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We present a framework for estimating pedestrian demand within a train
station. It takes into account ridership data, and various direct and indirect
indicators of demand. Such indicators may include link flow counts, density
measurements, survey data, historical or other information. The problem
is considered in discrete time and at the aggregate level, i.e., for groups of
pedestrians associated with the same origin-destination pair and departure
time interval. The formulation is probabilistic, allowing to consider the
stochasticity of demand. A key element of the framework is the use of the
train timetable to better capture demand peaks. A case study analysis of
a Swiss train station underlines its practical applicability. Compared to a
classical estimator that ignores the notion of a train timetable, the gain in
accuracy in terms of RMSE is between 20% and 50%. More importantly,
the incorporation of the train schedule allows for prediction when little
or no data besides the timetable and ridership information is available.

Keywords: Origin-destination demand; schedule-based estimation; pedestrian

flows; public transportation.



1 Introduction

Pedestrian behavior in train stations increasingly attracts the attention
of academic research. Broadly, it can be distinguished between empiri-
cal studies (Daly et al., 1991; Cheung and Lam, 1998; Pettersson, 2011;
Ganansia et al., 2014), and those concerned with its modeling (Lee et al.,
2001; Daamen, 2004; Kaakai et al., 2007; Xu et al., 2014). A review of the
literature is provided by Mustafa and Ashaari (2015).

Most studies make great efforts in describing behavioral aspects such
as walking, waiting or boarding. At the same time, only few methods are
proposed in the literature to estimate pedestrian demand from data. Many
studies are solely based on theoretical demand scenarios (Hoogendoorn and
Daamen, 2004; Rindsfiiser and Kliigl, 2007; Davidich et al., 2013). Other
studies rely on simple assumptions to estimate demand (Kaakai et al., 2007,
van den Heuvel and Hoogenraad, 2014), or consider railway stations that
serve only a single line (Lee et al., 2001; Xu et al., 2014). Yet knowledge
of pedestrian demand is a prerequisite for the analysis of pedestrian flows
in train stations, be it for the design of infrastructure, the optimization
of operations such as the train-track assignment, or real-time management
and control of pedestrian flows.

Several approaches to estimate pedestrian demand in train stations seem
conceivable. For instance, an activity-based approach could be pursued
(Danalet et al., 2014). However, for most train stations, disaggregate data
is still unavailable, or only with low sampling rates and low temporal or
spatial resolution. Instead, it is more efficient to estimate origin-destination
(OD) demand at the aggregate level. Pedestrians may be divided into user
classes that are characterized by a common activity or behavior pattern,
which in the context of a train station could be ‘inbound’, ‘outbound’, but
also ‘elderly’, ‘in a hurry’, or any combination thereof (Wong et al., 2005;
Lavadinho, 2012).

The problem of estimating OD demand has a long history in the context
of road networks, for which link flow volumes and other indirect observa-
tions of demand are available (van Zuylen and Willumsen, 1980; Cascetta,
1984). Typically, an assignment map is assumed that relates observations
to OD volumes, such that the latter can be ‘reverse engineered’. This map
may be obtained via a dynamic traffic assignment (DTA) model, combin-
ing travel behavior models such as mode, departure time and route choice



models, as well as a network loading model. In the context of pedestrian
flows in train stations, mode choice is irrelevant, and the choice of departure
time is mainly governed by the train timetable, which is discussed in this
work. A variety of approaches have been proposed for route choice (Cheung
and Lam, 1998; Hoogendoorn and Bovy, 2004; Daamen et al., 2005), and
for network loading models a rich literature is available as well (Lee et al.,
2001; Daamen, 2004; Kaakai et al., 2007; Xu et al., 2014; Starmans et al.,
2014). The problem of pedestrian OD demand estimation in train stations
is thus in principle amenable to ‘classical’ estimation techniques.

A key issue in OD demand estimation is the ratio between the num-
ber of unknowns and the number of independent observations, yielding an
intrinsically underdetermined problem. Various forms of exogenous infor-
mation, either in the form of a priori knowledge or structural assumptions,
are used to lead the calculation to a unique solution.

For static OD estimation, concepts like gravity (Casey, 1955), entropy
maximization (Wilson, 1970; Willumsen, 1981) or information minimiza-
tion (van Zuylen and Willumsen, 1980) have been used. In most cases,
however, an a priori OD trip table (Cascetta and Nguyen, 1988) is used.
Other researchers make specific assumptions on the structure of OD trip
tables (Bierlaire and Toint, 1995) or the covariance across measurements
(Hazelton, 2003).

For dynamic problems, a common approach is to assume a dynamic
process for the evolution of demand, such as an autoregressive process in
the deviates from historical estimates (Ashok and Ben-Akiva, 2000; Bier-
laire and Crittin, 2004; Zhou and Mahmassani, 2007). Recent approaches
assume slowly evolving route split fractions in the framework of a ‘quasi-
dynamic’ estimator (Marzano et al., 2009; Cascetta et al., 2013), or reduce
the dimensionality of the estimation problem by applying principal com-
ponent analysis (Djukic et al., 2012).

Several researchers consider also the problem of OD demand estimation
in transit networks. Early approaches assume a constant average cost along
routes (Nguyen et al., 1988), whereas newer studies focus on schedule-based
transit network models (Wong and Tong, 1998), of which some additionally
consider passenger overload delays (Lam et al., 2003) or data from ICT
sensors (Montero et al., 2015). These models can predict the evolution of
in- and outflows at stations or the number of passengers in vehicles, but do
not provide detailed information on OD demand wsithin a train station.



Pedestrian OD demand in train stations is particularly unsteady due to
arriving and departing trains that lead to demand ‘micro-patterns’. More-
over, acyclic schedules and unplanned delays make it difficult to use his-
torical OD data, or any other of the aforementioned approaches for dealing
with underdetermination. This is where we would like to make a contri-
bution. In this paper, we propose a dedicated methodology for estimating
pedestrian OD demand in train stations in general, and we do so by ex-
plicitly integrating the train timetable and ridership data in particular.

2 Data sources

To reduce the underdetermination, the use of any relevant, available data
is desirable. In comparison to motorized traffic, there are several inherent
challenges that make the monitoring of pedestrian traffic difficult. First,
pedestrians are not confined to fixed lanes, and can explore space freely.
This makes the placement of sensors difficult, and may decrease their ac-
curacy. Second, pedestrians often travel in groups. Special care must be
taken to differentiate between individuals, and to take into account effects
such as occlusion (Alahi et al., 2014). Third, pedestrian traffic is typically
more variable than motorized traffic, implying that sensors are required to
capture a large range of traffic levels (cf. Traffic Monitoring Guide, U.S.
Department of Transportation, 2013).

