
 
 

Delft University of Technology

A methodological framework of travel time distribution estimation for urban signalized
arterial roads

Zheng, Fangfang; Van Zuylen, Henk; Liu, Xiaobo

DOI
10.1287/trsc.2016.0718
Publication date
2017
Document Version
Accepted author manuscript
Published in
Transportation Science

Citation (APA)
Zheng, F., Van Zuylen, H., & Liu, X. (2017). A methodological framework of travel time distribution
estimation for urban signalized arterial roads. Transportation Science, 51(3), 893-917.
https://doi.org/10.1287/trsc.2016.0718

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1287/trsc.2016.0718
https://doi.org/10.1287/trsc.2016.0718


 

 

A methodological framework of travel time distribution 

estimation for urban signalized arterial roads 

Fangfang Zheng 1,2, Xiaobo Liu1,2, Henk van Zuylen1,3 

 

1 School of Transportation and Logistics, Southwest Jiaotong University, No. 111 Erhuanlu 

Beiyiduan, 610031, Chengdu, P.R. China 

2 National-Local Association Laboratory of Comprehensive Transportation Intelligentization, 

Southwest Jiaotong University, No. 111 Erhuanlu Beiyiduan, 610031, Chengdu, P.R. China 

3 Department of Transport and Planning, Delft University of Technology, Stevinweg 1, 2628CN, 

Delft, the Netherlands  

 

Abstract 

Urban travel times are rather variable due to a lot of stochastic factors both in traffic 

flows, signals and other conditions on the infrastructure. However, the most common way 

both in literature and practice is to estimate or predict only expected travel times, not 

travel time distributions. By doing so, it fails to provide full insight into the travel time 

dynamics and variability on urban roads. Another limitation of this common approach is 

that the effect of traffic measures on travel time reliability cannot be evaluated. 

In this paper, an analytical travel time distribution model is presented especially for 

urban roads with fixed-time controlled intersections by investigating the underlining 

mechanisms of urban travel times. Different from mean travel time models or 

deterministic travel time models, the proposed model takes stochastic properties of traffic 

flow, stochastic arrivals and departures at intersections and traffic signal coordination 

between adjacent intersections into account, and therefore, is able to capture the delay 

dynamics and uncertainty at intersections. The proposed model was further validated with 



 

 

both VISSIM simulation data and field GPS data collected in a Chinese city. The results 

demonstrate that the travel time distributions derived from the analytical model can well 

represent those from VISSIM simulation. The comparison with field GPS data shows that 

the model estimated link travel time distributions can also represent the field travel time 

distributions, though a small discrepancy can be observed in middle range travel times 

and higher travel times. We expect that the proposed model can be applied to influence 

travel time variability on signalized roads in terms of e.g. signal optimization. 

Keywords: travel time distribution; simulation; urban traffic; traffic control 

1. Introduction 

Travel time is widely regarded as an important measure of the quality of mobility on 

a road network. The total travel time of vehicles can be used to reflect the performance 

of the road network and is of great interest for road authorities. The individual travel time 

is an important quality of a journey for travelers who need to  make decisions on their 

travel choices, e.g., route choice, mode choice and departure time choice. Especially, for 

travelers the variation of travel times is also an important quality measure. Also for road 

managers travel time reliability is becoming an important criterion for evaluation of 

traffic situations and the choice of infrastructural and traffic management measures. 

Over the past decades, a bunch of travel time estimation and prediction models 

focusing on mean travel times have been proposed, for instance, model-based approaches 

(Chen et al. 2001; Chien  et al. 2002; Kwon et al. 2005) and data-driven approaches 

(Innamaa 2005; van Hinsbergen et al. 2009; van Lint et al. 2005). These models perform 



 

 

quite well on freeways. The assumption behind both approaches is that travel times are 

determined by traffic states along the route. However, the mechanism on urban roads is 

very different from that on freeways. Vehicles traveling on urban roads are subjected to 

intersection delays due to queues and traffic control, and mid-link delay caused by turning 

vehicles from cross streets, bus maneuvers at bus stops, parking vehicles along the 

roadside, crossing pedestrians and cyclists, etc. Moreover, intersection delays vary with 

effects of stochastic properties of traffic flow, stochastic arrivals and departures at the 

signalized intersection, and variations in the traffic control as well. These partly stochastic 

factors are not independent but rather cooperate with each other. As a result, delays are 

uncertain given known traffic condition (traffic flow) and traffic control scheme.  

Of course, such influences can be simulated with a microscopic simulation program. 

The limitations of such an approach is that there is no direct relation between the 

parameters that can be controlled, like signal settings, and the traffic performance 

measures like a travel time distribution. The influence of control measures can be 

analyzed by repeated simulation runs in a heuristic search procedure (e.g. Yun and Park 

2006) or by the derivation of a meta model which describes the behavior of certain 

performance measures as function of control parameters. This was done, for example, for 

a single intersection by Webster (1958) a long time ago and recently for whole networks 

by Osario (2015). Such meta models can give the heuristic relation between control 

parameters and performance measures, like travel time, delay and reliability. A 

disadvantage of the meta model approach it is a ‘black box’ because the physical process 

that determines the traffic performance is not visible in the model. 



 

 

As an example of the role of the physical process determining the traffic performance 

we can look at the free flow travel time. This is basically determined by the distance and 

the free flow speed. The free flow speed is again determined by the speed limit, vehicle 

composition, spacing between intersections, lane width, etc. (Yusuf 2010) and, of course 

by the preference of the drivers. Therefore, the free flow travel time given known travel 

distance is not a constant value but variable depending on external and internal factors,. 

The results of all these factors is that for a given link or route travel time within a certain 

time period, travel times are variable and a certain travel time distribution can be observed. 

The key question is how to model this traffic process in such a way that the influence of 

control and management measures can directly be seen in an analytical relation between 

internal and external parameters and the performance. 

The complexity of urban traffic has been recognized by more and more researchers 

recently. Therefore, different advanced modeling techniques and approaches have been 

developed to estimate or predict urban travel times. First of all empirical techniques have 

been developed to monitor urban travel times. Bhaskar et al. (Bhaskar et al. 2009; 2011) 

proposed a model to estimate average travel time by integrating cumulative plots from 

loop detectors and probe vehicle data. Skabardonis et al. (Skabardonis et al. 2005; 2008) 

applied shockwave theory to estimate the mean travel time on signalized roads. It is 

widely accepted that shockwave theory is able to capture the dynamics of traffic queuing 

process more realistically. Nevertheless, it fails to model stochasticity of traffic, 

especially on urban roads with intersections. Similarly, the Cell Transmission Model 

(CTM), which has been extensively applied to estimate or predict traffic states on 



 

 

freeways, has the ability to capture the macroscopic features of traffic in both congested 

and uncongested conditions. Lo (Lo 2001) extended the CTM model for urban road 

network scenarios with signalized intersections. However, in CTM, the queue forms in a 

deterministic way which is not realistic in the urban context. Boel and Mihaylova (2006) 

and (Sumalee et al., 2011). developed stochastic versions of the CTM. 

