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We consider the vehicle routing problem with deadlines under travel time uncertainty in the contexts of

stochastic and robust optimization. The problem is defined on a directed graph where a fleet of vehicles is

required to visit a given set of nodes and deadlines are imposed at a subset of nodes. In the stochastic vehicle

routing problem with deadlines (SVRP-D), the probability distribution of the travel times is assumed to be

known and the problem is solved to minimize the sum of probability of deadline violations. In the robust

vehicle routing problem with deadlines (RVRP-D), however, the exact probability distribution is unknown

but it belongs to a certain family of distributions. The objective of the problem is to optimize a performance

measure, called lateness index, which represents the risk of violating the deadlines. Although novel mathe-

matical frameworks have been proposed to solve these problems, the size of problem that those approaches

can handle is relatively small. Our focus in this paper is the computational aspects of the two solution

schemes. We introduce formulations that can be applied for the problems with multiple capacitated vehicles

and discuss the extensions to the cases of incorporating service times and soft time windows. Furthermore,

we develop an algorithm based on a branch-and-cut framework to solve the problems. The experiments

show that these approaches provide substantial improvements in computational efficiency compared to the

approaches in the literature. Finally, we provide a computational comparison to evaluate the solution quality

of the SVRP-D and the RVRP-D. The results show that the RVRP-D produces solutions that are very

competitive to those obtained by the SVRP-D with a large number of scenarios, while much less sensitive

to the distributional uncertainty.

Key words : vehicle routing, travel time uncertainty, stochastic programming, robust optimization,

branch-and-cut
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1. Introduction

The classical vehicle routing problem (VRP) has been a subject of countless studies in the opera-

tions research literature. In this problem, one wishes to minimize the total cost of routing a fleet

of capacitated vehicles to serve a set of customers where the associated parameters, i.e., customer

locations, demands and transportation costs, are assumed to be perfectly known. A number of

heuristics and exact algorithms have been proposed to solve this problem over several past decades.

Most notably, recent exact algorithms of Fukasawa et al. (2006) and Baldacci et al. (2008) could

solve instances with more than a hundred customers to optimality.

As some parameters such as customer demands, travel times and exact customer locations can

be uncertain in practice, many studies have addressed these issues and proposed mathematical

frameworks for solving the vehicle routing problem under different types of uncertainties (e.g., see

(Gendreau et al. 1996)). There are two major different solution schemes for dealing with uncertainty.

One approach that has been widely used is stochastic programming (see Birge and Louveaux

(2011)). This approach is typically applied to the case where uncertainty can be described by

known distributions. On the other hand, robust optimization has been proposed to handle cases

where such probability distributions are hard to justify or estimate. This issue was first addressed

in Scarf et al. (1958) in the context of robust inventory optimization. An early development of

this robust solution framework is to find an optimal solution that is immune to any realization

of uncertainty. This solution, however, is typically very conservative (Bertsimas and Sim 2004).

Recent studies in robust optimization (see Bertsimas et al. (2011)) offer solution frameworks that

can incorporate some statistical information into the models in order to find a solution that is

not overly conservative while maintaining a high level of robustness. Recently, Gounaris et al.

(2013) discussed the robust VRP with demand uncertainty and proposed several formulations to

deal with such problem. Carlsson and Delage (2013) proposed partitioning approach to determine

service regions for a fleet of vehicle when the location of demand points and their distribution

are not precisely known. The focus of this study is to address the uncertainty in travel times in a

vehicle routing network where one seeks to determine an a priori solution and the ultimate goal

is to satisfy the deadline requirements. The application of this problem is of interest in several

applications such as express courier service, food delivery or personal scheduling. We address the

problems under the stochastic programming and robust optimization frameworks. Note that the

stochastic and the robust vehicle routing problems with deadlines are referred to as SVRP-D and

RVRP-D, respectively. We also use the terms SVRP and RVRP to describe other variants of the

stochastic and the robust vehicle problems, respectively. Table 1 provides a summary of relevant

literature concerning the SVRP-D and RVRP-D.
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The SVRP-D where the underlying network is the m-traveling salesman problem (m-TSP) was

first introduced in Laporte et al. (1992). They considered two different problems with a deadline

imposed at the destination. The first one is a model with chance constraints where routes are not

permitted if their probability of total duration exceeding the deadline is higher than a threshold.

The second case is a model with recourse where these illegal routes are allowed but a penalty

cost must be paid. Both problems were solved so as to minimize the total vehicle dispatching and

routing costs as well as the penalty cost in the latter case. As noted in Laporte et al. (1992),

the chance constraint model is in fact very similar to the determistic VRP in which additional

restrictions such as maximum distance or maximum duration are imposed. The authors focused

on the computational aspect of the latter case using two different formulations and performed

experiments on instances with up to 20 customers. Lambert et al. (1993) proposed a heuristic

to solve the model with recourse to solve instances derived from a real world situation. These

studies, however, consider the problem with very few number of scenarios. The solution framework

to deal with problems with large number of scenarios was addressed by Verweij et al. (2003) with

a sample average approximation (SAA) technique, as applied to the shortest path problem (SPP)

and the traveling salesman problem (TSP) with penalty recourse. TSP instances with 22 nodes and

1000 scenarios could be solved. Kenyon and Morton (2003) extended the problem as in Laporte

et al. (1992) to the case where the number of scenarios is large and propose a branch-and-cut

together with the SAA approach to solve the problem. For the problem with recourse, the algorithm

could solve an instance with 28 nodes, 276 arcs and 30 scenarios with an estimated gap within

1% of optimal. Kenyon and Morton also considered the case where one wishes to maximize the

probability of meeting the deadline. This problem, however, is much more difficult to solve as one

must incorporate the deadline violation for each scenario using a binary variable. Therefore, only

instances with 9 nodes and 2 scenarios were tested for this case. Campbell and Thomas (2008,

2009) considered the routing problem with deadlines for the case of the probabilistic traveling

salesman problem (PTSP) (Jaillet 1988) where customers’ presences are uncertain. They discussed

several models with different recourses and proposed a heuristic to solve them. A more general

case when time windows are imposed were considered in some studies (e.g., Russell and Urban

(2008), Li et al. (2010), Sungur et al. (2010) and Taş et al. (2013)). Since these problems are highly

complicated, these studies limit themselves to the development of heuristics.

Unlike the SVRP-D, the robust VRP, even without deadlines, has received little attention in the

literature. Montemanni et al. (2007) addressed the TSP with uncertain travel time as an interval.

The objective is to minimize a regret function, which is defined as the difference between the

routing cost of the solution and the shortest route. The authors proposed exact algorithms based

on the branch-and-cut and Benders decomposition (Benders 1962) framework to solve the problem.
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Lee et al. (2012) and Agra et al. (2013) considered the VRP with time windows where one seeks

to find a feasible solution to any realization where the travel time uncertainty is defined using the

notion of budget of uncertainty as introduced in Bertsimas and Sim (2004). Jaillet et al. (2014)

proposed a mathematical framework for a routing problem with soft time windows when exact

probability distributions of travel times are not known for a single uncapacitated vehicle. They

also discussed the routing problem with deadlines as a special case. The objective is to optimize

a performance index which represents the risk of violating the time window restrictions. They

showed that the special case with one deadline where the underlying network is the SPP can be

solved in polynomial time. They also provided computational results for this case and showed that

the proposed performance index could also produce solutions that are generally superior to other

approaches including stochastic programming solved by sampling techniques.

In this paper, we consider the routing problem with deadlines under travel time uncertainties

where the underlying network is the capacitated VRP (CVRP). In the SVRP-D, the travel times

along the arcs are characterized by probability distributions and the objective is to minimize the

sum of probability of deadline violations. Note that a similar problem for this case is considered

by Kenyon and Morton (2003). In the RVRP, the problem definition is generally similar to the

paper of Jaillet et al. (2014). In this case, the exact distribution of travel time is unknown and

some information such as minimum, maximum and mean values is available. The objective is to

minimize a performance index, hereafter called the lateness index. The main contributions of the

paper are fourfold. First, we introduce formulations with a generalized routing set for the SVRP-D

and the RVRP-D with multiple capacitated vehicles. Note that for the RVRP-D, we adopt the same

notion of performance index as in Jaillet et al. (2014) but we extend the scope of the problem to

the case of CVRP. We further discuss the extensions of the frameworks for the cases where service

times and soft time windows are incorporated. Second, we propose efficient algorithms based on a

branch-and-cut framework to solve the problems. This solution framework also offers the capability

to solve the SVRP-D exactly if the probability for the tail of the convolution of the travel times can

be computed. Third, we perform extensive computational experiments to evaluate the proposed

Table 1 Summary of the related literature

Author(s) Problem Uncertainty Recourse Deadline Network Approach
description function restriction

Laporte et al. (1992) stochastic scenarios cost one deadline m-TSP branch-and-cut
Lambert et al. (1993) stochastic scenarios (2) cost one deadline m-TSP heuristic
Kenyon and Morton (2003) stochastic scenarios (30) cost/prob one deadline m-TSP SAA/branch-and-cut
Verweij et al. (2003) stochastic scenarios (1000) cost one deadline SPP/TSP SAA/branch-and-cut
Campbell and Thomas (2008, 2009) stochastic scenarios (2) cost multiple deadlines PTSP heuristic
Montemanni et al. (2007) robust interval regret N/A TSP branch-and-cut/Benders
Sungur et al. (2010) stochastic scenarios (n/a) cost time windows VRP heuristic
Lee et al. (2012) robust budget of uncertainty n/a time windows VRP column generation
Agra et al. (2013) robust budget of uncertainty n/a time windows VRP column generation
Jaillet et al. (2014) robust unsatisfactory index n/a time windows SPP/TSP iterative procedure
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formulations and algorithms compared to the algorithms in literature. The results indicate that

the proposed algorithms also provide superior performance to the algorithms presented in Kenyon

and Morton (2003) and Jaillet et al. (2014) for the SVRP-D and RVRP-D, respectively. Fourth,

we provide computational comparisons of the SVRP-D and the RVRP-D on similar instances and

discuss the results obtained by the two solution schemes including the results for the case of soft

time windows. The paper is organized as follows. Section 2 presents the proposed routing set which

is used in both the SVRP-D and RVRP-D model. Section 3 discusses the SVRP and RVRP models

and their reformulation schemes. The algorithm for these problems are presented in Section 4 and

the computational experiments are shown in Section 5. This is followed by a conclusion.

2. Description of the Routing Set

The problem is defined on a directed graph G = (N ,A), where N = {1, ..., n} is the set of nodes

and A is the set of arcs. Nodes 1 and n represent the origin and the destination, respectively. Let

NR ⊆ N be a subset of the nodes that are required to be visited (including the origin and the

destination). Let also ND ⊆N be a subset of the nodes where deadlines are imposed. Note that it is

not necessary that ND ⊆NR. For a given set of nodes H, we define δ−(H) as a set of arcs (i, j)∈A

such that i∈N\H, j ∈H; we also define δ+(H) as a set of arcs (i, j)∈A such that i∈H, j ∈N\H.

For simplicity, we also write a to represent the arcs in the set A. For the case of multiple vehicles,

the set of vehicles is represented by K= {1, ...,m}.

We assume that the random travel times are independent random variables. (This assumption,

however, is not necessary for the SVRP-D with samples since we can still generate samples for

the case of dependent travel times. For the case of RVRP, the solution framework to deal with

correlated random travel times is presented in Jaillet et al. (2014).) The objective of the problem is

to find a set of routes that satisfies the deadline requirements. The following decision variables are

used to formulate the problems. The variable sia is equal to one if arc a is part of the route to node

i, 0 otherwise. The variable xa is equal to one if a vehicle traverses arc a. Finally, the variable zi is

equal to the number of vehicles visiting node i. Note that these variables are equal to the number

of dispatched vehicles for nodes i= 1 and n. As in the classical VRP, we assume that a customer

can be visited at most once and thus the variable zi is equal to one for each visited customer node.

