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Abstract

This paper considers the Vehicle Routing Problem with Soft Time Windows, a challenging rout-
ing problem, where customer’s time windows may be violated at a certain cost. The Vehicle Routing
Problem with Soft Time Windows has a lexicographic objective function, aiming at minimizing first
the number of routes, then the number of violated time windows and finally the total routing dis-
tance. We present a multi-stage Very Large-Scale Neighborhood search for this problem. Each stage
corresponds to a Variable Neighborhood Descent over a parametrizable Very Large-Scale Neighbor-
hood. These neighborhoods contain an exponential number of neighbors, as opposed to classical local
search neighborhoods. Often, searching Very Large-Scale Neighborhoods can produce local optima of
a higher quality than polynomial-sized neighborhoods. Furthermore we use a sophisticated heuristic to
determine service start times allowing to minimize the number of violated time windows. We test our
approach on number of different problem types, and compare the results to the relevant state-of-the-art.
The experimental results show that our algorithm improves best-known solutions on 53% of the most
studied instances. Many of these improvements stem from a reduction of the number of vehicles, a
critical objective in Vehicle Routing Problems.

1 Introduction

Vehicle Routing Problems with Hard Time Windows (VRPTHW), where the service at each customer
must begin in a fixed time window, have received a lot of attention in the literature. However the case



where the time windows of the customers may be violated at a certain penalty is treated considerably
less frequently. This latter problem is known as the Vehicle Routing Problem with Soft Time Windows
(VRPSTW). The VRPSTW aims at scheduling several customer visits among a set of vehicles. For each
customer, hard and soft time windows are given. Each customer has to be visited within the associated
hard time window, whereas there is a penalty cost incurred for each customer not visited within the as-
sociated soft time window. The problem then asks for the solution that has the lowest number of routes,
the lowest number of violated time windows and the lowest total distance. This paper studies the appli-
cation of Very Large-Scale Neighborhoods to the VRPSTW. The objective function for the VRPSTW is
hierarchical, which is why we chose a multi-stage approach. Such approaches have been shown to work
well for this type of problems, see for example (Bent and Van Hentenryck, 2004) or (Homberger and
Gehring, 2005). Our algorithm uses the same very large-scale neighborhood for each stage, but with dif-
ferent objective functions: Vehicle reduction, minimization of the soft time window violations, and travel
distance minimization. Moreover, each stage uses a variable neighborhood descent (VND) (Mladenovié
and Hansen, 1997). Experimental results indicate that our multi-stage VLSN algorithm improves best-
known solutions on 37%, 57% and 100% of the Type 1,2 and 3 instances respectively, which are standard
benchmarks for the VRPSTW (see (Fu et al., 2007)). Equally interesting is the fact that the multi-stage
algorithm decreases the number of routes in 27% of the instances (up to 4 less routes) and the soft time
window violations in 35% (up to 27% less violated time windows) of the remaining instances.

This paper describes extended work from a previous paper presented at the 9th Metaheuristics Inter-
national Conference in Udine, Italy (Mouthuy et al., 2011). Our contributions are multifold. First we
present a Very Large-Scale Neighborhood, parametrizable with the objective to minimize, for the Vehicle
Routing Problem with Soft Time Windows. We show how this VLSN can be embedded in a Variable
Neighborhood Descent, upon which we construct a multi-stage approach. Next, as opposed to the ma-
jority of the state-of-the-art for the VRPSTW we consider the problem of setting service start times such
as to minimize the soft time window violations, and propose a sophisticated but simple algorithm to do
this. We also extensively test our proposed multi-stage approach on standard benchmark instances. Our
method is able to provide a new best solution in 50% of the considered Type 1, 2 and 3 instances. For the
Type 3 instances with p;ax = 5% Or pyax = 10% and wy,q = 10% we are even able to improve all of the
best known solutions.

The remainder of this paper is organized as follows. In section 1.1 we overview existing work on the
Vehicle Routing Problem with Soft Time Windows and briefly review Very Large-Scale Neighborhoods
and related concepts for Vehicle Routing Problems. In section 2 we introduce the Vehicle Routing Prob-
lem with Hard Time Windows and show how the Soft Time Problem can be derived from it. Next, we
explain how we can decide whether for a given route we can find service start times for each customer
such that the hard time windows are respected. This is done in section 3. We continue by introducing Very
Large-Scale Neighborhoods and related concepts in section 4. Section 5 explains how we modelize the
VRPSTW as a Combinatorial Optimization Problem. We introduce our parametrizable Very Large-Scale
Neighborhood for the VRPSTW in section 6. The multi-stage VLSN search is then presented in section
7. Finally we provide experimental results and compare them to the state-of-the-art in section 8.

1.1 Related Work

Vehicle Routing Problems with Soft Time Windows Different variations of the VRPSTW have been
considered throughout the state-of-the-art. The authors in (Fu et al., 2007) classified the possible types
of problems with linear penalty functions into 6 types. So far Types 1-5 have been considered in the
literature.

In (Taillard et al., 1997), an adaptive memory tabu search is presented for Type 1 problems. In this prob-



lem vehicles may arrive early at a customer and wait, however late arrival incurs a penalty per late time
unit. The proposed approach is tested on the (adapted) Solomon benchmark instances for the VRPHTW
((Solomon, 1987)) and is able to find feasible solutions (i.e. not violating any of the original hard time
windows and respecting the number of vehicles) on all but one instance.

A problem of Type 2 is considered in (Koskosidis et al., 1992). In this problem a penalty is incurred
per early and late time unit. An iterative cluster-first route-second heuristic is used to find high-quality
solutions. The authors test their approach on the (adapted) Solomon benchmark instances on which they
decreased the vehicle capacities to favor the uniform distribution of customers between clusters. When
compared to the results presented in (Solomon, 1987) on the VRPHTW, they improve the results in terms
of total distance on a majority of instances. Only on a handful of instances does this improvement come
at the cost of time window violations.

The Type 3 problem was first considered in (Balakrishnan, 1993). Here a maximum allowed violation
of the soft time windows and a maximum waiting time are given. A penalty is incurred per early or late
time unit. The authors propose three solution construction heuristics for this problem. They test their
heuristics on the Solomon benchmark instances and compare their results to the results on the VRPHTW.
They conclude that the number of routes as well as the total distance can be decreased by allowing con-
trolled violations of the time windows. In (Chiang and Russell, 2004) a Tabu Search is proposed for the
Type 3 problem. The presented Tabu Search is able to solve all problem instances, which wasn’t the case
for the heuristics proposed in (Balakrishnan, 1993). In terms of number of routes and total distances the
Tabu Search outperforms the heuristics on all instances, this at the cost of a higher percentage of violated
time windows. The unified tabu search from (Fu et al., 2007) is tested on problems of Type 1, 2 & 3.
The obtained results are compared to (Taillard et al., 1997; Koskosidis et al., 1992; Balakrishnan, 1993;
Chiang and Russell, 2004) in terms of (by order of priority) number of routes, percentage of non-violated
time windows and total distance. The proposed method behaves well on all considered problem types,
improving at least half of the results presented in the considered papers. An iterative route construction
and improvement algorithm is presented in (Figliozzi, 2010). The authors propose a post-optimization
on the service start times in order to reduce the time window violations. An evaluation is done on the
Type 3 problems. The authors are able to improve the number of vehicles of (Fu et al., 2007) in more
than half of the instances. A problem generator-solver heuristic for VRPSTWs is proposed in (Ioannou
et al., 2003). Based on a given problem instance, their generator produces further problem instances, in
which a varying number of customers have soft time windows. Originally only a fraction of customers
have soft time windows, this fraction is then increased steadily. Each of the generated problems is solved
using an adapted nearest neighbor heuristic. The approach also tries to fix small time window violations,
as long as this does not increase the number of routes. In their experimental results the authors consider
Type 3 problems, and evaluate their approach on the (adapted) Solomon benchmarks. They compare their
results to those of (Balakrishnan, 1993) and (Koskosidis et al., 1992) in terms of number of routes and
percentage of non-violated time windows, finding they are able to improve the number of non-violated
time windows.

The authors in (Qureshi et al., 2009) propose a Column Generation algorithm for Type 4 VRPSTWs.
They compute the allowed violation of the time window individually for each customer, based on its dis-
tance from the depot and a penalty per late time unit. Their approach is tested on the (adapted) Solomon
benchmarks and on a real-life instance.

A problem with general time windows is considered in (Ibaraki et al., 2005). The penalty function asso-
ciated with early or late arrivals can be non-convex and discontinuous. They propose a local search based
on a cyclic exchange neighborhood, a concept similar to VLSNs. Given the nature of the penalty function
their algorithm also needs to decide the optimal service start times for the customers, this is done using
a dynamic programming method. They test their method on the VRPHTW using the Solomon instances,
as well as on two different scheduling problems. On the VRPHTW their results are slightly outperformed
by different state-of-the-art approaches, which are however tailored specifically to the VRPHTW.



A VRPSTW with heterogeneous fleet is considered in (Calvete et al., 2007). The authors propose a goal
programming model for their problem. The objective is not only to minimize the total travel distance
and the soft time window violation, but also vehicle capacity and labor underutilization. Their proposed
approach first enumerates feasible routes and then solves a set partitioning problem over the set of gener-
ated routes. The number of feasible routes produced is evaluated by applying their approach on custom
instances as well as on adapted Solomon benchmark instances, corresponding to Type 3 problem.

A shortest path problem with time windows is considered in (Ioachim et al., 1998). A cost on the nodes,
depending on the service start time is considered. The authors propose a dynamic programming algo-
rithm to optimally solve this problem. They test their approach on networks constructed from Solomon’s
benchmark instances.

Very Large-Scale Neighborhoods Very Large-Scale Neighborhood (VLSN) search, is a class of local-
search algorithms whose neighborhoods contain an exponential number of neighbors. By consider-
ing neighborhoods of exponential size, VLSN search can produce local optima of higher quality than
polynomial-sized neighborhoods. These exponential neighborhoods are obtained by considering, as
neighbors, configurations that can be reached by a set or sequence of atomic moves.