The state-space neural network (SSNN) model was first proposed by van Lint et al. 

(van Lint et al. 2005) to predict travel times on freeways. The prediction results are quite 

promising. The application of SSNN model to the urban road network is less successful 

due to the difficulties in prediction turning fractions at intersections and highly complex 

traffic conditions along the road as discussed by Liu (Liu 2008). Furthermore, the SSNN 

model also ignores the stochasticty of the traffic process. 

Compared with average travel time estimation models for urban roads, very few 

urban travel time distribution models were proposed up to now. Guo et al. (Guo et al. 

2010) developed a multi-state travel time distribution model, which provides the 

connection between the travel time distributions and the underlining traffic states. Similar 

work can also be found in Loustau et al.(Loustau et al. 2010). Ramezani and Geroliminis 

( Ramezani and Geroliminis 2012) proposed a route travel time distribution model by 

applying a Markov chain procedure. They investigated how to deal with correlations in 

travel times of consecutive links when link travel time distributions are merged to route 

travel time distributions. The validity of their model is confirmed by both field and 

simulation tests. The above reviewed research on travel time distribution mainly focuses 

on applying certain statistical distributions to the observed travel times. The influence of 



 

 

different traffic processes and traffic control schemes on travel time variability is not 

explicitly considered or modeled. Hofleitner et al. (2012) recently developed a method to 

estimate the dynamics of travel time distributions from scarce probe vehicle data. They 

find empirical travel time distributions that can be used for monitoring purpose. However, 

their method cannot help to choose and optimize traffic management measures, because 

the calculated travel time distribution has a descriptive character and does not contain the 

influence of control measures.  

In order to investigate how traffic flows and different signal control schemes 

influence arterial travel times,   Lu et al. ( Lu and Chang 2012) proposed a travel time 

model to estimate the arterial travel time and its variability by tracking the evolution of a 

queue on each link in a probabilistic way. In (Cui et al. 2013) , the expected arterial travel 

time and its variance are estimated considering the probability of a certain traffic 

condition vehicles encounter within a signal cycle. However, the stochastic processes at 

intersections and stochastic properties of traffic flow are not explicitly modeled in their 

research.  

As shown in (Zheng and van Zuylen 2010), the variability of travel time between 

vehicles is large and the statistical distributions of travel times in different traffic 

conditions are strongly overlapping: an observed travel time can be the same for over-

saturated conditions and light traffic conditions. The consequence is that travel times 

alone are not sufficient indicators of the status of the traffic. This uncertainty of travel 

time is largely caused by the stochastic processes (i.e. stochastic arrivals and departures) 

at intersections. Besides, the signal control at intersections has significant influence on 



 

 

the travel time, especially in the case that two intersections are shortly distanced. If two 

intersections are not well coordinated, the spillback phenomenon can occur, blocking the 

upstream intersection. In the literature ,e,g., in (Wu and Liu 2011; Geroliminis and 

Skabardonis 2011), the spillback phenomenon is usually modeled by applying shockwave 

theory in a deterministic way without considering stochastic properties of traffic flow. 

Van Zuylen and Hoogendoorn (van Zuylen and Hoogendoorn 2006) developed a 

probabilistic model for queue length based on a Markov queuing model combined with 

first order traffic flow model, but they did not apply this to the spill back process. The 

character of urban travel times is represented by a specific distribution which can be 

influenced by different traffic processes (e.g., traffic flow, traffic control). The 

understanding of fundamental mechanisms of urban travel times helps to better deal with 

travel time variability, predicting travel time variability and, furthermore, influence travel 

time variability. 

Many factors can influence the urban travel time and its variability. For the 

optimization of travel time and the reduction of the variability, a model of the mechanisms 

that influence these characteristics is needed. A complete analysis of all these factors on 

resulting travel times seems unrealistic. On urban signalized arterial roads, delay at 

intersections constitutes a large part of the total delay vehicles experience and therefore 

has a significant impact on the travel time. The main contribution of this work is the 

development of a theoretical travel time distribution model for urban signalized arterial 

roads, which is composed of a delay distribution and a free flow travel time distribution. 

This proposed model, which takes stochastic properties of traffic flow, stochastic arrivals 



 

 

and departures, traffic control scheme, and the variability of free flow travel time into 

account, is based on the underlining traffic mechanisms and can be generalized for 

different traffic conditions. The spillback phenomenon is explicitly modeled by applying 

the shockwave theory in a probabilistic way. (see section 2 and section 3 ). In section 4, 

the model estimated travel time distributions are compared with those generated from a 

VISSIM simulation model and field GPS data. Section 5 discussed the possible extension 

of the delay distribution model to a corridor with more than two intersections.  Section 

6 gives a concluding discussion on the main findings and provides some final remarks.  

2. Link travel time distribution 

2.1 Definition of the link travel time 

The complete link travel time here is defined as the travel time when the vehicle 

passes the stop line of the upstream intersection until it crosses the stop line of the 

downstream intersection as illustrated in Figure 1. The link travel time is expressed as: 

exit entry
TT t t= −  (1)  

 

Complete link
tentry texit  

Figure 1 Schematic representation of an urban link 



 

 

                                           

2.2 Components of urban link travel time 

Basically, the travel time vehicles experience on a certain link i can be subdivided 

into two components: 

( ) ( ) ( )
f

i i i
TT t TT t W t= +  (2)  

Where ( )
f

i
TT t   represents the free flow travel time at time instant t on link i, 

calculated from stop line to stop line. It is further calculated as the link length Di divided 

by the free flow speed uf : 

( )
f i

i

f

D
TT t

u
=     (3)  

The free flow speed varies with different driving behavior, speed limit, spacing 

between intersections, vehicle composition, weather conditions, etc. Therefore, the free 

flow travel time is not a constant value. Wi (t) represents the delay vehicles experience 

when departing at time instant t. Delays vehicles encountered on an urban trip can be 

caused by different factors, e.g., bus maneuvers at bus stops, vehicles parking along the 

roadside, crossing pedestrians and cyclists, traffic control and queues at intersections. 

Among all these factors, the delay at intersections due to the queue and traffic control 

constitutes a large part of the total delay. In this paper, we mainly consider the delay at 

intersections. The time spent while driving in the queue towards the stop line is attributed 

to the delay as far as it is more than the time needed for driving with free speed. This is 

equivalent to the assumption that the queues are vertical at stop line. 



 

 

2.3 Derivation of delay distribution for isolated intersections 

The mathematical model for the delay distribution at an isolated intersection has been 

derived and published by the authors (Zheng and van Zuylen 2010), Viti and van Zuylen 

(Viti and van Zuylen 2010) and Olszewski (Olszewski, 1994). The model contains two 

mechanisms: 

1. the (random) arrival process at the signal giving a block shaped delay function 

with a delta function at zero delay (figure 2a), 

2. the overflow queue, the queue at the end of the green phase due to structural or 

accidental oversaturation of the green phase. 