In the following, five types of data sources are discussed that are rele-
vant for the case of a train station. For a discussion of sensing technolo-
gies, including guidance on making the most appropriate choice for selected
practical applications, we refer instead to Turner et al. (2007), Bauer et al.
(2009) and the aforementioned Traffic Monitoring Guide (U.S. Department
of Transportation, 2013).

OD flow data: OD flow data represent direct observations of OD demand
that are obtained from surveys, pedestrian tracking systems, or ICT sensors
(e.g. Bluetooth and WiFi scanners for smartphones). Such observations are
generally expensive to collect and rare (Bauer et al., 2009).

Automatic collection techniques depend on the location of sensors, and
their sampling rate. Typically, they do not cover the entire network of
interest. Also, if only a subset of pedestrians is detected, this needs to



be corrected by means of sampling rates. Their estimation is difficult, as
they are generally time- and location-dependent (Bauer et al., 2009). There
exist two ways to deal with that. Either the sampling rates are estimated
a priori, or directly within the OD estimation process. While the latter is
theoretically more attractive due to its generality, it is also computationally
more expensive.

Link flow data: In analogy to car traffic, a pedestrian facility may be
thought of as a network of links. Links denote walkways or walkway sec-
tions, such as a part of a corridor, stairway, or an escalator. On links, flows
can be observed at a physical gate, such as a turnstile or a train door, or
at a virtual gate like the entrance of a walkway. Link flow data represent
indirect observations of OD demand, and depend on route choice decisions
and prevailing traffic conditions.

Link flow data are typically more accurate than OD flow data, but sam-
pling may still be an issue, especially for camera-based detectors (Ganansia
et al., 2014). The number and position of detectors plays a crucial role for
the observability of OD demand (Gentili and Mirchandani, 2012; Yang and
Fan, 2015). Ideally, if a link exclusively serves routes associated with a
single OD pair, a well-placed detector may be used to directly infer the
OD volumes for that particular OD pair. Also, if detectors are located on
links that are adjacent to origin and destination nodes, they may provide
an estimate of the generation of that node. On the other hand, if measure-
ments are highly correlated, further sensors may not provide substantial
additional information.

Other traffic condition data: Other traffic condition data include den-
sities, walking speeds and point-to-point travel times. They characterize
the system response of the traffic network to a given OD demand.

Such data may be obtained from pedestrian tracking systems or ICT
sensors. Speed or density measurements can for instance help to identify
whether a link is in a congested or uncongested state, and thus to adjust
the OD demand in one way or another (Djukic et al., 2015). There exist
several ways of including this type of input data in the estimation process.
One is to include it in the objective function of the estimation problem.
A DTA model is then used to define the relationship between OD demand
and traffic conditions, and a match between observation and estimation



is sought. Alternatively, traffic condition data may be used to replace the
DTA model altogether. For instance, Montero et al. (2015) use travel times
collected from ICT sensors to estimate the travel time distributions. These
are then used as time-varying exogenous model parameters.

Train timetable and ridership data: Pedestrian demand within a train
station and the train timetable are inextricably intertwined. To establish
a formal relationship between the two, the train-track assignment and the
train exchange volumes are useful, i.e., the number of boarding and alight-
ing passengers for each train.

Unplanned changes in the train timetable and train-track assignment
are common in most railway systems around the world (Higgins and Kozan,
1998; Cule et al., 2011). For highly inter-connected timetables or dense
railway traffic, a single delayed train may cause a domino effect of secondary
delays due to infrastructure restrictions, connection constraints or logistics.
Several approaches are available to predict the actual timetable based on
the scheduled one (Goverde, 2007; Yuan and Hansen, 2007).

The train exchange volumes may be inferred from traffic surveys, ticket
sales, or train capacities. Additionally, some trains are equipped with door
counters that not only allow for an automatic detection of these volumes,
but also for an estimation of their distribution across vehicles. Especially
on long platforms, such distributional information can be important for an
accurate understanding of the usage of a train station.

Other data: Further data sources can be useful to narrow the solution
space. Such information typically comes in the form of survey data. In
many train stations, service and sales points are found. The number of
customer visits to these places may be known, and can be used as an a
priori estimate of the corresponding origin or destination flows. Similarly,
railway operators often have an idea of the relative share of certain user
classes, such as transfer passengers. This information may be used in the
form of destination split ratios.



3 Methodological framework

This section presents a methodological framework for estimating pedestrian
OD demand based on the notion of a train timetable, and an exemplary
specification that is applicable to any suitable train station. Section 4 then
presents a case study based on that specification.

3.1 Notation

A recapitulation of important variables 1s provided in Appendiz A.

3.1.1 Time and space representation

The time period of interest is divided into a set of discrete intervals 7,
where each interval T € 7 is of uniform length At.

Walkable space is represented by a directed graph G = (N, L), where
N is the set of nodes v € A, and £ the set of directed links A € £. Cer-
tain elements of pedestrian facilities, such as stairs or corridors, translate
naturally into links, and others naturally into nodes, like for instance OD
areas. For other elements, such as waiting halls or platforms, a decompo-
sition into areas can be made. An area « is associated with a subnetwork
(Ny, L) denoted by G,. The set N, contains all the nodes corresponding
to physical locations in the area, and £, C £ all links such that their two
incident nodes belong to N,. Areas are allowed to overlap, and their union
is not required to cover the full network.

Fig. 1 illustrates the proposed space representation. Railway tracks are
denoted by dotted lines. Levels are bridged by ramps and stairways, de-
noted by standard floor plan symbols. Platform sectors are represented by
centroids shown as rectangles with rounded corners. They may be associ-
ated with one or a pair of railway tracks. Further centroids are shown as
squares, which include sales or service points, or exit/entrance areas. The
pedestrian walking network is represented by solid lines. An exemplary
area is shaded.

3.1.2 Demand representation

Nodes through which pedestrians enter and leave the pedestrian network
are referred to as centroids, and their set is denoted by C C N.



Figure 1: Network topology at the example of a simple train station.

We assume that the network is connected, i.e., any two centroids are
connected by at least one route. A route p is a sequence of links connecting
two centroids, p = (A1, Az,...). A sequence of links that does not connect
two centroids is called a subroute. The set of routes and subroutes is
denoted by R and Rgyup,, respectively.

Each pedestrian is associated with a pair of centroids, denoted by k €
where K is the set of OD pairs. In principle, it is possible to associate pedes-
trians with further attributes, such as behavior classes (Wong et al., 2005).
The necessary extension is straightforward, and useful if personal attributes
such as trip purpose, age or gender are available. In the interest of a more
readable notation, in this work a single-class formulation is considered.

