/18/19/19/20 75/18/19/18/20 76/18/19/19/20
Num. best lb (all/C/D/E/F) 71/21/15/19/16 69/22/14/18/15 68/20/12/21/15

Average gap (%) 0.37 0.39 0.41
Maximum gap (%) 2.20 2.26 2.26

For the egl instances, the k-loop relaxations are able to find more integer solutions, while for the bmcv
the ng-route relaxation and the k-loop relaxations produce approximately the same number of optima.
Whenever the time limit is reached, ng6 and ng7 produce the best lower bounds for the egl instances,
and both the average and maximum gap is generally better for ng-route relaxations. In contrast, for bmcv
instances, the 2-loop relaxation gives the best solutions both on average and with respect to the maximum
gap. However, there is the tendency that the 2-loop relaxation can solve problems of groups with higher
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vehicle capacity (i.e. egl-lm-a and bmcv D and F) better (6, 23, and 25 best lower bounds), while the best
ng-route relaxation, i.e., ng7, performs worse on these instances (only 2, 12, and 15 best lower bounds). On
the other hand, for instances with lower capacity, i.e., egl-lm-c, bmcv C and E, the 2-loop-free relaxations
results in 0, 21, and 16 best lower bounds, while ng7 gives 7, 20, and 21 best results. The detailed analysis
of those groups of instances and the question why one relaxation performs good on one group and poorly
on another is subject of the next section.

5.5. Performance Analysis by Instance Groups
There is no single relaxation that solves all types of instances best, i.e., provides the tightest lower

bounds in least time. Instead, different groups of instances are best solved with different relaxations. We
will identify the groups of instances and the most effective relaxations for each group and we will try to
explain the reasons why a relaxation is more or less effective. For that purpose, we will provide different
analyses about the time that the components of a branch-and-price require.

Lower Bounds over Time. A first insightful analysis is the evolution of the lower bound values over time for
different instances and pricing relaxations. For the egl instances, the principal behavior is mainly affected
by the parameter n ∈ {a, b, c} leading to groups egl-lm-a, egl-lm-b and egl-lm-c. A typical example is
shown for the three instances egl-e4-n in Figure 4. These instances have been chosen because none of the
relaxations is able to prove optimality within the time limit. Hence, bounds can be compared over the full
four hours.

As shown in Figure 4a for egl-e4-a, the same lower bound values are reached approximately ten times
faster with the 2-loop-free relaxation than with any other relaxation. Similarly, for almost all egl-lm-a
instances, the 2-loop-free relaxation outperforms all other relaxations. An exception is instance egl-s1-a,
were both the 3-loop-free and 4b2-loop-free relaxation prove optimality in less time. Further exceptions are
the instances egl-s2-a and egl-s4-a, where the ng-route relaxations outrun after approximately half of the
available time all k-loop-free relaxations. They end up with a bound three units better than the 2-loop-free
relaxation. The Appendix provides detailed figures for all egl instances and relaxations and lower bound
values over time.

Typical for all egl-lm-b instances is the existence of an intersection point from where on the ng-route
relaxations become more effective than the k-loop-free-relaxations. For example, in Figure 4b, the 2-loop-
free relaxation performs better than the ng6 relaxation before that point and less effective afterwards. This
intersection point is at approximately 100 seconds for egl-em-b instances and at about 1,000 seconds for
egl-sm-b instances.

If just a few seconds of computation time are available, the egl-lm-c instances are solved best with
an ng-route relaxation compared to 3-loop and 4-loop relaxations (2-loop-free is not competitive at all).
Moreover, the ng-route relaxation delivers sometimes significantly better lower bounds at the end, see
Figure 4c. Compared to the egl-lm-a group, the performance order of the relaxations is reversed for
group c.

Branching Decisions and Relative Times. To explain this behavior an even more detailed analysis of the
algorithms is done for the 2-loop-free and ng6 relaxations. The number of branch-and-bound nodes solved
and the type of branching decision taken impacts which and how often a particular algorithmic component is
invoked. Therefore, we recorded the number and the type of of branching decisions. Moreover, we kept track
of the relative times spent (1) on updating the RMP (‘update’), i.e., addition and removal of constraints and
columns as well as the modification of the network, (2) for re-optimizing the RMP (‘re-opt’) using the primal
simplex method (on average a little faster than the dual simplex algorithm), (3) for pricing (‘pricing’), and
(4) for other components (‘other’). For egl-e4-n, these numbers are depicted in Figure 5.

One can notice in Figure 5a that for both the 2-loop-free relaxation and the ng6 relaxation, the number
of solved branch-and-bound nodes increases from a to c. This results from the fact that due to the choice of
demands and capacities, the routes are on average longer in a, become shorter for b, and are shortest for c
instances. Longer routes require longer computation times per pricing iteration leading to longer computing
times per node.
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Figure 5: Number of Branch-and-Bound Nodes/Decisions and Relative Times spent in Components

Because 2-loop is a relaxation of ng6, it is always less time consuming. However, while many more
nodes are solved with the 2-loop-free relaxation for the egl-lm-a group, the overall number of solved nodes
becomes more and more comparable for the egl-lm-b and egl-lm-c groups. This explains well why the
2-loop-free relaxation is much more effective for instances with rather long routes and only very few routes
(as for egl-lm-a).

For the instance egl-e4-a and the 2-loop relaxation, approximately half of the nodes result from branch-
ing on followers and non-followers, and the others from branching on node degrees and edge flows, respec-
tively. Branching on follower information entails a network modification with computing, removing, and
adding edges that represent shortest paths (see Bode and Irnich, 2012, Sect 4.3.2). The structural modi-
fication is done once and at the very beginning of each branch-and-bound node. Furthermore, least-cost
deadheading paths must be computed in every pricing iteration. We expected that these modifications con-
tribute with a significant computation time. However, during our experiments we found that when solving
a branch-and-bound node, the most time-consuming steps are ‘update’ and ‘re-opt’ the RMP, and ‘pricing’.
For none of the instances where branching on followers and non-followers was performed, the time for modi-
fying the network reaches a relevant computation time. Hence, it is not considered explicitly, but subsumed
in ‘update’ in the further analysis. For egl-e4-b and egl-e4-c, both algorithms branch almost exclusively
on node degrees.

The relative percentage of time spent in these different components is shown in Figure 5b. For both
algorithms, the time spent with pricing decreases when comparing the three groups egl-lm-a, egl-lm-b,
and egl-lm-c. On the one hand, for the ng6 relaxation, almost the entire time is spent on pricing for the
instance egl-e4-a, while the relative time decreases to approximately 60% for the instance egl-e4-c. On
the other hand, the 2-loop-free relaxation starts at about 60% pricing time for egl-e4-a; it decreases to
almost 10% for the instance egl-e4-c.

At the same time, updating the RMP consumes relatively more time. At its extreme, updating takes
about 80% of the time for the instance egl-e4-c when solved with the 2-loop-free relaxation. This time
also increases for ng6, but ends up at about only 30% for the instance egl-e4-c.

Effort for Updates. We further analyze the effort for updating the RMP and the pricing problem. The
results are shown in Figure 6.
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Figure 6: Number of Removed Constraints and Number of Pricing Problems overall/per Node

Updating the RMP consists of finding and adding the active branch-and-bound constraints regarding
to node degrees and edge flows. The number of added and removed constraints for a RMP over the whole
branch-and-price tree is approximately identical. Therefore, in Figure 6a, only the number of the ‘removed’
constraints of the RMP is plotted. Moreover, one must take care of having only compatible columns in the
current RMP with regard to (non-)follower constraints and ng-route constraints. Incompatible columns are
discarded by setting the lower and upper bound of this column to zero, without any complex modification
of the RMP.

The Figures show that there is a strong correlation between the number of branch-and-bound nodes and
the number of removed constraints, independent of the considered relaxation. The more branch-and-bound
nodes are evaluated, the more constraints are removed and added. This additional effort explains partly the
increasing time consumption within the RMP update.

On the other hand, while the relative time for updating the RMP increases, the relative time for pricing
decreases. As shown in Figure 6b, the number of solved pricing problems for the 2-loop relaxation decreases
from about 250,000 for egl-e4-a to merely 50,000 for egl-e4-c. Related to the branch-and-bound nodes, the
number of solved pricing problems per node also decreases from group a to c. Even so, the absolute number
of solved pricing problems slightly increases for the ng6-relaxation, the relative number of pricing problems
per node decreases (see Figure 6c). In general, combining these relative numbers with the computation time
needed to solve a single pricing problem, we end up with having many and computationally intensive pricings
for egl-lm-a instances and less and computationally easier pricings for egl-lm-c instances. This explains
the decreasing time consumption of the pricing part from groups a to c. Additionally, the ng6 relaxation is a
stronger relaxation because it includes 2-loop-free relaxation, which makes the pricing problems more difficult
to solve. Therefore, the time consumption for pricing is always higher compared to 2-loop elimination.