VLSN algorithms have been successfully applied to a variety of NP-Hard problems such as Vehicle
Routing Problems (Ergun et al., 2002; Thompson and Psaraftis, 1993), Capacitated Minimum Spanning
Tree (Ahuja et al., 2001, 2003), Exam Timetabling (Abdullah et al., 2007b, 2004, 2007a), the Quadratic
Assignment Problem (Deineko and Woeginger, 2000) and Block-to-train Assignment (Jha et al., 2008).
VLSN search algorithms behave very well on these applications because there are many constraints that
are hard to satisfy. The ability to perform many moves at once enables the search algorithm to improve
solutions even though the constraints are tight. The reader is referred to (Ahuja et al., 2002) for a survey
of the main applications of VLSN approaches.

Several neighborhoods such as ejection chains (Glover and Rego, 2006), chain-exchanges (Fahrion and
Wrede, 1990), cyclic exchanges (Ibaraki et al., 2005) and cyclic transfers (Thompson and Psaraftis, 1993)
that have been proposed for the Vehicle Routing Problem and its variants correspond to VLSNs. Note
that Large Neighborhood Search, such as used in (Shaw, 1998) can also be considered a VLNS search.
A framework for constraint-based very large neighborhood search has been presented in (Mouthuy et al.,
2012) and (Mouthuy, 2011).

2 Problem description

In this section we first introduce the Vehicle Routing Problem with Hard Time Windows and then explain
how the VRP with Soft Time Windows can be derived from it. Then we provide the notations that will
be used in the remainder of this paper.

2.1 Vehicle Routing Problem with Hard Time Windows

Let a complete and weighted graph G = (V,E), with V = {0,...,n} the set of vertexes. Vertexes 1,...,n
correspond to customers while vertex 0 represents a depot. With each edge (i, j) € E is associated a cost
c;j representing the distance to travel from vertex 7 to vertex j. Throughout the paper we consider that
travel time and distance are equal. Let furthermore a fleet of K vehicles, each of associated capacity Q.
With each customer i € {1,...,n} are associated the following:

1. a demand g; that needs to be delivered at the customer’s location
2. atime window [e;;];] (e; < ; and I; > co;)

3. aduration d; which corresponds to the time a vehicle spends at the customer’s location



Furthermore a time window [eg; /o] is associated with the depot.
A solution to the VRPHTW associates a (possibly empty) route with each vehicle in the fleet and a service
start time s; with each customer such that:

e cach route starts and ends at the depot

o the sum of the demands g; on each route does not exceed the vehicle capacity Q
e cach customer is visited by exactly one route

e the vehicles do not start from the depot earlier than eg

e the vehicles return to the depot by [y

e the service start time s; lies in [e;;/;] for each customer i

e no vehicle waits for more than w,,,, time units at a customer location

e vehicles leave as soon as they have finished servicing a customer

The objective for the VRPHTW is lexicographical, the goal is to minimize in the following order: 1)
the number of non-empty routes 2) the total traveled distance.
If wiax > 0, it can be of interest to delay the start of service to ensure that the maximal waiting time at the
following customer is not exceeded. Of course delaying service at the current customer incurs a waiting
time as well. When wy,,, = oo it makes sense, from a feasibility point of view, to start service as early as
possible at each customer.

2.2 Vehicle Routing Problem with Soft Time Windows

In the Vehicle Routing Problem with Soft Time Windows, two types of time windows are associated with
each customer i: hard time windows [e;;/;] as in the VRPHTW and soft time windows [e};/}] such that
ler;1F] C [eis1;]. The service start time of each customer s; must be contained in the hard time window.
It may however fall outside the soft time window, at the cost of a penalty. Usually this penalty depends
on how much the time window is violated (i.e. it increases with max(0,e} —s;,s; —[;')). The depot has a
hard time window which can not be violated.

The VRPSTW has a lexicographic objective function. It aims at minimizing in the following order: 1) the
number of non-empty routes 2) the number of violated soft time windows 3) the total traveled distance.
Note that in the literature on the VRPSTW the second objective is also sometimes stated as minimizing
the amount of penalties paid, which may not directly correspond to the minimization of the number of
violated soft time windows.

2.3 Notations

For ease of notation we assume one dummy copy of the depot exists per vehicle. We thus have the set of
customers defined as Customers= {1,...,n}, the set of depots defined as Depots={n+1,...,n+ K} and
the set of sites that can appear in vehicle routes as Sites= Customers U Depots.

The successor of a site i, denoted by i corresponds to the site visited immediately after site i in its route.

The predecessor of a site i, denoted by i™ corresponds to the site visited immediately before site i in its
route.



A route corresponds to a sequence of vertexes r = (ry, ..., ), with ro € Depots and

rly--.,rm €Customers and ry # ry # ...rym—1 # ry. The set of customers visited in route r is given by
custs(r). We use the following shortcut #r = #custs(r) to denote the number of customers visited in route
r. A route r is called empty if # = 0. The successor of site r; in route r is given by r;;, while its
predecessor is given by ;1. The successor of the the last customer r,, is defined as the depot 7,1 = 9.
The position of the site i € sites(r) in route r is denoted by rank(i,r). The subroute of length p be-
ginning with site i is denoted by r[i; p]. Note that in order for r[i; p] to be consistent, i € sites(r) and
rank(i,r) 4+ p — 1 < |r| need to be satisfied.

A schedule associates with each site i € Sites a service start time s;. The service start time s; at depot
J (j € Depots) corresponds to the time a vehicle arrives at the depot after executing its route. A schedule
for route r associates a service start time with each i € sites(r).

3 Feasible service start times

In most VRPHTW variants considered in the literature, the waiting time is not restricted, thus it is not
necessary to compute optimal service start times, as service can simply start as early as possible at each
customer. This is different however for the VRPSTW we consider. First, we have a (possibly limited)
waiting time. Situations can occur where this limit can only be respected at some customer j by delay-
ing service at some customer i. Second, delaying service, or starting service early, can possibly help to
decrease the number of violated soft time windows. Thus we need a mechanism to determine the service
start times for customers on a route, such that the resulting schedule helps us to guarantee feasibility w.r.t.
the hard time windows and the limited waiting time, while minimizing the number of violated soft time
windows.

In this section we explain how, given a route, we can compute, for each customer in the route, a re-
stricted time interval. When the service start time of each customer is chosen from this interval (assuming
it is non-empty), the route is guaranteed to be feasible w.r.t. the hard time window constraints and the
limited waiting time. Using this interval we can then derive an algorithm allowing us to find a feasible
schedule for the route. We also show how the same reasoning can be used for soft time windows.

The idea of defining a restricted interval in which service can start is not new, it has been used for
example in (Azi et al., 2007). While most of the literature on the VRPSTW does not consider the problem
of determining appropriate service start times, this has been done in (Figliozzi, 2010) and (Ibaraki et al.,
2005). In (Figliozzi, 2010) the authors let service start as early as possible at customers. On each of
the optimized routes they then apply a service start improvement procedure. For each route, they delay,
starting with the last customer of the route, the service start time of all customers as much as necessary to
fall into the soft time window, without violating the following customer’s time window. In (Ibaraki et al.,
2005), where the authors consider a Vehicle Routing Problem with general time windows, a dynamic pro-
gramming approach is used to determine the service start times allwoing to minimize the total earliness
and lateness penalties.

In the remainder of this paper we assume the following conditions on the time windows hold for all
i € Customers

®¢i>e
e ;<

® ¢ >eytco,



These conditions can be easily enforced by adapting the customer’s time windows. Obviously this
does not restrict the set of feasible solutions, as a customer cannot be feasibly served before the start or
after the end of the depot’s time window. Furthermore, service at a customer can not start before the
vehicle has had time to travel from the depot to the customer.

3.1 Time-related notions

We now introduce some necessary notions, needed to reason about the service start times.

Departure times With each site i € Sizes is associated a time §; corresponding to the time the vehicle
leaves site i. We have:

6 >eg Vi € Depots (1
O =s; +d; Vi € Customers 2)

Thus vehicles can depart from the depot only when the depot’s time window has started. They depart
from a customer after the service, which started at s; and took d; time units, has finished. Vehicles are not
allowed to stay at a customer’s location after completing service.

Consistent service start times In order to be consistent with the time needed to travel between sites the
start of service times must respect the following constraints:

sit =8 +¢; i+ Vi € Depots 3)
sit >0+ ¢+ Vi € Customers 4)

Constraint 3 states that service starts immediately upon arrival at the first customer in a route (i.e. no
waiting is allowed at the first customer). Note that Constraint 1 allows to delay departure from the depot
when convenient. Constraint 4 ensures that there is enough time for the vehicle to travel from one site to
the next before service starts at this latter site. Service start times {s;|i € Sites} are said consistent if they
respect constraints (1)-(4).

Feasible schedule In order to have a feasible schedule service start time have to be consistent and respect
the following constraints:

e; <s5; <1I; Vi € Sites (®))
si+di+ci i+ >Si+ — Whax Vi € Customers (6)

Constraint 5 states that the time windows of customers and depots must be respected. Constraint 6
enforces the maximum waiting time.

Earliest and latest possible service start times Given a route r, it is possible to define earliest and latest
possible service start times for each site i in the route. The earliest service start time y; is defined as
follows:

(7

yi— e Vi € Depots @)
l max(e;,yi+ — ¢ i+ —di —Wimax) Vi € Customers



If the vehicle serves a site i at a time ¢ < y; this means that it will have to wait more than wy,,, time units
at one of the subsequent customers in the route.

The latest service start time z; is defined as follows:

l; Vi € Depot
= i l epors (9)

min(l;, z;+ — ¢+ —d;) Vi € Customers

If the vehicle serves a site i at a time ¢ > z;, this means that it will not be able to respect the end of the
time window of some subsequent customer.

By definition, we have ¢; < y; and z; < [;. Clearly if y; > z; for some i € Sites, no feasible schedule can ex-
ist for route r. If y; < z;, we have ¢; < y; < z; <I;. In the following we will show that if y; < z;Vi € sites(r)
a feasible schedule for route r exists.

Proposition 1. Given a route r = (ro,...,ry) with y; < z;, Vi € sites(r), serving a site r;, (1 < k <m) in
the interval [y, ,zy | allows to serve the subsequent sites i of ri within their hard time-windows.

Formally:
Vk=1,...,m¥s, € [yr:2n],3sr, € [ryi20, JIK = k+1,...,m+1} such that
{8re>Srars -+ 8ry, } TeSpect constraints (4) and (6)
The proof of proposition 1 can be found in the appendix (section A).