The number of travelers associated with OD pair k that depart during
time interval 7 is represented by d... We refer to this variable as demand.
Demand is by nature stochastic, i.e., it varies from day to day.

A set of demand indicators is derived from OD demand to facilitate the
formulation of the structural and measurement models. These include in
particular link flows and area accumulations. Flow is cumulative over a
time interval T. Accumulation is defined as the time-mean average number
of users in an area (Edie, 1963). Table 1 provides an overview of these in-
dicators. Further demand indicators are defined in Section 3.2 to integrate
specific data sources.



Table 1: List of demand and demand indicators. The unit is ‘number of pedes-
trians per unit of time’, unless stated otherwise.

d = [d« ] Demand d . associated with OD pair k and departure time interval T,
and time-space expanded vector d of length |K||T].

=1l Flow fj . entering link A during time interval T, and time-space ex-
panded vector f of length |L||T].

a = [aq, ] Time-mean average accumulation ay . on area « during time interval
T, and time-space expanded vector a of length |A||T].

eo = [e2f], Train exchange volumes associated with alighting, e?¥, and boarding,

€on = [€7] e2”, of train ¢, and corresponding vectors e.g and eo, of length |K|.

The unit is ‘number of pedestrians’.

3.1.3 Representation of trains

A set of trains Z is considered. For a train ¢ € Z, 17" and t‘gep denote the
actual arrival and departure time in the train station. They are assumed to
follow a known random distribution that may be obtained empirically, or
from any suitable delay model. Each train is associated with an alighting
and boarding volume, referred to as train exchange volumes and denoted
by e‘gﬂ and e?", respectively. The platform serving train ( is denoted by 7.
Each platform 7t € P, with P the set of all platforms, is associated with a
set of centroids, C, C C.

3.2 Data requirements

To distinguish between model estimates and actual observations, ‘biased’
variables such as measurements are marked by a hat (e.g. ﬂ Often, such
observations are not available for the complete network, or only for certain
time intervals. Vectors containing a reduced set of variables are marked by
a prime (e.g. f’), and a reduction matrix A is defined that relates each of
them to the corresponding full vector (e.g. f' = A¢f).

For the estimation methodology, availability of the actual train timetable,
t7" and tgep for each train ¢ € Z, and of the corresponding exchange
volumes /e“gff, €2" is essential. Moreover, partial indirect observations of de-
mand, for instance in the form of link flows f” or area accumulations &, are
required. These observations need to be such that demand micro-patterns
of individual trains are captured, i.e., an aggregation in the order of min-



utes is desirable. Availability of an a priori estimate of demand d' is useful
to improve the estimation, but not mandatory.

Example specification: To illustrate the demand estimation method-
ology, a concrete specification is elaborated. For that purpose, several
assumptions are made throughout the document. The general estimation
methodology is independent of these assumptions.

Assumption 1 (Data availability) Available are (i) the actual train
timetable, (it) train exchange volumes, (1i1) partial observations of link
flows, (wv) aggregate destination split ratios (e.g. from travel surveys),
and (v) cumulative origin and destination flows for selected centroids
(e.g. from sales data). For validation, (vi) partial observations of area
accumulations, and (vit) flows along selected subroutes are available.
No historical demand prior s considered.

To capture the format of these data sources, additional demand indica-
tors are defined in Table 2.

Table 2: Additional demand indicators.

Sfsup = [fZ“‘E] Subroute flow eZ“‘E reaching subroute ¢ during time interval T,

and time-space expanded vector foup Of length |Rsup||7T]. Its
unit is ‘number of pedestrians per unit time’.

% . .. t . .
Fout,cum = [FY"°™™]  Cumulative origin flow f$*"“"™ emanating from centroid v dur-

ing the time period 7, and vector foutcum Of length |C|. Its
unit is ‘number of pedestrians’.

fin,cum = [fimcum] Cumulative destination flow f.*°*™ reaching centroid v during

time period 7, and vector fincum Of length |C|. Its unit is
‘number of pedestrians’.

avg]

Tavg = (T3 Time-mean average ratio v5 © of users headed for a platform

in the origin flow at centroid v during time period 7, and
vector rayg of length |C|. The destination split ratio 3¢ is

dimensionless.

3.3 Structural model

The structural model describes the relationship among the various variables
involved in the framework. We consider two parts, namely an assignment
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model, and a schedule-based model that considers the arrivals and depar-
tures of trains.

3.3.1 Assignment model

A pre-specified aggregate network supply model, referred to as assignment
model, is assumed to exist. It is designed to derive the demand indicators
from a given demand, depending on a parameter vector y. If X' (d;y) de-
notes the assignment model, and if X, is its output with respect to demand
indicator (-) and 7.y the corresponding structural error, the aforementioned
demand indicators may be expressed as

f=2(d;y) +ny, (1)
a = X.(d;y) + .. (2)

In this work, we assume the vector y to be known a priori, but note that
it could also be estimated simultaneously with demand. Such an approach
incurs substantial computational cost, and is not commonly pursued in the
literature (Cascetta and Improta, 2002).

To implement Eq. (1) and Eq. (2), any suitable supply model may be
used. It can be a simple linear mapping, or a detailed commercial DTA
model such as PTV Viswalk or Legion for Aimsun. Essential is that basic
supply variables like flow and density are provided. Additional information
such as user class-specific properties or walking speeds may be useful to
improve the estimation.

Internally, most assignment models perform two steps to obtain an es-
timate of demand indicators. First, OD demand is mapped to route flows
by means of a route choice model. For a given OD pair and known link and
route attributes, it identifies the route that a traveler would select. The
choice of alternatives, and all attributes are assumed to be known. A large
number of route choice models are available for that purpose (see e.g. Dial,
1971; Cascetta et al., 1996; Ben-Akiva and Bierlaire, 2003; Frejinger and
Bierlaire, 2007). Second, a network loading model is used to describe the
propagation of pedestrians along the routes. A large number of models is
available in the literature as well (e.g. Lgvas, 1994; Helbing and Molnar,
1995; Blue and Adler, 2001; Hughes, 2002; Antonini et al., 2006; Hanseler
et al., 2014). To represent heterogeneity among pedestrians, route choice
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and network loading are usually expressed by means of probability distri-
butions.

Both route choice and network loading are subject to prevailing traffic
conditions, and thus mutually dependent. If the dependency on prevailing
traffic conditions is neglected, the relationship between demand and de-
rived indicators becomes linear (Cascetta and Improta, 2002). This holds
true for an uncongested network. Alternatively, if the traffic situation is
known a priori through direct measurements, an estimate of the assign-
ment maps may also be obtained without considering the demand (see the
aforementioned example by Montero et al., 2015).