Furthermore, the ng6 relaxation as a stronger relaxation results in tighter lower bounds while having
approximately the same number of pricing problems for the instance egl-e4-c. To conclude this section,
the effect of fast pricing for the 2-loop relaxation is nullified if there is only a small number of columns to
be priced out at each iteration. Then, the effect of a stronger relaxation is more important.

5.6. Strong Branching and Integer Solution Results
Strong branching is another technique often yielding better lower bounds when large branch-and-bound

trees have to be explored. Instead of choosing a single variable/decision for branching, the idea is to evaluate
several candidates for branching before taking the actual branching decision. Because evaluating candidates
takes time, trees with less branch-and-bound nodes result. Nevertheless, the nodes provide relatively better
lower bounds, which can be beneficial at the end. For a general discussion of strong branching techniques
we refer to (Achterberg et al., 2005).
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We tested the k-loop relaxations for k ∈ {2, 3, 4} and the ng6 and ng7 relaxations with five and ten
candidates on the egl instances. We restrict strong branching to branch-and-bound nodes at levels not
exceeding ten, i.e., with not more than ten nodes between the the root node and the node under consideration.
Table 13 in the Appendix presents detailed results for computations with strong branching for all egl-lm-n
instances, while Table 5 presents aggregated information.

Table 5: Aggregated Integer Results with Strong Branching for egl Instances

2-loop 3-loop 4b2-loop 4b3-loop
sb5 sb10 sb5 sb10 sb5 sb10 sb5 sb10

Num. opt. sol. (all/a/b/c) 5/4/1/0 5/4/1/0 5/4/1/0 5/4/1/0 5/4/1/0 4/3/1/0 4/3/1/0 4/3/1/0
Num. best lb (all/a/b/c) 6/4/2/0 9/8/1/0 6/4/2/0 5/4/1/0 5/4/1/0 6/3/1/2 4/3/1/0 4/3/1/0

Average gap (%) 0,66 0,66 0,57 0,56 0,52 0,50 0,53 0,53
Maximum gap (%) 1,10 1,09 1,08 1,08 1,10 1,09 1,11 1,12

ng6 ng7
sb5 sb10 sb5 sb10

Num. opt. sol. (all/a/b/c) 4/2/2/0 4/2/2/0 4/3/1/0 4/2/2/0
Num. best lb (all/a/b/c) 10/2/6/2 8/2/4/2 8/3/1/4 7/2/3/2

Average gap (%) 0,43 0,44 0,45 0,45
Maximum gap (%) 1,07 1,09 1,08 1,08

Comparing the number of optimal solutions, the k-loop and ng-relaxations are able to find about the
same number of integer solutions. However, similar to the results in Section 5.4, k-loop solves more instances
of groups with higher capacity (i.e. egl-lm-a) to optimality. On the other hand, looking at the number
of best lower bounds among all relaxation with strong branching, ng6 and ng7 with five or ten candidates
perform always better, resulting also in smaller average and maximum gaps. Overall, several lower bounds
are improved compared to the integer results without strong branching (egl-e3-b, egl-e4-c, egl-s3-a,
and egl-s4-a).

5.7. New Best Solutions for egl and bmcv Instances
Compared to the best known results from the literature several lower bounds for both data set were

improved. Tables 9, 12 and 13 summarize the results for the standard and large-scale egl instances, while
Tables 10 and 11 present results for the bmcv instances. The dataset of the large-scale egl instances was
proposed by (Brandão and Eglese, 2008) and contains instances with up to 255 nodes, 375 edges and 347
or 375 required edges. Values printed in bold indicate new best solutions. New best lower bounds were
calculated for all large-scale egl instances and five standard egl instances (egl-e3-b, egl-e4-c, egl-s3-a,
egl-s4-a, egl-s4-b). The instance egl-e2-b is solved to optimality for the first time. During preliminary
experiments we found a new upper bound for the instance egl-e4-c. The corresponding solutions are shown
in Section D of the Appendix.

For previously 33 unsolved bmcv instances, we obtained either better lower bounds or optimal solutions
in 32 cases. In detail, better lower bounds were computed for six open C instances (C01, C09, C11, C12,
C15 and C23) and four new optimal solutions were found (C04, C19, C21 and C24). However, compared to
Bartolini et al. (2012), our lower bound for C18 is seven units worse. For the six remaining D instances, we
computed three better lower bounds (D21, D23 and D24) and three optimal solutions (D08, D14 and D19).
On the downside, we were not able to solve D07 which was solved to optimality by Bartolini et al. (2012).
Furthermore, the root node for the instances D15 and D18 could not be solved within four hours with some
relaxations. Five better lower bounds (E01, E09, E15, E18 and E23) and six optimal solutions (E11, E16, E10,
E20, E21 and E24) were found for E instances. Note that for the instance E12 we ended up one unit worse
than Bartolini et al. (2012). For F instances, we obtained three better lower bounds (F18, F19 and F23) and
three optimal solutions (F04, F08 and F12). Furthermore, Bartolini et al. (2012) already mentioned that
the objective value for bmcv instances is always a multiple of five because all edge costs are multiples of five.
Therefore, they proved optimality for the the instance E21. Using the same argument, we can match the
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lower bounds of five additional instances with the upper bound (D23, E12, E18, E23 and F23). In the end,
twelve standard egl instances and 14 bmcv instances remain open.

6. Conclusion

In this work, different relaxations known from the node-routing context were adapted to solve the CARP
with a branch-and-price approach. The adaptation to column generation-based approaches that price out
new CARP tours over the original graph is by no means trivial, but is however attractive because it offers the
application of highly effective pricing procedures that exploit the sparsity of the CARP network. Exploiting
sparsity results in, compared to standard node-routing problems, a more intricate branching scheme, which
in turn complicates the pricing. In essence, the effective approach of Bode and Irnich (2012) requires that
the shortest-path pricing problem resulting from a relaxation must be able to handle two sets of tasks: One
set T E models elementary routes and the other set T B incorporates non-follower constraints implied by the
branching scheme. While for T E any relaxation of elementary routes is applicable, routes must be exactly
2-loop-free regarding to tasks in T B .

First, we have adapted the ng-route relaxations (Baldacci et al., 2011b) and the k-loop-free relaxations
(Irnich and Villeneuve, 2006) leading to combined ng-route 2-loop-free relaxations and combined (k, 2)-
loop-free relaxations. For the latter, a new labeling algorithm was developed. Its key component are strong
dominance rules that we derived, based on new worst-case complexity results guaranteeing that, for a fixed
parameter k, the number of labels to consider never exceeds (k− 1)!(k+ 1)! times the size of the underlying
state space. Concluding, a pricing problem resulting from the (k, 2)-loop-free relaxation with k fixed can be
solved in O (C · (|E| + |V | log |V |)) time, where C is the vehicle capacity and O (|E| + |V | log |V |) the best
known bound for solving shortest-path problems using Dijkstra’s algorithm.

Second, we integrated acceleration techniques for the heuristic and exact solution of the pricing prob-
lems. In particular, bi-directional labeling (Righini and Salani, 2006) and bounding (Baldacci et al., 2009)
techniques were modified to fit with all relaxations.

Third, we presented a comprehensive computational study where the performance of the acceleration
techniques, the quality of the bounds (lower bounds at the root node and over time in branch-and-price),
and the overall performance of different branch-and-price algorithms were analyzed. Moreover, we tried
to characterize which type of relaxation and acceleration technique is best suited to solve a specific group
of instances. The standard instances egl of Eglese and Li (1992) and bmcv of Beullens et al. (2003) were
used for that purpose. In summary, reasonable parameters are k ∈ {2, 3, 4} for (k, 2)-loop elimination
and nng ∈ {5, 6, 7} for the maximum size of neighborhoods in ng-route relaxations. Bounding with the
2-loop-free relaxation is generally sufficient, stronger relaxations do not pay off. For the entire branch-and-
price, bi-directional labeling alone accelerates better than bounding alone, but the combination of both is
often even more effective providing acceleration factors of approximately four for ng-route relaxations and
(3, 2)-loop elimination, and factor eight for (4, 2)-loop elimination. The study of lower bounds provided by
the linear relaxations with (k, 2)-loop elimination and ng-routes shows that neither relaxation outperforms
the others on all instances. Concerning groups of instances, k-loop-free relaxations often work better for
instances utilizing fewer vehicles, higher capacities, and relatively long routes. The opposite is true for
ng-route relaxations working best when solutions comprise more vehicles with relatively shorter routes.