Based on the proof of proposition 1 we can state the following corollary:

Corollary 1. Given a route r = (ry,...,ry) the following method determines consistent service times
{si|i € cust(r)} wrt the hard time-windows:

1) select a service start time sy, € [Vr,32r,]

2) select service start times sy successively fork =1,...,m—2 in the interval

Sy € [max(yk_,_l,srk +drk+crk,rk+1);mm(zﬁe+1 251y +drk+crk:rk+1 + Winax))-

3.2 Earliest and latest preferred service start times

We can also define the latest preferred delivery time z} as the latest time a vehicle can serve customer i
in order to be able to serve the subsequent visits of i within their soft time windows. We also define the
earliest preferred delivery time y;. The definitions of z and y; are similar to the definitions (9) and (8).
Notice that setting a service time s; ¢ [y};z;] for some customer i will induce at least one unit of penalty
for subsequent visits of i.

We will explain in section 7 how use corollary 1 and y}, z} to derive a service start times for the customers
on each route.



4 Very Large Scale Neighborhoods

In this section we introduce Very Large-Scale Neighborhoods and related concepts.

Very Large-Scale Neighborhood search is a Local Search technique used to solve Combinatorial Opti-
mization Problems. Whereas in classical Local Search each neighbor is reached by performing a Local
Move on a current solution, VLSN search uses sequences of such moves to compute a neighboring so-
lution. The result is that VLSNs have an exponential size, contrary to traditional Local Search neighbor-
hoods which are typically polynomial in size. The advantage of using exponential-sized neighborhoods
is that they often allow to produce local optima of higher quality than polynomial-sized neighborhoods.
VLSNs usually have a structure such that the best neighbor w.r.t the objective function can be computed
in polynomial time. A VLSN is encoded in an Improvement graph. Identifying cycles (respecting a
given condition) in the improvement graph corresponds to identifying a neighbor respecting the problem
constraints.

In the following we give formal definitions for the concepts of Combinatorial Optimization Problem,
Local Move, Very Large-scale Neighborhood and Improvement Graph.

Combinatorial Optimization Problems Let 2" = [X;,X>, ...,X,] be a set of p variables which take
their values in their domain D. An assignment is a function ¢ : 2~ — D that assigns a value to each
variable. We denote the set of all possible assignments as A. A constraint is a function 4 : A — N
evaluating the infeasibility of the given assignment w.r.t a specific requirement. A solution w.r.t. the
constraint % is an assignment ¢ such that ¥ (o) = 0. An objective is a function f : A — Z giving the
evaluation of the quality of a given assignment. Finally, we define a combinatorial optimization problem
(COP) as the tuple & = (f, 4,2 ,D). Solving a COP requires finding a solution w.r.t constraint €
minimizing f. Note that 4 can be a conjunction of different simpler constraints.

Local Moves A Local Search algorithm uses the concept of local moves to transit from a given assign-
ment to a neighboring assignment. A move is thus a function m : A — A modifying a given assignment
to produce an assignment. The set of possible moves is problem-dependent and is denoted .#. Local
search typically considers small conjunctions of local moves, such as to respect structural constraints (i.e.
removing and reinserting a customer in the VRP). Typically moves modifying the current assignment
only slightly are considered. Computing the differentiation (i.e. the impact) of a given move on the con-
straint and objective function is a central operation in local search. In this paper, we use A (m, o) and
Ay(m, o) to denote the changes induced in the violation of constraint ¢ and in the value of objective f by
performing move m on assignment ¢. The values are defined as follows: A¢(m,c) = € (m(oc)) — € (o)

and A;(m, ) = f(m(c)) — f(0).

Very Large-Scale Neighborhood A Very Large-Scale Neighborhood (VLSN) considers a constant
set .# of local moves and, at each iteration, selects and applies a sequence M of these moves : M =
[my,ma, ... ,mg) wWithmy #my # ...mg and {my,mo,...,mg} C .4 . As there is an exponential number of
such sequences, there are exponentially many neighbors. A sequence of moves M must respect constraint
¢ . However we consider ¢’ is a conjunction of two constraints 6 = Gy ue + op With €, possibly empty.
Constraint Gy 1S typically a structural constraint, such as a partitioning or a permutation constraint.
Constraint %, corresponds to the conjunction of all other side-constraints of the problem. Local moves,
when applied individually, typically violate constraint €y,.;. VLSN ensures that the selected sequence
M preserves the respect of Gy pyer. Thus G e 1 respected before and after applying sequence M but may
be violated by intermediate assignments. On the other hand %, may not be violated at any moment.

Thus, the VLSN algorithms consider the set of moves M’ = {m € .#|%,,(m(c)) = 0}, and selects a
sequence M from M’ whose impact on the current assignment ¢ is such that (1) the structural constraint



struct is respected, and (2) the objective function f is minimized. We denote M (0) =mjo---om,(0) the
application of a sequence of local moves M = [my,...,mg| (M C .#) on an assignment o. We define the
differentiation of a sequence of moves M: Ay (M,0) = ¢ (M(0)) —€¢(0) and Ay(M,0) = f(M(0)) —
f(o). Note that only sequences M of independent and compositional moves may be considered. Detailed
explanations on this requirement and on how it can be enforced can be found in (Mouthuy et al., 2012).

Improvement Graphs An Improvement Graph is a problem-specific encoding of a VLSN given a cur-
rent assignment o. The semantics of the nodes in the Improvement Graph depend on the problem. Each
edge e in the graph is associated with a local move m. The weight of this edge corresponds to A¢(m, o)
(the impact on the objective f of executing move m on assignment ¢). With each node in the improve-
ment graph is associated a color, this, in such a way that any color-disjoint cycle represents a sequence
of moves which, after application to the current assignment &, results in an assignment satisfying the
structural constraint Gy uer -

An improvement graph thus is a directed, weighted, colored, labeled graph IG(c) = (V,E,w,1n, @),
where

e V is the set of nodes

e E is the set of directed edges

e w;; is the weight of the edge (i, j) corresponding to an impact on the objective f
e 1 :E — ./ is afunction that assigns a move to each edge

e ¢:V — Nis a function that assigns a color to each node
The VLSN corresponding to graph /G(o) is then defined as
VLSN(IG(0)) = {T](C)(G) ‘C is a color-disjoint cycle in IG(G)}

where 11(C) ={n((i, j))|(i,j) € C}. Thus the VLNS is a set of sets of moves whose corresponding edges
in the Improvement Graph form a color-disjoint cycle. This neighborhood, was introduced in (Thompson
and Orlin, 1989).

Given a constraint @y, an improvement graph G(o) is cycle-consistent W.r.t. Cypye if the vio-
lations of €y are not affected by applying the moves of any color-disjoint cycle, i.e., VC € G(0) :
Gstruet (N(C)(0)) = Esrruer (). Note that, the moves appearing in a color-disjoint cycle are guaranteed to
be independent and compositional (see (Mouthuy, 2011) for more information).

The identification of neighbors in the VLSN is thus done by identifying color-disjoint cycles in the
Improvement Graph. An algorithm to compute color-disjoint cycles including a node given as input is
presented in (Thompson and Orlin, 1989). It builds a shortest-path tree rooted at the input node, and
ensures as good as possible, that all the nodes of any path in this tree are color-disjoint.
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S Modeling the VRPSTW as a COP

In this section we explain how we model the VRPSTW as Combinatorial Optimization Problem such as
defined in section 4.

The VRPSTW is modeled as the problem Pygp = (f,%, 2 ,D), where f is the objective function,
% are the constraints, 2~ the variables and D the variable domains.

Variables and domains There are K variables, each representing a route. The domain D of these
variables is the set of all possible sequences on the elements 1 to n+ K (with 1...,n the customers and
n+1,...,n+ K the dummy depots). An assignment ¢ assigns thus to each of the K variables 2" =
[S1,...,Sk] a sequence of sites. The kth route in assignment o is denoted by o (S;). For the sake of
clarity we abuse the notations and will use the term route to design the variables as well as their value.
The values y;, z;, z; are derived from the routing and are not decision variables. We will show in section
7 that service start times s; can also be derived from the routing automatically.

Constraints In order for an assignment ¢ to represent a feasible solution, structural constraints and
operational constraints need to be enforced.

The structural constraint Gy, = Gyrp requires that (a) the first visit of any vehicle k is the dummy
visit n + k representing the depot, and (b) the sequences represent a partition of the visits 1 to n+ K .
Thus for an assignment ¢, Gyrp(0) = 0 if and only if o respects conditions (a) and (b). The operational
constraints %, consider time windows and vehicle capacities: 6, = Grapa + Crrw Where Gy, are the
hard time window constraints and ., the capacity constraints. The violations of these constraints are
defined as: €y, (0) = YK max(0,y; — z;) and Crpa(0) = XK, max(0, Yies, ¢i — Q)-

Objectives The objective function to be minimized is fygrp(0) = (card(0),Csw(0),dist(c)) where
card is the function counting the number of vehicles used, %5;,, is the violation of the soft time-windows
and dist is the function giving the total distance of a routing.

We define card(c) = #{S; € 2| #0(S;) > 1}| and dist(c) = Y1 * ¢; i+ The violation of the soft time-

windows is computed as Es,(0) = Y1, (max(O,si —1Ifef —si) > O). The minimizing the objective

function corresponds thus to minimizing in the following order: 1) the number of non-empty routes 2)
the number of violated soft time windows and the total traveled distance.

6 Very Large Scale Neighborhoods for the VRPSTW

In this section we present the VLSN used in our Multi-stage approach. Our VLSN is parametrized by
f and L, where f represents the objective function and L corresponds to the size of the neighborhood.
Throughout our VND we use the same VLSN, parametrized with varying f and L.

6.1 Local Moves

We consider three types of local moves: insertion, removal and replace. Let r| # rp be two routes,
i € custs(ry),j € custs(rp) and ri[i;m],r2[j;n] be two consistent subroutes. The local moves are then
defined as follows:

e insert(r;,i,m,ry,j) inserts the subroute ry[i;m] in ry, right after j (route r; is not modified);

e remove(rz,j,n) removes the subroute r;[j;n] from ry;
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e replace(ry,i,m,r,,j,n,p) inserts subroute r;[i;m] in r, at position p and then removes r,[j;n] from
ry (with p < rank(j,r2) or p > rank(j,r2) +n).