An example of the network is shown in Figure 1. In this network, the set of nodes that must be

visited is NR = {1,2,3, n} and the set of nodes with deadlines is ND = {3,5, n}.

We introduce a set of constraints that are used in the routing part of both the stochastic and

robust vehicle routing problems. The routing set, denoted by SV RP , is defined as follows:

SV RP = {s |(1)− (5)}



Adulyasak and Jaillet: Models and Algorithms for the SVRP-D and the RVRP-D
6 Article accepted in Transportation Science; manuscript no. (Please, provide the mansucript number!)

2

3

4

6

1

5 interim node

must-visit node

node with deadline

Figure 1 Network representation of the problem

where ∑
a∈δ+(1)

sia= zi, ∀i∈ND (1)

∑
a∈δ−(u)

sia−
∑

a∈δ+(u)

sia= 0, ∀i∈ND, u∈ND \ {1, n, i} (2)

∑
a∈δ−(i)

sia−
∑

a∈δ+(i)

sia= zi, ∀i∈ND ∪{n} (3)

0≤ sia ≤ xa, ∀i∈ND,∀a∈A (4)

(x,z)∈X V RP . (5)

These constraints control the flow of one unit of commodity associated with i ∈ ND from the

origin to node i. Constraints (1)-(3) ensure flow balance at the nodes through the origin (1),

intermediate nodes (2) and the destination (3) of commodity i. Constraints (4) allow a flow through

arc a only if a vehicle traverses that arc. Note that it is not necessary to impose the integrality

constraints on vector s as well as z since this property holds when x ∈ {0,1} as shown in Jaillet

et al. (2014). This relaxation, however, did not appear to improve the computational performance

in our experiments with CPLEX and thus we use the original definitions of the vectors s and z

with the integrality restrictions. The set X V RP is the set of constraints that enforce the vehicle

and routing restrictions. Since a different set, i.e., multi-commodity flow based or vehicle index

formulations, can also be used to describe the routing set, we use the notation S to refer the set

of constraints (1)-(4) with a set of vehicle and routing restrictions in a general form where SV RP

is the set S where the vehicle and routing constraints are specifically described by our routing set

X V RP which we present next.

Denote by σ(H) a minimum number of required vehicles to visit all the nodes in the set H⊆

N \{1, n}. The set X V RP , which controls the routes for the various vehicles is defined as follows:

X V RP =
{
x∈ {0,1}|A|,z ∈Z|N |+

∣∣∣ (6)− (11)
}
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where

1≤ zi ≤m ∀i∈ {1, n} (6)

zi = 1 ∀i∈NR \ {1, n} (7)

zi ≤ 1 ∀i∈N \NR (8)∑
a∈δ+(i)

xa = zi ∀i∈N \{n} (9)

∑
a∈δ−(i)

xa = zi ∀i∈N \{1} (10)

∑
a∈δ+(H)

xa ≥ σ(H)zj ∀H⊆N \{1, n} : |H| ≥ 2,∀j ∈H. (11)

Constraints (6) limit the number of vehicles leaving the origin and arriving at the destination

as to not exceed the number of available vehicles. Constraints (7) enforce that all the nodes in

set NR must be visited, while one can choose whether or not to visit the nodes in set N \NR.

Constraints (9)-(10) are arc flow conservation. Constraints (11) are subtour elimination and vehicle

capacity constraints. To impose the minimum number of customers to be served as a service level

requirement, one can also add the following constraint∑
i∈N

zi ≥ κ. (12)

Next, we discuss how this routing set can be used to deal with the problem with a single uncapac-

itated vehicle and with multiple capacitated vehicles, respectively.

2.1. Single Uncapacitated Vehicle

In the problem with a single uncapacitated vehicle, one can set σ(H) = 1 in constraints (11).

Therefore, constraints (11) reduce to:∑
a∈δ+(H)

xa ≥ zj ∀H⊆N \ND ∪{1, n} : |H| ≥ 2,∀j ∈H. (13)

For that case, this formulation is not stronger than the multi-commodity flow based formula-

tion (MCF) of Jaillet et al. (2014) since constraints (13) can be obtained by projecting out the

variables sia,∀i ∈ N \ ND used in the MCF (Padberg and Sung 1991). These models, however,

appear to be different in terms of computational aspect since the routing set SV RP is typically

handled by a branch-and-cut, while the formulation MCF is polynomial in size and is solved by

a branch-and-bound. Roberti and Toth (2012) show that, for the asymmetric TSP, the computa-

tional performance of an efficient branch-and-cut approach is typically superior to the polynomial

size models including a multi-commodity flow based formulation solved by a branch-and-bound

algorithm. We perform experiments to evaluate these formulations and report the results in Section

5.2.
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Figure 2 Network transformation for the problem with multiple capacitated vehicles

2.2. Multiple Capacitated Vehicles

For the problem with multiple capacitated vehicles, one could simply modify the set SV RP by

incorporating the index k ∈K into the variables s and x, and impose vehicle capacity constraints

on variables x for each vehicle separately. The size of the model would however be significantly

increased. Therefore, we propose another approach to transform the original network to a new one

without increasing the size of the model too much. Since the network here is modified from the

original network, for notational convenience, we assume N̂ , N̂D, N̂R and Â are the sets N ,ND,NR
and A, respectively, of the original network before the modification. The modified network can be

obtained by the following steps:

1. Duplicate the destination node n into |K| dummy nodes, i.e., n′1, ..., n
′
|K|;

2. The deadlines of the dummy nodes τn′
k
,∀k ∈ K, and parameters associated with arcs a ∈

δ−(n′k),∀k ∈ K, are equal to those of the original node n. The original destination node n is

replaced by n′1;

3. Add a new destination node n′0 with no deadline restriction and add arcs from each of the

dummy nodes n′k,∀k ∈ K to this node. The travel times of these arcs are set to zero, i.e.,

c̃n′
k
,n = 0,∀k ∈K and set n= n′0.

Figure 2 illustrates the transformation of an original network to a modified network.

We further let N ′ =
{
n′1, ..., n

′
|K|

}
and A′ be the set of all the arcs added to the network. The new

sets corresponding to the transformed network are N = N̂ ∪N ′, ND = N̂D\{n}∪N ′, NR = N̂Rand

A= Â ∪A′. The set σ(H) must be the number of required vehicles as in the VRP (e.g., see Toth

and Vigo (2001)). Denote by di the demand of customer i and by Q the vehicle capacity. For a

given set of node H, one can compute σ(H) =
⌈∑

i∈H di/Q
⌉
.

Since the dummy nodes n′k,∀k ∈K are identical, one can swap the paths from the origin to any

n′k1
,∀k1 ∈ K with that of another node n′k2

,∀k2 ∈ K\{k1} and still obtain the same solution. To

resolve this symmetry issue, we can add symmetry breaking constraints by computing a unique

number for a set of arcs that belong to each route and imposing constraints to rank them. This
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approach has been successfully applied to several applications (e.g., see Sherali and Smith (2001),

Jans (2009), Adulyasak et al. (2013)). We use a form of the symmetry breaking constraints which

can be easily obtained from the description of the travel time uncertainty. For example, if a mean

value of arc (µa) is available, one can add the following constraints to break the symmetry:∑
a∈A

µas
n′k
a ≥

∑
a∈A

µas
n′k+1
a ∀1≤ k≤ |K|− 1. (14)

Otherwise, one can also use other parameters such as the lower bound or upper bound of the

arc travel time to replace the parameter µa in the constraints above.

3. Stochastic and Robust Routing Formulations

In this section, we describe part of the formulations that deals with the uncertainty aspect of the

problem based on the stochastic and robust optimization frameworks. In the stochastic approach,

the travel time uncertainty is described by a probability distribution and the problem is solved so

as to minimize the sum of probability of deadline violations. Note that this objective function is

equivalent to finding the minimum expected number of deadline violations when applying the sam-

pling approach as presented in Section 3.1. In the robust approach, however, the exact distribution

is not known and one wishes to find a solution that minimizes the risk of violating the deadlines

as quantified by a given performance measure, called lateness index. This objective function can

be seen as a special case of the framework introduced in Lam et al. (2013).

We use tilde (˜) to represent uncertain quantities and denote by c̃a the uncertain travel time

associated with arc a and by t̃i the arrival time at node i and hence t̃i =
∑

a∈A c̃as
i
a. The deadline

at each node i∈ND is represented by τi.

3.1. Stochastic Routing Problem with Deadlines

In this problem, one wishes to minimize the sum of probability of deadline violations under a

given set of possible realizations of the travel time uncertainty as derived from a known probability

distribution P. The minimum sum of probability of deadline violations is computed by solving the

following model:

min
∑
i∈ND

P(t̃i > τi) (15)

s.t. t̃i =
∑
a∈A

c̃as
i
a ∀i∈ND (16)

(s)∈ S. (17)

Note that the objective described above also has the following property:

P(∃i∈ND : t̃i > τi) = P(∪i∈ND(t̃i > τi))≤
∑
i∈ND

P(t̃i > τi).
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Recall that, for the case of multiple vehicles, |K| dummy nodes are created for the destination

node. Then, in that case, the deadline violation is computed separately for each vehicle.

The formulation (15)-(17) is nonlinear due to the objective function (15) and constraints (16).

Since the objective function is separable, however, we can exploit a decomposition technique to

solve the problem. For a given solution vector s̄, denote by Ais̄ = {a∈A|s̄ia = 1} and by βis̄ the

probability that the deadline at node i is violated with the solution s̄, i.e., βis̄ = P(tis̄ > τi) where

tis̄ =
∑

a∈A c̃as̄
i
a. The model (15)-(17) can be reformulated as:

min
∑
i∈ND

ρi (18)

s.t.
∑
a∈Aip

βip(s
i
a− 1) +βip ≤ ρi ∀i∈ND,∀ (p)∈ S (19)

ρi ≥ 0 ∀i∈ND (20)

(s)∈ S. (21)

The left hand side of constraints (19) take the value βip if the solution vector s is equal to or

contains p as part of the solution, while it takes a negative value otherwise, i.e., let θi(s,p) =∑
a∈Aip

βip(s
i
a− 1) +βip for a given solution vector s and p, we obtain:

θi(s,p) =

{
βip if Aip ⊆Ais
βip
(
1−

∣∣Aip \Ais∣∣) otherwise.

One can see that the model (18)-(21) is equivalent to the original model (15)-(17) when the

deadline violation P(tis̄ > τi) is computed exactly. Instead of dealing with the nonlinear model

(15)-(17) which can be very difficult to solve, the model (18)-(21) allows us to apply an iterative

decomposition procedure to solve the problem by computing the values βip,∀i∈ND associated with

a given solution vector p, and adding the cuts (19) during the solution process. This is very useful

for the cases where the cumulative distribution function of tis̄, i.e., the convolution of
∑

a∈A c̃a|a∈Ais̄
can be easily derived; for example, independent random travel times with normal distribution where

the derived distribution is normal with tis̄ ∼ N(µAis̄ , σ
2
Ais̄

) where µAis̄ =
∑

a∈A µa|a∈Ais̄ and σ2
Ais̄

=∑
a∈A σ

2
a|a∈Ais̄

. Moreover, one can apply efficient techniques to compute the tail bound for sums of

random parameters such as in Tropp (2012). Since the method to compute or approximate P(tis̄ > τi)

is distribution dependent, and our main focus is the computational aspect of the formulation when

the number of possible realizations is large, we only examine this approach in a limited manner by

considering the case of the normal distribution and the results are shown in Section 5.1.