In the undersaturated condition, when vehicles arrive with a constant headway at the 

beginning of the red time, delay equals to the red time plus the time to release the initial 

overflow queue and decreases linearly until zero. While in the oversaturated condition, 

some or all arriving vehicles need to wait for another cycle or more cycles to depart due 

to the large overflow queue in front of it (figure 2b). As discussed in Zheng and van 

Zuylen (Zheng et al., 2010), the delay distribution in undersaturated conditions consists 

of a Dirac delta function and a box shaped function. The Dirac function in the distribution 

model describes the vehicles that pass the intersection without delay at the end of the 

green time. The box functions represent the vehicles that experience delay. For the 

oversaturated condition, the probability distribution consists of several box shaped 

functions that may overlap. The mathematical formulation of the model is as follows: 

0 2 1 0 2 2 0
( ) ( ) ( ) ( , ( ), ( ))

d i N N

N

P w n n w B w w n w n  
+ +

= +  (4)  



 

 

Where Pd (w|n0) denotes the probability of a certain delay ‘w’ given a fixed overflow 

queue n0; N is the number of extra red time that arriving vehicles need to wait for, which 

can be derived as: 

                    0
1

g

qt n
N

s

 + +
=  
  

                                (5) 

t is the vehicle arrival moment at (the vertical queue before) the intersection. The 

floor 
    is used to indicate the integer value of the expression inside the brackets. The 

minimum and maximum number of extra red time can be derived from Eq. (5): 
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                                  (6) 
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1
C

g

q n
N

s





 + +
=  
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                             (7) 

( )w  is the Dirac delta function with the following properties: 

( ) 0, 0w if w =                                (8) 

( ) ( ) (0)f w w dw f
+

−
=  

B(w, w2N+ 1, w2N+2) is a box function with the property: 

2 1 2 2

2 1 2 2

1
( , , )

0

N N

N N

w w w
B w w w

otherwise

+ +

+ +

 
= 


                        (9) 

                 

 

w2N + 1, w2N+2 are delay boundaries determined by flow, overflow queue, signal timing 

(e.g., red phase, cycle time and coordination of intersections in case of an urban corridor): 

0

2 1

0

1 ( 1)
( 1)

min max

max1
( 1) (1 )

g

C

N

r C

n N s
N

N N Nq
W

N Nn q
N

s s
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+

+ − +
+ +  
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+ + − −
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               (10) 
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                     (11) 

α and β are model parameters following from the traffic state, e.g. the flow q, overflow 

queue n0 , the red phase τr and cycle time τC with: 

0
( 1)

max(1 , 0)

(1 )

r

C

n

s
q

s







+
+

= −

−

 ，
1

(1 )
C

q

s





=

−

  

Where, s is the saturation flow rate. 

In reality, the overflow queue is not deterministic but stochastic (Viti et al., 2010). 

For the given probability distribution of overflow queue p(n0), the expected delay 

probability distribution is calculated as a weighted sum of probability functions: 

0

0 0

0

( ) ( ) ( )
d d

n

P w P w n p n


=

=   (12)  
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Red time:

Effective green time:  

(a)Undersaturated condition    (b) Oversaturated condition 

Figure 2 Delay probability distribution and cumulative distribution for both 

undersaturated and oversaturated conditions at an isolated intersection. 

2.4 Derivation of a single link travel time distribution 

Case 1: constant free flow travel time 

The free flow travel time can be estimated by simply assuming a constant free flow 

speed (e.g., the speed limit). In that case, the free flow travel time is a constant value. The 

delay vehicles experience at the signalized intersection is derived based on the vertical 

queue. This does not have a relevant influence on the final calculation of the total link 

travel time for the case of undersaturated conditions or slightly oversaturated conditions 

as long as no spill back is happening. The probability of a certain link/trip travel time τ, 

P(τ) can then be seen as the shifted probability of a certain delay w as: 

( ) ( )
d f

P P  = −  (13)  

where, τf  is the free flow link travel time; P(τ) is the probability of a certain link 

travel time τ (τ=w+τf  ); Pd (w) is the probability of a given delay w.  

Case 2: stochastic free flow travel time 

However, the free flow travel time in most cases is not a constant value. Instead, the 

free flow travel time has a certain probability distribution. As for an isolated intersection, 

the delay distribution shown above deals with a single intersection with uniform arrivals 

with stochastic arrival rates. The influence of the variable free flow travel times can be 

represented by combining the free flow travel time with the delay distribution as:  
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( ) ( | ) ( )

d f f f f f
P P P d



     = −  (14) 

Where Pf (τf ) denotes the free flow travel time distribution; Pd (w|τf ) denotes the 

conditional probability of the delay w given a certain free flow travel time τf. For a given 

travel time τ (τ=w+τf ), this conditional probability can also be formulated as:       

( ) ( ) 
d f d f f

P w P   = −  (15)   

   Where Pd (w) is given by Eq.(12). 

For the case that both the delay probability distribution and free flow travel time 

distribution are represented as  discrete, the link travel time distribution can be modified 

as: 

( ) ( ) ( )
 

  0

 

f

d f f f f
P P P





    
=

= −  (16)  

3. Trip travel time distribution  

3.1 Delay at adjacent intersections 

In order to derive the delay distribution for an urban trip with a group of signals, we 

limit ourselves by the following conditions: 

1) Fixed-time controlled intersections are considered in a single trip.  

2) The acceleration and deceleration effects are not explicitly considered and assumed 

to be part of the delay. The concepts of effective green, effective red and saturation 

flows are used instead. E.g., the effective green and saturation flow determine the 

moment that a vehicle passes the stop line, which is the end of its delay. 



 

 

3)  The arrival times of vehicles are uniformly distributed within one cycle which can 

be considered as the average arrival rate of the cycle. Note that the arrival rates may 

vary from cycle to cycle under this assumption according to a certain statistical 

distribution, e.g. a Poisson distribution. Van Zuylen and Viti (van Zuylen and Viti 

2006) showed that the assumption of uniform arrivals does not limit the validity of 

the calculation of delays. 

4) Platoon dispersion is not considered within one cycle between two adjacent 

intersections. 

5) The mid-link delay caused by bus maneuvers at bus stops and vehicles’ parking etc. 

along the roadside is not considered. 

As for fixed-time control, the coordination scheme among intersections has a big 

influence on the delay. Figure 3 (a) and (b) illustrates different offset settings for two 

fixed-time controlled intersections. For the convenience of modeling, we assume that 

both intersections have the same cycle time τC, effective green time τg and red time τr. 

These assumptions can be relaxed to different effective green times between consecutive 

intersections. The derivations in the following sections are all based on the assumption of 

the same cycle time and effective green time between two consecutive intersections. The 

offset τoff between two intersections is defined as: 

2 1off
t t = −  (17)  

where t1 is the beginning of effective green time at the upstream intersection and t2 is 

the beginning of effective green time at the downstream intersection. The link length 



 

 

between the two intersections is D; the free flow speed is uf.  Then the free flow link 

travel time is:  

f

f

D

u
 =  (18)  

If two intersections are well coordinated, there is no mismatch between these two 

intersections. In the case that two intersections are not well coordinated, the mismatch of 

green time τm as illustrated in Figure 3 (a) (b) between the upstream intersection and the 

downstream intersection can be derived as:  

m f off
  = −  (19)  

Two types of mismatch can be found in reality as shown in Figure 3. 