If on the other hand a network is congested and link travel times are
unknown, a problem of circular dependence arises between the demand
estimation and the network supply model. One way of dealing with that
is by formulating a bi-level optimization problem that explicitly includes
traffic equilibrium conditions. Among the most popular studies pursuing
such an approach are those by Fisk (1988), Yang (1995) and Florian and
Chen (1995). An alternative way to consider the mutual dependency be-
tween the demand and supply model is by using a fixed-point formulation
(Cascetta and Postorino, 2001; Bierlaire and Crittin, 2006).

Example specification: An assignment model for pedestrian walking
facilities in a train station with a low level of congestion is considered.
It consists of two independent models for route choice and network load-
ing. For the sake of simplicity, we consider an assignment that is demand-
independent.

Following Dial (1971), we adapt a probabilistic route choice model that
is suitable for traffic assignment and behaviorally accurate in the context
of pedestrian flows (Bierlaire and Robin, 2009).

Assumption 2 (Route choice) The route choice decision rule is given
by a logit model, where the cost of a route 1s equal to the sum of link
traversal times. The set of routes is finite and known.

Following Mustafa and Ashaari (2015), we assume that walking speed
in pedestrian facilities of a train station with a low or medium level of
congestion is normally distributed (LOS E or better, Highway Capacity
Manual, 2000, Exhibit 18-3).

12



Assumption 3 (Network loading) The propagation of pedestrians along
routes 1s described by a demand-invariant walking speed distribution
f,(v). The corresponding cumulative distribution function is denoted

by F,(v).

The resulting mathematical specification of the assignment model is
provided in Appendix B.

3.3.2 Schedule-based model

The schedule-based model establishes a relationship between OD demand
and train exchange volumes. It is based on the assumption that the alight-
ing volume of trains served by a specific platform is related to the demand
emanating from centroids representing that platform, and vice versa for
boarding volumes.

Pedestrian demand within a train station is associated with alighting
volumes by an assignment matrix H = [h ] and a corresponding error
€. such that

Eoff = Hd+ Eoff. (3)

The error e, takes into account pedestrians that visit a platform by
mistake, or e.g. to accompany a passenger. The entry h . r) represents the
proportion of pedestrians associated with OD pair k and departure time
interval T that have alighted from train (. It is high if the time interval
T coincides with the idling time [tg", gep] of train ¢ on platform 7, and
if the origin node v? of OD pair k is associated with the corresponding
platform, i.e., if v2 € C,;. Otherwise, it is zero. Under the basic assumption
that demand is distributed homogeneously within a demand interval, the

entries of the assignment matrix H are given by

’ [tg‘”,t‘éep} mr) /It i Ve € Cn,

he (ko) =

(4)

0 otherwise,

where |T'| represents the length of time interval 7'.
In principle, a similar approach may be used to relate OD demand to

|
boarding volumes. However, it is difficult to find a meaningful specifica-
tion of the corresponding assignment matrix. Prospective passengers often

arrive at the platform long before the scheduled departure, which may be

13



due to constraints imposed by the schedule of tertiary transport modes, or
a high risk aversion (van Hagen, 2011). We leave the development of an
appropriate arrival process, for instance based on a Poisson distribution,
for future research.

For now, boarding volumes may be considered in a temporally aggre-
gated way. We denote by fdeP<u™ the cumulative departure flow from plat-
form 7t during time period 7T, given by

fiep,cum = Z Z Z dK,TAt) (5)

T€T vECH ke dest

where the set K9 contains all OD pairs with destination v. The corre-
sponding vector fiepcum = [foP"®] is of length |P|.

If e, represents a vector containing structural errors, the vector of cu-
mulative platform departure flows can also be expressed by summing over
the boarding volumes of the served trains, i.e.,

fdep,cum = X(eon) + o) (6)
where x = [x] is given by

Xn(eon) = Z egn> (7)

and where Z. is the set of trains associated with platform 7.

Eq. (6) provides no information about the distribution of demand across
time. Similarly, Eq. (3) may not provide significant temporal information
unless the train idling times are of approximately the same length as the
discretization time intervals.

Empirical relations between OD demand and exchange volumes may
instead be used to obtain such temporal information. This approach is
illustrated at the example of ‘train-induced arrival flows’, and further dis-
cussed in the specification below.

We assume there exists an empirical model that predicts the flow on
platform exit ways caused by pedestrians that have alighted from a train.

Let £2* denote the set of links representing the exit ways of platform
7, and §,.(e.s;y) a model that predicts the cumulative flow on link A €
L3 during time interval T based on the arrival times of trains and their
alighting volumes. If (e qs;y) = [dr-] represents the corresponding time-
space expanded vector, it holds that

.farr - (P(eoff;y) + €y (8)
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where €, denotes a structural error, and where the flow vector associated
with arrival links is given by

farr — Aarrf (9)

and where the reduction matrix A,,, is of size |L3||T| x |L||T].

Eqg. (8) can be used to merely complement, or to replace Eq. (3). If
an accurate empirical model is available, Eq. (3) does not provide much
additional information, and can be omitted. This is assumed to be the
case in the specification below. If on the other hand both Eq. (3) and
Eq. (8) are used, a strong correlation among their error terms is likely to
exist and needs to be explicitly considered.

Example specification: Our approach is inspired by Benmoussa et al.
(2011) and Lavadinho (2012).

Assumption 4 (Schedule-based model) Flows on platform exit ways
consist of independent ‘arrival flows’ induced by trains served by the
corresponding platform. These ‘train-induced arrival flows’ follow a
piecewnse linear model, characterized by a lagged onset of flow after
the train arriwal, and a constant flow thereafter until all passengers
have left the platform.

Assumption 4 allows to empirically predict the platform exit flows by
decomposing them into the independent contributions of each train. As-
sume that for a train (, the arrival flow rate at continuous time t on link
A € LZT is given by (f)m(t; e‘gﬁ, t¥", y). The platform exit flow during time
1r1terva1 T on link A € £ is then given by

Dre :J Z boa(t; 2 127, y) dt. (10)
t

€T ez,

Let 135 =1, (e°f) denote the total exit flow rate associated with platform
7t if train ¢ € Z,; with alighting volume e‘gﬂ has arrived, and let Atlag be
the lag time representing the delay between the arrival of train ( and the
onset of flow on link A € £3. This lag time takes into account the walking
time, a potential lag between the arrival of a train and the time at which
train doors open, and random delays. It may be modeled as a normally
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distributed random variable, and assumed to depend on the platform only,
ie., At = At where m = mr; (Molyneaux et al., 2014).