In our VLSN we do not consider all insert and replace moves but only those minimizing the impact
on the objective f. The insert move minimizing the impact on f is denoted by insert(ry,i,m,r,, f) and
corresponds to insert(ry,i,m,ry, j) where j is the position minimizing Ay (insert(ry,i,m,r2, j), o). The
replace move minimizing the impact on f is denoted by replace(ry,i,m,r2, j,n, f) and corresponds to
replace(ry,i,m,r2, j,n, p) where p is the position minimizing Ar(replace(ry,i,m,r2, j,n,p), o).

6.2 Improvement Graph

Based on the local moves we can define an improvement graph /G(f,L)(c) for the VRPSTW that is
cycle-consistent with the structural constraint $ygp. The improvement graph, like the VLSN it encodes,
is parametrized by an objective f and a parameter L. Parameter L corresponds to the length of the
subroutes considered by the local moves.

Definition 1. Given an assignment o, the improvement graph IG(f,L)(c) = (V =ViUV2, E,w,n, @) is
defined as follows:

o Vi ={(i,m)|1 <i<n,1 <m<L,i€ Customers,o(S)[i;m] is consistent with i € 6(S),S € 2"}

L] VZZ%:{SI,...,SK}

E ={(a,b) €V xVl]a € Vi VbeViAa,b correspond to different routes},

replace(Sy,i,m,Sy, j,n,f) ifa=(i,m),b=(j,n) €Vy,i€o(S),j€o(Sy),k#k
e n(a,b) =« insert(Sg,i,m,Sy, f) ifa=(i,m) €V,b=S8y € Va,i€ o(S),k £k
remove(S,i,m) ifa= Sy eVa,b=(i,m) € Vi,i € 6(S)

400 otherwise

. {Afmab,o) if g, (n(a,),0) =0
ab —

(a) = k ifaeVywitha= (i,m)andi€ o(Sg)
PO=p ifa Vs witha =Sy

The improvement graph has two types of vertexes. Vertexes in set V| represent consistent subroutes
(starting with customer i and of length m). The vertexes in set V simply correspond to routes. Edges
must be incident to at least one V| vertex. Furthermore edges may not link vertexes concerning the same
route. This means that if one of the nodes is a node representing a subroute of route r, then it may not be
linked to a node representing route r and neither to a node representing a subroute of r.

The end-nodes of the edges define the type of move associated with the edge. Edges where both end-
nodes are in set V; represent a replace move, edges from a node in V; to a node in V; are associated with
an insert move and edges from a node in V; to a node in V| represent a remove move.

The weight associated with each edge corresponds to the variation in the objective function f incurred
by applying the move corresponding to the edge. If the move results in a violation of the operational
constraints, the variation is set to o in order to forbid such moves.

Finally a color is associated with each node in the improvement graph. With each route will be associated
a color. A node corresponding to a subroute of route r takes the color corresponding to r, and a node
corresponding to route r takes the color corresponding to r as well.
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Example 1 Example of Improvement Graph.
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Let n =7, o such that 6(S;) = [8,1,2,3],06(S2) = [9,4,5],0(S3) = [10,6,7]. The routing described by o is il-
lustrated on the left. The improvement graph IG(dist,2)(c) = (V,E,n,w, @) is illustrated in the middle, where
dist is the function of the overall distance of a routing. For sake of clarity, only the set of nodes V and three
edges are represented. The edge ((2,2),(4,1)) corresponds to the move replace(S,2,2,55,4,1,dist). Similarly
n(((4,1),83)) = insert(S2,4,1,83,dist) and n((S3,(2,2))) = remove(S;,2,2). The three nodes of this cycle are
color-disjoint and the routing obtained (illustrated on the right) respects the structural constraint $ygp. Notice that
visit 4 is inserted right before visit 6 because this position minimizes dist.

o h—O0W

o
—~
w
~
[ N

Any color-disjoint cycle in this graph corresponds to moves whose application respects the structural
vehicle routing constraint Gy rp. As the coloring of the nodes does not depend on neither parameter L nor
on the objective function f we can state the following:

Proposition 2. The improvement graph IG(f,L)(0) is cycle-consistent wrt the Vehicle Routing structure
for any objective function f and any value of L.

Since the improvement graph is parametrized by f and L, it is possible to define a variety of neighbor-
hoods of the form VLSN (IG(f,L)(0)), by varying the objective function f and the length of the subroutes
cosnidered by the local moves L. This feature is critical to our multi-stage algorithm for the VRPSTW.

An example of an improvement graph for the VRPSTW with a color-disjoint cycle are given in Exam-
ple 1. The nodes represent either consistent subroutes ry[i;m] of the current assignment or entire routes.
The moves insert,remove and replace are represented by edges. Only the edges corresponding to the
cycle are represented.
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7 A Multi-Stage Very Large-Scale Neighborhood Search for the
VRPSTW

In this section we present our multi-stage Very Large-Scale Neighborhood Search for the VRPSTW. The
idea is that there is a specialized phase, aimed at reducing each of the single objectives (this has been
done, for instance, in (Bent and Van Hentenryck, 2004; Homberger and Gehring, 2005) for the VRP with
hard time windows). Our algorithm contains three phases: first we try to minimize the number of vehi-
cles, then we try to minimize the number of violated soft time windows and finally we try to minimize
the total distance. In each of the phases a VND is performed over a VLNS, and only improving moves
(i.e. negative color-disjoint cycles) are executed.

We start our multi-stage approach from an initial solution where each customer is visited in a route of its
own.

We first describe the Variable Neighborhood Descent over the VLSNs. Then we present each of the
phases of our multi-stage approach. Finally we explain how the service start times are computed.

7.1 Variable Neighborhood Descent over VLSNs

Our Variable Neighborhood Descent (VND) employs a given VLSN, parametrized by f the function to
minimize and L,,,, the maximum length of the subroutes considered in the neighborhood. The different
neighborhoods considered in the VND correspond to the VLSN whose size is increased using parameter
L. Thus the VND considers L,,,, neighborhoods, instantiated from a same VLSN using values L =
1,...,Lys. The Improvement Graphs encoding our VLSNs are searched for improving color-disjoint
cycles using the algorithm from (Thompson and Orlin, 1989). The VND moves to the next neighborhood
once no improving color-disjoint cycle can be found in the current improvement graph. Throughout the
VND, we locally optimize each of the routes in the current assignment before searching for the next move
in the current VLSN. This is done by selecting the best 2opt move. The procedure stops once no further
improving 2opt move can be found.

The high-level algorithm of a VND over a sequence of increasing VLNSs is given in Algorithm 1. It
takes as input: o the current assignment, L.y, the maximum neighborhood size, f the objective function
to minimize, E the type of search (first-improvement or best-improvement) to perform over the VLSNs
and a stopping criterion.

7.2 The different stages of our approach
Stage 1: Minimizing the number of vehicles

To reduce the number of vehicles, the algorithm selects a route and tries to move its customers to another
route, one at a time. This process is repeated until no further route can be emptied.

First, a non-empty route ry is selected. To perform a first optimization step, we then try to minimize the
number of vehicles and total distance (in that order) by applying the first negative cycle found over the
corresponding VLSN ({ is an adaptive parameter). Note that this cycle may not add any further customers
to route ;. Then the customer i with the tightest hard time windows is chosen from r;. The other cus-
tomers in route r; are frozen, this means that the only modification allowed on route ry is the removal of
customer i. Moves that result in the insertion of new customers in r; are forbidden by this as well. Then a
best-improvement search is performed over the VLSN. The objective function for this VLSN is adapted
to the objective of reducing the number of vehicles. This search stops as soon as visit i has been moved
to another vehicle or after a time limit has been reached. If the search does not allow to move visit i to
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Algorithm 1: VND(o, Ly, f,E, stopping criterion), a Variable Neighborhood Descent over
a sequence of L, VLSNs minimizing f

Input: o, Ly, f, E, stopping criterion

14=1;
2 repeat
3 perform local optimization on each route, updating c;
4 perform E-search over VLSN(IG(f,£)(0));
5 if color-disjoint cycle found then
6 execute move corresponding to cycle, updating c;
7 /=1,
8 else
9 if { = L,,,, then
10 | break;
11 else
12 | (=0+1;
13 end
14 end
15 until stopping criterion;
16 return o;

another route, the search selects a different route to empty. The first stage stops as soon as a time limit is
reached.

The objective function used in this stage is a lexicographic objective function with three elements as
in (Bent and Van Hentenryck, 2004). Assume we selected customer i to be removed from route rp. Then
we define the minimal delay of visit i € custs(ry) and route ry (ry # ry) as the minimal violation of the
hard time-windows constraint incurred by the insertion of visit i into route 7.

mdl (o) = min Ag, (insert(ry,i,1,r,j),0).
i JEcusts(ry)

The total minimum delay w.r.t. visit i is then given by mdl;(c) = YX_| h(mdl; ;) where h is a function
favoring small values'. Thus minimizing md|; favors insertion of i in routes where the resulting hard time
window is minimal. To favor solutions that actually do remove customer i from its current route ry we
add a binary component rm; (o) that takes value 1 if i is visited in route ry in assignment &, and value 0
in the other case.

The resulting objective function for the minimization of the number of vehicles becomes (card, rm;, mdl;).
The pseudo-code for this first stage is given in Algorithm 2. The stopping criterion stopCrit1 is reached
as soon as visit i has been removed from its route or the overall time limit is reached.

Stage 2: Minimizing the soft time windows violation
To reduce the soft time windows violations, the algorithms executes the following VND:
VND(O, Lyax, (card, €sy), first-improvement,stopCrit2)

The stopping criterion stopCrit2 corresponds to a limit on the number of iterations.