1) Mismatch 1, early green: As illustrated in Figure 3 (a), the start of the green phase 

at the downstream intersection is too early such that part of the green time is not 

utilized by the platoon. Hence, the mismatch between the two intersections is positive : 

                        
0

m f off
  = − 

 

Since the mismatch time is only utilized by the remaining queue from the previous 

cycle not by the vehicles departing from the upstream intersection right after the traffic 

light turns to green. The effective green time of the downstream intersection when 

vehicles can pass without delay is given by: 

g g m
   = −  (20)  



 

 

2) Mismatch 2, late green: As illustrated in Figure 3 (b), the start of the green phase at 

the downstream intersection is too late so that vehicles departing directly after the 

start of the green time from the upstream intersection need to wait for the red time at 

the downstream intersection. Hence, the mismatch between the two intersections is 

negative: 

                            
0

m f off
  = − 

 

In this subsection, the delay vehicles experience when traversing the two consecutive 

intersections is analyzed and discussed according these two types of mismatch. 
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Red time:

Effective green time:  

Figure 3 Offsets at adjacent intersections 

 

3.1.1 Mismatch 1, early green 

(1) When the upstream intersection is undersaturated 

Figure 4 illustrates the delay that vehicles experience passing two signalized 

intersections. We assume that there is no oversaturation (filtered by the upstream 

intersection) at the downstream intersection. Depending on the arrival moment at both 

intersections, the initial overflow queue at the upstream intersection and offsets between 

two intersections, delay vehicles experience can be categorized into three cases: 

Case 1: Figure 4 (a) 

As shown in Figure 4 (a), vehicles leaving from the upstream intersection at time t1 



 

 

can pass the downstream intersection without delay. Vehicles departing from the first 

intersection after t1 +τg′ have to wait at the second intersection. The arrivals are first in a 

dense platoon determined by the saturation flow and after the saturated green time, the 

flow is determined by the arrival rate. When the vehicle arrives at the beginning of the 

red time t0 at the upstream intersection, delay equals to the red time plus the time to release 

the initial overflow queue at the upstream intersection plus the arriving vehicle itself and 

decreases linearly until zero at the saturated green time instant which is given by: 

0sat r sat
t t  = + +  (21)  

Where τr is the red time; τsat is the saturated green time period at the upstream 

intersection which is calculated as:  

0
1

1

r

sat

nq

s s
q

s





+
+

=

−

                              (22) 

Where n0 is the overflow queue at the first intersection; s is the saturation flow rate 

and q is the arriving flow rate.  

Vehicles arriving at the upstream intersection experience zero delay after tsat up till tf 

= t0+τr+τg′as shown in Figure 4 (a) and after tf, vehicles have to wait for the red time at 

the downstream intersection. The delay as a function of arrival time at the stop line of the 

upstream intersection can be determined as:  
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 (23)  

Case 2: Figure 4 (b) 

As shown in Figure 4 (b), when the initial overflow queue becomes larger such that 

vehicles arriving the upstream intersection at time th before the end of the saturated green 

time tsat have to wait for the red time at the downstream intersection. The moment th is 

given by: 

0 0
( ) 1

h g
n q t t s + − + =

 

i.e. 
0

0

1
g

h

s n
t t

q

  − −
= +  (24)  

Vehicles arriving before th only have delay at the upstream intersection and after th, 

vehicles need to wait at the downstream intersection. For this case, delay as a function of 

arrival time at the stop line of the upstream intersection can be calculated as: 
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Case 3: Figure 4 (c) 

As shown in Figure 4 (c), if the initial overflow queue departing from the upstream 

intersection can be so large that it can’t leave the downstream intersection completely 

within the green time τg′. For this case, the vehicle arriving right after the start of the red 



 

 

time at the upstream intersection needs to wait for the red time at the downstream 

intersection because of the long overflow queue which is given by: 
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The delay vehicles experience can be calculated as: 
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Figure 4 Delay as a function of arrival time for two adjacent intersections in the 

undersaturated condition (Mismatch 1, early green) 

(2) When the upstream intersection is oversaturated 



 

 

When the initial overflow queue at the upstream intersection is larger than a certain 

threshold, the green phase becomes oversaturated. The question whether an arriving 

vehicle has to wait for a next cycle to depart, depends on the number of vehicles that 

arrived before this one in the cycle plus the initial overflow queue. As soon as this quantity 

exceeds the number of vehicles that can depart in the (remaining) green time, the vehicle 

has to wait for a following cycle or even more cycles at the upstream intersection. On the 

other hand, whether the vehicle departing from the upstream intersection needs to wait 

for the red time at the downstream intersection depends on the number of vehicles in front 

of this vehicle departing from the upstream intersection in the same cycle. If this quantity 

exceeds the number of vehicles that can depart from the downstream intersection in the 

effective green time, the vehicle needs to wait for the red time again at the downstream 

intersection. The general expressions can be derived as: 
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(27)  

3.1.2 Mismatch 2, late green 

For the case of late green, a vehicle leaving from the upstream intersection has to wait 

for the red light at the downstream intersection. Spillback could occur especially when 

two intersections are shortly distanced. In the following, four cases are discussed. 

(1) When the upstream intersection is undersaturated 

Case 1:  The queue spills back from the downstream intersection 



 

 

    When the effective green period starts, vehicles leave at a saturation flow rate s 

until the saturated green time τsat which is given by Eq. (22). Afterwards, vehicles depart 

at the arrival flow rate q during the remaining green time. If the front of the queue does 

not meet the back of the queue, while the back of the queue exceeds the downstream link, 

a spillback queue can be observed (see Figure 5 (a)). The moment when spillback happens, 

i.e. the moment that the back of the queue reaches the upstream intersection, can be 

derived as: 

  
0

/
spillback r sat sat

D
t t s q

l
  

 
= + + + − 

 

                        (28) 

Where t0 is the start of the red time at the upstream intersection; D is the link length 

between the upstream intersection and the downstream intersection; l is the average 

effective length of a vehicle in a queue, which can be estimated as the length of a queue 

divided by the number of vehicles in the queue. 