Assuming that the total exit flow rate of platform 7t is shared according
to platform sector split fractions %% with 3, ran 755

link A associated with train ¢ € Z. is given by

=1, the flow rate on

rsf, te (tgff + ALES T+ AL 4 eof /FC> ,

bea(t) = (11)

0 otherwise.

Fig. 2 illustrates the cumulative arrival flow associated with Eq. (11).
The solid curve illustrates an observation from Lausanne railway station
(Molyneaux et al., 2014), and the dash-dotted curve a piecewise linear ap-
proximation.
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Figure 2: Model for train-induced arrival flows.
The total platform exit flow rate f,(e°®) is assumed to depend linearly
on the alighting volume e°® at low values, and to reach saturation at a

platform-specific threshold e&. If q,, b, and c, represent shape parame-
ters, the total exit flow rate on platform 7t is given by the stochastic model

fr(e) = 3 (%) + (0, qx), (12)
where the deterministic part of the flow rate is specified as

f;i[et (eoﬁ) — {

bef + ¢, if et < et

b.e* + ¢, otherwise.

(13)
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Eqg. (11) and Eq. (12) may be specified based on studies by Weidmann
(1992), Buchmiiller and Weidmann (2008) and Molyneaux et al. (2014).
Alternatively, they can be calibrated on actual data. An example of the
latter is provided in Section 4.

3.4 Measurement model

The measurement model links the structural model to a priori information
and measurements, which are useful for the estimation of demand, and for
validating the obtained results.

For each data source, a random error term takes into account the un-
certainty it is afflicted with, and the aforementioned reduction matrices
account for the incomplete coverage of the data collection infrastructure,
ie.,

d = Agd + W), (14)
f=Af +w, (15)
a' = Aja+w, (16)
e, = Apeon +w., (17)
o = AotCot T W (18)

The measurement errors w(.) are generally correlated, both across time
and space. Temporal correlation occurs if a sensor is malfunctioning, or if
it reaches saturation. Spatial correlation is a concern if two sensors capture
similar information, for instance if they are placed nearby. For an efficient
statistical inference, these effects need to be taken into account by using
an appropriate covariance matrix.

Example specification: For the illustration of the model, the estimation
problem is reduced to a formulation that is linear in the unknown demand
vector.

The cumulative origin and destination flows as well as the destination
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split fractions are obtained by aggregation, i.e.,

e = 3 Y dyqAtL, (19)

€T e KSrie

e =% Y deLAt, (20)

TET kekdest

E=Y Y de A/ (21)

€T kekS8 vdeCp

where v¢ is the destination of OD pair k, and where K¢ and K2** denote
the set of OD pairs which originate and terminate in centroid v, respec-
tively.

Assumption 5 (Measurement model) The distribution of train ez-
change volumes s a priori known, and used to pre-compute cumulative
platform departure as well as platform arriwal flows.

The measurement model is given by Eq. (15), as well as by

ﬁut,cum = Agut fout,cum + Wout (22)
f\i,n,cum = A fin cum + Wiy, (23)
Pryg = ArTayg + . (24)

@ =Auf + wy, (25)

X = fdep,cum + wy- (26)

Eq. (25) and Eq. (26) consider empirical estimates of platform arrival and
departure flows, ¢ and ¥, which are pre-computed based on the train
timetable and a priori known train exchange volumes. This pre-processing
is useful to simplify the solution of the example specification, but not a
necessity of the framework.

3.5 Estimation problem

The estimation problem consists in finding the distribution of the OD de-
mand volumes d* such that (i) actual observations of demand indicators are
reproduced at best, (ii) platform arrival and platform departure flows are
‘most consistent’ with empirical predictions based on the train timetable,
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and (iii) the resulting estimate matches the historical one in case the esti-
mation problem is underdetermined.

In the most general case, these three objectives are captured by a joint
distance measure dist(-). A statistically meaningful specification can be
found using pure likelihood methods, or within the Bayesian framework,
and depends on the assumptions that are made regarding the distribution
of the error terms (Hazelton, 2000).

Alternatively, if the cross-correlation across the three objectives is neg-
ligible, the joint distance measure can be replaced by three separate terms
distops(-), distsenea(-) and distpit(-). The estimation problem reads then as

/

é\;n on
.. e e ) @’ ’ .
d’ = argmin dist off off ) 4dist arr +disty (d, d') .
y %20 obs < f/ ) f/ > sched X/ ) féep,cum hist < ) >
6;/ a/

(27)
While the distance measures in Eq. (27) are mutually independent, inter-
nally they may still consider complex error structures that, for instance in
the context of least squares, can be taken into account by inner weights.

When solving Eq. (27), it is critical not to rely on point estimates. The
demand vector d* is generally distributed, and follows a complex distri-
bution that is insufficiently described by a single value such as its mean.
The distribution depends both on the variation of input variables, which
can be distributed themselves, and on the uncertainty involved in terms of
modeling and measurement errors.

To approximate the distribution of d*, Monte Carlo sampling may be
used. Demand on each day is assumed to represent independent random
variables that follow a joint distribution. This is valid as long as seasonal
effects are absent and no significant one-off events affect the network.

Example specification: As often done in practice, the correlation be-
tween error terms is neglected (Cascetta and Improta, 2002).

Assumption 6 (Error terms) Each error term w() follows an inde-
pendent, unwvariate normal distribution with zero mean.

Based on Assumptions 1-6, Eq. (27) reduces to a constrained, general-
ized least squares (GLS) problem both in the context of maximum likeli-
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hood and Bayesian estimation (Cascetta et al., 1993). It consists in finding
d; = arg mindzo WﬂOW”f, - leg +
o et 2 e el 2 A — ! 2
Wout ” fout,cum fout,cum HZ + Win H -fin,cum fin,cumHZ + Wratm” avg Tavg”z +
WarrH@_farr”%+Wdep”2_fdep,cumH%) (28)

where the parameters w(., denote weights whose specification is discussed
below.

The first term on the RHS of Eq. (28) represents the distance between
the observed link flows and those predicted by the model (see Eg. 1, 15).
The terms on the second line consider the distance between model predic-
tion and survey data in terms of cumulative origin and destination flows
(Eq. 19, 22 and Eq. 20, 23), as well as in terms of destination split ra-
tios (Eq. 21, 24). The two terms on the last line consider the distance to
the pre-computed train-induced arrival flows (Eq. 8, 10, 11, 25) and the
cumulative platform departure flows (Eq. 5, 6, 26).

For optimal statistical efficiency, the weights w(.) are assumed equal to
the reciprocal of the variance of the corresponding error term, i.e., Waow =
1/ Var(nj+w}), Wous = 1/ Var(wy,), Win = 1/ Var(w!, ), Weaso = 1/ Var(w!),
Warr = 1/Var(e(,) and wgye, = 1/Var(ey ). In practice, these variances are
unknown, and need to be estimated (Cascetta and Improta, 2002).