. 2
!Our experiments use i(x) = € — %, where C,C’ are two constants.
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Algorithm 2: Stage 1: Minimizing the number of routes
Input: o, Ly
1 repeat
2 select a non-empty route k in 6 do
3 perform first-improvement search over VLSN(IG((card,dist),?)(c));
4 while the route k is not empty (#S; > 0) do
5 select visit i € Sy with the smallest hard time windows do
6
7
8
9

0 = freeze(Sk,i,0);
6 = VND (0O, Lyuy, (card,rm;,mdl;) ,best-improvement, stopCritl);
o = unFreeze(Sy);

end
10 if the attempt of removing visit i from Sy, failed (i € Sy) then break;
11 end
12 end

3 until until time limit reached,

—

Stage 3: Minimizing the total distance

The overall distance is minimized using:
VND(G, Lyax, (card, €y, + dist) ,best-improvement ,stopCrit3)

Experimental results indicated that it was best to relax the soft time windows and penalize them in the
objective function, instead of enforcing their best value found in the second step.

7.3 Scheduling start of service

To define the violations of the soft time windows, we must define the service start time s; of customers.
Customers are served as early as possible while trying to minimize the violations of the soft time windows
constraint. Corollary 1 specifies that the soonest a customer i can be served is at time max(y;, s;- +d;- +
Cif,i)’ with
N { € if i € Depots
Si = ip s

S; if i € Customers
Preferably, customer i should be served at time y;. However, if zJ <y}, at least one subsequent customer
of i would be served outside his preferred time-window (it is impossible to achieve a zero-violation for
the soft time windows constraint). So, it is desirable to serve i at time z;'; the preferred time window of
customer i will be violated (as z; will lie outside the soft time window), but maybe the preferred time
windows of all subsequent customers of i will be satisfied. So the preferred service start time would be

*

min(y},z}). This preferred service time and the hard time windows lead to the following definition of

service start times

si = max(y;,$;- +d;- +c¢;- ;,min(y;,z;)), Vi € Customers

8 Experimental Results
In this section we compare the performance of our multi-stage VLSN search to the state-of-the-art. First

we explain the problem Types we consider and the benchmark instances we use. Then, we compare our
results to the best known solutions from the literature. Finally a short summary is provided.

16



8.1 Problem Types and Benchmark instances

In (Fu et al., 2007) a classification of VRPSTWs into 6 problem Types has been proposed. We consider
all Types in our experimental section. In each of the Types, each customer is associated with a hard time
window [e;;/;] and a soft time window [e]; ] giving the preferred earliest and latest service time.

Type 1 has been investigated in (Taillard et al., 1997; Fu et al., 2007; Figliozzi, 2010). A vehicle can
arrive early at a customer i but cannot serve him before his earliest service time (e; = ). However, the
vehicle can serve the customer late (IJ < /;), with a penalty linear to the delay. There is no hard latest
service start time for the customers (I; = ly) but, for the depot, the time-window e, /o] is hard.

Type 2 has been considered in (Koskosidis et al., 1992; Fu et al., 2007). A vehicle can serve a customer
before his preferred earliest service time (e} > e;) and after his preferred latest service time (/] <1[;). Serv-
ing a customer outside his preferred time window incurs a linear penalty cost. There is no hard earliest or
latest service time for the customers (e; = eg,l; = ly) but, for the depot, the time-window [e, ] is hard.

Type3 has been investigated in (Balakrishnan, 1993; Chiang and Russell, 2004; Fu et al., 2007) and
(Figliozzi, 2010). Each customer has a soft and a hard time window. The hard time window requires for
each customer i, that it be served within a certain percentage pmax of the total route duration D = [y — ep:
ej=e; — D”l“(‘)"g‘ and [; =[] +D%. Moreover, a vehicle is allowed to arrive earlier than e; at a customer
i but cannot wait more than wy,,, before serving the customer. The parameter w,,,, is also expressed as a
percentage of the total route duration D: wy,,, = D%. Typical values of ppax and wy,,, are 0,5 or 10.

Type 4 has been considered in (Qureshi et al., 2009). It allows a vehicle to arrive early at a customer i.
However the customer cannot be served before his earliest service time (e; = e}). The vehicle can serve the

customer late, but within a certain percentage pmax of the total route duration D = ly —eq: [; =17 +D ”l‘{‘)‘(‘;‘ .

Type 5 has been considered in (Fagerholt, 2001). It allows vehicles to serve a customer early and late, but
only up to a certain percentage of its soft time window. The hard time window requires that each customer
ihas to be served within a certain percentage pmax of the total route duration D = [y — eq: ¢; = ] — DEBx

100
and [; = [} + D Bmax
i =1 100 -

Type 6 corresponds to Type 3, where the limitation on the maximum allowable waiting time wy,,y is
dropped.

To perform our experiments we adapted the Solomon benchmark instances ((Solomon, 1987)), as
described in (Fu et al., 2007). The Solomon instances are 100 customer instances separated into different
problem sets: R1, C1, RC1, R2, C2 and RC2. The problems in classes R1 and R2 have their customers
uniformly distributed at random, while they are clustered in C1 and C2 and semi-clustered in RC1 and
RC2. Then problems in R1, C1 and RC1 have a short scheduling horizon (the depot’s time window is
short) and small vehicle capacities, typically resulting in a high number of short routes. On the other
hand problems in R2, C2 and RC2 have a long scheduling horizon and high vehicle capacities, typically
resulting in a low number of long routes.

8.2 Experimental Setup

The multi-stage VLSN search was implemented in Comet (Van Hentenryck and Michel, 2005), based on
the Constraint-Based Very Large-Scale Neighborhood Search framework presented in (Mouthuy et al.,
2012). All experiments were run on an Intel Q6600 Quadcore 2,4GHz CPU.
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Parameter L,,,, was set to 2 as our preliminary experiments revealed this value achieved the best results.
The time limit for the vehicle reduction stage corresponds to 250 CPU seconds. For the second stage
we used an iteration limit of 200 iterations. Finally the third stage is stopped after 1000 iterations. The
lexicographic objective functions of each stage are treated as weighted sums. In the first stage we use (in
order of the priority of the individual objectives) the weight coefficients 107 and 1 for the first optimiza-
tion step done for each route, and then 107, 10° and 1. In the second stage we use coefficients 107 and 1.
In the third stage we use for the first individual objective 107 and in the second individual objective (the
sum of €y, and dist) we use 10° and 1. Finally constants C and C’ used in the computation of the total
minimum delay in stage 1 are set to C = 10° and C’ = 10°.

8.3 Comparison with state-of-the-art

In the following we compare the best solution we obtained over 10 runs (same methodology as in (Fu
et al., 2007)) for problem Types 1, 2 and 3 with the best known solutions from the literature. A solution
sol, is considered better than solp if it has a lower number of vehicles, or same number of vehicles and a
higher percentage of non-violated soft time windows or a tie on the first two and a lower total distance.
We also provide results for problems of Types 4-6 (see Appendix for these additional results). To the best
of our knowledge, this is the first time results on adapted Solomon benchmark instances for problems
Types 5 and 6 are published. Results for Type 4 problems are presented in (Qureshi et al., 2009), but
the computation of the soft time windows is done differently than we did here. Also a Type 5 problem is
considered as ship scheduling problem in (Fagerholt, 2001), the experiments are performed using real-life
data.

In the comparative tables we indicate the following information for the best known result as well as for
our results: K/Dist. the number of vehicles and total distance (rounded in our case) and Non-viol. TW
the percentage of customers whose soft time windows are not violated. For our results we furthermore in-
dicate the total execution time (rounded), averaged over the 10 runs. Finally we denote with ’* instances
in which we achieve a tie, and with ***’ instances in which we improve the best known solution.

Type 1 instances

We compare our results to those published in (Taillard et al., 1997; Fu et al., 2007; Figliozzi, 2010).
Note that throughout the literature, different objectives are considered for this problem. The objective
considered in (Taillard et al., 1997) is the minimization of the total distance and the summed lateness
penalties. In (Fu et al., 2007) the objective is to minimize first the number of routes, then the total
deviation of time window to start service and then the total distance. Finally (Figliozzi, 2010) minimizes
first the number of routes, then the number of violated time windows and finally the total distance.

The comparative results on Type 1 instances is given in Table 1, we use the shorthands IRCI, UTS and
TSH to refer to the algorithms presented in (Figliozzi, 2010), (Fu et al., 2007) and (Taillard et al., 1997).
For the instances with a short planning horizon (R1,C1 and RC1), our multi-stage approach is able to
improve the number of vehicles in 9 out of 29 instances, and ties with the best known value in the
remaining instances. Furthermore in 7 of the instances where we improve the number of vehicles we also
improve the percentage of non-violated time windows. The same is achieved in 7 instances where we
tie with the best known number of vehicles. The improvement in number of vehicles or percentage of
violated time windows usually comes at the cost of a higher total distance. An exception is instance R103
where our method is able to improve over the best known solution in the 3 objectives.

For the instances with a long planning horizon (R2,C2 and RC2), our multi-stage approach improves
over the state-of-the-art in 3 instances, each time by tying the number of vehicles and improving upon
the percentage of non-violated time windows. Three observations can be made. First, it is merely on

18



4 out of the 56 instances that our multi-stage approach is not able to find the best known number of
vehicles. Next, our method clearly performs better on the random instances (R instances, customers are
distributed randomly) than on the clustered instances (C instances, customers are distributed in clusters).
Here, our multi-stage approach appears to get trapped in local optima. In these instances, once routes
have been assigned to clusters, it becomes difficult to find improving moves (i.e. negative cycles) in the
VLSNs. Our multi-stage approach only performs improving moves, which works at our disadvantage
on these instances. In contrast, the algorithms presented in (Taillard et al., 1997) and (Fu et al., 2007),
allowing the search also to move solutions worse than the current one, perform particularly well on this
type of instances. A third observation is that our multi-stage approach performs better on instances with
a short planning horizon and low capacities, that is instances with many short routes. This might possibly
explained by the low L,,,, value we use. Moves on short subroutes have a higher impact in shorter routes
than in very long routes.

When we compare our computation times for R1 and RC1 to those indicated in (Figliozzi, 2010) and
(Fu et al., 2007), we reach comparable values (in terms of processing power, our Q6600 CPU should be
more efficient than the 600MHz and 1.16GHz CPUs used in these works). Our computation times for C1
are higher than those from (Fu et al., 2007) . Finally on problem sets R2, C2, and RC2 our computation
times are substantially higher. As the scheduling horizon is long for these instances, the number of local
moves respecting the hard time windows is higher than for the instances with a short scheduling horizon,
where only few feasible moves inserting new customers in a route exist. The execution time will increase
with the number of moves respecting the hard time windows (corresponding to the number of edges in
our improvement graphs), especially since in the first and last stage of our approach a best-improvement
search is employed.