To overcome the computational difficulties in computing exact distributions, a common approach

in stochastic programming is to employ a sampling technique to generate a set of scenarios of



Adulyasak and Jaillet: Models and Algorithms for the SVRP-D and the RVRP-D
Article accepted in Transportation Science; manuscript no. (Please, provide the mansucript number!) 11

the travel time vector c̃ as a discrete set. Denote by ω ∈Ω the set of scenarios of the travel time

vector c̃. This set can be enumerated if all possible realizations of c̃ is finite and not too large. In

case where the number of realizations is very large, or when the distribution of the travel times

are continuous, the set Ω can be generated by a Monte-Carlo sampling-based approach. Let the

variable φiω equal to one if the travel time associated with scenario ω exceeds the deadline at node

i and the parameter Miω is a sufficiently large constant associated with node i and scenario ω. The

model (15)-(17) under a discrete set of scenarios can then be written as follows:

min
1

|Ω|
∑
i∈ND

∑
ω∈Ω

φiω (22)

s.t.
∑
a∈A

caωs
i
a ≤ τi +Miωφiω ∀i∈ND,∀ω ∈Ω (23)

φiω ∈ {0,1} ∀i∈ND,∀ω ∈Ω (24)

(s)∈ S. (25)

Constraints (23) enforce the variable φiω to be one if the deadline at node i is violated

with respect to the travel time under scenario ω. We also note that, with this sampling-based

approach, the objective function also corresponds to the expected number of deadline violations,

i.e., 1
|Ω|

∑
ω∈Ω

(∑
i∈ND

φiω

)
=
∑

i∈ND

(
1
|Ω|

∑
ω∈Ω φiω

)
. This problem description is similar to the one

in the paper by Kenyon and Morton (2003) except that, in their paper, the deadline is only imposed

at the destination, and the deadline violation of the route with the longest travel time is taken into

account. The model (22)-(25) can be easily modified to solve such a problem by replacing the vari-

able φiω with a single variable φω in constraints (23), while the modification for the reformulation

(22)-(25) is shown in Appendix. We further note that the model of Kenyon and Morton (2003)

(also shown in Appendix) cannot handle the problem with multiple deadlines.

The challenge of solving this problem lies in the fact that the number of binary variables φiω

and constraints (23) grow as the number of scenarios increases. Nevertheless, one can observe that,

if a solution vector s̄ is given, the remaining problem is to obtain the values of the variables φiω,

and this can be solved by inspection. Therefore, one can compute βis̄ = 1
|Ω|

∑
ω∈Ω φiω and solve the

problem using the reformulation (18)-(21) proposed earlier. For ease of presentation in Section 4,

the step used to compute the value of the variables φiω for a given solution vector (s̄)∈ S is referred

to as SPs(s̄).
The set S, however, is exponential in size so that it is not practical to enumerate all (p)∈ S. To

solve the model (18)-(21), one can replace constraints (19) with∑
a∈Aip

βip(s
i
a− 1) +βip ≤ ρi ∀i∈ND,∀(p)∈ U , (26)
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where U ⊆ S and these constraints can be added in a branch-and-cut fashion. The model (18)

and (20)-(26) with a given set U ⊆ SV RP and set S = SV RP is hereafter referred to as Ps(U). We

describe the approach to solve this problem in Section 4.

3.2. Robust Routing Problem with Deadlines

In the robust optimization framework, the exact distribution P is not known but belongs to a

certain family of distribution F. We assume that the uncertain travel time c̃ in the set F is described

by an interval and a mean value which is formally stated as:

F= {P|EP(c̃) = µ,P(c̃∈ [c, c]) = 1} .

To obtain a robust solution, we have built upon the general mathematical framework of Jaillet

et al. (2014) which was introduced to solve robust single uncapacitated routing problems under

uncertainty. Note that the details of the decomposition technique used to deal with the robust

counterpart presented in this section are in-line with those of Jaillet et al. (2014) but we focus

on the special case of routing problems with deadlines and devote the section here to make the

paper self-explanatory. The idea is to minimize a performance index, called for this special case, a

lateness index, whose definition is based on the idea of certainty equivalent (as commonly used in

economic literature). Let EP(x̃) denote the expected value of the random variable x̃ under P. The

certainty equivalent of random travel time t̃i at node i is a deterministic quantity defined as:

Cαi(t̃i) = αi lnEP

(
exp

(
t̃i
αi

))
where αi > 0 is a risk tolerance parameter at node i associated with being late. Under distributional

ambiguity about P, the worst-case certainty equivalent of travel time at node i is then defined as:

Cαi,F(t̃i) = sup
P∈F

αi lnEP

(
exp

(
t̃i
αi

))
.

For a given deadline τi at node i, the quality of the random travel time t̃i for that node will then

be defined as the smallest risk tolerance αi allowable so that the certainty equivalent of travel time

at node i does not exceed the deadline τi, i.e.,

inf
{
αi|Cαi,F(t̃i)≤ τi, αi ≥ 0

}
.

This quality measure is a special case of the satisficing measure proposed by Brown and Sim (2009).

One can show that this measure has some nice properties with respect to satisfying a deadline

requirement. In particular, it simply takes the value 0 when the travel time is guaranteed to meet

the deadline. Here, we exploit this characteristic by reducing the number of variables s in one of
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Jaillet et al. (2014)’s formulations. Our routing set SV RP in Section 2 requires sia,∀i ∈ND, a ∈A,

since for ∀i∈N \ND, τi =∞, and thus αi = 0,∀i∈N \ND.

More generally, in a network with multiple deadlines, let τ = (τi)i∈ND , t̃ = (t̃i)i∈ND and α =

(αi)i∈ND . The lateness index for the network G with multiple deadlines is formally defined in this

paper as:

ρτ (t̃) = inf

{∑
i∈ND

αi|Cαi,F(t̃i)≤ τi, αi ≥ 0,∀i∈ND

}
.

Finding a routing policy (a set of paths from 1 to n) for which the arrival time vector t̃ gives

the smallest lateness index is our ultimate objective. An optimal policy can thus be obtained by

solving the following optimization problem:

inf
∑
i∈ND

αi (27)

s.t. h(αi,s
i)≤ τi ∀i∈ND (28)

αi ≥ 0 ∀i∈ND (29)

(s)∈ S ∀i∈ND (30)

where

h(αi,s
i) = sup

P∈F
αi lnEP

(
exp

(
c̃si

αi

))
Since the function h(αi,s

i) is non-linear in αi, solving this problem is challenging. However, if

the vector s̄ ∈ S is known, the corresponding objective function value (27), denoted by f r(s̄) can

be computed as

f r(s̄) = inf
∑
i∈ND

αi (31)

s.t. h(αi, s̄
i)≤ τi ∀i∈ND (32)

αi ≥ 0 ∀i∈ND. (33)

Once can observe that the problem (31)-(33) can be decomposed into |ND| convex problems, each

with a single variable αi, which can be solved efficiently. For ease of presentation, the problem

(31)-(33) is referred to as SPr(s). To solve the original model (27)-(30), after obtaining the vector

α, Jaillet et al. (2014) proposed a solution framework using the subgradient of the Lagrangian

function

L(s,α,λ) =
∑
i∈ND

αi +
∑
i∈ND

λi
(
h(αi,s

i)− τi
)

(34)
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which is obtained by dualizing constraints (28). Note that under the assumption that travelers

are not risk seeking, the worst-case expected travel time along each path to a node with deadline

cannot exceed the deadline value, i.e., the following constraints must be satisfied∑
a∈A

sup
P∈F

EP(c̃a)s
i
a ≤ τi ∀i∈ND. (35)

These constraints are in fact the Slater’s conditions which ensure that strong duality of the model

(27)-(30) holds. Denote by S ′ the routing set S that also satisfies constraints (35). From strong

duality, we then have, for any (s)∈ S ′,

f r(s) = sup
λ≥0

(
inf
α≥0

L(s,α,λ)

)
. (36)

Jaillet et al. (2014) showed that the subgradient of the Lagrangian function is also the subgradient

of f r(s), i.e., for any (s), (p)∈ S ′, we have

f r(s)− f r(p) = sup
λ≥0

(
inf
α≥0

L(s,α,λ)

)
− sup
λ≥0

(
inf
α≥0

L(p,α,λ)

)
≥ inf
α≥0

L(s,α,λ∗)− inf
α≥0

L(p,α,λ∗)

≥ dLp(p,α∗,λ∗)(s−p)

where (α∗,λ∗) =
{

(ᾱ, λ̄)
∣∣L(s, ᾱ, λ̄) = supλ≥0 (infα≥0L(s,α,λ))

}
and dLp(p,α∗,λ∗) = dfp(p) is the

vector of subgradient of L(p,α∗,λ∗) with respect to (p)∈ S ′. Note that the details of the calculation

of the vector dfp(p) is provided in Appendix.

Consequently, one can obtain

f r(s)≥ f r(p) + dfp(p)(s−p),∀(p)∈ S ′ (37)

and the model (27)-(30) and (35) can now be reformulated as:

inf w (38)

s.t. f r(p) + dfp(p)(s−p)≤w ∀(p)∈ S ′ (39)∑
a∈A

sup
P∈F

EP(c̃a)s
i
a ≤ τi ∀i∈ND (40)

αi ≥ 0 ∀i∈ND (41)

(s)∈ S ∀i∈ND. (42)

As in the SVRP-D model in the previous section, since the set S ′ is exponential in size, one can

replace constraints (39) with

f r(p) + dfp(p)(s−p)≤w ∀(p)∈ U ′ (43)

where U ′ ⊆ S ′. The model (38) and (40)-(43) with a given set U and set S = SV RP is hereafter

referred to as Pr(U). We describe the approach to solve this problem in Section 4.
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3.3. Extensions of the SVRP-D and RVRP-D

3.3.1. Service Times Service times can be readily incorporated into our SVRP-D and RVRP-

D since deadlines are soft constraints (i.e., customers who are visited are always served). Denote

by ζi the service time associated with customer i. This feature can be incorporated as follows:

• Fixed service time. The fixed amount service time ζi at node i can be added to the random

variables, i.e., c̃a + ζi,∀a∈ δ(i)+;

• Random service time. In this case, one can incorporate the service times by adding a dummy

node for each node with the deadline, i.e., for a given node i, a dummy node i′ is created and

arc (i, i′) with travel time ζ̃i is added to the network as shown in Figure 3.

Figure 3 The modified network for the SVRP-D and RVRP-D with random service times

3.3.2. Soft Time Windows. Instead of simply a deadline, the restriction for visiting a given

node i may include a time window [σi, τi] where σi ≤ τi. In that case, if we consider that this time

window is soft, then we can extend our frameworks by treating σi as the earliest arrival time for

which we would not incur a violation at an early arrival, and τi as the latest arrival time for which

we would not incur a violation of a late arrival. We also assume that vehicles are not allowed to

wait during the delivery. This is typically the case for urban transportation in which parking is

not available or the cost of parking can be relatively high. If one wishes to incorporate the waiting

decision, it can be done by adding dummy nodes that are linked to customers and the waiting time

is set as a fixed amount of travel time on the arc that links to the dummy node. We remark that

the case where the waiting time is variable is in fact a model with recourse function which would

change the structures of the problems substantially. Thus, the frameworks we described earlier

could not be applied directly to the case, and this is left as a potential future research opportunity.

The frameworks for the SVRP-D and RVRP-D models presented earlier can be adapted to solve

the SVRP and RVRP with time windows as follows.

SVRP with soft time windows. Denote by γis̄ = P(tis̄ < σi) the probability that node i is

visited before the start of the time window σi with the solution s̄. This can be computed using a
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similar method as for βis̄. The SVRP formulation with soft time windows, as an extention of the

model (18)-(21), can be stated as follows:

min
∑
i∈ND

(ρi + ρ′i) (44)

s.t.
∑
a∈Aip

βip(s
i
a− 1) +βip ≤ ρi ∀i∈ND,∀ (p)∈ S (45)

−
∑

a∈A\Aip

γips
i
a + γipzi ≤ ρ′i ∀i∈ND,∀ (p)∈ S (46)

ρi, ρ
′
i ≥ 0 ∀i∈ND (47)

(s)∈ S. (48)

One can see that, as opposed to constraints (45), the left hand side of constraints (46) take the

value γip if node i is visited and the solution vector s is a subset of or equal to p (which implies

that the travel time from the origin to node i of the route in solution s is equal or shorter than one

in solution p), while this value takes a negative value otherwise, i.e., for a visited node i (zi = 1)

let θ̂i(s,p) =−
∑

a∈A\Aip
γips

i
a + γip for a given solution vector s and p, we obtain:

θ̂i(s,p) =

{
γip if Ais ⊆Aip
γip
(
1−

∣∣Ais \Aip∣∣) otherwise.