 As shown in Figure 5 (a) and Figure 6 (a), when vehicles arrive at moment t before 

tspillback, the delay at the upstream and the downstream intersections can be determined as:  
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 After tspillback, the delay can be calculated as: 
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Figure 5 Trajectories of vehicles passing two intersections with spillback (The upstream 

intersection is under-saturated) 
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Figure 6 Delay as a function of arrival time for two adjacent intersections in 

the under-saturated condition with spillback 

Case 2: No spillback happens from the downstream intersection (see Figure 7) 

In this case, if the number of vehicles leaving from the upstream intersection during 

the effective green time of the upstream intersection can depart from the downstream 



 

 

intersection during the effective green time of the downstream intersection as shown in 

figure 7 (a), delay as a function of arrival time at the stop line of the upstream intersection 

can be derived as: 

                       (31) 
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Figure 7 Trajectories of vehicles passing two intersections without spillback (The upstream 

intersection is under-saturated) 

 

(2) When the upstream intersection is over-saturated 

The initial overflow queue at the upstream intersection is large and the traffic 

demand is high such that the green phase becomes over-saturated. Similarly, two cases 

can be identified: 

Case 3: Queue spills back from the downstream intersection 

 As illustrated in Figure 8, vehicles arriving at the upstream intersection have to wait 

for extra red times plus the green times blocked by the spillback queue. Delay as a 

0
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function of arrival time can be determined as: 
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Figure 8 Trajectories of vehicles passing two intersections with spillback (The 

upstream intersection is over-saturated) 

Case 4: No spillback from the downstream intersection 

As shown in Figure 9, the arriving vehicle has to wait for extra red times at the 

upstream intersection due to the large initial overflow queue and the high traffic demand. 

On the other hand, vehicles departing from the upstream intersection during the green 

time period need to wait for the mismatch time period ‘τm’ at the downstream intersection. 

Delay as a function of arrival time can be deduced as: 
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Figure 9 Trajectories of vehicles passing two intersections without spillback (The 

upstream intersection is over-saturated) 

3.2 Delay distribution for adjacent intersections 

The delay as function of the arrival time at the upstream intersection for two types of 

mismatch both in the undersaturated condition and oversaturated condition has been 

discussed in the previous subsection. In this subsection, the travel time distribution model 

for two consecutive fixed-time controlled intersections, taking the stochastic overflow 

queue in the first intersection and different mismatches between these two intersections 

into account, is developed. 

3.2.1 Delay distribution with an initial deterministic queue 

(1) Mismatch 1: early green 



 

 

The delay as a function of arrival time at the upstream intersection both for the 

undersaturated condition and oversaturated condition can be derived according to 

Equations (23), (25), (26) and (27). As for the oversaturated condition, the number of 

extra red times that a vehicle arriving at time t needs to wait at the upstream intersection 

can be directly derived from Eq. (27). The more generic expression is: 
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N

s

 − + +
=  
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 (34)  

From Equation (34), we can see that when a vehicle arrives within the time interval 

of one cycle time, the minimum number of extra red times this vehicle needs to wait at 

the upstream intersection can be derived as: 
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And the maximum number of extra red times is given by:  
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If the value within     is an integer, the maximum delay will be experienced by the 

vehicle arriving at the end of the cycle. Otherwise, the maximum delay will appear before 

the end of the cycle (t < t0 + τC) in oversaturated conditions. 

Whether vehicles need to wait for the red time at the downstream intersection 

depends on whether the number of vehicles in front of this vehicle plus the vehicle itself 

can be released within the green time τg′ at the downstream intersection. 



 

 

1) If 0 0
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, vehicles experience no delay 

at the downstream intersection. Vehicles just experience delays at the upstream 

intersection. Given the initial moment of the calculation t0, in our approach, it is the 

beginning of the red time. For this case, the transition moments (discontinuity of the delay 

as function of tn) appear when: 
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Each transition moment can be derived as:  
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vehicles experience delays 

at both the upstream and downstream intersections, the transition moments appear when:
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Each transition moment can be expressed as: 
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q
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 = +  (38)  

An example is shown in Figure10. The ‘star’ points are the transition moments when 

vehicles arriving at the stop line of the upstream intersection need to wait for another red 

phase at the upstream intersection. The dots are transition moments when vehicles arrive 

at the stop line of the upstream intersection will experience an extra delay of ‘red phase’ 

at the downstream intersection. The star transition moments lie on the decreasing trend 



 

 

line starting from the dot transition moments in case two intersections have the same red 

time. However, if the upstream intersection and the downstream intersection have 

different red times, the star transition moments can be above or below the trend line. 

Figure 11 illustrates trajectories of vehicles passing two intersections. The bold solid lines 

indicate trajectories of vehicles arriving at the ‘transition moments’ which are ‘dots’ and 

‘stars’ as shown in Figure 10. In the case of a vertical queue, the ‘transition arrival 

moments’t’1, t1 are extrapolated and the dotted lines are virtual trajectories of vehicles 

arriving at the stop line of the upstream intersection. 
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Figure 10 Delay as a function of arrival time (at the stop line of the upstream 

intersection in the case of a vertical queue) in the oversaturated condition with the 

same red time for both intersections (Mismatch 1, early green) 
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Figure 11 Trajectories of vehicles passing two intersections (Mismatch 1, early green) 

According to Equation (27), delay at these transition moments can be calculated. Due 

to the complexity, the detailed deduction process of delays for different transition 

moments is not discussed in this paper. The general expressions of delay for these 

transition moments and the initial moment are given as follows:  
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the last transition moment according to Equation (37) is within the cycle time (shown 

in Figure 10 b), then delays at the transition moments are given by:  
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the upstream intersection has to wait for the red time at the downstream intersection 

plus the condition that the last transition moment according to Equation (38) is larger 

than the cycle time (shown in Figure 10 a). For this case, then delays at the transition 

moments are calculated as:  
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plus the condition that the last transition moment according to Equation (38) is within 

the cycle time (shown in Figure 10 b). The delays at the transition moments for this 

case are given by: 
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(2) Mismatch 2: late green 

In case of mismatch 2, the delay as a function of arrival time at the upstream 

intersection with or without spillback both for the under-saturated condition and the over-



 

 

saturated condition can be derived according to Equations (29),(30), (31)-(33). In the 

over-saturated condition at the upstream intersection, the number of extra (red) times N 

that a vehicle arriving at time t has to wait at the upstream intersection can be derived 

from Equations (32) and (33). Depending whether there is spillback or not, the generic 

expressions can be derived as: 
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From the above equations, we can calculate the minimum number of extra (red) 

times this vehicle needs to wait at the upstream intersection as: 
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  Similarly, the maximum number of extra (red) times can be deduced as: 
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Depending on the arrival moment at the upstream intersection, there is discontinuity 

of delay (transition moments) which can be observed as shown in Figure 12, where t0, t1, 

t2, … are transition moments. These transition moments can be determined from 

Equations (32) and (33) as: 
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The mathematical expressions of delays at the transition moments, w2n+1 and w2n+2,   

are given by Equations (51) - (54). 
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Where kj is the jam density which is the inverse of l and ks is the capacity density. 