Type 2 instances

For the Type 2 instances, the state-of-the-art is given by (Fu et al., 2007; Koskosidis et al., 1992). The
authors in (Koskosidis et al., 1992) want to minimize the total distance and the total penalties to be paid
for early or late arrivals. In (Fu et al., 2007) the objective is to minimize first the number of routes, then
the total deviation of time window to start service and then the total distance. The comparative results on
Type 2 instances are given in Table 2, we use the shorthands OBH, and UTS to refer to the algorithms
presented in (Koskosidis et al., 1992) and (Fu et al., 2007).

Our multi-stage approach is able to improve upon the best known results on all instances, except the
clustered instances (C) where our method is outperformed by the state-of-the-art. While our method
reaches the lowest number of vehicles, it is unable to respect all of the time windows, as in the best
known solutions. Furthermore our total traveled distance is also consistently higher than that of the best
known solution in that problem set. The improvements over the state-of-the-art are all in terms of number
of vehicles, which we reduced by up to 5 vehicles. This reduction comes at the cost of a higher percentage
of violated time windows. Our algorithm also achieves a lower total distance on all but one of the R and
RC instances. A look at the total execution time reveals that this execution time is significantly higher
for the R and RC instances than for the C instances. On Type 2 instances, our computation times are
consistently higher than those reported in (Fu et al., 2007). Again, this can be explained by the number
of edges in the improvements graphs. As in the Type 2 instances none of the customers have hard time
windows, most local moves will respect the hard time window constraints (which are thus only applicable
to the depot). This results in bigger improvement graphs, which will of course impact the time to search
for negative color-disjoint cycles.
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Table 1: Results on Type 1 instances

Instance Best known This paper
K/Dist. Non-viol. Ref. K/Dist. Non-viol.  secy (sec)
W (%) TW (%)
R101 12/1128.7 44 IRCI 11/1214 61 499 *%
R102 11/1058.7 54 IRCI 10/1172 68 523 ok
R103 10/1027.4 66 IRCI 9/1008 76 599 ok
R104 9/983.5 99 UTS 9/977 93 624
R105 11/1073.5 58 IRCI 10/1186 69 573 *ok
R106 10/1047.4 67 IRCI 10/1091 81 640 *%
R107 10/1126.7 100 TSH 9/1013 83 555 *k
R108 9/968.6 100 TSH 9/1004 96 696
R109 10/1001.4 72 IRCI 10/1132 88 629 ok
R110 9/1013.4 71 IRCI 9/1010 82 527 *ok
R111 10/1104.8 100 TSH 9/1016 82 635 *k
R112 9/940.9 83 IRCI 9/1000 95 644 *k
C101 10/828.94 100 TSH, UTS  10/970 96 879
C102 10/828.94 100 TSH, UTS  10/921 98 1085
C103 10/828.06 100 TSH 10/955 100 1251
C104 10/828.94 100 TSH, UTS  10/942 100 1522
C105 10/824.78 100 TSH, UTS  10/865 99 933
C106 10/828.94 100 TSH, UTS  10/866 98 1111
C107 10/828.94 100 TSH, UTS  10/832 99 960
C108 10/828.94 100 TSH, UTS  10/870 98 1172
C109 10/828.94 100 TSH, UTS  10/863 100 1356
RC101 11/1255.3 56 IRCI 11/1373 78 496 ok
RC102 10/1030.1 68 IRCI 10/1261 80 473 ok
RC103 10/1154.6 75 IRCI 10/1214 93 567 ok
RC104 10/1135.8 100 TSH 9/1129 88 638 *k
RC105 11/1219.7 62 IRCI 10/1333 69 501 *%
RC106  10/11150.3 73 IRCI 10/1300 87 493 ks
RC107 10/1123 72 IRCI 10/1259 92 609 ok
RC108 10/1139.8 100 TSH 9/1126 86 620 ok
R201 3/1500.4 89 UTS 3/1265 82 6775
R202 3/1205.8 100 UTS 3/1100 89 8895
R203 2/901.8 70 IRCI 2/938 82 8609 *ok
R204 2/854.3 100 UTS 2/876 94 7392
R205 3/1001.8 100 UTS 3/1127 94 9466
R206 2/956.9 75 IRCI 2/959 85 6671 ok
R207 2/903 100 UTS 2/878 94 5790
R208 2/738.3 100 UTS 2/824 99 8278
R209 2/950.5 74 IRCI 3/1010 96 11260
R210 2/963.8 86 IRCI 3/1041 96 12401
R211 2/953.2 100 UTS 2/902 94 5082
C201 3/591.56 100 TSH, UTS 3/591 100 2969
C202 3/591.56 100 TSH, UTS 3/637 98 2949
C203 3/591.17 100 TSH, UTS 3/761 100 3738
C204 3/590.6 100 TSH, UTS 3/709 100 5156
C205 3/588.88 100 TSH, UTS 3/594 100 3429
C206 3/588.49 100 TSH, UTS 3/593 100 3753
C207 3/588.29 100 TSH, UTS 3/647 100 4175
C208 3/588.32 100 TSH, UTS 3/631 100 5180
RC201 3/1147.4 52 IRCI 4/1276 81 5590
RC202 3/1435.6 100 UTS 3/1264 87 5535
RC203 3/1062.4 100 UTS 3/1041 92 7464
RC204 2/850.7 86 IRCI 2/797 91 3538 *ok
RC205 3/1656.8 93 UTS 4/1165 87 6352
RC206 3/1158.8 100 TSH 3/1201 94 5845
RC207 3/1082.3 100 TSH 3/1115 91 6672
RC208 2/885.5 79 IRCI 3/993 99 8369




Table 2: Results on Type 2 instances.

Instance Best known This paper
K/Dist. Non-viol. Ref. K/Dist. Non-viol.  secy (sec)
TW (%) TW (%)

R101 14/1872.94 56 UTS  9/1002 31 9070 *k

R102 13/1732.54 71 UTS  9/1018 52 9049 ok

R103 12/1542.79 91 UTS 9/961 74 9027 ok

R104 10/1107.18 100 UTS  9/1003 93 9008 ok

R108 10/968.32 100 UTS 9/970 95 9006 *ok

R109 11/1379.87 96 UTS  9/1041 68 9033 *ok

C101 10/828.94 100 UTS  10/931 95 1587

C102 10/828.94 100 UTS  10/854 97 1634

C103 10/829 100 OBH 10/930 99 1622

Cl104 10/829 100 OBH 10/904 98 1640

C105 10/828.94 100 UTS  10/953 96 1642

C106 10/828.94 100 UTS  10/894 95 1588

C107 10/828.94 100 UTS  10/886 96 1489

C108 10/828.94 100 UTS  10/899 100 1547

C109 10/828.94 100 UTS  10/931 99 1420
RC101  13/1851.22 74 UTS  9/1145 36 9065 *k
RC102  13/1772.42 99 UTS  9/1109 54 9047 ok
RC103 11/1416.81 100 UTS 10/1196 85 10016 ok
RC104  10/1262.55 100 UTS  9/1080 88 9013 *k
RC106  12/1531.57 99 UTS  9/1121 57 9044 *ok
RC108  11/1224.72 100 UTS  9/1103 82 9019 *k
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Type 3 instances

In Type 3 instances a limit is given on the maximum waiting time (W,4,) and on the maximum violation
of the hard time windows (p,,.x). Both are expressed as percentages of the total allowed route duration.
To be consistent with the literature we use values 5% and 10% for p;,.y, Whereas wy,, = 10%.

We compare our multi-stage approach to the algorithms presented in(Balakrishnan, 1993; Chiang and
Russell, 2004; Fu et al., 2007; Figliozzi, 2010). In (Chiang and Russell, 2004) the authors want to min-
imize (in order of priority) the number of routes, the total distance and duration, and then the penalties
incurred by time window violations. In (Fu et al., 2007) the objective is to minimize first the number
of routes, then the total deviation of time window to start service and then the total distance. Finally
(Figliozzi, 2010) minimizes first the number of routes, then the number of violated time windows and
finally the total distance.

The comparative results on Type 3 instances are given in Table 3, we use the shorthands SH, MH, UTS
and IRCI to refer to the algorithms presented in (Balakrishnan, 1993), (Chiang and Russell, 2004), (Fu
et al., 2007) and (Figliozzi, 2010).

Our approach is able to improve over the state-of-the-art in all instances. The improvement stems from a
lower number of vehicles in 5 out of 16 instances and a higher percentage of non-violated time windows
(and tie in number of vehicles) in 11 out of 16 instances. Finally notice the average total execution time is
similar to the one for the Type 1 instances. In (Fu et al., 2007) and (Figliozzi, 2010) only ranges of com-
putation times for all Type 3 instances (all values for p,, and wy,4,) combined are indicated. However, if
we compare those indicated ranges to our computation times on the considered instances we interestingly
never even reach half of the highest computation time reported in (Fu et al., 2007). Our times lie in the
range indicated in (Figliozzi, 2010), although we improve their best solution on all instances.

Type 3 C instances haven’t been considered in the literature so far, we provide our results for these
instances in the appendix in Table 4.

8.4 Summary

In summary, the results indicate that our multi-stage algorithm provides significant improvements over
the state-of-the-art, both in vehicle reduction and in minimizing the violations of the soft-constraints.
Among the three first Types of problems over the R1,C1 and RC2 instances, it improved 74% of the best
known solutions, of which 39% in terms of number of vehicles used, which is the most significant criteria
for practical applications. On instances where customers are uniformly distributed, the multi-stage VLSN
algorithms is dominated by the tabu-search algorithms from (Fu et al., 2007) and (Taillard et al., 1997).

All the remaining tables (Tables 4 through 10 in the appendix) present the results obtained by our
algorithm for instances with no (comparable) experimental results found in the literature. We report them
to allow comparisons in future work since these instances are also of practical interest.