Consequently, the sampling-based SVRP with soft time windows can be written as.

min
1

|Ω|
∑
ω∈Ω

∑
i∈ND

(φiω +φ′iω) (49)

s.t.
∑
a∈A

caωs
i
a ≤ τi +Miωφiω, ∀ω ∈Ω,∀i∈ND (50)∑

a∈A

caωs
i
a ≥ σi +Miωφ

′
iω ∀ω ∈Ω,∀i∈ND (51)

φiω, φ
′
iω ∈ {0,1} ∀ω ∈Ω,∀i∈ND (52)

(s)∈ S. (53)

The model (49)-(53) can be reformulated into the model (44)-(48) using the reformulation scheme

presented in Section 3.

RVRP with soft time windows. In the RVRP with soft time windows, an arrival earlier

than the start of a time window can be penalized by the introduction of an earliness index defined

in a similar fashion as the lateness index. In that case, given a risk tolerance ηi ≥ 0 for being

early, the worst-case certainty equivalent of random travel time t̃i can be defined by the following

non-positive deterministic quantity.

Ce
ηi,F(t̃i) = sup

P∈F
η lnEP

(
exp

(
− t̃i
ηi

))
.
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The earliness index is then defined as follows:

ρσ(t̃i) = inf
{
ϕ(ηi)|Ce

ηi,F(t̃i)≤−σi, σi ≥ 0
}

The RVRP with soft time windows can be stated as follows

inf
∑
i∈ND

(αi + ηi) (54)

s.t. h(αi,s
i)≤ τi ∀i∈ND (55)

e(ηi,s
i)≤−σi ∀i∈ND (56)∑

a∈A

sup
P∈F

EP(c̃a)s
i
a ≤ τi ∀i∈ND (57)∑

a∈A

sup
P∈F

EP(−c̃a)sia ≤−σi ∀i∈ND (58)

αi, ηi ≥ 0 ∀i∈ND (59)

(s)∈ S. (60)

where

e(ηi,s
i) = sup

P∈F
ηi lnEP

(
exp

(
− c̃s

i

ηi

))
.

Denote by S ′′ the solution vector S satisfying constraints (57) and (58). Using the reformulation

scheme as presented in Jaillet et al. (2014), we obtain

inf w (61)

s.t. (f r(p) + gr(p)) +
(
dfp(p) + dgp(p)

)
(s−p)≤w ∀(p)∈ S ′′ (62)∑

a∈A

sup
P∈F

EP(c̃a)s
i
a ≤ τi ∀i∈ND (63)∑

a∈A

sup
P∈F

EP(−c̃a)sia ≤−σi ∀i∈ND (64)

αi, ηi ≥ 0 ∀i∈ND (65)

(s)∈ S. (66)

Since the objective function (54) is separable, for a given solution vector p∈ S ′′, the value f r(p)

can be obtained by solving the model (31)-(33), while the value gr(p) is obtained by solving the

following model:

gr(p) = inf
∑
i∈ND

ηi (67)
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s.t. e(ηi,p
i)≤−σi ∀i∈ND (68)

ηi ≥ 0 ∀i∈ND (69)

and dgp(p) is the subgradient of gr(p) with respect to p. We provide the details of the subgradient

computation of gr(p) in Appendix.

4. Solution Approaches

In this section, we discuss our approach to solve the reformulations of the SVRP-D and RVRP-

D (i.e., Ps(U) and Pr(U), respectively). First, we describe the separation procedures to detect

and add subtour inequalities (11) for the cases of a single uncapacitated vehicle and multiple

capacitated vehicles, respectively. Next, we introduce a branch-and-cut based algorithm to solve

these problems.

4.1. Separation of Subtour Inequalities

We denote by x̄ and z̄ the values of the variables x and z retrieved in the branch-and-bound tree.

A directed graph Ḡ = (N̄ , Ā) consists of a set of nodes N̄ and a set of arcs Ā, constructed from

nodes i∈N with z̄i > 0 and arcs a∈A with x̄a > 0, respectively.

4.1.1. Single uncapacitated vehicle To detect the cuts (13), at every node of the branch-

and-bound tree, we solve a series of min s− t cut on the graph Ḡ = (N̄ , Ā) from the origin (node

1) to each destination i ∈ N̄ \ {1, n}. If the value of the minimum cut is less than z̄i, we generate

and add the cut (13) with j = arg maxi∈H{z̄i} to the model. We use the min s− t cut algorithm of

the Concorde library (Applegate et al. 2011).

4.1.2. Multiple capacitated vehicle For the problem with multiple capacitated vehicle, the

cuts (11) are used to eliminate subtours and ensure that vehicle capacity is not violated. These cuts

can be detected by calling a separation procedure of the capacitated VRP on the graph Ḡ = (N̄ , Ā)

with demand di,∀i∈ND. We use the CVRP separation algorithms of Lysgaard et al. (2004) in our

implementation and set the maximum number of generated cuts to |N |.

4.2. Solution Algorithm

In this section, we describe the algorithm that is applied to both the stochastic routing model

Ps(U) and robust routing model Pr(U). The algorithm is developed based on a branch-and-cut

framework where the SECs (11) and the cuts (26) or (43) are added during the branch-and-bound

process. In this approach, since the separation procedures for the SECs can detect the cuts for a

fractional solution, these procedures are called at any node of the branch-and-bound tree. The cuts

(26) and (43), however, are derived from a feasible solution (s)∈ S that is found during the branch-

and-bound process. We refer to the proposed branch-and-cut algorithm applied to the SVRP-D
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and RVRP-D reformulations as the RBC. The details of the RBC algorithm are shown below. Note

that the terms P(U), SP(s̄) and f(s̄) are used to represent their corresponding notation in both

the stochastic and robust models.

Algorithm RBC

1. Set the upper bound ub←∞, lower bound lb← 0, optimality gap gap←∞, the number of

cuts b← 0 and the set U ←∅

2. Solve the problem P(U) by a branch-and-bound and apply the following steps at each node

of the branch-and-bound tree:

(a) Set lb to the best overall lower bound of P (U). Solve the separation algorithms as described

in Section 4.1 and add the detected SECs (11) to P(U)

(b) If gap > ε and a feasible vector, denote by s̄ is found

i. Solve SP(s̄) to obtain f(s̄), generate cuts (26) (for the SVRP) or (43) (for the RVRP)

and add to P(U)

ii. set U = U ∪ (s̄), ub←max{f(s̄), ub}, gap← (ub− lb)/ub and b← b+ 1

(c) If gap ≤ ε, stop. Otherwise, the branching continues and the step 2a is repeated at the

next node being examined.

In addition to the fact that our routing set SV RP is more general as compared to the previous

models presented in the literature so far, let us highlight here the major differences between this

algorithm and the approaches of Kenyon and Morton (2003) for the stochastic routing problem

and of Jaillet et al. (2014) for the robust routing problem, in particular on how the inequalities

(23) and (39) are handled. In the algorithm of Kenyon and Morton (2003), constraints (23), each

with one binary variable, are all added upfront, which makes the problem size depend essentially

on the number of scenarios. In the RBC, constraints (23) and their associated binary variables

are replaced with the cuts (19) which are added iteratively when a feasible vector s̄ is found. For

the robust routing problem, Jaillet et al. (2014) developed an iterative algorithm, called RO. The

overall process is similar to the classical Benders algorithm where the P (U) is solved from scratch

and a single valid inequality (43) generated from an optimal solution is added at each iteration.

Thus, it is possible that the same feasible solutions are examined again in the branch-and-bound

at each iteration as long as the cut associated with each solution is not generated and added. This

process can be very time consuming especially if the model P (U) is difficult to solve. The algorithm

RBC, however, compute and add the cuts (39) in a branch-and-cut fashion. The computational

experiments in Section 5 show that the computing time of the algorithm can be greatly improved.
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5. Computational Results

The problems we consider in this study are defined on a directed graph. We can use a dataset

designed for the asymmetric capacitated vehicle routing problem (ACVRP) for the experiments.

To the best of our knowledge, the ACVRP dataset that is publicly available is that of Fischetti

et al. (1994) which consists of instances with 32 to 71 customers defined on a complete graph.

This dataset, however, is designed for the deterministic problem and it is also too large for our

experiments. Therefore, we adapted the benchmark of Jaillet et al. (2014) which was originally

designed for a robust routing optimization of a single uncapacitated vehicle on an incomplete direct

graph. It consists of instances with a number of nodes |N | varying from 10 to 80 with an increment

of 10 and a number of arcs generated so that |A|= 3|N |. Travel time for each arc ca is in an interval

ca ∈ [ca, ca] with a mean value µa. To solve the SVRP-D and RVRP-D with capacitated vehicles,

we generate customer demands and vehicle capacity for the instances. The details on the dataset

used in this study are provided in Appendix.

We use the following notation to represent the approaches used in this section:

BC The branch-and-cut algorithm where only the SECs (13) are added in a branch-and-cut fashion.

For the stochastic optimization problem, the inequalities (19) are all added upfront (similar

to the approach of Kenyon and Morton (2003)). For the robust optimization problem, the

inequalities (43) are added when an optimal solution of the Pr(U) is found, which is similar

to the algorithm RO of Jaillet et al. (2014). This approach is used to show the performance

of the routing set SV RP proposed in this study;

RBC The branch-and-cut algorithm for the SVRP and RVRP reformulations as described in Sec-

tion 4.2;

KM The approach of Kenyon and Morton (2003) for the stochastic routing problem;

JQS The approach of Jaillet et al. (2014) for the robust routing problem based on the multi-

commodity based model (MCF)

The algorithm were coded in C++ and C# on MonoDevelop 3.0 under Windows 8 using CPLEX

12.5.1. The experiments were performed on a workstation with an Intel 2.67GHz processor and

4GB of RAM. Unless stated otherwise, the maximum CPU time is set to two hours.

5.1. Performance of the Algorithms on the Stochastic Routing Problem

In this section, we perform experiments to evaluate the performance of the BC, RBC and KM on

the stochastic routing problem. To generate instances for the stochastic routing problem, we create

a set of scenarios from the travel times given in the instances. Since the travel time parameters were

described by a range and a mean value, we assume that the travel time distribution is triangular

with the mean value provided in the dataset. Instances with 10≤ |N | ≤ 40 are used.
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In Kenyon and Morton (2003), the approach (KM) is designed for the problem with uncapacitated

vehicles and with a single deadline at the destination node. The deadline violation is only considered

for the vehicle with the latest arrival time at the destination node. The objective function is in fact

to minimize the probability that at least one vehicle arrives at the destination after the deadline.

To solve this problem, the model (22)-(25) can easily modified by replacing the binary variable φiω

with the binary variable φω, i.e., one variable per scenario, and adding another set of constraints as

shown in Appendix B. This problem is referred to as SVRP-MD. We first evaluate the performance

of the algorithms on this case and the results are shown in Table 2. Note that the deadline is set

at two different tightness levels and all nodes are required to be visited in this case. We perform

the experiments on instances with 100 and 1000 scenarios to evaluate the KM, BC and RBC

algorithms. Additionally, as we have mentioned earlier, since the proposed decomposition scheme

allows us to solve the problem with a very large number of scenarios without much additional

computational effort, we also attempt to solve the instances with 20,000 scenarios with the RBC

algorithm. Column ψm shows the average number of deadlines that could be met by all vehicles

under 20,000 scenarios. Column εψm show the average gap of ψm when comparing with the solution

obtained by using 20,000 scenarios, computed as (ψ|Ω|m −ψ20000
m )/ψ20000

m where ψ|Ω|m is the value of

ψm for the instances with |Ω| scenarios, and column εmaxψm
shows the maximum value of εψm for

the instance of the same size. The average CPU time in seconds are shown in Column CPU. The

results are shown in Table 2.