    



 

 

1w

2w

4w

3w

0t 1t 0 Ct +

6w

2t
Arrival time

5w

Delay

r

r

c

1w

2w

4w

3w

0t 1t 0 Ct +

6w

2t

Arrival time

5w

Delay

C

D

sl
 −

c

C

D

sl
 −

(a) no spillback (b)  spillback  

FIGURE 12 Delay as a function of arrival time for two intersections with pre-timed 

signal timings in the over-saturated condition 

 

For an isolated intersection, the delay probability distribution in the undersaturated 

condition consists of a Dirac delta function and a box shaped function. While for the 

oversaturated condition, the probability distribution is the sum of some box shaped 

functions that may overlap. For the case of two adjacent intersections, once the delay at 

transition points is determined, by inverse mapping the delay to the arrival time and taking 

the derivative, the delay distribution can be derived similarly as shown in Figure 13. The 

probability distribution function for both the undersaturated and oversaturated condition 

is given by: 
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Where  and  are model parameters with  
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W2N+1, W2N+2   are delays at transition moments, which are given by Equations (39)- (42) 

and (51) - (54). 

The general formulation of Equation (55) is very similar to Equation (4) of an 

isolated intersection. However, the parameter ‘α’ and the boundary delays ‘W2N+1, W2N+2’ 

in the box-shaped function are different from those of an isolated intersection.  
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(a) Undersaturated condition     (b) Oversaturated condition 

Figure 13 Delay probability distribution and cumulative distribution for both 

undersaturated and oversaturated conditions 

3.2.2 Delay distribution with a stochastic overflow queue 



 

 

The delay probability distribution function derived in the previous subsection is 

based on the fixed initial queue that is present at the beginning of the green phase at the 

upstream (initial) intersection. If the initial queue is stochastic with a certain probability 

distribution, the expected probability distribution of the delay Pd (W) can be calculated as 

a weighted sum of probability functions: 

( )
0

0 0

0

( | ) ( )
d d

n

P W P W n P n


=

=   (56)  

where 
0

( )P n is the probability of the overflow queue n0. 

3.3 Derivation of trip travel time distribution  

In order to extend the model to trip travel time, first of all, the distribution of the 

‘free flow’ travel time has to be determined. For an urban trip with two intersections or 

more, the delay is dependent on the free flow travel time. Fast drivers may encounter 

green waves along the trip while slow drivers may be stopped by the red light. The delay 

distributions for these two types of drivers are different. Furthermore, variable free flow 

travel time enables vehicles to take over each other. Therefore, for a given travel time τ (τ 

=w + τf), the probability of a certain delay w can be formulated as:  

             ( ) ( | )
d f d f f

P w P   = −                             (57) 

  

Where Pd(w | τf) denotes the probability of a certain delay w given a certain free flow 

travel time τf with assumptions that vehicles cannot take over each other. Pf (τf) denotes 

the probability of a certain free flow travel time τf. If the variation of the free flow speed 

is very small such that vehicles cannot take over each other or in case of one single lane 



 

 

traffic, the trip travel time distribution can be calculated by the following equation: 
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( ) ( | ) ( )
d f f f f f

P P P d


     = −                    (58) 

4. Results 

4.1 Model validation with VISSIM simulation data 

4.1.1 Single link travel time distribution 

A single-lane link of 600m with one fixed time controlled intersection was modeled 

in VISSIM. Travel times for the complete link were recorded in VISSIM. The cycle time 

is 60s and effective green time is 24s. The number of simulation runs is 300 and the 

evaluation time for each simulation 1200s (20cycles). Two scenarios were chosen: 

Scenario 1: The input flow is 720veh/h. The degree of saturation is about 0.833; 

Scenario 2: The input flow is 807veh/h. The degree of saturation is about 0.917. 

The free flow travel times were also recorded by letting vehicles travel through the 

link without interruption. The mean free flow travel time and the standard deviation were 

estimated based on the recorded data. A normal distribution was used as an approximation 

of the free flow travel time distribution in this study. Figure 14 compares the link travel 

time distributions derived from the proposed model and those from the VISSIM 

simulation model. The link travel time distributions derived from the analytical model 

can well represent those from the VISSIM simulation model for both scenarios. This can 

be confirmed by the Kolmogorov-Smirnov test (α=5%) results as shown in Figure . The 

hypothesis that simulated travel times come from the same distribution as the model 

predicted is not violated with the sample size of 500.   



 

 

 

      Figure 14 Comparison of the link travel time distribution between the analytical 

model and a VISSIM simulation model for a single intersection 

 

Figure 15 Kolmogorov-Smirnov test 

4.1.2 Trip travel time distribution 

1. Early green 

An urban corridor composed of two fixed-time controlled intersections was built in 

VISSIM. The total length of the corridor is about 1200m and the desired speed is 60km/h. 
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The cycle time and effective green time for the through-going approach are the same for 

both intersections with 60s and 24s, respectively. The inflow is 800veh/h/lane. The 

simulation period is 1200s and a total of 300 realizations were simulated for each level of 

mismatch between two intersections (Four levels of mismatch: 0s, 5s, 15s and 20s). Travel 

times were recorded for each simulation run. Figure  compares travel time distributions 

from the analytical model and those from the VISSIM simulation under the 

undersaturated condition (x =0.917). As can be seen from the figure, travel time 

distributions from the analytical model can well represent those from the simulation 

model under different levels of mismatch except that there is small discrepancy in low 

travel times and high travel times. This discrepancy could be the result of both the variable 

free flow travel time in VISSIM and stochastic arrivals and departures at the upstream 

intersection. Different free flow travel times modify vehicles’ arrival moments at the 

downstream intersection. For instance, in case of early green mismatch, the first vehicle 

departing from the upstream intersection with smaller free flow travel time will arrive 

early and can decrease the influence of the mismatch for this vehicle. As a consequence, 

the vehicle experiences smaller delay compared with the delay estimated by assuming the 

average free flow travel time. The variation of inflow (stochastic arrivals) and outflow 

(stochastic departures) for each cycle at the upstream intersection influences the delay 

both at the upstream intersection and the downstream intersection. The discrepancy in the 

high travel times could be caused by the stochastic overflow queues due to stochastic 

arrivals and departures at the upstream intersection. Nevertheless, from the Kolmogorov-

Smirnov test as illustrated in Figure , the hypothesis that the sample travel time 



 

 

distribution generated in VISSIM and the travel time distribution from proposed model 

are drawn from the same distribution holds for different levels of mismatch.  

 

Figure 16 Trip travel time distributions for two signalized intersections and 

early green derived from the analytical model and a VISSIM simulation data 

with different level of mismatch 1 (q=800veh/h/lane, L=500m) 
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Figure 17 Kolmogorov-Smirnov test for different level of mismatch 1 

2. Late green 

In the case of late green, the total length of the corridor is about 1500m and the 

distance between two intersections is 100m. The distance between two intersections can 

be set to a different value as long as the spillback phenomenon occurs during the VISSIM 

simulation process. The average desired speed was set to be 60 km/h in VISSIM. The 

cycle time and effective green time for the through-going approaches are the same for 

both intersections with 60s and 24s, respectively. Table 1 indicates four cases investigated 

in this section and a total number of 300 realizations were simulated for each case. Both 
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for the under-saturated condition and the over-saturated condition, we chose different 

offsets to make sure that there is no spillback (offset = 10s) or spillback (offset = 25s) 

happening during the simulation process. 