Overall, the newly considered relaxations with loop elimination for k = 3 and k = 4 as well as the use of
the ng-route relaxations outperformed the already remarkable results with elementary routes presented by
Bartolini et al. (2012) and with the pure 2-loop-free relaxation presented by Bode and Irnich (2012). The
different branch-and-price algorithms delivered 22 new best lower bounds of the egl and bmcv benchmark
sets, and improved all lower bounds for the twelve large-scale egl instances by Martinelli et al. (2011b).
Finally, 20 previously open instances, one for the standard egl and 19 for bmcv benchmark set, are solved
to optimality for the first time.
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Appendix

A. Proofs

This section contains proofs of the worst-case complexity results for combined (k1, k2)-loop elimination
as introduced in Section 3.4 of the paper. Note that the proofs follow similar ideas as discussed in the first
article on k-cycle elimination (focused on node-routing applications) and we refer the reader to this (Irnich
and Villeneuve, 2006) for a more detailed motivation.

Theorem. Let the first set of tasks required to be k1-loop-free and the second set of tasks to be k2-loop-free.
Then the maximum number of different set forms needed to represent any intersection H(P1)∩H(P2)∩· · ·∩
H(Pl) of self-hole sets of any set of l paths is (k1 − 1)!2 · (k2 − 1)!2 ·

(
(k1−1)+(k2−1)

k1−1

)
. This bound is tight.

Proof. Define I1(s), I2(s) of an arbitrary set forms s = (s1
1, . . . , s

1
k1−1)(s2

1, . . . , s
2
k2−1) with s1

i ∈ T 1 ∪ {·}
and s2

j ∈ T 2 ∪ {·} as

I1(s) := {i ∈ {1, . . . , k1 − 1}|s1
i = ·} and I2(s) := {j ∈ {1, . . . , k2 − 1}|s2

j = ·}

Let the I(s) = (I1(s), I2(s)) be the type of an arbitrary set forms s. To shorten the notation we will write
I = (I1, I2) instead of I(s) = (I1(s), I2(s)). We denote by nk1,k2(I) the maximum number of different set
forms that can be generated from a set form of type I by intersection with arbitrarily chosen self-hole sets.
nk1,k2

is defined on all subsets I = (I1, I2) ⊆ ({1, . . . , k1− 1}, {1, . . . , k2− 1}). The following recurrences are
valid for nk1,k2

:

nk1,k2
(∅, ∅) = 1

nk1,k2
(I) =

∑
i∈I1

(k1 − i)nk1,k2
(I1 \ {i}, I2) +

∑
j∈I2

(k2 − j)nk1,k2
(I1, I2 \ {j})

∀I1 ⊆ {1, . . . , k1 − 1} and I2 ⊆ {1, . . . , k2 − 1} and I 6= (∅, ∅)

The first equation is clear. The second equation is implied by the intersection operation. For each position l
there are either k1− l or k2− l different possibilities to place an element of the self-hole set at this position.
This recurrence is solved by

nk1,k2
(I) =

[
|I1|!

∏
i∈I1

(k1 − i)

][
|I2|!

∏
j∈I2

(k2 − j)

][(
|I1|+ |I2|
|I1|

)]
.

This can be seen by induction on the cardinality of I. For I = (∅, ∅) this gives nk1,k2
(∅, ∅) = 1, which is
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correct. Now assume, that the above equality is true for all subsets with cardinality |I| − 1.

nk1,k2
(I) =

∑
i∈I1

(k1 − i)nk1,k2
(I1 \ {i}, I2) +

∑
j∈I2

(k2 − j)nk1,k2
(I1, I2 \ {j})

=
∑
i∈I1

(k1 − i)(|I1| − 1)!
∏

l∈I1\{i}

(k1 − l)|I2|!
∏

m∈I2

(k2 −m)

(
|I1|+ |I2| − 1

|I1| − 1

)
+

∑
j∈I2

(k2 − j)|I1|!
∏
l∈I1

(k1 − l)(|I2| − 1)!
∏

m∈I2\{j}

(k2 −m)

(
|I1|+ |I2| − 1

|I1|

)

=
∑
i∈I1

(|I1| − 1)!(k1 − i)
∏

l∈I1\{i}

(k1 − l)|I2|!
∏

m∈I2

(k2 −m)

(
|I1|+ |I2| − 1

|I1| − 1

)
+

∑
j∈I2

|I1|!
∏
l∈I1

(k1 − l)(|I2| − 1)!(k2 − j)
∏

m∈I2\{j}

(k2 −m)

(
|I1|+ |I2| − 1

|I1|

)

=
∑
i∈I1

(|I1| − 1)!
∏
l∈I1

(k1 − l)|I2|!
∏

m∈I2

(k2 −m)

(
|I1|+ |I2| − 1

|I1| − 1

)
+

∑
j∈I2

|I1|!
∏
l∈I1

(k1 − l)(|I2| − 1)!
∏

m∈I2

(k2 −m)

(
|I1|+ |I2| − 1

|I1|

)

=
∏
l∈I1

(k1 − l)
∏

m∈I2

(k2 −m)

∑
i∈I1

(|I1| − 1)!|I2|!
(
|I1|+ |I2| − 1

|I1| − 1

)
+
∑
j∈I2

|I1|!(|I2| − 1)!

(
|I1|+ |I2| − 1

|I1|

)
= |I1|!

∏
l∈I1

(k1 − l)|I2|!
∏

m∈I2

(k2 −m)

[(
|I1|+ |I2| − 1

|I1| − 1

)
+

(
|I1|+ |I2| − 1

|I1|

)]
= |I1|!

∏
l∈I1

(k1 − l)|I2|!
∏

m∈I2

(k2 −m)

(
|I1|+ |I2|
|I1|

)
The above expression proves that we can get at most (k1−1)!2 · (k2−1)!2 ·

(
(k1−1)+(k2−1)

k1−1

)
different elements

in the intersection. To show that this bound is tight we choose any k̄ = k1 + k2 different paths P1, . . . , Pk̄

with disjoint predecessor tasks on both task-sets. Then the intersection of the corresponding self-hole sets
consists of exactly (k1 − 1)!2 · (k2 − 1)!2 ·

(
(k1−1)+(k2−1)

k1−1

)
elements.

Theorem. A collection of s dominating paths P1 ≺dom P2 ≺dom . . . ≺dom Ps with identical resource vectors
ending at the same node is given. Let the intersections of the corresponding self-hole sets H(P1), H(P2), . . . ,H(Ps)
form a properly decreasing chain, i.e. H(P1) ) H(P1) ∩H(P2) ) · · · ) ∩si=1H(Pi). Then, the length q of
the properly decreasing chain is bounded by α(k1, k2) = (k1 + k2 − 1) · (k1 − 1)!2 · (k2 − 1)!2 ·

(
(k1−1)+(k2−1)

k1−1

)
.

Proof. Every new element of the chain is a result of the intersections made before with one new intersection
with a self-hole set H(Pi). From Theorem 1 we know that there are at maximum (k1 − 1)!2 · (k2 − 1)!2 ·(

(k1−1)+(k2−1)
k1−1

)
different set forms in such an intersection. Every set form has (k1 − 1) + (k2 − 1) entries

which results in [(k1 − 1) + (k2 − 1)](k1 − 1)!2 · (k2 − 1)!2 ·
(

(k1−1)+(k2−1)
k1−1

)
different entries in total. The

computation of the intersection there are two possible operations:
1. A new set form is generated, where a previously free entry · is specified by an element t1 ∈ T 1 or
t2 ∈ T 2. There exists at most [(k1−1)+(k2−1)] · (k1−1)!2 · (k2−1)!2 ·

(
(k1−1)+(k2−1)

k1−1

)
possible entries

to specify.
2. On the other hand, a set form can be deleted. This can happen at most (k1 − 1)!2 · (k2 − 1)!2 ·(

(k1−1)+(k2−1)
k1−1

)
times.