In this work, an active set method (Lawson and Hanson, 1974; Bierlaire
et al., 1991) is used to solve the KKT conditions for the resulting non-
negative least squares problem, Eq. (28). If several optimal solutions exist,
the one with the lowest norm is selected, yielding a solution with maximum
entropy (Cascetta et al., 1993).

4 Case study

To demonstrate the applicability of the proposed framework, a case study
of Lausanne railway station is carried out. All code developed for the im-
plementation, including the assignment model, is freely available (Hanseler
et al., 2015Db).

4.1 Description

Lausanne railway station is the largest train station in French-speaking
Switzerland, serving approximately 120’000 passengers with about 650 ar-
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riving and departing trains every weekday (Amacker, 2012). Fig. 3 shows
a schematic map of the station. It encompasses ten tracks (#1-#09, #70)
that are served by platforms #1, #3/4, #5/6, #7/8, #9 and #70. Plat-
forms and entrance/exit areas, as well as four service points are represented
by centroids. These are connected by a network of walking facilities, which
at its heart has two pedestrian underpasses (PU), referred to as PU West
and PU East. Each of them is partially covered by a pedestrian tracking
system (corresponding areas are shaded). Dashed lines represent network
links that cannot be represented in the scheme. Pedestrian counters are
represented by diamonds. Stars denote cordons at which platform exit
flows are empirically estimated. All links and flow sensors are directed.

Figure 3: Schematic map of Lausanne railway station.
The demand peak over a weekday is reached at around 07:45 (AM) when

21



several long distance trains arrive and depart in close succession (Gendre
and Zulauf, 2010). In the ensuing analysis, we consider the time period
between 07:30 and 08:00 with a temporal aggregation of one minute. Data
for a set of 10 ‘reference weekdays’ is available, namely for January 22 and
23, February 6, 27 and 28, March 5, as well as April 9, 10, 18 and 30,
2013. These dates represent a set of typical weekdays (Tue, Wed, Thu)
without major disruptions in the railway system, for which the following
data sources are available.

OD flow data: Subroute flows are available for the two pedestrian under-
passes, in which an elaborate pedestrian tracking system consisting of more
than 60 tracking sensors has been installed. Details of the installation, as
well as of the accuracy of observations, are described by Alahi et al. (2013).
OD flow data is used for validation only.

Link flow data: Ten links of the pedestrian walking network, marked
by diamonds in Fig. 3, are equipped with sensors that provide directed
link counts with a resolution of one minute. To account for sensor satura-
tion, observations are post-processed using a quadratic correction function
(Ganansia et al., 2014)

Traffic condition data: Pedestrian trajectories obtained from the afore-
mentioned tracking system allow to compute the accumulation in pedes-
trian underpasses, which is also used for validation.

Train timetable and ridership data: During the time period of in-
terest, a total of 25 trains stop at Lausanne railway station (see Hénseler
et al., 2015a, for the train timetable). The actual arrival and departure
time and the assigned track are known for each train and day. An average
estimate of boarding and alighting volumes is available from ticket sales
data, within-train surveys, and infrared-based counts at train doors (SBB-
Personenverkehr, 2011). These estimates date back to the year 2010 and
are increased by 15% using the official growth rate (Gendre and Zulauf,
2010). They are considered as random normal variables with a standard
deviation equal to 19.2% of their mean (Molyneaux et al., 2014).
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Other data: For the sales points located in PU West (see Fig. 3), an
estimate of the number of customer visits is available. There are further
restaurants and sales points in the train station building, represented by
a generic ‘service point’, for which however no information is available,
and which are not considered in the demand analysis. Besides sales data,
information on destination split ratios is available (Benmoussa et al., 2011;
Anken et al., 2012; Lavadinho et al., 2013).

4.2 Assessment

To assess the efficiency of the proposed framework, two estimators are com-
pared. A ‘base estimator’, representing a minimum norm solver taking into
account link flow data only, and a ‘full estimator’, that additionally con-
siders a ‘static’ and a ‘dynamic’ prior (see Fig. 4).

travel surveys/
sales data |

train timetable/
ridership data

static prior

dynamic prior

‘link flow data

[demand estimator]

[trafﬁc assignment modelﬁ T
OD flow databoc-- oo ="

\iarea accumulation data} ________ validation

Figure 4: Scheme of the specification of the demand estimation framework.

The static prior includes cumulative origin and destination flows ob-
tained from sales data and platform departure flows, as well as destination
split fractions. The dynamic prior represents pre-computed train-induced
arrival flows. OD flow data and traffic condition data are used for vali-
dation. In a real context, once the specification is successfully validated,
these two data sources would also be integrated in the estimation process
to improve the quality of the estimate (dashed arrows in Fig. 4).
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4.3 Parametrization

The pedestrian walking network of Lausanne railway station disposes of a
unique shortest path between every OD pair. During peak periods, regular
commuters constitute the largest user group, which are familiar with the
facilities (Lavadinho, 2012; Ton, 2014). Following Lavadinho (2012), they
almost exclusively travel along these shortest paths, obviating the need for
a route choice model.

To describe the propagation of pedestrians along routes, the walking
speed distribution proposed by Weidmann (1992),

v~N(1.34 m/s,0.34 m/s), (29)

is used. It holds for even walking areas; link lengths on inclined areas or
stairways need to be adjusted beforehand (Weidmann, 1992). The valid-
ity of speed distribution (29) has been empirically verified based on the
available trajectory recordings, which show no significant signs of demand-
supply interaction (Héanseler et al., 2015a).

The schedule-based model is parametrized empirically (Molyneaux et al.,
2014). Fig. 5 shows the total exit flow rates observed for platform #3/4, as
well as the corresponding model fit. At low volumes, the flow rate increases
linearly until a threshold is reached, beyond which the flow rate remains
constant. The solid curve denotes the predicted flow rate according to
Eq. (12), and the dashed lines the width of the prediction band in terms
of + one standard deviation.

Two observations may be made. First, the length of a train, measured
in number of passenger cars, N,;, does not have a significant influence on
the flow rate. This is explicitly pointed out since the train length is shown
below to have a considerable influence on the platform sector split fractions
T8 Second, the flow rates are relatively high, such that the duration of flow
is typically below one minute (up to an alighting volume of 333 passengers),
and never exceeds 2 min.