9 Conclusions and Perspectives

This paper considers the Vehicle Routing Problem with Soft Time Windows (VRPSTW), a challenging
routing problem due to its combination of hard time windows and a lexicographic objective function
minimizing the number of vehicles, the violations of soft time windows, and the total travel distance. We
present a multi-stage Very Large-Scale Neighborhood (VLSN) search algorithm for the VRPSTW. Each
of the three stages performs a Variable Neighborhood Descent over a parametrizable VLSN. Each stage
features a (lexicographic) objective function adapted to the goal of the specific stage: Vehicle reduction,
minimization of the soft time window constraint violations, and minimization of the travel distance.
VRPSTWs are classified in 6 types in the literature. We present results for each of these types, and are the
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Table 3: Results on Type 3 instances with wy,,, = 10%.

Instance Best known This paper
K/Dist. Non-viol. Ref.  K/Dist. Non-viol.  secy (sec)
TW (%) TW (%)
R101 14/1633 68 IRCI  13/1582 42 526 *k
R102 12/1404 63 IRCI 12/1364 80 610 *k
R103 11/1374 93 IRCI 10/1184 81 529 wok
R109 11/1393 93 IRCI 10/1211 78 521 wok
Pmax = 5%
RC101  13/1778 93 IRCI 12/1586 67 425 wok
RC102  12/1635 98 IRCI 11/1556 81 451 wok
RC103  10/1256 83 IRCI 10/1236 91 511 wE
RC106  11/1336 81 UTS 11/1451 93 424 wE
R101 12/1376 31 UTS 12/1349 47 495 wok
R102 10/1173 33 MH  10/1259 38 554 wok
R103 10/1185 76 UTS 10/1170 84 559 wE
R109 10/1116 53 IRCI 10/1175 80 522 *ok
Pmax = 10%
RC101  11/1322 43 IRCI 11/1512 64 466 wE
RC102  11/1367 74 UTS 11/1443 87 489 wE
RC103  10/1194 79 IRCI 10/1221 91 464 *k
RC106  10/1160 49 MH  10/1331 70 540 ok

first to present results on Type 6. Our approach is tested on standard benchmark instances and compared
to the state-of-the-art approaches for each of the considered types. Experimental results indicate that our
multi-stage VLSN search improves best-known solutions on 53% of the Type 1, 2 and 3 instances. For
Type 3 it is even able to improve over 100% of the considered instances. Many of these improvements
stem from a reduced number of routes, typically a very critical objective in Vehicle Routing Problems.

The experimental results also clearly show that the proposed algorithm performs better on problem
instances where customers are randomly distributed and where the routes are shorter. Future work will
focus on extending the current approach in order to achieve as good performance on the clustered in-
stances as we already have for the random ones.
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A Proof of Proposition 1

Proof of Proposition 1
Proposition 1 can be proven by induction using inductive Hypothesis 1:

Hypothesis 1 (P(n)). If y; < z;,VI € sites(r), then for any service time s, such that k+n = m and
Vi, < 8r, L 25, there is a start of service time s for each j = riy1,...,tmy1 such that y; <s; < z; and
such that [srk,srk+l e ,srmﬂ] respects constraints (4) to (6) with i = ry,i = ry4y,...,i = 'y and constraint
S) withi=ry41.

Base case: n=0

This is the case where k+ 0 = m, thus customer ry, is the last customer in the route. After serving customer
7%, the vehicle will return to the depot g (remember we consider the successor of the last customer 7, the
depot, thus r,,+1 = ro). Hypothesis P(0) becomes:

If y; < z;,VI € sites(r), then for any service time sy, such that k = m and y,, <s, < z,, there is a start
of service time s, such that y,, <s,, < z,, and such that {s,k - } respects constraints (4) to (6) with
i = ry = ry and constraint (5) with i = r,,,1 = ro.

Suppose s, = sy, +C, r, +dy,. First we need to verify whether s, respects y,, < s, < z,,. Itis known
that y,, = e, and z,, = I,;, from (8) and (9), thus it is sufficient to verify e,, < s,, < I,. Since s,, > sy,
and s,, >y, (by hypothesis P(n)) and y,, > e,, (by definition of y,, ) and e,, > e, (by problem definition)
we have s,, > e,,. By (9) we know that

Zr < Zry = Crirg — dry
=y <lyy—Crorp —dr,  from (9)
&8y, <l —crn —dr sinces, <z, by hypothesis P(n)
& 8 T Crry +diy <y
S 8y, <ly

Thus we have e;, <s,, <1[,.

Next we need to show that s,, respects Eq. (4). This is verified by definition of s;,:

O, +Crono <r
<:>si’k +d}’k +Crk,r0 S S}’O (by Eq@))
<:>Srk+drk+crk,r0 gsrk—’_drk—’_crkvr()

Both s,, and s,, respect Eq. (5) since y,, <s,, <z, and e, <y, <z, </, and y,, < s, <z, and
€r < Yro < Zry < lro-

Finally s,, respects Eq. (6) since:

Srk +drk + Crk,ro 2 sro — Wmax

<:>srk + drk + Crk,r() + Wmax Z srk + drk + crk,ro

Thus for any s,, s.t. y, <s,, <z, withk+0=m thereis a s,, such that {srk , s,o} respects constraints
(4) to (6) with i = ry, = r,, and constraint (5) with i = r,,4-1 = rp and we have proven P(0).
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Inductive step: if P(n) holds then P(n+1) holds as well

Assume that the following holds: If y; < z;,VI € sites(r), then for any service time s,, such that k+n=m
and y, <s, <z, there is a start of service time s; for each j =ryy1,...,7ny1 such thaty; <s; <z; and
such that {s,k Sty Srmt } respects constraints (4) to (6) with i = ry,i = rg11,...,i = r,, and constraint
(5) withi = rpy1 = ro.

We need to show that if y; < z;, VI € sites(r), then for any service time s,, , suchthatk—1+n+1=m
andy, , <s,_, <z,_,,thereis a start of service time s; for each j=ry,... 1,41 suchthaty; <s; <z;
and such that {Srk, VoSt e e s Sh } respects constraints (4) to (6) with i = ry_y,i =ry,...,i = ry and con-
straint (5) with i = ry,1 = r9..

Given P(n) it is sufficient to show that for any s,, | such thaty, | <s, | <z, , thereisas, such
that y, <s, <z, and such thats, _, and s, respect Constraints (4) to (6) withi=k—1andi=k.

Assume some sy, 1 such thaty,, |, <s, , <z, , and some s, such that y, <s, <z,. Then the
following hold:

yrkfl Z )’rk - Crk,l g T drkfl — Wmax by Eq (8)
<:>)’rk Sy”k—l +c’k—1~,’k+drk71 + Winax
= Vry <SSyt Ty T Winax SINCE Sy >V,
and
Zrg—1 <y —¢n yn—dn, byEq.(9)
2 ER A (R o
<:>Zrk Z Srk,l + C’"k—l-’k + d’"k—l SinCe srk71 S Z"k—l

Also, in order for s,, | to respect Egs. (4) and (6) the following must hold:

srkfl +drk71 +crk71=rk S Srk S Srkfl +drkfl +Crk71¢rk +Wmax

Therefore a start of service time s, such thaty, <s, <z, andsuch that Egs. (4) and (6) are respected
must lie in the interval:

[max(yr, Sr_y +dn_y + ey )smin(zn, sy +dy_, + ¢y + Wina)]

Since y,, < 8y + 6y Ty, +Wiax and 2, > 5, + ¢y, 5 +dy_, as shown previously and

since yy, < z,, this interval is non-empty. Since e,, <y, <z, </, a start of service time s,, in this
interval also respects Eq. (5).

Finally, if s,, lies in this interval then s,,_, respects Egs. (4) to (6) since:

® Sy Tl + g Smax(yr, sy Fdn )
(Eq. (4) holds with i =ry_)
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® Sr g +drk_1 +Cry e T Winax = min(zrkasrk_l +drk_1 +Cr_y +Wmax)
(Eq. (6) holds with i =r;_1)

L4 erk,l Sy}’k,l Ssrk,l SZrk,l Sl
(Eq. (5) holds with i =r;_1)

Tk—1

This shows that if y; < z;,VI € sites(r), then for any service time sy, such thaty, <s, <z,,thereisa
start of service time s; for each j = ry1,..., 7, such that y; <s; < z; and such that {s,,, 5, .-, }
respects constraints (4) to (6) with i = ry,i = rgyy,...,i = ry, and constraint (5) with i = r,, 11 = ro. O
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B Additional Results

Pmax  Wmax | Instance  K/Dist. Non-viol.  secy (sec)
TW (%)
C101 11/867 99 487
C102 10/1076 100 776
C103 10/1092 100 909
C104 10/1009 100 1103
5% 5% | C105 10/871 100 577
C106 10/880 100 568
C107 10/865 100 632
C108 11/957 100 719
C109 10/897 100 897
C101 11/901 100 520
C102 10/922 100 732
C103 10/1036 100 944
C104 10/971 100 1089
5% 10% | C105 10/829 100 568
C106 10/851 100 572
C107 10/869 100 638
C108 11/895 100 735
C109 10/868 100 890
C101 10/831 98 591
C102 10/1131 100 862
C103 10/1010 100 1082
C104 10/985 100 1235
10% 5% | C105 10/871 100 714
C106 11/972 100 733
C107 10/869 98 803
C108 11/902 100 850
C109 10/888 100 1041
C101 10/935 99 631
C102 10/1019 100 871
C103 10/865 100 1159
C104 10/972 100 1270
10% 10% | C105 11/907 100 704
C106 11/926 100 747
C107 10/842 97 785
C108 11/917 100 888
C109 10/936 100 1079

Table 4: Type 3, problem set C1

29



Instance  K/Dist. Non-viol.  secy (sec)