Since each intersection performs at least one of the above operations, this yields to an upper bound of
[(k1 − 1) + (k2 − 1) + 1](k1 − 1)!2 · (k2 − 1)!2 ·

(
(k1−1)+(k2−1)

k1−1

)
.
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B. Tables

Linear Relaxation Results. The Tables 6–8 present the linear relaxation results for the egl and bmcv in-
stances. The meaning of the table entries are as follows:

instance name of the instance
(for egl instances the prefix egl- is omitted for the sake of brevity)

ubbest or opt the best known upper bound (not underlined) or the optimum (underlined)
lb lower bound provided by the respective linear relaxation

(rounded up to the next integer)
gap absolute gap, i.e., the difference ubbest − lb or opt− lb
time computation time in seconds

(rounded up to the next integer)

Integer Solution Results. The Tables 9–11 present the integer results for the egl and bmcv instances. The
meaning of the table entries are as follows:

instance name of the instance
(for egl instances the prefix egl- is omitted for the sake of brevity)

ubbest or opt the best known upper bound (not underlined) or the optimum (underlined)
lbtree lower bound provided by the branch-and-price algorithm within the time limit of 4

hours
(rounded up to the next integer)
‘OPT’ indicates that the instance is solved to proven optimality within 4 hours
lbtree = opt indicates that the gap was closed, but no integer optimal solution was
computed within the time limit

lbbestown best lower bound over all relaxations tested here
Num. lbbestown number of instances for which the respective relaxation provided the best lower bound

lbbestown

Lower bounds written in bold indicate that that this bound is a new best bound exceeding the best known
lower bounds from the literature. The upper bounds ub = 11529 for the instance egl-e4-c and ub = 4650
for the bmcv instance E11 (written in bold also) result from new best integer solutions found with branch-
and-price.

The Table 12 presents the integer results for the large-scale egl instances. The meaning of the table entries
are as follows:

instance name of the instance
ubbest the best known upper bound

At the time of writing the best upper bounds ub were computed by Martinelli et al.
(2011b).

lbtree lower bound provided by the branch-and-price algorithm within the time limit of
10 hours (rounded up to the next integer)

Lower bounds written in bold indicate that that this bound is a new best bound exceeding the best known
lower bounds from the literature.
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8:
Linear

R
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Table 9: Integer Results for egl Instances

in
st

an
ce

u
b b

e
s
t

or
op

t

2-
lo

op

3b
2-

lo
op

4b
2-

lo
op

4b
3-

lo
op

ng4 ng5 ng6 ng7

lbtree lbtree lbtree lbtree lbtree lbtree lbtree lbtree lbbestown

e1-a 3548 OPT OPT OPT OPT OPT OPT OPT OPT OPT
e1-b 4498 OPT OPT OPT OPT OPT OPT OPT OPT OPT
e1-c 5595 5545 5551 5555 5554 5560 5571 5570 5572 5572
e2-a 5018 OPT OPT OPT OPT OPT 5018 5018 5012 OPT
e2-b 6317 6301 6301 6306 6305 6308 6311 OPT OPT OPT
e2-c 8335 8242 8269 8303 8302 8300 8304 8315 8317 8317
e3-a 5898 OPT OPT OPT OPT OPT OPT OPT 5898 OPT
e3-b 7775 7730 7735 7732 7733 7734 7741 7741 7740 7741
e3-c 10292 10191 10220 10226 10225 10226 10228 10228 10229 10229
e4-a 6444 6408 6405 6399 6399 6398 6399 6399 6398 6408
e4-b 8961 8892 8899 8900 8897 8905 8908 8913 8910 8913
e4-c 11529 11456 11488 11501 11499 11499 11500 11501 11501 11501

s1-a 5018 OPT OPT OPT OPT 5018 5018 5018 5015 OPT
s1-b 6388 6386 OPT OPT OPT 6384 6384 6385 6383 OPT
s1-c 8518 8440 8476 8500 8499 8501 8504 8509 8507 8509
s2-a 9884 9805 9806 9804 9803 9807 9806 9806 9808 9808
s2-b 13100 12970 12978 12982 12980 12991 12991 12994 12994 12994
s2-c 16425 16351 16377 16380 16379 16393 16392 16393 16393 16393
s3-a 10220 10160 10154 10150 10149 10153 10153 10154 10152 10160
s3-b 13682 13630 13629 13627 13625 13637 13640 13644 13640 13644
s3-c 17188 17096 17122 17125 17123 17138 17143 17142 17141 17143
s4-a 12268 12149 12147 12142 12141 12150 12151 12151 12150 12151
s4-b 16283 16104 16106 16105 16104 16113 16111 16111 16108 16113
s4-c 20481 20374 20397 20406 20405 20418 20420 20422 20423 20423

Num. lbbestown 7 6 7 6 6 6 12 11
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Table 10: Integer Results for bmcv Instances, Subsets C and E

in
st
an

ce

u
b b

e
s
t

or
o
p
t

2-
lo
op

3b
2-
lo
op

4b
2-
lo
op

4b
3-
lo
op

ng
5

ng
6

ng
7

lb
b
e
s
t

o
w
n

lbtree lbtree lbtree lbtree lbtree lbtree lbtree lbbestown

C01 4150 4144 4140 4140 4138 4143 4145 4144 4145
C02 3135 OPT OPT OPT OPT OPT OPT OPT OPT
C03 2575 OPT OPT OPT OPT OPT OPT OPT OPT
C04 3510 OPT OPT OPT OPT OPT OPT OPT OPT
C05 5365 OPT OPT OPT OPT OPT OPT OPT OPT
C06 2535 OPT OPT OPT OPT OPT OPT OPT OPT
C07 4075 OPT OPT OPT OPT OPT OPT OPT OPT
C08 4090 OPT OPT OPT OPT OPT OPT OPT OPT
C09 5260 5244 5242 5242 5241 5245 5245 5245 5245
C10 4700 OPT OPT OPT OPT OPT OPT OPT OPT
C11 4635 4608 4608 4607 4604 4609 4611 4609 4611
C12 4240 4234 4231 4226 4225 4233 4232 4232 4234
C13 2955 OPT OPT OPT OPT OPT OPT OPT OPT
C14 4030 4010 4021 4024 4019 OPT OPT OPT OPT
C15 4940 4918 4915 4916 4914 4918 4918 4918 4918
C16 1475 OPT OPT OPT OPT OPT OPT OPT OPT
C17 3555 OPT OPT OPT OPT OPT OPT OPT OPT
C18 5620 5570 5568 5563 5562 5564 5562 5562 5570
C19 3115 OPT OPT OPT OPT OPT OPT OPT OPT
C20 2120 OPT OPT OPT OPT OPT OPT OPT OPT
C21 3970 OPT OPT OPT OPT OPT OPT OPT OPT
C22 2245 OPT OPT OPT OPT OPT OPT OPT OPT
C23 4085 4073 4072 4069 4070 4073 4068 4058 4073
C24 3400 OPT OPT OPT OPT OPT OPT OPT OPT
C25 2310 OPT OPT OPT OPT OPT OPT OPT OPT

Num lbbestown 21 17 17 17 21 22 20

E01 4910 4898 4896 4896 4893 4898 4897 4897 4898
E02 3990 3971 3985 OPT OPT OPT OPT OPT OPT
E03 2015 OPT OPT OPT OPT OPT OPT OPT OPT
E04 4155 OPT OPT OPT OPT OPT OPT OPT OPT
E05 4585 OPT OPT OPT OPT OPT OPT OPT OPT
E06 2055 OPT OPT OPT OPT OPT OPT OPT OPT
E07 4155 4137 4149 OPT OPT OPT OPT OPT OPT
E08 4710 OPT OPT OPT OPT OPT OPT OPT OPT
E09 5820 5802 5800 5798 5797 5802 5802 5802 5802
E10 3605 OPT OPT OPT OPT OPT OPT OPT OPT
E11 4650 4650 OPT 4650 4650 4650 OPT OPT OPT
E12 4180 4167 4169 4170 4166 4178 4177 4179 4179
E13 3345 OPT OPT OPT OPT OPT OPT OPT OPT
E14 4115 4108 OPT OPT OPT OPT 4111 OPT OPT
E15 4205 4199 4196 4194 4192 4197 4192 4193 4199
E16 3775 OPT OPT OPT OPT OPT OPT OPT OPT
E17 2740 OPT OPT OPT OPT OPT OPT OPT OPT
E18 3835 3825 3825 3825 3825 3826 3831 3832 3832
E19 3235 OPT OPT OPT 3235 3235 3235 3235 OPT
E20 2825 2815 2820 OPT OPT OPT OPT OPT OPT
E21 3730 3730 3730 3730 3730 3730 OPT OPT OPT
E22 2470 OPT OPT OPT OPT OPT OPT OPT OPT
E23 3710 3704 3703 3699 3697 3707 3704 3701 3707
E24 4020 OPT 4020 OPT 4020 OPT OPT OPT OPT
E25 1615 OPT OPT OPT OPT OPT OPT OPT OPT