Based on this specification, Fig. 6 shows the predicted exit flow for
platform #5/6 on April 10, 2013, as well as the corresponding observation.
The prediction band results from 7500 Monte Carlo samplings of Eq. (6).
The alighting volumes egff of each train ( are inferred from the historical
ridership data mentioned in Section 4.1. A logarithmic probability density
plot shows the expected cumulative arrivals as well as the arrival rate as a
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Figure 5: Total platform exit flow rate f on platform #3/4.

function of time. A good agreement between observation and prediction is
found, although the prediction band is relatively wide. This indicates that
the variation in alighting volumes across days is high.

The split fractions %% depend on various factors such as the length
of a train, its position along a platform, the distribution of passengers
within a train, as well as their immediate next destination. Fig. 7 shows
measurements from platform #3/4. The results are grouped by train length
and ordered by alighting volumes. For short trains with n.,, = 4, mostly
the interior platform sectors B and C are used. This is true particularly
if the alighting volume is low. For larger trains with n.,, > 7, the lateral
sectors absorb a larger share, and the influence of the alighting volume is
smaller.

In the framework of this study, two different specifications of the plat-
form sector split fractions for short trains (n., = 4) and long trains
(Near > 7) are considered. For each case, a multivariate normal distri-
bution is developed, from which the train- and link-specific platform sector
split fractions ¢% can be drawn (Molyneaux et al., 2014).

The weights of demand indicators in Eq. (28) are determined based
on the premise that pedestrian trajectory recordings represent the truth.
Given the accuracy of the trajectory recordings, and their high spatial and
temporal resolution compared to the other data sources, this assumption
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Figure 6: Train-induced passenger arrival flow for April 10, 2013.

seems justifiable. It allows to estimate the variance of the errors associated
with the link flow data and the platform exit flows inferred from the train
timetable. If, without loss of generality, the weight associated with link
flow data is set to one, Waoy, = 1, a value of Wayn = Wary = 0.69 results for
the weight of the dynamic prior.

Regarding the weight of the static prior, Wgat = Wiyout,in ratio,dep}, ODLY
little variation in the resulting demand estimate is perceivable in the range
107 < Wgia < 107", For lower values, due to numerical errors, its influence
on the model estimate vanishes completely; for values larger than 107, its
influence grows rapidly. Given the relative inaccuracy of the data sources it
contains, the static prior mainly serves to narrow the solution space. Thus,
a value of Wy = 107" is used.

The resulting size of the estimation problem is given by the number
of considered OD pairs, and the number of time intervals. To account
for artificial transients during a potential ‘heat-up’ of the estimation, the
computations include an additional 7 minutes both at the beginning and
the end of the 30-minute analysis period. Therefore, an estimation problem
with a total of 16’280 unknowns has to be solved per day. For each day,
24 Monte Carlo samplings of Eq. (28) are conducted, which is sufficient to
generate reproducible and numerically stable results.
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Figure 7: Split fractions of arrival flows across sectors on platform #3/4 grouped
by train size and ordered by alighting volumes (increasing from left to right).

4.4 Results

The temporal evolution of total demand in PU East and PU West is shown
in Fig. 8, in which the base and full estimator are compared to actual obser-
vations. Both the expected values, and the prediction bands are shown. In
the considered period, the demand fluctuates between less than 70 and more
than 500 ped/min, i.e., by almost an order of magnitude. Both estimators
are capable of following the overall trend. The base estimator, however,
tends to underestimate the peaks, and underestimates the cumulative de-
mand by more than 20%. The full estimate mostly represents an accurate
guess of the peak amplitudes, and yields an error of less than 4% for the
overall demand. It performs between 40.8% (MAE) and 46.7% (RMSE)
better than the base estimator. A similar finding results by investigating
the accumulation in PU West and PU East, for which the improvements
for MAE and RMSE amount to 49.9% and 40.7%, respectively (no figure
shown). The lowest average accumulation of 56.6 pedestrians is reached
between 7:59 and 8:00, and the maximum of 261.5 pedestrians between
7:43 and 7:44.

The ability of the two estimators to reproduce platform exit flows can
be assessed in Fig. 9, showing a scatter plot of observed and estimated flows
for platforms #3/4 and #5/6. The accuracy of these estimates is important
for the dimensioning of platform access ways. The total platform exit flow
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Figure 8: Total demand in PU East and PU West. Data: 10-day reference set,
2013.

is underestimated by the base model by -18.33%, and overestimated by the
full model by 6.98%. The improvement in MAE and RMSE amounts to
30.26% and 23.35%, respectively.

Table 3 provides the RMSE for subroute flows and area accumulations
in PU East and PU West for different estimators. Compared to the base
model, in particular the incorporation of the dynamic prior leads to a sig-
nificant improvement. In fact, the consideration of the train timetable
increases the prediction quality more than sales data, information of desti-
nation split ratios and cumulative platform departure flows together. The
full model globally performs best, even though the accumulation estimate
is slightly worse than in the case with a dynamic, but no static prior. Sim-
ilar findings result if instead of RMSE another statistical measure, such as
MAE, is used.

For further details of this case study, see Hénseler et al. (2015a).
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Figure 9: Arrival flows at platforms #3/4 and #5/6. Data: 10-day reference set,
2013.

Table 3: RMSE for subroute flows and accumulation in PU East and PU West.
Data: 10-day reference set, 2013.

subroute low accumulation

Base estimate 3.52 ped/min 58.84 ped
Estimate with static prior (STAT) +2.43% -15.03%
Estimate with dynamic prior (DYN) -15.59% -41.76%
Full estimate (STAT + DYN) -31.07% -40.74%
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5 Conclusions

A framework for the time-dependent estimation of pedestrian origin-destination
demand within a train station has been presented. Besides direct and indi-
rect demand indicators such as flow counts or sales data, the train timetable

is explicitly taken into account. This is achieved by establishing an em-
pirical relation between the arrival of a train and the subsequent flow of
alighting passengers on platform exit ways. The formulation of the frame-
work is such that it can be applied to various types of railway stations and
may be used with different data sources.

A case study of the morning peak period in Lausanne railway station has
been presented. The obtained results are in good agreement with pedes-
trian tracking data that has been used for validation. A significant perfor-
mance gain has been shown to exist when the train timetable is used in
the estimation process. Moreover, spatial and temporal fluctuations, both
intra- and inter-day, have been investigated and are shown to be important,
justifying the use of a fully dynamic and probabilistic framework.

We can think of mainly two ways to extend the proposed framework.
An obvious way relates to its application to real-time applications, such as
traffic monitoring or crowd control. Another way is to focus on the improve-
ment of the presented model specification. Clearly, the empirical relation
between the train timetable and pedestrian movements can be strength-
ened, or a demand-dependent network loading model could be integrated.
Arguably the most pressing issue, however, is the explicit consideration
of correlation among measurements, which could significantly improve the
statistical inference.
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A List of variables (cf. Table 4)

Table 4: List of recurrent variables.