W (%)
RI101 15/1599 84 346
R102 13/1530 86 406
R103 11/1246 95 445
R104 10/1097 100 484
R105 12/1434 83 358
R106 11/1323 94 392
R107 10/1191 97 415
R108 9/1037 98 490
R109 11/1248 95 378
R110 10/1203 91 404
RI11 10/1206 97 406
R112 10/1036 100 461
C101 10/829 100 467
C102 10/842 100 702
C103 11/882 100 866
C104 10/917 100 954
C105 10/869 100 522
C106 10/831 100 536
C107 10/879 100 574
C108 10/868 100 680
C109 10/904 100 789
RCI0I  13/1668 86 323
RC102  12/1593 96 380
RC103  11/1344 98 393
RC104  10/1229 100 428
RCI05  12/1611 91 344
RCI06  11/1466 96 351
RC107  11/1373 100 386
RC108  10/1267 99 396
R201 4/1390 100 2702
R202 3/1296 98 4729
R203 3/1079 100 7889
R204 3/841 100 9218
R205 3/1170 100 4427
R206 3/1033 100 5745
R207 3/980 100 7445
R208 2/928 100 8392
R209 3/1078 100 4880
R210 3/1038 99 5792
R211 3/884 100 6306
C201 3/591 100 1957
C202 3/591 100 3976
€203 4/673 100 5528
C204 4/731 100 6854
€205 3/589 100 1789
C206 3/589 100 1934
C207 3/589 100 2116
C208 3/591 100 2441
RC201  4/1600 97 2527
RC202  4/1384 99 3083
RC203  3/1269 100 5794
RC204  3/951 100 6367
RC205  4/1391 97 2913
RC206  4/1303 100 3229
RC207  4/1233 100 3478
RC208  3/1014 100 4255

Table 5: Type 4, ppax = 5%



Instance  K/Dist. Non-viol.  secy (sec)

W (%)
RI101 13/1485 62 342
R102 12/1349 81 393
R103 10/1184 84 421
R104 10/1078 100 476
R105 12/1377 83 366
R106 11/1262 92 405
R107 10/1132 93 427
R108 9/1018 99 434
R109 11/1254 97 392
R110 10/1187 94 397
RI11 10/1154 95 416
RI112 10/1031 100 457
C101 10/910 97 525
C102 10/1133 100 706
C103 10/1065 100 925
C104 10/939 100 1150
C105 10/869 100 607
C106 10/878 100 621
C107 10/913 99 646
C108 10/871 100 750
C109 10/870 100 899
RCIO1  12/1635 75 337
RC102  11/1473 85 363
RC103  10/1316 89 385
RC104  10/1269 100 443
RCI05  12/1585 89 355
RC106  11/1441 91 347
RC107  10/1322 85 411
RC108  10/1245 100 384
R201 4/1333 96 3328
R202 3/1244 95 4745
R203 3/1055 98 7582
R204 3/916 100 10398
R205 3/1132 99 5407
R206 3/1035 100 6842
R207 3/959 100 8711
R208 2/832 100 9950
R209 3/1001 99 5945
R210 3/1076 100 6825
R211 3/365 100 7937
C201 3/591 100 2116
C202 4/687 99 5421
€203 41752 100 6674
C204 4/725 100 7241
C205 3/590 100 2563
C206 3/589 100 2156
C207 3/592 100 2029
C208 3/592 100 2313
RC201  4/1536 94 2523
RC202  3/1375 94 3467
RC203  3/1165 98 5097
RC204  3/979 100 7146
RC205  4/1507 96 3192
RC206  3/1291 98 3338
RC207  4/1201 99 4043
RC208  3/1069 100 5469

Table 6: Type 4, ppax = 10%



Instance  K/Dist. Non-viol.  secy (sec)

W (%)
RI101 14/1574 64 353
R102 12/1432 76 439
R103 10/1241 68 429
R104 9/1025 90 476
R105 12/1411 74 364
R106 11/1312 93 409
R107 10/1166 97 430
R108 9/1043 96 456
R109 11/1261 92 404
R110 10/1197 93 399
RI11 10/1179 94 414
RI112 10/1047 100 472
C101 10/829 100 498
C102 10/940 100 758
C103 10/954 100 923
C104 10/931 100 1125
C105 10/875 100 544
C106 10/839 100 595
C107 10/868 100 630
C108 10/842 100 727
C109 10/896 100 883
RCI01  12/1578 69 332
RC102  11/1507 76 361
RC103  10/1298 88 398
RC104  10/1227 99 523
RCI05  11/1483 70 349
RCI106  11/1463 86 363
RC107  11/1384 98 394
RC108  10/1229 98 395
R201 4/1376 98 3442
R202 3/1394 94 5059
R203 3/1125 100 8760
R204 3/826 100 11747
R205 3/1140 99 5165
R206 3/1050 100 7053
R207 3/961 100 8660
R208 3/790 100 10771
R209 3/1030 100 6974
R210 3/1212 100 7407
R211 3/928 100 7913
C201 3/591 100 1814
C202 41626 100 4462
C203 41667 100 6213
C204 3/683 100 7255
C205 3/591 100 1755
C206 3/594 100 1985
C207 3/598 100 2100
C208 3/605 100 2250
RC201  4/1594 95 2440
RC202  4/1340 98 4510
RC203  4/1162 100 5764
RC204  3/921 100 7018
RC205  4/1374 96 3248
RC206  4/1340 100 3868
RC207  3/1214 99 4099
RC208  3/1006 100 5571

Table 7: Type 5, pmax = 5%



Instance  K/Dist. Non-viol.  secy (sec)

W (%)
RI101 12/1445 45 377
R102 11/1333 68 413
R103 10/1168 79 409
R104 9/1018 88 443
R105 11/1262 62 374
R106 10/1245 73 392
R107 10/1107 91 428
R108 9/996 98 440
R109 10/1185 78 396
R110 10/1187 91 401
RI11 10/1061 93 460
RI112 9/990 93 433
C101 10/863 98 626
C102 10/865 100 891
C103 10/912 100 1126
C104 10/938 100 1305
C105 10/829 100 723
C106 10/876 100 786
C107 10/862 100 811
C108 11/876 100 921
C109 10/863 100 1044
RCIO1  11/1467 52 363
RC102  11/1486 84 367
RC103  10/1293 88 397
RC104  10/1221 97 436
RC105  11/1420 77 354
RC106  11/1385 86 395
RC107  10/1333 88 396
RCI08  10/1244 96 407
R201 3/1402 83 3639
R202 3/1301 94 6586
R203 3/1061 97 9683
R204 3/844 100 11660
R205 3/1152 100 6315
R206 3/1040 100 9322
R207 3/918 99 11647
R208 3/771 100 9994
R209 3/1082 100 8240
R210 3/1062 99 10096
R211 3/368 100 11241
C201 3/591 100 2087
C202 41676 100 6693
€203 4/715 100 6688
C204 3/805 99 6469
C205 3/589 100 2012
C206 3/591 100 2521
C207 3/622 100 3275
C208 3/632 100 4848
RC201  4/1602 91 3286
RC202  3/1357 95 4400
RC203  3/1191 96 6493
RC204  3/1001 99 9705
RC205  3/1379 86 3599
RC206  3/1273 95 4003
RC207  3/1311 95 5299
RC208  3/1091 100 7959

Table 8: Type 5, pmax = 10%



Instance  K/Dist. Non-viol.  secy (sec)

W (%)
RI101 14/1555 64 343
R102 12/1399 78 393
R103 10/1252 79 417
R104 10/1069 98 473
R105 12/1412 78 354
R106 11/1324 91 415
R107 10/1202 95 419
R108 9/1027 97 483
R109 11/1231 92 448
R110 10/1206 91 405
RI11 10/1179 94 428
RI112 10/1047 100 509
C101 10/829 100 506
C102 10/951 100 764
C103 10/999 100 890
C104 10/964 100 1078
C105 10/829 100 563
C106 10/841 100 555
C107 10/898 100 628
C108 10/837 100 766
C109 11/891 100 899
RCIO1  12/1549 66 333
RC102  11/1509 79 367
RC103  10/1267 90 396
RC104  10/1220 100 425
RC105  11/1508 73 351
RC106  11/1451 93 361
RC107  10/1277 87 385
RC108  10/1256 98 389
R201 4/1391 98 3205
R202 3/1262 93 5346
R203 3/1046 99 8978
R204 3/858 100 10569
R205 4/1081 100 4933
R206 3/1121 100 6960
R207 3/940 100 8901
R208 3/308 100 8506
R209 3/1023 100 6753
R210 3/1092 100 7459
R211 3/383 100 8504
C201 3/591 100 1859
C202 3/618 100 4015
€203 41679 100 6846
C204 4/769 100 6417
C205 3/598 100 1941
C206 3/600 100 1866
C207 3/594 100 2063
C208 3/600 100 2272
RC201  4/1539 97 2252
RC202  4/1427 98 3838
RC203  4/1162 100 5983
RC204  3/979 99 7027
RC205  4/1495 95 3254
RC206  4/1357 100 3860
RC207  3/1362 100 4230
RC208  3/994 100 5598

Table 9: Type 6, ppax = 5%



Instance  K/Dist. Non-viol.  secy (sec)

W (%)
RI101 12/1446 47 359
R102 11/1290 65 424
R103 10/1158 82 414
R104 9/1014 90 421
R105 11/1328 67 379
R106 10/1182 78 412
R107 10/1126 92 453
R108 9/1003 97 462
R109 10/1188 78 396
R110 10/1122 91 422
RI11 9/1008 70 435
RI112 9/1023 95 497
C101 10/837 96 633
C102 10/964 99 819
C103 10/1003 100 1110
C104 10/975 100 1229
C105 10/830 98 714
C106 10/834 100 717
C107 10/883 98 771
C108 10/871 99 897
C109 10/917 100 1006
RCIO1  11/1471 58 353
RC102  11/1446 86 375
RC103  10/1279 90 389
RC104  10/1205 98 456
RC105  11/1498 80 363
RC106  10/1305 73 380
RC107  10/1309 85 380
RC108  10/1239 97 445
R201 3/1439 86 3864
R202 3/1172 92 6476
R203 3/1020 97 10234
R204 3/859 100 11787
R205 3/1151 100 7167
R206 3/1041 98 8291
R207 3/968 99 10296
R208 2/854 97 10898
R209 3/1076 99 7631
R210 3/1060 98 9677
R211 3/366 100 10049
C201 3/591 100 2276
C202 4/681 100 5774
€203 4/758 100 6830
C204 3/305 100 6046
C205 3/589 100 2400
C206 3/612 100 2353
C207 3/667 100 3044
C208 3/721 100 5183
RC201  4/1504 90 3470
RC202  3/1387 89 4174
RC203  3/1251 96 6613
RC204  3/934 100 9229
RC205  3/1362 87 3651
RC206  3/1409 99 4348
RC207  3/1285 98 5690
RC208  3/1047 100 7529

Table 10: Type 6, pymax = 10%