Num lbbestown 16 14 17 15 19 18 21
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Table 11: Integer Results for bmcv Instances, Subsets D and F

in
st
an

ce

u
b b

e
s
t

or
o
p
t

2-
lo
op

3b
2-
lo
op

4b
2-
lo
op

4b
3-
lo
op

ng
5

ng
6

ng
7

lb
b
e
s
t

o
w
n

lbtree lbtree lbtree lbtree lbtree lbtree lbtree lbbestown

D01 3215 OPT OPT OPT 3215 OPT OPT OPT OPT
D02 2520 OPT OPT OPT OPT OPT OPT OPT OPT
D03 2065 OPT OPT OPT OPT OPT OPT OPT OPT
D04 2785 OPT OPT OPT OPT OPT 2785 2785 OPT
D05 3935 OPT OPT OPT OPT OPT OPT OPT OPT
D06 2125 OPT OPT OPT OPT OPT OPT OPT OPT
D07 3115 3108 3102 3098 3092 3098 3090 3082 3108
D08 3045 OPT 3041 3027 3022 3030 3027 3004 OPT
D09 4120 OPT OPT OPT OPT OPT OPT 4120 OPT
D10 3340 OPT OPT OPT OPT OPT OPT OPT OPT
D11 3745 3745 OPT OPT 3745 3745 3745 3745 OPT
D12 3310 OPT OPT OPT OPT OPT OPT OPT OPT
D13 2535 OPT OPT OPT OPT OPT OPT OPT OPT
D14 3280 3280 OPT OPT OPT OPT OPT OPT OPT
D15 3990 OPT OPT - 3990 3990 3990 3990 OPT
D16 1060 OPT OPT OPT OPT OPT OPT 1060 OPT
D17 2620 OPT OPT OPT OPT OPT OPT OPT OPT
D18 4165 OPT - 4165 - 4165 4165 4165 OPT
D19 2400 OPT OPT OPT OPT 2376 2373 2373 OPT
D20 1870 OPT OPT OPT OPT 1870 1870 1870 OPT
D21 3050 3005 2988 2982 2980 2983 2981 2981 3005
D22 1865 OPT OPT OPT OPT OPT OPT OPT OPT
D23 3130 3126 3114 3111 3111 3115 3113 3113 3126
D24 2710 2704 2691 2679 2669 2669 2666 2666 2704
D25 1815 OPT OPT OPT OPT OPT OPT OPT OPT

Num lbbestown 23 19 18 16 15 14 12

F01 4040 OPT OPT OPT OPT OPT OPT 4040 OPT
F02 3300 OPT OPT OPT OPT OPT OPT OPT OPT
F03 1665 OPT OPT OPT OPT OPT OPT OPT OPT
F04 3485 OPT OPT OPT 3485 3483 3477 3476 OPT
F05 3605 OPT OPT OPT OPT OPT OPT OPT OPT
F06 1875 OPT OPT OPT OPT OPT OPT OPT OPT
F07 3335 OPT OPT OPT OPT OPT OPT OPT OPT
F08 3705 OPT OPT OPT OPT OPT OPT OPT OPT
F09 4730 OPT OPT 4730 4730 4730 4730 4730 OPT
F10 2925 OPT OPT OPT OPT OPT OPT OPT OPT
F11 3835 OPT OPT OPT OPT 3835 3835 3835 OPT
F12 3395 OPT 3395 3392 3392 3392 3390 3390 OPT
F13 2855 OPT OPT OPT OPT OPT OPT OPT OPT
F14 3330 OPT OPT OPT OPT OPT OPT OPT OPT
F15 3560 OPT 3560 3560 OPT 3560 3560 3560 OPT
F16 2725 OPT OPT OPT OPT OPT OPT OPT OPT
F17 2055 OPT OPT OPT OPT OPT OPT OPT OPT
F18 3075 3065 3065 3065 3065 3062 3062 3062 3065
F19 2525 2515 2515 2514 2511 2489 2489 2488 2515
F20 2445 OPT OPT OPT OPT OPT OPT OPT OPT
F21 2930 OPT OPT OPT 2930 OPT 2930 OPT OPT
F22 2075 OPT OPT OPT OPT OPT OPT OPT OPT
F23 3005 3003 2998 2994 2996 2989 2989 2989 3003
F24 3210 OPT OPT OPT OPT 3210 3210 3210 OPT
F25 1390 OPT OPT OPT OPT OPT OPT OPT OPT

Num lbbestown 25 22 20 19 16 15 15
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Table 12: Integer Results for Large-Scale egl Instances

in
st
an

ce

2-
lo
op

2-
lo
op

sc
al
in
g
50

ubbest lbtree lbtree

egl-g1-a 1,004,864 974,383 976,907
egl-g1-b 1,129,937 1,092,760 1,093,884
egl-g1-c 1,262,888 1,211,590 1,212,151
egl-g1-d 1,398,958 1,341,370 1,341,918
egl-g1-e 1,543,804 1,481,500 1,482,176
egl-g2-a 1,115,339 1,069,536 1,067,262
egl-g2-b 1,226,645 1,184,230 1,185,221
egl-g2-c 1,371,004 1,308,960 1,311,339
egl-g2-d 1,509,990 1,445,870 1,446,680
egl-g2-e 1,659,217 1,580,030 1,581,459

Finally, the Table 13 presents the integer results for strong branching using the standard egl instances. The
meaning of the table entries are as follows:

instance name of the instance
ubbest or opt the best known upper bound (not underlined) or the optimum (underlined)
lbtree lower bound provided by the branch-and-price algorithm within the time limit of

4 hours (rounded up to the next integer)
‘OPT’ indicates that the instance is solved to proven optimality within 4 hours
lbtree = opt indicates that the gap was closed, but no integer optimal solution was
computed within the time limit

ubbestown best lower bound computed in this analysis
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ubbest
oropt

2-loop
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3-loopsb10
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e
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e
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e
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tr
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e
s
t

o
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n
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35
48
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P
T
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P
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P
T

O
P
T
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T

O
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T

O
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T

O
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T

O
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P
T

O
P
T

e1
-b

44
98

O
P
T

O
P
T

O
P
T

O
P
T

O
P
T

O
P
T

O
P
T

O
P
T

O
P
T

O
P
T

O
P
T

O
P
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P
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P
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C. Best Known Lower and Upper Bounds

The Tables 14–16 list the best known lower and upper bounds for the standard and large-scale egl
instances and the bmcv instances. The meaning of the table entries are as follows:

instance name of the instance
lbbest the best known lower bound
ubbest the best known upper bound
opt cost of an optimal solution
own a bound or proof of optimality provided using results of the paper at hand

Note: if an instance is solved to optimality, we do not give a lower bound.
At the time of writing this paper, twelve of the standard and all twelve large-scale egl instances remain

unsolved. For the bmcv benchmark set, seven C, two D, three E, and two F instances are open.
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Table 15: Best Known Bounds for the bmcv Instances, Subsets C and E

instance lbbest computed by ubbest computed by opt proved by
C01 4145 own 4150 Beullens et al. (2003)
C02 3135 Beullens et al. (2003) 3135 Beullens et al. (2003)
C03 2575 Beullens et al. (2003) 2575 Bartolini et al. (2012)
C04 3510 Beullens et al. (2003) 3510 own
C05 5365 Brandão and Eglese (2008) 5365 Bartolini et al. (2012)
C06 2535 Beullens et al. (2003) 2535 Bartolini et al. (2012)
C07 4075 Beullens et al. (2003) 4075 Bartolini et al. (2012)
C08 4090 Beullens et al. (2003) 4090 Bartolini et al. (2012)
C09 5245 own 5260 Brandão and Eglese (2008)
C10 4700 Brandão and Eglese (2008) 4700 Bartolini et al. (2012)
C11 4615 own 4630 Mei et al. (2009)
C12 4235 own 4240 Beullens et al. (2003)
C13 2955 Beullens et al. (2003) 2955 Bartolini et al. (2012)
C14 4030 Beullens et al. (2003) 4030 Bartolini et al. (2012)
C15 4920 own 4940 Beullens et al. (2003)
C16 1475 Beullens et al. (2003) 1475 Bartolini et al. (2012)
C17 3555 Beullens et al. (2003) 3555 Bartolini et al. (2012)
C18 5580 Bartolini et al. (2012) 5620 Santos et al. (2010)
C19 3115 Beullens et al. (2003) 3115 own
C20 2120 Beullens et al. (2003) 2120 Beullens et al. (2003)
C21 3970 Beullens et al. (2003) 3970 own
C22 2245 Beullens et al. (2003) 2245 Beullens et al. (2003)
C23 4075 own 4085 Beullens et al. (2003)
C24 3400 Beullens et al. (2003) 3400 own
C25 2310 Beullens et al. (2003) 2310 Beullens et al. (2003)