Table 1 Input data for VISSIM simulation in different traffic conditions 

Traffic conditions Traffic 

demand 

Offset Spillback 

Under-saturated 700veh/h 10s  No 

25s Yes 

Over-saturated 1000veh/h 10s No 

25s Yes 

    In order to apply the proposed model to estimate travel time distributions, apart 

from signal control parameters some other parameters need to be determined, such as 

effective vehicle length in a queue, jam density, capacity density, expected saturation flow 

rate and free flow travel time, arrival and departure distributions. Table 2 indicates the 

values of these parameters in our model consistent with VISSIM with default parameters. 

The effective vehicle length was chosen such that it is consistent with that in VISSIM 

simulation model. The average saturation flow rate was determined by recording vehicles 

passing the intersection during the saturated green time in VISSIM. The arrival 

distribution at the upstream intersection is assumed to be Poisson distribution, and the 

departure distribution is Binomial distribution, both in VISSIM and in the analytic model. 

The free flow travel times were recorded by letting vehicles travel through the link 

without interruption. A normal distribution is able to represent the recorded free flow 

travel times quite well. Therefore, in our proposed analytical model, a normal distribution 

with the estimated mean value and the standard deviation was applied as an 



 

 

approximation of the free flow travel time distribution in our proposed analytical model.   

Table 2 Parameter values for the proposed model 

Parameters  Effective vehicle 

length in the queue 

(m) 

Jam density 

(veh/km) 

Capacity density 

(veh/km) 

Average 

saturation 

flow(veh/h) 

Value 7 142 38 2250 

Figure 18 compares travel time distributions from the proposed analytical model 

with those from the VISSIM simulation data in the under-saturated condition. The travel 

time distributions derived from the proposed model well represent those from the VISSIM 

simulation model both in the cases of no spillback (Figure 18 (a)) and spillback (Figure 

18(b)). Figure 19 shows the comparison of travel time distributions in the over-saturated 

condition. It is clear that travel time distributions derived from the proposed analytical 

model represent those from VISSIM simulation rather well, though there are small 

discrepancies in low travel times and high travel times in the case of spillback. 
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 (b) With spillback (offset=25s) 

Figure 18 Comparison of travel time distributions from VISSIM simulation data 

and the proposed model in the under-saturated condition (q=700veh/h/lane) with 

different offsets at 10th cycle 

  

(a) no spillback (offset=10s) 

 

           (b)  With spillback (offset=25s) 

0 100 200 300 400 500
0

0.002

0.004

0.006

0.008

0.01

Travel time (s)

P
ro

b
a
b
ili

ty

 

 
Vissim simulation data

Proposed model

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Travel time(s)

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n

 

 
VISSIM Simulation 

Proposed model

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0.03

Travel time (s)

P
ro

b
a
b
il
it
y

 

 

VISSIM simulation data

Proposed model

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Travel time(s)

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n

 

 

VISSIM simulation 

Proposed model

0 100 200 300 400 500 600
0

0.002

0.004

0.006

0.008

0.01

Travel time (s)

P
ro

b
a
b
il
it
y

 

 

VISSIM simulation

Proposed model 

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Travel time(s)

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n

 

 

VISSIM simulation

Proposed model 



 

 

Figure 19 Comparison of travel time distributions from VISSIM simulation data 

and the proposed model in the over-saturated condition (q=1000 veh/h/lane) with 

different offsets at 5th cycle 

The spillback phenomenon can be observed frequently on urban roads with bad 

signal coordination, especially when two intersections are shortly distanced. If the 

spillback phenomenon is ignored during the modeling process, travel time distributions 

estimated from these models can be highly underestimated. As illustrated in Figure 20, 

we compared travel time distributions estimated from models considering spillback (the 

red dashed line) and without considering spillback (the blue dotted line) with the travel 

time distribution from VISSIM simulation (the black solid line). It is clear that when 

spillback is happening as simulated in VISSIM, the model ignoring the spillback 

phenomenon highly underestimates the travel time distribution. The reason behind is that 

if the existing spillback is not taken into account, the queue length at the downstream 

intersection will be highly underestimated, and the influence of spillback on the upstream 

intersection will be ignored. Therefore, it is necessary to take spillback into consideration 

when developing an analytical model for travel time distribution estimation.  

 



 

 

 

Figure 20 Comparison of travel time distributions (CDF) from VISSIM simulation 

and the proposed model considering and without considering spillback at 5th cycle 

4.2 Comparison with field data 

4.2.1 Test area 

In the previous subsection, travel time distributions derived from the proposed model 

are compared with those from VISSIM simulation data. In this section, a test is performed 

with field data that were collected in Changsha, a Chinese city in Hunan Province. More 

than 6000 taxis equipped with GPS devices are used as probe vehicles travelling in the 

urban road network. Every 30s, positions, speeds and time stamps are recorded and sent 

to the monitoring center. Two links with signalized intersections indicated by arrows 

along Shaoshan Road were chosen as the test area shown in Figure . 

100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Travel time(s)
(a) undersaturated condition (q=700veh/h/lane)

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n

 

 

Simulation data

Model considering spillback

Model without considering

spiilback

100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Travel time(s)

(b)  Oversaturated condition (q=1000veh/h/lane)

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n

 

 

Simulation data

Model considering spillback

Model without considering

spillback



 

 

 

Figure 21 The test road in Changsha city 

4.2.2 Data and parameters 

Travel times collected by GPS probe vehicles between 9:00AM and 10:AM on 14th, 

May 2010, and between 10:30 AM and 11:00AM on 15th, May 2010 are used for analysis 

and comparison. The GPS data were recorded every 30s which means that travel times 

recorded by probe vehicles provide only partial link or route travel times. In order to 

derive full link or route travel times, a method proposed by Li et al. (Li et al., 2010) is 

applied to reallocate travel times into individual links. Table  indicates parameters of 

each link and intersection as well as the number of field travel time observations for each 

link. The average free flow speeds are estimated as the 50 percentile of the speeds from 

GPS data as measured on the middle of road sections. The saturation flow rate for each 

intersection was measured based on visual observations (Li et al., 2011). From the 



 

 

analysis of the saturation flow for different lanes and intersections, the average saturation 

flow rates for through going lanes of intersections 11, 8, 3 are 1550veh/h/lane, 

1560veh/h/lane and 1580veh/h/lane, respectively.  The standard deviation among all 

these lanes is about 130veh/h. We assume that flows over these lanes of the same 

intersection are more or less the same. Table 4 indicates the parameters of route 13-11-8 

during time period 9:00AM and 10:AM on 14th, May 2010. 