As shown in Table 2, the average computing time of the RBC algorithm is significantly lower

than the BC and KM approaches, especially for the instances with 1000 scenarios. All the instances

were solved to optimality by the RBC in a few seconds. The BC is also more efficient than the

KM which demonstrates the efficiency of the proposed routing set S alone. We further note that

the KM algorithm is also far more sensitive to the number of scenarios than the other two where

10 instances with 1000 scenarios could not be solved to optimality by this algorithm. In terms of

solution quality, the solutions obtained by solving 1000 scenarios are generally much better than

ones obtained by 100 scenarios. The average gap εψm and the average maximum gap εmaxψm
of the

solutions obtained by using 1000 scenarios are 0.01% and 0.22%, respectively, while those of the

solutions obtained by using 100 scenarios are 0.11% and 1.22%, respectively.

We next performed the experiments to evaluate the performance of the algorithms on a more

general case with capacitated vehicles using the model (22)-(25). In this case, to allow some flexi-

bility, vehicles can also leave a few nodes unserved but the total number of visited nodes cannot be

less than the minimum service level (constraint (12)) and all the even-number nodes require a visit.

The number of nodes that is allowed to be unserved is shown in Column σ (i.e., σ= |N |− δ). For

the KM approach, we use the routing set as described in Kenyon and Morton (2003) and simply
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Table 2 Average results on the SVRP-MD instances with uncapacitated vehicles and one deadline

Case |V| |N | |A| |Ω|= 100 |Ω|= 1000 |Ω|= 20000

ψm εψm εmaxψm KM BC RBC ψm εψm εmaxψm KM BC RBC ψm RBC

CPU CPU CPU CPU CPU CPU CPU

Loose 2 10 30 1.807 0.09 0.80 0.4 0.4 0.1 1.809 0.00 0.01 15.6 6.4 0.1 1.809 0.8

20 60 1.812 0.25 1.63 0.6 0.8 0.2 1.815 0.06 0.93 43.8 13.5 0.3 1.816 2.0

30 90 1.735 0.07 0.59 1.1 2.0 0.5 1.737 0.00 0.00 82.9 41.9 0.6 1.737 6.9

40 120 1.764 0.12 1.87 26.3 23.7 13.9 1.765 0.00 0.01 1663.1(3) 383.1 19.2 1.765 56.7

Average 1.779 0.13 1.22 7.1 6.7 3.7 1.781 0.02 0.24 451.3(3) 111.2 5.0 1.782 16.6

3 10 30 2.839 0.07 0.52 0.6 0.5 0.2 2.841 0.00 0.02 21.4 10.5 0.3 2.841 1.7

20 60 2.861 0.13 1.09 1.1 1.0 0.2 2.864 0.03 0.43 93.5 17.9 0.4 2.865 3.0

30 90 2.736 0.04 0.41 3.5 2.8 0.6 2.737 0.00 0.01 150.9 52.0 0.8 2.737 4.8

40 120 2.858 0.03 0.21 27.2 26.2 12.1 2.859 0.00 0.03 814.7(2) 434.9 19.5 2.859 65.4

Average 2.824 0.07 0.56 8.1 7.6 3.3 2.825 0.01 0.12 270.1(2) 128.8 5.2 2.826 18.7

Tight 2 10 30 1.558 0.16 3.08 0.9 0.5 0.1 1.560 0.00 0.00 64.1 11.8 0.1 1.560 0.9

20 60 1.600 0.27 4.50 1.5 1.3 0.3 1.604 0.02 0.19 94.6 26.9 0.4 1.605 2.6

30 90 1.674 0.04 0.59 2.1 3.8 1.8 1.675 0.02 0.13 183.3 63.4 2.2 1.675 11.2

40 120 1.405 0.04 0.32 41.5 39.8 13.7 1.406 0.01 0.13 1644.7(2) 859.5 17.5 1.406 84.1

Average 1.559 0.13 2.12 11.5 11.4 4.0 1.561 0.01 0.11 496.7(2) 240.4 5.1 1.561 24.7

3 10 30 2.639 0.12 1.83 1.1 0.8 0.2 2.640 0.09 0.38 71.4 18.2 0.3 2.641 1.8

20 60 2.713 0.04 0.24 3.3 1.8 0.4 2.714 0.01 0.14 145.8 35.5 0.7 2.714 3.8

30 90 2.676 0.13 0.93 5.1 3.0 0.8 2.679 0.01 0.23 191.9 77.5 1.3 2.679 7.2

40 120 2.676 0.11 0.98 80.7 44.2 39.8 2.678 0.05 0.91 2570.6(5) 721.4 53.4 2.679 151.3

Average 2.676 0.10 1.00 22.6 12.4 10.3 2.678 0.04 0.42 744.9(5) 213.1 13.9 2.679 41.0

(−) the number of instances (out of 20 per instance size) were not solved to optimality

add the vehicle capacity constraints on each vehicle separately (the full model for this case, denote

by SKM , is shown in Appendix B). However, we still consider the case of a single deadline since the

model used in the KM approach cannot handle the problem with multiple deadlines. The results

are shown in Table 3. In this table, column ψ represent the expected number of deadlines satisfied

by a solution under 20,000 scenarios, while columns εψ and εψ show the corresponding average gap

and the maximum gap of ψ, respectively.

The RBC algorithm is still far superior to the other two algorithms especially when the number

of scenarios is large, while the performance of the BC model is better than the KM model by a

significant margin. The KM approach could not solve all the instances with 100 scenarios and the

instances with 20 nodes and 1000 scenarios to optimality. The gap of the solutions obtained by

solving the instances with 100 scenarios are relatively large compared to those obtained by solving

1000 scenarios. In this case, the RBC algorithm could still solve the instances with 20,000 scenarios

to optimality in a few seconds.
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Table 3 Average results on the SVRP-D instances with capacitated vehicles and one deadline

|V| |N | |A| σ |Ω|= 100 |Ω|= 1000 |Ω|= 20000

ψ εψ εmaxψ KM BC RBC ψ εψ εmaxψ KM BC RBC ψ RBC

CPU CPU CPU CPU CPU CPU CPU

2 10 30 1 1.685 0.44 3.23 1.6 0.5 0.1 1.690 0.00 0.00 436.6 18.8 0.1 1.690 0.6

20 60 1 1.820 0.39 3.04 9.4 0.8 0.2 1.827 0.00 0.02 509.8(1) 23.1 0.3 1.827 1.8

30 90 2 1.851 0.12 0.65 73.5 6.2 7.1 1.852 0.01 0.07 1168.8(2) 173.6 7.8 1.853 34.8

40 120 2 1.940 0.26 1.08 550.8(1) 58.0 52.7 1.944 0.05 0.40 1479.1(4) 656.9 80.4 1.945 336.7

Average 1.824 0.30 2.00 158.8(1) 16.3 15.0 1.828 0.02 0.12 898.6(7) 218.1 22.1 1.829 93.5

3 10 30 1 2.771 0.14 1.34 7.1 0.7 0.2 2.774 0.00 0.00 400.8 14.1 0.3 2.774 1.3

20 60 1 2.894 0.16 1.78 7.9 1.2 0.3 2.899 0.00 0.06 431.9(1) 20.3 0.4 2.899 3.2

30 90 2 2.862 0.10 0.64 156.0 6.4 4.8 2.865 0.00 0.03 1208.8(3) 118.0 5.9 2.865 21.7

40 120 2 2.972 0.10 1.06 363.9(1) 34.7 21.9 2.974 0.01 0.05 421.7(1) 496.8 53.6 2.975 208.8

Average 2.875 0.12 1.21 133.7(1) 10.8 6.8 2.878 0.00 0.04 615.8(5) 162.3 15.0 2.878 58.8

(−) the number of instances (out of 20 per instance size) were not solved to optimality

As mentioned in Section 3.1, the reformulation also provides an exact solution framework for

the SPVRP. In Table 4, we show the results of the algorithm RBC applied to solve the case where

travel times are independent and the distribution is normal with the mean µ̂a = (ca + ca)/2 and

standard deviation σa = (ca− µ̂a)/3 . The characteristics of the network are similar to the case in

Table 3 except that two deadlines are imposed at nodes [n/2] and n . Column Obj. Gap shows

the average gap (%) of the objective value of the instances with 20,000 scenarios of the model

(18)-(21) and the objective value of the exact solution. Column ε∗ψ shows the average gap of the

expected number of deadline violations of the solution with |Ω|= 20,000 computed by the exact

cumulative distribution compared to that of the exact solution. Column BCuts show the number of

cuts (26) generated during the branch-and-cut algorithm. Overall, the solutions obtained by using

|Ω|= 20,000 are equivalent to the exact solutions since a large number of scenarios is used. The

computing time to solve the problem with the exact normal distribution is generally lower since

the value of P(tis̄ > τi) can be easily obtained.

5.2. Performance of the Algorithms on the Robust Routing Problem

Since the JQS approach of Jaillet et al. (2014) was designed for the problem with a single unca-

pacitated vehicle, we perform the experiments on this case to evaluate the performance of the BC

and RBC approaches. As in Jaillet et al. (2014), we consider the problem with |NR|= |N | with

two different cases, i.e., two deadlines are imposed at nodes [n/2] and n and deadlines are imposed

at all nodes. For the first case, the algorithms JQS, BC and RBC are tested, while the JQS and

BC approaches are identical for the latter since no SECs are required as we have explained in

Section 2.1. In addition to the instances of Jaillet et al. (2014), we also test the algorithms on larger
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Table 4 Average results on the SVRP-D instances with capacitated vehicles and
two deadline with underlying normal distribution

|V| |N | |A| σ Obj. Gap ε∗ψ |Ω|= 20000 Normal distribution

(%) (%) CPU Node BCuts CPU Node BCuts

2 10 30 1 0.13 0.00 0.7 193 57.1 0.1 190 62.1

20 60 1 0.16 0.00 2.2 392 79.6 0.5 416 89.7

30 90 2 0.00 0.00 24.7 2988 490.7 8.2 3246 492.4

40 120 2 0.59 0.00 354.6 23809 3782.1 188.1 23524 3710.6

Average 0.22 0.00 95.5 6845 1102.4 49.2 6844 1088.7

3 10 30 1 0.13 0.00 1.3 584 67.3 0.3 542 68.1

20 60 1 0.23 0.00 2.9 496 62.2 0.6 521 74.6

30 90 2 0.03 0.00 25.5 2846 284.5 7.7 2814 316.3

40 120 2 0.91 0.00 364.7 24906 2396.0 207.7 24950 2334.0

Average 0.33 0.00 98.6 7208 702.5 54.1 7207 698.2

instances with |N |= 70 and 80 for the case with two deadlines. The results are shown in Tables 5

and 6. Column BCuts show the number of cuts (43) generated during the solution process. For the

algorithms JQS and BC, which follow from the classical Benders algorithm, the number of cuts

(43) also equals to the number of iterations since one cut is added at each iteration.

Table 5 Average results on the robust routing instances with a single uncapacitated vehicle and
two deadlines

|N | |A| JQS BC RBC

CPU Nodes BCuts CPU Nodes BCuts CPU Nodes BCuts

10 30 0.1 24 3.1 0.1 21 3.1 0.1 10 5.8

20 60 1.1 139 4.2 0.3 54 4.2 0.1 29 8.0

30 90 18.7 861 7.6 3.1 331 7.6 0.4 154 12.9

40 120 138.8 2776 11.2 27.2 25 9.4 1.3 478 23.3

50 150 3272.5(4) 18555 13.2 468.0(1) 12655 16.0 33.2 5742 48.0

60 180 4315.9(10) 19965 10.4 1774.6(3) 31616 22.5 159.4 15953 61.2

70 210 5485.9(14) 9457 7.8 2363.5(5) 56876 23.9 577.4(1) 29730 104.4

80 240 6764.1(18) 6291 2.5 3582.3(8) 91773 16.9 1060.3(1) 47239 148.9

Average 2499.6(46) 7258 7.5 1027.4(17) 24169 12.9 229.0(2) 12417 51.6

(−) the number of instances (out of 20 per instance size) were not solved to optimality

For both cases, the performance of the algorithm RBC is far superior to the other algorithms.