E01 4900 own 4910 Brandão and Eglese (2008)
E02 3990 Beullens et al. (2003) 3990 Bartolini et al. (2012)
E03 2015 Beullens et al. (2003) 2015 Beullens et al. (2003)
E04 4155 Beullens et al. (2003) 4155 Bartolini et al. (2012)
E05 4585 Brandão and Eglese (2008) 4585 Bartolini et al. (2012)
E06 2055 Beullens et al. (2003) 2055 Beullens et al. (2003)
E07 4155 Beullens et al. (2003) 4155 Bartolini et al. (2012)
E08 4710 Beullens et al. (2003) 4710 Bartolini et al. (2012)
E09 5805 own 5820 Tang et al. (2009)
E10 3605 Beullens et al. (2003) 3605 Beullens et al. (2003)
E11 4650 own
E12 4180 Bartolini et al. (2012) 4180 Bartolini et al. (2012)
E13 3345 Beullens et al. (2003) 3345 Bartolini et al. (2012)
E14 4115 Beullens et al. (2003) 4115 Bartolini et al. (2012)
E15 4200 own 4205 Santos et al. (2010)
E16 3775 Beullens et al. (2003) 3775 own
E17 2740 Beullens et al. (2003) 2740 Beullens et al. (2003)
E18 3835 Beullens et al. (2003) 3835 own
E19 3235 Beullens et al. (2003) 3235 own
E20 2825 Beullens et al. (2003) 2825 own
E21 3730 Beullens et al. (2003) 3730 Bartolini et al. (2012)
E22 2470 Beullens et al. (2003) 2470 Bartolini et al. (2012)
E23 3710 Beullens et al. (2003) 3710 own
E24 4020 Beullens et al. (2003) 4020 own
E25 1615 Beullens et al. (2003) 1615 Beullens et al. (2003)
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Table 16: Best Known Bounds for the bmcv Instances, Subsets D and F

instance lbbest computed by ubbest computed by opt proved by
D01 3215 Beullens et al. (2003) 3215 Beullens et al. (2003)
D02 2520 Beullens et al. (2003) 2520 Beullens et al. (2003)
D03 2065 Beullens et al. (2003) 2065 Beullens et al. (2003)
D04 2785 Beullens et al. (2003) 2785 Beullens et al. (2003)
D05 3935 Beullens et al. (2003) 3935 Beullens et al. (2003)
D06 2125 Beullens et al. (2003) 2125 Beullens et al. (2003)
D07 3115 Beullens et al. (2003) 3115 Bartolini et al. (2012)
D08 3045 Beullens et al. (2003) 3045 own
D09 4120 Beullens et al. (2003) 4120 Beullens et al. (2003)
D10 3340 Beullens et al. (2003) 3340 Bartolini et al. (2012)
D11 3745 Tang et al. (2009) 3745 Beullens et al. (2003)
D12 3310 Beullens et al. (2003) 3310 Beullens et al. (2003)
D13 2535 Beullens et al. (2003) 2535 Beullens et al. (2003)
D14 3280 Beullens et al. (2003) 3280 own
D15 3990 Beullens et al. (2003) 3990 Beullens et al. (2003)
D16 1060 Beullens et al. (2003) 1060 Beullens et al. (2003)
D17 2620 Beullens et al. (2003) 2620 Beullens et al. (2003)
D18 4165 Beullens et al. (2003) 4165 Beullens et al. (2003)
D19 2400 Beullens et al. (2003) 2400 own
D20 1870 Beullens et al. (2003) 1870 Beullens et al. (2003)
D21 3005 own 3050 Beullens et al. (2003)
D22 1865 Beullens et al. (2003) 1865 Beullens et al. (2003)
D23 3130 Beullens et al. (2003) 3130 own
D24 2705 own 2710 Beullens et al. (2003)
D25 1815 Beullens et al. (2003) 1815 Beullens et al. (2003)

F01 4040 Beullens et al. (2003) 4040 Beullens et al. (2003)
F02 3300 Beullens et al. (2003) 3300 Beullens et al. (2003)
F03 1665 Beullens et al. (2003) 1665 Beullens et al. (2003)
F04 3485 Beullens et al. (2003) 3485 own
F05 3605 Beullens et al. (2003) 3605 Beullens et al. (2003)
F06 1875 Beullens et al. (2003) 1875 Beullens et al. (2003)
F07 3335 Beullens et al. (2003) 3335 Beullens et al. (2003)
F08 3705 Beullens et al. (2003) 3705 own
F09 4730 Beullens et al. (2003) 4730 Beullens et al. (2003)
F10 2925 Beullens et al. (2003) 2925 Beullens et al. (2003)
F11 3835 Beullens et al. (2003) 3835 Beullens et al. (2003)
F12 3395 Beullens et al. (2003) 3395 own
F13 2855 Beullens et al. (2003) 2855 Beullens et al. (2003)
F14 3330 Beullens et al. (2003) 3330 Beullens et al. (2003)
F15 3560 Beullens et al. (2003) 3560 Beullens et al. (2003)
F16 2725 Beullens et al. (2003) 2725 Beullens et al. (2003)
F17 2055 Beullens et al. (2003) 2055 Beullens et al. (2003)
F18 3065 Bartolini et al. (2012) 3075 Beullens et al. (2003)
F19 2515 own 2525 Beullens et al. (2003)
F20 2445 Beullens et al. (2003) 2445 Beullens et al. (2003)
F21 2930 Beullens et al. (2003) 2930 Beullens et al. (2003)
F22 2075 Beullens et al. (2003) 2075 Beullens et al. (2003)
F23 3005 Beullens et al. (2003) 3005 own
F24 3210 Beullens et al. (2003) 3210 Beullens et al. (2003)
F25 1390 Beullens et al. (2003) 1390 Beullens et al. (2003)
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D. Integer Solutions

In this section, new integer solutions are given. Note that in the following ‘=’ indicates a service and ‘−’
a deadheading. The terms ub and opt show the cost of the presented solution. ‘load’ is the demand served
by the respective route.

New Upper Bounds and Best Known Solutions.
egl-e4-c ub = 11529
veh 1 1=2=3–2=4–5=6–5=4–2–1 load 127
veh 2 1–2–4–5=7–8=9=10–11=59–69–4–2–1 load 130
veh 3 1–2–4–5–7=8–9–10–11=48–47=46–44–59–69–4–2–1 load 130
veh 4 1–2–4–5–7–8–9–10=11–12–76–20–18–72–73=74–73–72=18–20–76–12–11–10–9–8–7–5–4–2–1 load 129
veh 5 1–2–4–5–7–8–9–10–11=12–76–20=19=50=52=54–52–50=49–47=48–47–46=45–44–59–69–4–2–1 load 130
veh 6 1–2–4–5–7–8–9–10–11–12=16=13=14=15=17–15=77=76–12–11–10–9–8–7–5–4–2–1 load 130
veh 7 1–2–4–5–7–8–9–10–11–12–16–13=77–15=18–72=73=71=70–71=72–18–20=76–12–11–10–9–8–7–5–4–2–1 load 130
veh 8 1–2–4–69–59–44–46–47=49=51=53–51–21=19=18=20–76=12–11–10–9–8–7–5–4–2–1 load 130
veh 9 1–2–4–69–59–44–46–47–49–51–21=22–75=23–31=32=33–37=38–37–39–40–41–42–57–58–69–4–2–1 load 130
veh 10 1–2–4–69–59–44–46–47–49–51–21–22=75–23=31=30–31–23=26=27–26=25–24=22–21–51–53=52–50–49–47

–46–44–59–69–4–2–1 load 130
veh 11 1–2–4–69–59–44–46–47–49–51–53=24=25=29=28=26–25=75–22–21=51–49–47–46–44–59–69–4–2–1 load 130
veh 12 1–2–4–69–58–57–42–41–35–32=34–32=35–41–42–57–58–69–4–2–1 load 129
veh 13 1–2–4–69–58–57–42–41–40–39–37–33=36–33=37=39=40–41–42–57–58–69–4–2–1 load 128
veh 14 1–2–4–69–58=57–42–41=40–39=35=41=42–57–58–69–4–2–1 load 127
veh 15 1–2–4–69–59=58–57=42=43=44–59–69–4–2–1 load 128
veh 16 1–2–4–69–59–44=45–46=44=59–69=4–2–1 load 128
veh 17 1–2–4–69–58=60=67=56=55–56=42–57–58–69–4–2–1 load 130
veh 18 1–2–4–69–58–60=61–60–67=62=63=65–63=64–63–62–60–58–69–4–2–1 load 130
veh 19 1–2–4–69=58–60=62=66=68–66–62–60–58–59=69–4–2–1 load 127