Table 3 Parameters of links and intersections on 15th, May, 2010 

Link Link length(m)
Average

infow(veh/h/lane)

Average free flow

travel time(min)

Number of field travel

time observations

 13-11 1200 500 3 103

 11-8 700 350 1.7 145

 8-3 600 340 1.5 84

11 190 68 1550

8 190 53 1560

3 190 50 1580

Saturation

flow(veh/h/lane)
Intersection

Average cycle

time(s)

Effective green

time(s)

 

Table 4 Parameters of route 13-11-8 on 14th, May 

Time period

Average infow

at the upstream

intersection

(veh/h/lane)

Average

cycle

time(s)

Effective

green time(s)

Offset between

intersection 11

and 8 (s)

Number of field

travel time

observations

9:00-9:30AM 450 220 70 183 33

9:30-10:00AM 470 212 65 180 34

4.2.3 Results 

 Figure  illustrates the travel time distributions from GPS probe vehicle data and 

from the analytical model on link 13-11, link 11-8 and link 8-3 during period 10:30AM-

11:00AM. Travel time distributions from the proposed model can represent the field travel 

time distributions reasonably well. However, middle range of travel times and higher 



 

 

travel times are more frequently observed in field GPS data than the model predicts, 

especially for link 11-8. This discrepancy probably due to the fact that in the test road, 

there is a signalized pedestrian crossing which can cause extra delay to the through-going 

vehicles on link 11-8 as can be seen in Figure , while the proposed model does not 

consider the effect of turning movements from side streets between two signalized 

intersections. From the Kolmogorov-Smirnov test as shown in  Figure  (b) (d) (f), even 

with small GPS sample data, the hypothesis of a same distribution between the model and 

field data cannot be rejected.  Figure 23 illustrates route travel time distributions derived 

from the model and from GPS probe vehicle data during periods 9:00 AM -9:30AM and 

9:30 AM -10:00AM. Due to the fact that the number of travel times estimated from field 

GPS probe vehicle data is small (33 and 34 sample travel times during period 9:00AM-

9:30AM and 9:30AM-10:00AM, respectively), the travel time distributions from GPS 

data are rather irregular. Some discrepancies between the model and GPS data can be 

observed, especially at the middle range of travel times. However, from the Kolmogorov-

Smirnov tests shown in Figure 23 (b) and (d), the hypothesis of a same distribution 

between the proposed model and field GPS data cannot be rejected even with small 

sample size.  



 

 

 

Figure 22 Comparison between travel time distributions from GPS probe vehicle 

data and those derived from the proposed model on link 13-11, link 11-8 and link 

8-3, respectively (10:30 AM-11:00 AM) 
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Figure 23 Comparison between travel time distributions from GPS probe vehicle 

data and those derived from the proposed model on route 13-11-8 during periods 

9:00AM-9:30AM and 9:30AM-10:00AM, respectively 

5. Possible extensions of the model 

  The objective of this study is to show how the travel time distribution on an urban route 

depends on certain controllable variables. The extension from a link with a single 

intersection to two links with two signalized intersections was made in the previous 

sections. In this extension, the basic mechanism is that the platoon travels from the 

upstream to the downstream intersection and that the stochasticity of the traffic flow is 

experienced at the inflow of the upstream intersection. This stochasticity of the traffic 



 

 

arrivals is reflected in the initial queue at the start of the red phase on the upstream 

intersection (n0).  

This basic process can be extended to a longer route with three or more intersections. 

No fundamental new processes will occur, so that the travel time distribution for a route 

with three intersections can be derived from the two-intersection model extended with a 

deterministic platoon handling mechanism. A platoon handling model like the one in 

TRANSYT (Park and Schneeberger 2003) could calculate arrival patterns and travel time 

distributions for downstream links. An extension of the analytical method from two 

intersection routes to more intersections will create many possible situations to analyze: 

2N+1 offset combinations and spill back conditions. Still each of these 2N+1 situations can 

be described by functions as derived in section 3. 

The purpose of the analytical model is to reveal the influence of control parameters 

on the travel time distribution in order to be able to minimize travel time uncertainty. This 

can be done using the basic model with two intersections, possibly extended with a third 

road section with a third signalized intersection. Further extensions of the route will not 

give relevant new fundamental insights in the possibilities for the reduction of travel time 

variability. 

Another, more important, extension of the analytical model is the inclusion of flows 

entering from the side. This can come from unsignalized intersections or entry/exit of a 

parking place. This will take away a part of the platoon flow and add a random flow. Since 

these uncontrolled flows have a random character, their influence on the queues of the 

second intersection will get a new stochastic character creating also a stochastic overflow 



 

 

queue at the second intersection.   

If the turning flow comes for the upstream signalized intersection, it will create a 

second platoon traveling to the downstream intersection. The extension of the model 

developed in section 3 will be that two consecutive platoons will arrive at the downstream 

intersection and the delay at the upstream intersection will be determined by two 

independent stochastic arrival processes. This extension of the model developed in 

section 3 is rather straight forwards and will be a subject for future further model 

development.  

A final extension of the model is the inclusion of mid-link disturbances like bus stops 

and pedestrian crossing. This can be modeled in the probability distribution function of 

the free flow travel times such as in eq. (58). The detailed analysis of such phenomena is 

outside the scope of the present study. 

6. Discussion and Conclusions 

Urban travel time estimation is an important yet challenging topic. In recent years, 

focus of travel time estimation has been shifted from estimating expected travel times to 

estimating the variability of travel times, such as travel time distributions. With travel 

time probability distributions, the variability of travel times can be investigated 

straightforwardly using some statistical measures, e.g., standard deviation, percentiles, 

skewness, etc.  In this paper, an analytical link travel time distribution model is proposed. 

The comparison of the results from the proposed model with those from the VISSIM 

simulation model shows that link travel time distributions based on the proposed model 

can well represent those from the simulation model. The comparison with field GPS data 



 

 

indicates that model estimated link travel time distributions are not significantly different 

from field travel time distributions, though middle range and higher travel times are a 

little bit more frequently observed with GPS data than the model predicts for link 11-8 

(Figure 22 (c)).  

The extension of the link travel time distribution to the trip travel time distribution 

is also discussed. The model considers the stochastic properties of traffic flow, the signal 

coordination between intersections and takes the spillback into account as well. By 

considering the influence of stochastic arrivals and departures from the upstream 

intersection on the spillback from downstream intersection, the possibility of spillback is 

explicitly taken into consideration in the proposed model.  

The comparison with VISSIM simulation shows that the travel time distributions 

estimated from the proposed model represents those from VISSIM simulation data well 

both in the under-saturated condition and the over-saturated condition with and without 

spillback. The comparison results also indicate that it is important to take the spillback 

phenomenon into account when developing travel time distribution models.  

The model developed in this paper can be applied in different traffic conditions and 

further generalized to different traffic control schemes. The influence of traffic control 

schemes on the travel time distribution is explicitly modeled. The information of vehicle-

to-vehicle travel time variations can help travelers to make better route choice. Besides, 

this model can be extended for travel time distribution prediction purpose.   

Nevertheless, the model has some limitations: it considers a short corridor with pre-



 

 

timed traffic control. Furthermore the influence of turning movements on the intersections 

is ignored. The extension to corridor with 3 or more intersections and the inclusion of 

turning movements will result in more extended model with repetition of the elements of 

the model derived in this article.  

In the future, we would like to investigate how to improve travel time reliability by 

optimizing traffic control schemes with this proposed model.  
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