For the case of two deadlines, the algorithms BC and RBC also outperformed the algorithm JQS.

Only two instances and 17 instances (out of 160) were not solved by the RBC and BC algorithms,

respective, while the algorithm JQS could not solve 46 instances. For the case of deadlines imposed

at all nodes, the RBC could not solve only four instances (out of 120) while the JQS could not
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Table 6 Average results on the robust routing instances with a
single uncapacitated vehicle and deadlines at all nodes

|N | |A| JQS RBC

CPU Nodes BCuts CPU Nodes BCuts

10 30 0.3 60 5.4 0.1 15 7.6

20 60 7.9 807 11.8 1.7 70 17.7

30 90 57.4 2389 17.0 9.2 132 26.2

40 120 1325.3(2) 12701 36.3 68.6 321 54.3

50 150 4882.9(13) 40786 29.8 1297.7 3128 191.6

60 180 4863.6(13) 23233 19.2 2263.3(4) 2401 198.4

Average 1856.2(28) 19.9 606.8(4) 82.6

(−) the number of instances (out of 20 per instance size)

were not solved to optimality

solve 28 instances to optimality. One can also observe that a number of cuts (43) were generated

by the algorithm RBC is much higher compared to the other algorithms.

5.3. Results on the Stochastic and Robust Vehicle Routing with Deadlines

We now provide a comparison of the stochastic and robust models on a general problem with

multiple capacitated vehicles. hlAlthough the stochastic and robust models are developed with

different assumptions and objectives, we would like to evaluate the quality of the solution on

different aspects produced by the two frameworks. This set of experiments is by no mean to suppoer

a claim regarding the superiority of the performance of one over the other. In the first set of

experiments, we examine the solutions of the two solution schemes under a known distribution.

Since the instances are described by a range and a mean value, the distribution is assumed to

be triangular. For the stochastic approach, we solve the problem with 1,000 and 20,000 scenarios,

which are represented by STOC and STOC-L, respectively, while the robust approach is represented

by RBST. These solutions are evaluated using the generated 20,000 scenarios, which is solved to

optimality by the STOC-L. The tests were performed on instances with 10 to 60 nodes for the case

of two deadlines and with 10 to 40 nodes for the case of |N | deadlines.

Since some instances were infeasible for the RBST due to the uncertainty set and some instances

were not solved to optimality by all approaches, we only report the results on the instances that

were solved to optimality by all approaches in order to evaluate the quality of the solutions in these

two different solution schemes. In Tables 7-10, several performance measurements for the solutions

obtained by each approach were computed on the set of generated scenarios as follows:

AvgDR the average value of the travel time per deadline ratio (t̃i/τi), computed by

AvgDR=
1

|ND| |Ω|
∑
i∈ND

∑
ω∈Ω

(tiω/τi) ;
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VarDR the variance of the travel time per deadline ratio;

MaxT the average maximum travel time among the dispatched vehicles as the ratio of the value

obtained by the STOC-L;

%VSS the value of stochastic solution (Birge 1982) as a percentage of the solution obtained by the

deterministic (expected value) problem;

N.Violations the average number of scenarios with a specific number of deadline violations.

To evaluate the robustness of the solutions, we perform the experiments using two different types

of distributions with the same mean and interval. In this case, the solutions obtained by STOC,

STOC-L and RBST are evaluated with 20,000 scenarios under two circumstances, one with the

assumed distribution where the STOC-L is basically seen as an optimal one and the other distribu-

tion which is different from the assumed distribution. Since the parameters in the data set are not

symmetric and thus it is difficult to generate different distributions, we assume that the mean value

of the travel time is at the middle of the range. In these experiments, the stochastic approach is

solved using the scenarios generated by assuming a triangular and a uniform distribution, respec-

tively, and the results of the three approaches are evaluated by 20,000 scenarios generated by both

the triangular and uniform distributions. The results for the cases of two deadlines and deadlines

imposed at all nodes are are shown in Tables 7-8 and 9-10, respectively.

Under the same training and evaluation distributions, for the case of two deadlines, the perfor-

mance of the STOC-L and the RBST are generally comparable in terms of the expected number

of deadline violations but the STOC-L provides slightly lower numbers. The STOC is inferior to

the other two in terms of solution quality. For the case where deadlines are imposed at all nodes,

although the average expected number of deadline violations for the RBST is the worst in general,

the RBST could still find comparable solutions to the STOC-L in many instances based on the

number of better solutions. When considering other performance measurements, the RBST has

slightly better results overall, such as when considering the travel time per deadline ratio, variance

of the travel time per deadline ratio and the maximum distance.

When the evaluating distribution is different from the training distribution, the RBST outper-

forms the other two in all cases by a significant margin in terms of the expected number of deadline

violations and other performance matrices. This clearly demonstrates the benefits of the RBST

approach which is much less sensitive to the distributional uncertainty compared to the stochastic

approach. We further note that the computing time of both the STOC and STOC-L generally

increased when solving the instances using a uniform distribution while the computing time of the

robust optimization remains stable since the parameters describing the uncertainty do not change.

We also remark that both the stochastic and robust solutions provide substantial improvement

in terms of solution quality as compared to the solutions obtained by the deterministic (expected
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Table 7 Average results on the instances with 10≤ |N| ≤ 30 and two deadlines for the stochastic and robust vehicle routing
problems under different distributions

Distribution |V| Solved Approach Better ψ CPU AvgDR VarDR MaxT %VSS N.Violations

Training Evaluation 1 2 ≥3

Triangular Triangular 2 48/60 STOC 42 0.02980 0.3 0.600 0.032 0.992 76.97% 593.2 0.9 0.0

STOC-L 48 0.02971 2.1 0.597 0.033 1.000 77.04% 592.6 0.9 0.0

RBST 48 0.02971 0.7 0.568 0.029 0.915 77.04% 592.5 0.9 0.0

3 48/60 STOC 41 0.01670 0.3 0.527 0.039 1.005 85.31% 332.5 0.8 0.0

STOC-L 48 0.01660 1.7 0.538 0.034 1.000 85.40% 330.5 0.8 0.0

RBST 48 0.01660 0.8 0.525 0.025 0.920 85.40% 330.5 0.8 0.0

Uniform 2 48/60 STOC 33 0.04688 0.3 0.600 0.034 0.992 74.08% 914.9 11.4 0.0

STOC-L 36 0.04613 2.1 0.597 0.036 1.000 74.50% 900.0 11.4 0.0

RBST 48 0.04580 0.7 0.568 0.032 0.915 74.68% 895.9 10.1 0.0

3 48/60 STOC 32 0.03289 0.3 0.527 0.041 1.005 79.06% 635.8 11.0 0.0

STOC-L 35 0.03117 1.7 0.538 0.036 1.000 80.15% 601.5 10.9 0.0

RBST 48 0.03097 0.8 0.525 0.027 0.919 80.28% 597.8 10.8 0.0

Uniform Triangular 2 48/60 STOC 48 0.02964 0.5 0.588 0.033 1.023 73.93% 591.4 0.7 0.0

STOC-L 48 0.02964 2.4 0.574 0.033 1.000 73.93% 591.4 0.7 0.0

RBST 48 0.02964 0.7 0.568 0.029 0.952 73.93% 591.4 0.7 0.0

3 48/60 STOC 48 0.01816 0.4 0.545 0.032 1.040 84.03% 361.1 1.1 0.0

STOC-L 48 0.01816 4.0 0.543 0.029 1.000 84.03% 361.1 1.1 0.0

RBST 48 0.01816 0.8 0.538 0.020 0.964 84.03% 361.1 1.1 0.0

Uniform 2 48/60 STOC 41 0.04653 0.5 0.588 0.035 1.023 70.37% 910.5 10.0 0.0

STOC-L 48 0.04645 2.4 0.574 0.035 1.000 70.42% 909.1 10.0 0.0

RBST 48 0.04645 0.7 0.568 0.032 0.952 70.42% 909.1 10.0 0.0

3 48/60 STOC 38 0.03259 0.4 0.545 0.035 1.040 79.25% 632.5 9.6 0.0

STOC-L 48 0.03249 4.0 0.543 0.031 1.000 79.31% 630.5 9.6 0.0

RBST 48 0.03249 0.8 0.538 0.022 0.964 79.31% 630.5 9.6 0.0

value) problem. The values of %VSS are generally greater than 70% and 95% for the cases of two

and |N | deadlines, respectively.

5.4. Results on the Stochastic and Robust Vehicle Routing with Soft Time
Windows

As described in Section 3.3.2, the approaches in the paper can be extended to handle the SVRP

and RVRP with soft time windows. We performed the experiments to compare the performance

and solution quality of the two solution frameworks for this case. We use the same dataset as in the

previous section and add the start of time window to each node with a deadline. The parameters

used for the dataset are described in Appendix.

Table 11 shows the results obtained by the stochastic and robust approaches. Columns Early,

Late show the expected total number of violations in the start and the end of time windows,
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Table 8 Average results on the instances with 40≤ |N| ≤ 60 and two deadlines for the stochastic and robust vehicle routing
problems under different distributions

Distribution |V| Solved Approach Better ψ CPU AvgDR VarDR MaxT %VSS N.Violations

Training Evaluation 1 2 ≥3

Triangular Triangular 2 46/60 STOC 37 0.03503 173.2 0.680 0.040 1.020 76.60% 566.6 67.0 0.0

STOC-L 46 0.03496 272.5 0.684 0.037 1.000 76.64% 565.2 67.0 0.0

RBST 44 0.03498 124.9 0.634 0.036 0.911 76.63% 583.9 66.8 0.0

3 49/60 STOC 36 0.02041 254.4 0.627 0.051 1.021 87.91% 323.9 42.2 0.0

STOC-L 49 0.02022 343.0 0.621 0.046 1.000 88.02% 320.7 41.9 0.0

RBST 48 0.02025 83.9 0.596 0.029 0.896 88.01% 321.2 41.9 0.0

Uniform 2 46/60 STOC 22 0.05337 173.2 0.680 0.041 1.020 73.78% 837.7 114.9 0.1

STOC-L 27 0.05205 272.5 0.684 0.038 1.000 74.42% 811.0 115.4 0.1

RBST 43 0.05160 124.9 0.634 0.037 0.911 74.64% 829.3 110.5 0.0

3 49/60 STOC 21 0.03000 254.4 0.627 0.052 1.021 85.77% 475.8 63.0 0.0

STOC-L 34 0.02733 343.0 0.621 0.048 1.000 87.03% 429.1 59.1 0.0

RBST 48 0.02697 83.9 0.596 0.030 0.896 87.20% 422.6 58.4 0.0

Uniform Triangular 2 44/60 STOC 40 0.03904 210.8 0.684 0.036 1.032 78.27% 774.5 3.1 0.0

STOC-L 42 0.04034 286.5 0.650 0.041 1.000 77.55% 800.3 3.3 0.0

RBST 42 0.03763 63.7 0.635 0.033 0.928 79.05% 610.9 70.9 0.0

3 48/60 STOC 45 0.02204 134.6 0.623 0.041 1.042 86.67% 439.0 1.0 0.0

STOC-L 47 0.02204 137.4 0.596 0.043 1.000 86.67% 438.9 1.0 0.0

RBST 47 0.02078 81.3 0.592 0.029 0.933 87.43% 329.9 42.8 0.0

Uniform 2 44/60 STOC 20 0.05119 210.8 0.684 0.037 1.032 77.10% 961.2 29.4 0.2

STOC-L 44 0.05068 286.5 0.650 0.043 1.000 77.32% 984.7 30.5 0.2

RBST 39 0.05558 63.7 0.635 0.034 0.928 75.13% 877.7 117.0 0.0

3 48/60 STOC 30 0.02740 134.6 0.623 0.042 1.042 86.72% 502.5 9.4 0.0

STOC-L 48 0.02588 137.4 0.596 0.044 1.000 87.45% 498.8 9.4 0.0

RBST 47 0.02601 81.3 0.592 0.030 0.933 87.39% 433.3 56.8 0.0

respectively, while column Total shows the expected total number of violations. Columns AvgER

and VarER are calculated as the AvgDR and VarDR, respectively, but the deadline value is replaced

by the start of the time window. Therefore, AvgER ≥ 1 indicates that the average arrival time at

the node is not less than the start of the time window.