New Optimal Solutions.

egl-e2-b opt = 6317
veh 1 1–2–4–69–59–44=43–42=57=58=59–69–4–2–1 load 195
veh 2 1–2–4–5–7–8–9–10–11–12–76=20–18=15=17–15–14=13=16=12=11–10=9=8–7–5–4–2–1 load 199
veh 3 1–2–4–69=58=60–67–56=55–56–42–41–35–32=34–32=35–41–42–57–58–69–4–2–1 load 200
veh 4 1–2–4–5–7–8–9–10–11–12–76–20=19=18–72=73=74–73=71–72=18–20–76–12–11–10–9–8–7–5–4–2–1 load 200
veh 5 1–2–4–69–59–44–46–47–49–51–21–22–75=23=26–23=31=32=33=36–33–37–39–35=41–42–57–58–69–4–2–1 load 199
veh 6 1–2–4–69–58–60–62=63=65–63=64–63–62–66=68–66=62=60=61–60–58–69–4=2–1 load 200 1=2=3–2–4=5–4–2–1 load 102
veh 7 1–2–4–69–59–44=45–46–47=49–50=19=21=51=53=52=54–52=50=49–47=48–47=46=44=59–69–4–2–1 load 197
veh 8 1–2–4–69–59–44–46–47–49=51–21=22–24=25=26=27–26=28–29=25=75=22=24=53–52–50–49–47–46–44–59–69

–4–2–1 load 199
veh 9 1–2–4–5=7=8–9–10–11=59=69=4–2–1 load 188

C04 opt = 3510
veh 1 44=45=46=47=2=1=48=44 load 280
veh 2 44–45–46=26=25=3–5–6=24–17=18–19=16–15=18=19=20–21=28–27–3–4=26–46–45–44 load 285
veh 3 44–45–46–26–25–3=27=22–21–20–29–31=35=32–35=34=33–11–38=39=41–42–43–45–44 load 285
veh 4 44–45–46–47=4–3–27=28=29=31=30=29=20=21=22–23=5–3–25=43–45–44 load 300
veh 5 44–45–46–26–25–3–5–6=8=7=14=13–14=17=24=23=22–27–3–25–26–46–45–44 load 300
veh 6 44–45–43=42=36=37–36=35=37=39=40=41=42–43=45–44 load 300 44=49=48–44 load 130
veh 7 44–49=51=50–51–54=55=56=57=60=59=58=56=54=52=53–52=51=54–55=49–44 load 290

C19 opt = 3115
veh 1 31–27–14–46–47=48=50=43=9=10–9=11=16=17–16=15=10–15=18=19–20–6–5–23–26–27–31 load 300
veh 2 31=30=32–33=13=12–13=51–52=37=55–37=35=36–35=33–32–30–31 load 300
veh 3 31–30–40=39=38=44=49=45=14=46–14–27–31 load 300
veh 4 31=27=14–46=22–20=48=19=20=22=21–5–23=26–27–31 load 300
veh 5 31–27=26=24–26=28=29=25–3–2–34=33=32=29–28=31 load 220
veh 6 31–30=40–39–42=38=54=53–54–38=56=58=59=60=57–60=41=42–41=59–58=42=39–40–30–31 load 300
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C21 opt = 3970
veh 1 34–31–33–38–40–43=44–49=2=1=7=10=9=8=47–45=43–40–38–33–31–34 load 300
veh 2 34–35–37–19=21=53=42–41=51=50=3=52=4–52=51–50=49–44=45–43=40=38–33–31–34 load 300
veh 3 34–35–37–19=20=22=60=59=58=57=11=12–11=13–15–16=17=18–19–37–35–34 load 290
veh 4 34–31–33–38–40=41=42=21=20=17=15=14=13=15=16=22=21–19–37–35–34 load 280
veh 5 34–35=37=19=18=23=37=36=35–34 load 265
veh 6 34–31=23=24–23=25=26=28–26=27=25–27=29–27=30=32–30=31–34 load 300
veh 7 34=31=32=33=38=39–38=36–35=34 load 210
veh 8 34–31=33–38–40–43–44=49=47=48–47=45=46–45–43–40–38–33–31–34 load 300

C24 opt = 3400
veh 1 49–47–48–42–52=51–35–30=3–4=53=55–54=60=56–1=2=6=21–6=5=52=42–48–47–49 load 300
veh 2 49–47–48–13–12=5=3=4=2=54=55=28–62=61=59=58=57=60=61=55–53=29=3–30–35–36–31=43=41–39–47–49 load 300
veh 3 49–7=10=11=12=13=48=42=41=40=44=43=42–48=47=49 load 285
veh 4 49–47=39=46=45=66=68=8–9=15=50=14–50=9=8=7=49 load 295
veh 5 49–7=16=17=18=20=19=11=13=10–7–49 load 300
veh 6 49–47–39=40–44–32–33–38=37=34–37=26=27=25=24=76–70–75–74–63=38=33–32–44–40–41=39–47–49 load 295
veh 7 49–47=46=44=32=69–65=38=64–65=69=67=45–46–47–49 load 265

D08 opt = 3045
veh 1 45–46=35=36=33=32=1–32=31=30–31=12–11=34=35=37–43=44–45 load 575
veh 2 45–46–48–49–51=50=60=61=2=40=41–42=38=5=4=3=39=41–44=45 load 600
veh 3 45–46–48=47=16–18=54=29=19=18–16=17=15=10=9=34=33–36=37=43=42=41=44–45 load 600
veh 4 45=46=48=49=47=55=53–55=56–57=64=65=66=29–54=56=57=62=63=58=52=59–52=53=51=49–48–46–45 load 585

D14 z = y3280
veh 1 34–35–37=47–48=36=39=40–39=38=33–32=22–21–1=2–1=14–15=16–17–35–34 load 600
veh 2 34=35–17=16=20=19=18=51=52=4=1=21=22=23=3=2=5=4=53–4=19–18=17–35–34 load 600
veh 3 34–35=37=36=33=32=31–11–25=24–26=28=30–28=29–12–27=26=24=23–22–21=15=14=20–16–17=35–34 load 570
veh 4 34=33–38=42=45=46–45=44–10–43=42=40=41=49=50=41=39–38–33–34 load 580

D19 z = y2400
veh 1 31–28=26=24–26=23–5–21=22–20=48=19–48=47–48=50=43=9=10–9=11=16=17–16=15=10–15=18=19=20=22=46=14

–27=31 load 590
veh 2 31–28–29=32=30–32=33=13=12–13=51–52=37–55–57–60=41–42=58–59=60=57–55=37=35=36–35=33=34–2–3–25=29=28

=31 load 535
veh 3 31=30=40=39=42–39=38=54=53–54–38=56=58=59=41=42=38=44=49=45=14=27=26–27–31 load 595

E11 opt = 4650
veh 1 45–71–72–73–74–47–48=2=1=76=77–50–49=48=47=74–73–72–71–45 load 300
veh 2 45–71–72–73–67–44=43–3=14=2=50=49=52=65=68=69=74–73–72–71–45 load 300
veh 3 45–42=41=7=6=5=4=13–4=3=43=42–45 load 295
veh 4 45–71–21=22=9=8=11=12=5–12=6–42=45 load 300
veh 5 45–42=6–7=8–9=10=80=78=79–78=10–78=19=75–19=22–21=71–45 load 300
veh 6 45–42–41=22=38=27=28–15–20=25–29=24–23–39–64=69=70–71–45 load 300
veh 7 45–71–21=26=29=25=24=23=30–23=40=63=68=47=46–66=67–73–72–71–45 load 300
veh 8 45–71–72–73–74–47–48–49–50=77=51–53=56–61=60=63–40–23=39=64=70–71–45 load 300
veh 9 45–71=72=73=67=44=46=66=74=73–72=70=71=45 load 125
veh 10 45–71–70–69–68–65–52=62–61–60=58=59–58=57–58=55=54–55=56=61=62=65–68–69–70–71–45 load 300

E16 opt = 3775
veh 1 54–55–56=53=35–34=50–54 load 260
veh 2 54–55=53=52=36–52=53=55–54 load 145
veh 3 54=55=56–57=9=8=7=6=52=36–52=6=7=8=9=57–56=55=54 load 255
veh 4 54–55–53–52–36–60–59–1–2=3=5=6–7–8=57=56–55–54 load 300
veh 5 54–55–56–57–8–7=58=22=21–4=22–26–20=14=11–10=9–57–56–55–54 load 295
veh 6 54–50–45–43=33–43=30–32–29=44=45=50=54 load 300
veh 7 54–50–45=43–45–44=49=48=11=10–9–57–56–55–54 load 300
veh 8 54–55–56–57–9–10=51–10–11=12=47–13=17=16–17=14=19=15=18–15=16=47–46=31–46=47=13=12=48–49