TeT, At
G=W,L),CcCcN
veN,AeLl, ac A
p=(A1,A2...), pER
ke

L€ Z, o, 43P

neP

d = [dy ]
=1\
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€on = [eczn]) Eoff = [e%ff]
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A
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time

graph, centroids

node, link, area

route

OD pair

train, arrival and departure time
platform

demand

flow

accumulation

exchange volumes
destination split ratio
reduction matrix
assignment model
parameter vector
schedule-based estimates
€rrors

platform sector split ratio

estimation weight

B Assignment model for walking facilities

This section outlines an assignment model for walking facilities in an un-
congested train station. In accordance with Assumptions 2 and 3 in Sec-
tion 3.3.1, the prevailing traffic conditions are demand-independent.

Route choice: The outcome of the route choice model is represented by
a route choice matrix R(y) = [v(pv) (v of size [R||T|x|Z||T|. An element
(o), (k) (y) denotes the probability that a pedestrian associated with OD
pair k and departure time interval T chooses route p during time interval
T'. Route choice is instantaneous such that v, =0 if T # 7.
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The time to traverse link A during time interval T is denoted by At;f)‘;“’ (y).
The travel time on route p during time interval T is given by

up,T(y) - Vp,T + Il), (30)

where 1 ~ EV(0,9) with ® a calibration parameter contained in y, and
where the sum of link travel times is given by

Vorly) = Z At‘;\f:v' (31)

AEp

For OD pair k, the likelihood that a user chooses route p € R is then

given by
exp(—0V,+)

ver, €XP(—Vy o) )

T, 60 (Y) = 5 (32)

Network loading: The network loading model defines mappings from
route flows to link flows and area accumulations. Table 5 defines the cor-
responding assignment matrices.

Table 5: List of considered network loading maps.

B =[b ), o)) The link flow assignment matrix B(y) is of size |A||T| x [R||T|.
The entry b(x ), (p,r)(y) represents the probability that a pedes-
trian associated with route p and departure time interval T
reaches link A during time interval 7’.

C = [¢(x,v),(p,x)] The area accumulation assignment matrix C/(y) is of size |A|| T x
|R||T|. The entry ¢(«,),(p,x)(y) denotes the expected contribu-
tion of a pedestrian associated with route p and departure time
interval T to the accumulation of area o during time interval t’.

Based on these definitions, we may write
X¢(d;y) = B(y)R(y)d, (33)

and
Y.dyy) =C(y)R(y)d, (34)

respectively.
Let the distance along a route p up to the beginning of link A be de-
noted by 22. Furthermore, let the departure times of pedestrians within a
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time interval be distributed uniformly, i.e., the distribution of continuous
departure time t for any route during a time interval T is given by

1

m(t):{ﬂ ift e, (35)

0 otherwise.

Assuming that each pedestrian is walking at a constant speed, the proba-
bility for a person on route p that departs during time interval T to arrive
on link A during time interval v’ is given by

b, = Pr(t € T, t' € Tlp,A)

A o
— P P
—Pr tET,VG t:_,—t’t;,—t ) (36)

where t; and t! represent the bounds of time interval T, and where t and t'

represent the continuous departure and arrival time, respectively. For the
most common case that 62 > 0 and T > T, we obtain

/()
J fy(v)g-(t) dv dt

b, (o) = J

t=tz Jv=03/(tf,—t)

1 t oA 2
= — Fv - - FV - dt' 37
At Jt_t; to—t th—t (37)

Similarly, if €) > 0 and T = T/, we obtain

b, =1 —Pr(temt &Tlp,A)

€7\
_ P
—1—Pr<t€T,vE[O, ])
th—t

1 t €7\
_1_ p _
=1-— Jt_t; Rty )~ R0 du (38)

Thus, the probability that a user associated with route p and departure
time interval T reaches link A during time interval T’ is given by

0 if ) =0, 1<,
1 if ) =0,t="1,
Eq. (37) if€)>0,t<7,
Eq. (38) if¢) >0, t="1.

b, o) = (39)
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Remark: The probability that a pedestrian associated with route p and
departure time interval T reaches subroute ¢ during time interval v can be
expressed as

(40)

g boge o if 0 € RE®,
(o7),(pyT) = .
arrer 0 otherwise,

where Rzub denotes the set of subroutes contained in route p, and A} the
first link of subroute p.

The assignment fraction for area accumulations can be derived accord-
ingly. Let us consider an area «, and let us assume that each route enters
and leaves area o at most once. Let v be the constant, individual speed
of a person traveling along route p, (2% the distance along the route p to

the entrance of area « and (%%

ot the corresponding distance to its exit. Con-

sequently, ti, = £€5%/v is the time after departure at which a person with
speed v enters area o and toy = €5 /v the corresponding time at which it
is exited. If a route p does not cross area «, then (2% = co. If we consider
a time interval [t™, t*] after departure, the expected sojourn time for this
person with constant speed v inside the area o« within the interval is given

by

tt— 0% /v if t= <0%/v <ttt < 0% /v,
s /v—1t if 0% /v <t <hh/v<th

o(w, 2%, 000 1, tT) =<ttt —t— if 0% /v <t <ttt <0%/v, (41)
(€55 — ) /v ift- <UR%/v < L83/v < tF,
0 otherwise.

\

In Eq. (41), the first line corresponds to the case where a person reaches the
area within the time interval, but does not exit it. The second line is the
inverse case. The third line represents the case where a person stays within
the area during the full time period. Finally, the fourth line represents the
case where a pedestrian enters and leaves the area during the period of
interest, and the fifth case the situation where a pedestrian is not present
in area « during the time interval at all.

Using Eq. (41), the expected contribution of a pedestrian traveling along
route p with departure time interval T to the accumulation of area « during
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time interval ' is given by

tf oo PX P& L — +
T o(v, 2% 0% 1, —t,th —t
Clo,t),(py7) :J J L °“”A; LT )fv(v)h’r(t) dv dt
t=ty Jv=0
1 0 t
=-— J fu(v) J o(v, 2%, 000t —t,th —t) dt dv.  (42)
At v=0 t=t

For an efficient implementation, we note that the assignment fractions (39)
and (42) are time-invariant, i.e., for AT = v — 7 it holds that

b, (o) = B, 00) 2R Clor) (o) = Claa),(p,0)- (43)

To further reduce the cost involved in computing Eq. (39) and Eq. (42), a
maximum travel time TT,., is defined. If AT > Tl,.y, it is assumed that
baan,e0 =0 VA, p and ¢y an),(p0) = 0 V&, p. The threshold TTy,.x is chosen
such that the error incurred by this numerical approximation is negligible.
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