As opposed to the problem with deadlines, the robust approach applied to the problem with time

windows is not very competitive as compared to the stochastic solutions. One possible explanation

is that the worst-case distributions of the start and the end of time windows are taken into account

separately in this robust framework and thus the solution can be overly conservative when evaluated

against known and assumed distributions. However, the robust approach can still produce a good

solution compared to the deterministic approach and the robust framework can still be very useful

when the information of the travel time distributions is not available. Additionally, the presence of
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Table 9 Average results on the instances with 10≤ |N| ≤ 20 and deadlines imposed at all nodes for the stochastic and robust vehicle
routing problems under different distributions

Distribution |V| Solved Approach Better ψ CPU AvgDR VarDR MaxT %VSS N.Violations

Training Evaluation 1 2 ≥3

Triangular Triangular 2 37/40 STOC 34 0.02456 53.0 0.370 0.057 1.011 97.87% 505.8 103.9 24.0

STOC-L 37 0.02454 127.1 0.372 0.057 1.000 97.87% 503.9 103.7 23.9

RBST 36 0.02550 31.6 0.364 0.053 0.948 97.79% 471.8 126.4 23.8

3 37/40 STOC 32 0.01538 20.5 0.334 0.053 1.001 98.67% 476.9 76.8 10.5

STOC-L 37 0.01535 67.8 0.331 0.052 1.000 98.67% 476.0 76.5 10.5

RBST 36 0.01648 19.6 0.327 0.050 0.984 98.57% 443.9 100.4 10.4

Uniform 2 37/40 STOC 31 0.04955 53.0 0.370 0.058 1.010 95.78% 667.5 173.7 94.3

STOC-L 31 0.04927 127.1 0.372 0.058 1.000 95.80% 640.8 170.8 93.2

RBST 36 0.04968 31.6 0.364 0.054 0.949 95.77% 594.8 208.5 89.8

3 37/40 STOC 31 0.03032 20.5 0.334 0.054 1.001 97.42% 584.0 143.1 46.5

STOC-L 33 0.02958 67.8 0.331 0.053 1.000 97.48% 569.6 138.8 46.6

RBST 36 0.03122 19.6 0.327 0.051 0.982 97.34% 527.5 176.9 42.2

Uniform Triangular 2 37/40 STOC 37 0.02400 60.5 0.367 0.055 1.014 97.92% 1325.1 570.4 77.5

STOC-L 37 0.02400 161.7 0.358 0.055 1.000 97.92% 1325.1 570.4 77.5

RBST 36 0.02504 31.8 0.364 0.053 0.969 97.83% 979.8 311.3 130.7

3 37/40 STOC 37 0.01529 23.2 0.328 0.051 0.999 98.68% 537.4 67.7 3.2

STOC-L 37 0.01529 99.9 0.328 0.051 1.000 98.68% 537.4 67.7 3.2

RBST 36 0.01635 19.6 0.327 0.050 0.983 98.58% 441.0 101.9 10.6

Uniform 2 37/40 STOC 34 0.04929 60.5 0.367 0.057 1.015 95.80% 676.6 155.7 71.9

STOC-L 37 0.04927 161.7 0.358 0.056 1.000 95.80% 676.0 155.7 71.9

RBST 36 0.05112 31.8 0.364 0.054 0.971 95.65% 593.7 209.9 89.7

3 37/40 STOC 33 0.02978 23.2 0.328 0.053 0.998 97.46% 618.3 124.3 28.1

STOC-L 37 0.02974 99.9 0.328 0.052 1.000 97.47% 617.5 124.3 28.1

RBST 36 0.03144 19.6 0.327 0.051 0.983 97.32% 531.6 176.1 43.6

constraints from Slater’s conditions (57) and (58) also ensures that the extected arrival times must

be within time windows. We further note that for the case where the early start constraints are

imposed (which can be done by setting the deadlines to a large value), the computational results

are similar to the case where only deadlines are imposed.

6. Conclusion

We examine the computational aspect of the stochastic and robust vehicle routing problem with

deadlines under travel time uncertainty. The first approach is applied to the case when the proba-

bility distributions of the travel times are known, while the second approach is used to deal with

the case where the exact distributions are not known. We introduce a general routing set, formu-

lations and propose solutions approaches based on the branch-and-cut and Benders decomposition

frameworks to solve these problems. We also discuss the extensions of the frameworks to the cases
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Table 10 Average results on the instances with 30≤ |N| ≤ 40 and deadlines imposed at all nodes for the stochastic and robust
vehicle routing problems under different distributions

Distribution |V| Solved Approach Better ψ CPU AvgDR VarDR MaxT %VSS N.Violations

Training Evaluation 1 2 ≥3

Triangular Triangular 2 33/40 STOC 24 0.05427 223.5 0.394 0.064 1.022 97.51% 750.0 138.1 19.5

STOC-L 33 0.05385 658.9 0.392 0.063 1.000 97.53% 601.7 206.4 20.7

RBST 32 0.05397 236.1 0.372 0.055 0.921 97.52% 746.1 137.1 19.5

3 35/40 STOC 27 0.03928 55.7 0.349 0.054 0.990 98.43% 497.1 119.6 16.3

STOC-L 35 0.03919 154.6 0.349 0.054 1.000 98.44% 496.0 119.2 16.3

RBST 35 0.03919 221.0 0.333 0.048 0.905 98.44% 496.0 119.2 16.3

Uniform 2 33/40 STOC 20 0.08373 223.5 0.394 0.065 1.021 96.20% 794.3 286.9 97.1

STOC-L 20 0.08190 658.9 0.392 0.064 1.000 96.28% 622.4 349.0 101.9

RBST 33 0.07855 236.1 0.372 0.056 0.923 96.43% 738.8 267.0 94.4

3 35/40 STOC 24 0.05648 55.7 0.349 0.055 0.989 97.77% 474.6 222.2 68.4

STOC-L 27 0.05460 154.6 0.349 0.055 1.000 97.84% 450.7 215.1 68.5

RBST 35 0.05432 221.0 0.333 0.049 0.905 97.85% 447.5 214.2 68.3

Uniform Triangular 2 32/40 STOC 30 0.05937 287.1 0.394 0.062 1.025 96.96% 873.3 124.1 21.7

STOC-L 30 0.05937 804.3 0.387 0.059 1.000 96.96% 873.3 124.1 21.7

RBST 32 0.05579 220.4 0.372 0.055 0.935 97.15% 765.5 143.1 20.9

3 35/40 STOC 34 0.04092 160.3 0.343 0.053 1.007 97.99% 596.2 104.1 4.7

STOC-L 34 0.04092 363.2 0.341 0.051 1.000 97.99% 596.2 104.1 4.7

RBST 35 0.03935 219.8 0.333 0.048 0.928 98.07% 492.5 122.1 16.7

Uniform 2 32/40 STOC 20 0.07610 287.1 0.394 0.063 1.025 96.16% 831.1 251.4 59.0

STOC-L 32 0.07599 804.3 0.388 0.060 1.000 96.17% 829.2 251.3 59.0

RBST 30 0.08089 220.4 0.372 0.056 0.937 95.92% 757.7 277.9 95.9

3 32/40 STOC 26 0.05133 160.3 0.343 0.053 1.007 97.52% 522.9 191.6 39.9

STOC-L 35 0.05117 363.2 0.341 0.052 1.000 97.53% 520.3 191.3 39.9

RBST 34 0.05465 219.8 0.333 0.049 0.929 97.36% 451.1 212.5 70.1

where service times and soft time windows are incorporated. In our computational experiments, the

proposed models and algorithms generally outperformed the approaches presented in the literature.

Additionally, the proposed solution framework for the stochastic problem can handle instances

with a large number of scenarios. We further examine the two formulation schemes in terms of

solution quality based on several performance measurements. The results show that the solutions

produced by the stochastic model under a large number of scenarios are slightly better than those

obtained by the robust optimization framework when the exact probability distribution is known,

while the solutions obtained by the robust approach is superior to the other when the distribution

is unknown.
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Table 11 Average results on the instances with 10≤ |N| ≤ 40 and two soft time windows for the stochastic and robust vehicle routing problems
under different distributions

Distribution |V| Solved Approach Better Early Late Total CPU AvgER VarER AvgDR VarDR MaxT %VSS

Training Evaluation

Triangular Triangular 2 65/80 STOC 51 0.02872 0.02796 0.05667 27.7 0.680 0.020 2.149 8.186 1.009 95.81%

STOC-L 65 0.03200 0.02423 0.05623 60.7 0.679 0.021 2.077 7.950 1.000 95.84%

RBST 39 0.03541 0.04884 0.08425 15.2 0.665 0.023 1.844 2.471 0.985 93.77%

3 65/80 STOC 46 0.02942 0.02388 0.05330 48.6 0.510 0.098 1.363 3.051 1.000 96.72%

STOC-L 65 0.02927 0.02368 0.05294 96.6 0.514 0.098 1.389 3.211 1.000 96.74%

RBST 38 0.03818 0.04859 0.08677 16.2 0.503 0.099 1.355 2.926 1.010 94.66%

Uniform 2 65/80 STOC 43 0.05337 0.05179 0.10516 27.7 0.680 0.023 2.149 8.290 1.009 92.30%

STOC-L 49 0.05674 0.04764 0.10438 60.7 0.679 0.023 2.077 8.057 1.000 92.35%

RBST 39 0.05998 0.08361 0.14360 15.2 0.665 0.026 1.844 2.552 0.985 89.48%

3 65/80 STOC 40 0.05153 0.04784 0.09938 48.6 0.511 0.101 1.364 3.124 1.005 93.95%

STOC-L 49 0.04956 0.04694 0.09650 96.6 0.514 0.099 1.387 3.274 1.000 94.13%

RBST 34 0.06281 0.08509 0.14789 16.2 0.503 0.101 1.355 2.995 1.013 91.00%

Discrete 2 65/80 STOC 36 0.15079 0.15920 0.30999 27.7 0.672 0.038 1.993 5.923 1.005

STOC-L 42 0.15738 0.14123 0.29861 60.7 0.675 0.037 1.938 4.363 1.000

RBST 44 0.13138 0.16745 0.29883 15.2 0.665 0.036 1.887 4.150 0.998

3 65/80 STOC 37 0.13607 0.15579 0.29187 48.6 0.518 0.107 1.513 6.729 1.000

STOC-L 45 0.13707 0.14750 0.28458 96.6 0.520 0.108 1.566 8.675 1.000

RBST 38 0.12600 0.16578 0.29177 16.2 0.504 0.101 1.350 2.982 0.990

Uniform Triangular 2 65/80 STOC 62 0.02835 0.02806 0.05640 35.2 0.678 0.021 2.056 7.070 1.017 95.83%

STOC-L 63 0.02832 0.02805 0.05637 76.1 0.668 0.022 1.947 4.248 1.000 95.83%

RBST 41 0.03536 0.04904 0.08440 15.1 0.665 0.023 1.844 2.470 0.992 93.76%

3 65/80 STOC 61 0.02571 0.02780 0.05351 65.0 0.509 0.097 1.407 4.198 0.995 96.71%

STOC-L 62 0.02571 0.02773 0.05344 133.1 0.511 0.097 1.433 4.320 1.000 96.71%

RBST 39 0.03794 0.04850 0.08644 16.2 0.503 0.099 1.355 2.927 1.013 94.68%

Uniform 2 65/80 STOC 50 0.05145 0.05066 0.10211 35.2 0.678 0.024 2.057 7.169 1.018 92.52%

STOC-L 65 0.05105 0.05079 0.10184 76.1 0.668 0.025 1.947 4.347 1.000 92.54%

RBST 33 0.06004 0.08314 0.14318 15.1 0.665 0.026 1.844 2.553 0.992 89.51%

3 65/80 STOC 47 0.04404 0.05024 0.09428 65.0 0.509 0.099 1.407 4.258 0.995 94.26%

STOC-L 65 0.04398 0.04998 0.09396 133.1 0.511 0.099 1.433 4.387 1.000 94.28%

RBST 27 0.06284 0.08549 0.14833 16.2 0.503 0.101 1.355 2.996 1.013 90.97%
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Appendices

This is the online supplement of the paper: Models and Solutions Algorithms of the Stochastic and Robust

Vehicle Routing with Deadlines. Section A provides the details of dataset used in our experiments. Section B

and C presents the models used in their papers and also how they are adapted to solve the problems in our

study. Section D provides the details of subgradients computation. We make the dataset and the detailed

results available on the website: https://sites.google.com/site/YossiriAdulyasak/publications.