=42=50–54 load 295
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E19 opt = 3235
veh 1 27–23–22=20–4–19–5–6–16=45–46=47=51=40=9=14=15–14=9=40=51=47=46–45=16–6–5–19–4–20=22–23–27 load 300
veh 2 27–23–13–42=49=43=48=39–48=16–18=49=13–23–27 load 300
veh 3 27–23–22=19–5–17=18=16–48=45=46–47=14=15–14=47–46=45=48–16=18=17–5–19=22–23–27 load 300
veh 4 27–26–36–35–38–44=41=50=42=13=23=27 load 300
veh 5 27=26=28–29=11=10–11=12=54–12=34=55–34=33=31–29=30–2–3–21=25=24=27 load 300
veh 6 27–26–36–35–38=61=60–61=62=63=59–56=33–31=32–31=29=28=25–24=22=23–27 load 300
veh 7 27–26–36–35=44=53=57–53=58=60=44=38–37=62–63=37=38=35=36=26–27 load 300

E20 opt = 2825
veh 1 42=41=40=39–40=47=48–47=46=44=42 load 145
veh 2 42–43=38–36=34=35–34=32=33–32=13–32=31=30–43–42 load 300
veh 3 42–43–30=27=29=28=27–29=11=4=10–4=5=7–5=51–45–44–42 load 290
veh 4 42–44–46=45=11=12=26–12=30=43–42 load 260
veh 5 42–43–30–31–25=24=14=25=26=24–25=31=36=37–36=38=41–42 load 295
veh 6 42–44–46=50=49–23–56=9=1=3=2=54=52=51–45–44–42 load 290
veh 7 42=43=44=45=51=50=53–55–1=2=8–6=3–1=55=53=52–51–45–44–42 load 255

E21 opt = 3730
veh 1 25–22–24–29–31–34=36=37–36=38=39–38=40=35=34–31–29–24–22–25 load 300
veh 2 25–26=28=14=15–14=16–18=20–18=17=19–17=16=18=21=23=22–25 load 295
veh 3 25–26–28–12–53=52=51–52=13=47=33=13=53–12=28–26–25 load 300
veh 4 25–26–28–12=53=54=55=52–55=56=57–50=9–50=57=10=56=54=11=14=22–25 load 300
veh 5 25=22=21–23=24=29=30–29=27=28–27=26=25 load 230
veh 6 25–22=24–29=31=32=42–32=33–13=12=11–12–28–26–25 load 300
veh 7 25–22–24–29–31–34–36–38=7–8–6–5–1=46=40–41=42=43=44=45=46=3–2=44–43=45=41=40–35=36–34=31–29

–24–22–25 load 300

E24 opt = 3510
veh 1 69–96–8=10–12=44–2=1–2=44=45=6–9=43=42–70–69 load 300
veh 2 69–70–42–40–47=46–37–50=4=5=3=2=56=58=57–58=53–54–52=51=4=6=47=40–42–70–69 load 295
veh 3 69–70–74–39=40–47–6–45=3=53=54=55–59=60–48=49=38–41–39=74–70–69 load 300
veh 4 69–70–74–39–41–38–49=37=50=51=55=59=57=54=52=5–4–6=9=10=43=8=96–69 load 300
veh 5 69=96=11=7=94=93=7=92=97–92=93–94=95–96–69 load 215
veh 6 69–70–74–73–72–64–75=76=62–90–61=76=63–76=26=25=28–25=75=64–72–73=74–70–69 load 300
veh 7 69–70=42=40=41=38=29–30=64=72=41=39=73=72=71=70–69 load 290 69=70=74=71=65–66=68=67–68

=95=96–69 load 235

F04 opt = 3485
veh 1 51–56=55=4–55=56–51 load 180
veh 2 51–52–53–54=32=8–10–11–7=28–7–6=17=16–17=20–27=26=25–26=29=33–30=31–53–52–51 load 600
veh 3 51–52–50–49=43–44=42–38=36=35=34=25=24–23=22=21–22=19–18=21=20=27=28=29–33=32=31=53–52–51 load 600
veh 4 51–52=50=30=33=34–35=24=23=36=37=38=42=41=40–41–15–39=42=43=44=46=48=47=46=45–46–48

=49=50–52–51 load 600
veh 5 51=52=53=54=5=55=4–55=5=54=53=52=51 load 350
veh 6 51=56=57=63=62–63=64=70–66=69=68–69=67–69=68–69=66–70=64=63=62–63=57=56=51 load 515
veh 7 51=57=59=60=61–60=62=59=58–59–62=64=65=69=67–69=65=64=62–59=58–59=62=60=61–60=59=57=51 load 445

F08 opt = 3705
veh 1 50–49=48–42=40=39=15–16=36=35–36=37=34=2–34=3–34–37=38=39=18–39–38=41–42–48–49–50 load 565
veh 2 50=51=54–55–57=56=33=32=63–32=4=45=46=49=50 load 520
veh 3 50–49–46=47–46=44=5–12–6=43=47=48=42=41=40=51–50 load 400
veh 4 50–51–54–55=53–52=20=19=52=21–52=53=54–51–50 load 495
veh 5 50–51–54=55=57=59=60=67=68=74–73=21=68–67=64–65=66=61=58–62=33–62=58=59–60=53–54–51–50 load 580

F12 opt = 3395
veh 1 21=20=18=17=16=19=21 load 85
veh 2 21=22=35=36=34=29=28–29=24–46=47=44–47=41=23=21 load 600
veh 3 21–19=18–20=15=14=43–14=7=15=6=64–72–70–67=39=40=6=17–18–19–21 load 600
veh 4 21–19–16–17=38=39–40=67=65=66–68–69–2=8–30=32=34=33=12=50–12=10–9=31=32–37=36–37=39–38=22

=16=18–19–21 load 600
veh 5 21–23=24=46–45=25=48=26=28=27=13=49–53–50=11=3–11=73–11=10=9=8=30–32=37=35–22–21 load 600
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E. Figures

This section presents different analyses about the time that the components of a branch-and-price require.
Every page depicts three figure groups presenting data for one of the eight instance groups egl-e1-n to
egl-e4-n and egl-s1-n to egl-s4-n with n ∈ {a, b, c}. First, those instances solved to optimality are
mentioned. The first figure group shows the evolution of the lower bound values over time for different
instances and pricing relaxations and correspond to Figure 4 in the main paper. Thereafter, the number of
branch-and-bound nodes solved and the type of branching decision taken impacts which and how often a
particular algorithmic component is invoked (related to Figure 5). The last figure group is concerned with
the effort for solving the pricing problem (corresponding to Figure 6 of the main paper).
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Figure 7: Lower bounds over Time
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Figure 8: Number of Branch-and-Bound Nodes/Decisions and Relative Times spent in Components
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Figure 9: Number of Pricing Problems overall/per Node
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Solved to optimality: egl-e2-a
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Figure 10: Lower bounds over Time
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Figure 11: Number of Branch-and-Bound Nodes/Decisions and Relative Times spent in Components
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Figure 12: Number of Pricing Problems overall/per Node
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Solved to optimality: egl-e3-a
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Figure 13: Lower bounds over Time
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Figure 14: Number of Branch-and-Bound Nodes/Decisions and Relative Times spent in Components
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Figure 15: Number of Pricing Problems overall/per Node
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Solved to optimality:
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Figure 16: Lower bounds over Time
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Figure 17: Number of Branch-and-Bound Nodes/Decisions and Relative Times spent in Components
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Figure 18: Number of Pricing Problems overall/per Node
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Solved to optimality: egl-s1-a
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Figure 19: Lower bounds over Time
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Figure 20: Number of Branch-and-Bound Nodes/Decisions and Relative Times spent in Components
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Figure 21: Number of Pricing Problems overall/per Node
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Solved to optimality:
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Figure 22: Lower bounds over Time
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Figure 23: Number of Branch-and-Bound Nodes/Decisions and Relative Times spent in Components
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Figure 24: Number of Pricing Problems overall/per Node
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Solved to optimality:
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Figure 25: Number of Branch-and-Bound Nodes/Decisions and Relative Times spent in Components
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Figure 26: Number of Pricing Problems overall/per Node
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Solved to optimality:
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Figure 27: Lower bounds over Time
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Figure 28: Number of Branch-and-Bound Nodes/Decisions and Relative Times spent in Components
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Figure 29: Number of Pricing Problems overall/per Node
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