Appendix A: Details of the Dataset

The details of the dataset of Jaillet et al. (2014) and the parameters used for generating instances with

multiple capacitated vehicles are as follows. Note that [x] denotes the nearest integer to x.

1. Instance size. The dataset consists of the instances of the size |N |= 10 to 60 with an increment of

10 for both the cases of two deadlines and |N | deadlines. To test our algorithm, we also obtain the

instances of the size |N |= 70,80 for the case of two deadlines from the authors directly. The number

of arcs |A|= 3|N | for all instances;

2. Travel time and deadline: The arc travel time is described by a minimum, maximum and mean

value, i.e., c̃a ∈ [ca, ca] and EP(c̃a) = µ. Deadlines are imposed at nodes [n/2] and n for the case of two

deadlines. The values of the deadlines are provided in the dataset on the website;

3. Vehicle. Since the case of a single uncapacitated vehicle is considered in the original dataset, we

create a dataset of customer demands for each instance size and the vehicle capacity is computed as

Q= [0.75D], where D is the sum of customer demands which are generated for each instance size.

Appendix B: Model of Kenyon and Morton (2003) (KM)

Denote by xak equal to one if arc a is traversed by vehicle k and zik equal to one if node i is visited by

vehicle k. Let also A(H) denotes the set of arcs where A(H) = { (i, j)∈A(H)| i, j ∈H}. The model for the

SVRP-MD presented in Kenyon and Morton (2003) is as follows:

min
1

|Ω|
∑
ω∈Ω

φω (70)

s.t.
∑
a∈A

caωxak ≤ τi +Miωφω∀k ∈K,∀ω ∈Ω (71)

φω ∈ {0,1} ∀ω ∈Ω (72)

(x)∈ SKM . (73)

Note that for the case of minimizing the expected number of deadline violations or the sum of probability of

deadline violations can be formulated using the variable φiω as in (22)-(25) which is relatively straightforward

and the details are omitted here. The routing set SKM is defined as follows:

SKM =
{
x∈ {0,1}|A|×|K|,z ∈Z|N|×|K|+

∣∣∣ (74)− (78)
}
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where ∑
a∈δ+(i)

xak =
∑

a∈δ−(i)

xak ∀i∈N ,∀k ∈K (74)

∑
k∈K

zik = 1 ∀i∈NR (75)

zik ≤
∑

a∈δ+(i)

xak ∀i∈N\{1},∀k ∈K (76)

z1k ≤
∑

a∈δ−(1)

xak ∀k ∈K (77)

∑
a∈δ+(H)

xak ≥
1

|A(H)|
∑

a∈A(H)

xak ∀H⊆N \{1} : |H| ≥ 2,∀j ∈H,∀k ∈K. (78)

For the case of capacitated vehicles, the following constraints are also added to the set SKM :∑
i∈N

dizik ≤Q ∀k ∈K. (79)

To solve the problem as considered in Kenyon and Morton (2003) where the deadline violation of the

vehicle with longest travel time is taken into account, a simple modification can be made to the model (18)-

(21). First, all variables ρi,∀i∈ND are replaced with a single variable ρ0 and, second, constraints associated

with the probability of deadline violation of the longest route, denote by β0
p =

∑
ω∈Ω maxi∈ND {φiω}, are

added. The reformulation for this problem can be written as follows:

min ρ0 (80)

s.t.
∑
a∈Aip

βip(sia− 1) +βip ≤ ρ0 ∀i∈ND,∀ (p)∈ S (81)

∑
i∈ND

∑
a∈Aip

β0
p(sia− 1) +β0

p ≤ ρ0 ∀ (p)∈ S (82)

ρ0 ≥ 0 (83)

(s)∈ S. (84)

Appendix C: Model of Jaillet et al. (2014) (JQS)

The set S of the formulation MCF of Jaillet et al. (2014), denote bySMCF , is as follows:

SMCF = {s |(1)− (5)}

where ∑
a∈δ−(u)

sia−
∑

a∈δ+(u)

sia = 0 ∀i∈N \{1}, u∈N \{1, n, i} (85)

∑
a∈δ+(1)

sia =
∑

a∈δ−(i)

xa ∀i∈N \{1} (86)

∑
a∈δ−(i)

sia−
∑

a∈δ+(i)

sia =
∑

a∈δ−(i)

xa ∀i∈N \{1} (87)

0≤ sia ≤ xa ∀i∈N \{1},∀a∈A (88)
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∑
a∈δ+(i)

xa = 1 ∀i∈NR \ {n} (89)

∑
a∈δ−(i)

xa = 1 ∀i∈NR \ {1} (90)

∑
a∈δ+(i)

xa ≤ 1 ∀i∈N \NR (91)

∑
a∈δ−(i)

xa−
∑

a∈δ+(i)

xa ≤ 0 ∀i∈N \NR (92)

xa ∈ {0,1} ∀a∈A (93)

Appendix D: Subgradient Parameters Computation

Following from the results in Jaillet et al. (2014), we present the details of the subgradient computation

for the case where F = {P|EP(c̃) = µ,P(c̃∈ [c, c]) = 1] for both the the lateness and earliness indices in this

section. Note that for the case that only deadlines are imposed, one can simply treat σi = 0,∀i ∈ ND and

thus ηi = 0,∀i∈ND.

Using the Edmonton-Madansky bound (Madansky 1959), one obtains

Cαi,F(c̃as
i
a) = sup

P∈F
αi lnEP

(
exp

(
c̃as

i
a

αi

))
=

αi ln
(

(ca−µa) exp

(
cas

i
a

αi

)
+(µa−ca) exp

(
cas

i
a

αi

)
ca−ca

)
if αi > 0,

ca, if αi = 0

and

Cηi,F(−c̃asia) = sup
P∈F

ηi lnEP

(
exp

(
− c̃as

i
a

ηi

))
=

ηi ln
(

(ca−µa) exp

(
− cas

i
a

ηi

)
+(µa−ca) exp

(
− cas

i
a

ηi

)
ca−ca

)
if ηi > 0,

−ca, if ηi = 0.

.

Note that αs
i and ηsi are the solution values of αi and ηi associated with a given solution s which are

obtained after solving the subproblems. The subgradient df
sia

(s) and dg
sia

(s) for a solution s∈ S for the case

where ϕ(α,η) =
∑

i∈ND
(αi + ηi) can be computed as (Jaillet et al. 2014)

df
sia

(s) =

−
∂h(αi,s

i)

∂sia
∂h(αi,s

i)
∂αi

∀i∈ND|αs
i > 0

0 otherwise

and dg
sia

(s) =

−
∂e(ηi,s

i)

∂sia
∂e(ηi,s

i)
∂ηi

∀i∈ND|ηsi > 0

0 otherwise.

Consequently, the gradient of function h(αi,s
i) with respect to si can be computed as

∂h(αi,s
i)

∂sia
=
ca(ca−µa) exp

(
cas

i
a

αi

)
+ ca(µa− ca) exp

(
cas

i
a

αi

)
(ca−µa) exp

(
cas

i
a

αi

)
+ (µa− ca) exp

(
casia
αi

) ,

and the gradient of function h(αi,s
i) with respect to αi can be computed as

∂h(αi,s
i)

∂αi
=
∑
a∈A

ln

 (ca−µa) exp
(
cas

i
a

αi

)
+ (µa− ca) exp

(
cas

i
a

αi

)
ca− ca


−
∑
a∈A

(
sia
αi

)ca(ca−µa) exp
(
cas

i
a

αi

)
+ ca(µa− ca) exp

(
cas

i
a

αi

)
(ca−µa) exp

(
cas

i
a

αi

)
+ (µa− ca) exp

(
casia
αi

)
 .
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Similarly, the gradient of function e(ηi,s
i) with respect to si and with respect to ηi can be computed as

∂e(ηi,s
i)

∂sia
=

(−ca)(ca−µ) exp
(
− cas

i
a

ηi

)
+ (−ca)(µ− ca) exp

(
− cas

i
a

ηi

)
(ca−µa) exp

(
− cas

i
a

ηi

)
+ (µ− ca) exp

(
− casia

ηi

) ,

and

∂e(αi,s
i)

∂αi
=
∑
a∈A

ln

 (ca−µ) exp
(
− cas

i
a

αi

)
+ (µ− ca) exp

(
− cas

i
a

αi

)
ca− ca


+
∑
a∈A

(
sia
ηi

) (−ca)(ca−µ) exp
(
− cas

i
a

ηi

)
+ (−ca)(µ− ca) exp

(
− cas

i
a

ηi

)
(ca−µa) exp

(
− cas

i
a

ηi

)
+ (µ− ca) exp

(
− casia

ηi

)
 .
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Applegate, D., R. Bixby, V. Chvátal, W. Cook. 2011. Concorde TSP solver

Http://www.tsp.gatech.edu/concorde.html.

Baldacci, R., N. Christofides, A. Mingozzi. 2008. An exact algorithm for the vehicle routing problem based

on the set partitioning formulation with additional cuts. Math. Programming 115(2) 351–385.

Benders, J. F. 1962. Partitioning procedures for solving mixed-variables programming problems. Numerische

Mathematik 4 238–252.

Bertsimas, D. J., D. Brown, C. Caramanis. 2011. Theory and applications of robust optimization. SIAM

Review 53(3) 464–501.

Bertsimas, D. J., M. Sim. 2004. The price of robustness. Oper. Res. 52(1) 35–53.

Birge, J. R. 1982. The value of the stochastic solution in stochastic linear programs with fixed recourse.

Math. Programming 24(1) 314–325.

Birge, J. R., F. V. Louveaux. 2011. Two-stage recourse problems. Introduction to Stochastic Programming .

Springer Series in Operations Research and Financial Engineering, Springer New York, 181–263.

Brown, D. B., M. Sim. 2009. Satisficing measures for analysis of risky positions. Management Sci. 55(1)

71–84.

Campbell, A. M., B. W. Thomas. 2008. Probabilistic traveling salesman problem with deadlines. Trans-

portation Sci. 42(1) 1–21.

Campbell, A. M., B. W. Thomas. 2009. Runtime reduction techniques for the probabilistic traveling salesman

problem with deadlines. Comput. Oper. Res. 36(4) 1231–1248.



Adulyasak and Jaillet: Models and Algorithms for the SVRP-D and the RVRP-D
36 Article accepted in Transportation Science; manuscript no. (Please, provide the mansucript number!)

Carlsson, J. G., E. Delage. 2013. Robust partitioning for stochastic multivehicle routing. Oper. Res. 61(3)

727–744.

Fischetti, M., P. Toth, D. Vigo. 1994. A branch-and-bound algorithm for the capacitated vehicle routing

problem on directed graphs. Oper. Res. 42(5) 846–859.

Fukasawa, R., H. Longo, J. Lysgaard, M. P. de Aragão, M. Reis, E. Uchoa, R. F. Werneck. 2006. Robust

branch-and-cut-and-price for the capacitated vehicle routing problem. Math. Programming 106(3)

491–511.
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