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In this paper, we present a cyclically time-expanded network model for si-
multaneous optimization of traffic assignment and traffic signal parameters,
in particular offsets, split times, and phase orders. Since travel times are of
great importance for developing realistic solutions for traffic assignment and
traffic signal coordination in urban road networks, we perform an extensive
analysis of the model. We show that a linear time-expanded model can repro-
duce realistic travel times especially for use with traffic signals and we verify
this by simulation. Furthermore, we show how exact mathematical program-
ming techniques can be used for optimizing the control of traffic signals. We
provide computational results for real world instances and demonstrate the
capabilities of the cyclically time-expanded by simulation results obtained
with state-of-the-art traffic simulation tools.

1 Motivation

Traffic signals can be seen as a backbone in the control of traffic flows in urban ar-
eas. Since the appearance of the first signalized intersections over 100 years ago, the
improvement of signal control strategies has been an important subject for research.
Friedrich [I3] and Papageorgiou et al. [24] provide overviews of the main research lines
over the last years.

Recently, we presented a model for traffic signal coordination based on cyclically time-
expanded networks (see [20, 21} [32]). In contrast to most of the previous mathematical
approaches, we focused not only on optimizing the offsets of signals, but also optimizing
the implied traffic assignment. Each change in the signal parameters may influence the
travel times in the network. Consequently, road users will quickly adapt to a new signal
coordination and they will switch to faster routes if they suffer from the last intervention


{ekkehard.koehler,martin.strehler}@b-tu.de

in the signal plans. The traffic assignment, i.e., the distribution of traffic in the road
network, may change significantly.

Contrary to previous practical approaches based on non-linear models and heuristics,
we focus on a model which allows for the use of exact programming techniques. Hence,
proving optimality of a solution or bounding the gap between primal and dual solution
was given a higher priority than modeling every effect of real traffic. Thus, this paper is
particularly addressing the underlying theoretical questions of traffic signal optimization
and the corresponding hardness.

In this paper, we present an extensive analysis of the cyclically time-expanded model.
It is a hybrid between a static, i.e., time independent, and a dynamic, i.e., time depen-
dent, network flow approach. Although this time-expanded model is based on a linear
program, it can reproduce very realistic non-linear flow-dependent travel times for urban
traffic networks with signal control. In particular, both typical convex link performance
functions and the time-dependent behavior of traffic, necessary for traffic signal coordi-
nation, are realistically mapped in this model. Additionally, the propagation of platoons
of cars that is essential for the minimization of waiting times in signal controlled road
network is modeled. This is achieved by a lifting method. Whereas previous non-linear
approaches use only a small number of variables to describe flow and travel times on
a single road segment, we use a linear but high-dimensional model. Moreover, we do
not use the common approach of linearizing an existing non-linear model. Instead, our
linear model is built from scratch and it is compared to other approaches afterwards.

Related Work Traffic signal optimization is studied since the 1920s. Several models
and methods have been proposed. Focussing only on the most theory-driven approaches,
we refer to , e.g., Gartner et al. [I5], Serafini and Ukovich [27] or Kohler et al. [I8§].
These approaches rely on abstract models, but exact solution techniques can be applied.
However, these approaches do not consider feedback to the traffic assignment. Other
approaches use more sophisticated models, but afterwards heuristic algorithms have to
be applied to carry out the optimization of signal settings. The most well-known example
is the TRANSYT package, which is developed since in the 1960s beginning with the work
of Robertson [25]. TRANSYT is based on an accurate traffic simulation and a genetic
algorithm is used to optimize signal parameters.

Traffic assignment on its own is also a well studied problem. There are strict math-
ematical approaches using network flow theory. This branch of research started with
the seminal work of Ford and Fulkerson [11] in 1956 and recent result especially focus
on various aspects of traffic, e.g., a new concept of fairness in networks with congestion
(Jahn, Mohring, Schulz, & Stier Moses, see [17]) and flows over time with load dependent
transit times (Kohler & Skutella, see [19]). More application-oriented concepts include
dynamic traffic assignment (DTA) techniques, see, e.g., Szeto & Lo [33] and Chiu et
al. [7], and simulation based solutions (Nagel & Flotterdd, see [23]).

In contrast, the combined problem of traffic signal optimization and traffic assign-
ment is rarely studied. Allsop and Charlesworth [2] recognized the feedback between
an optimized coordination and traffic assignment. They proposed an iterative approach



where signal timings are optimized with TRANSYT. Afterwards, an equilibrium traffic
assignment is computed. These steps are repeated until no change in the coordination
occurs. Using heuristic methods iteratively, one may only hope to derive a local opti-
mum. Even worse, this approach may lead to a decline of network performance as shown
by Dickson [10]. Despite the strong interaction of signal coordination and traffic assign-
ment, only some research was done in the area of integrated optimization of these two
aspects of traffic. For example, Chiou [6] presented a bilevel formulation based on the
approach of Allsop and Charlesworth. Smith [30] also suggested a bilevel optimization,
where the equilibrium property of the flow is preserved during the iterations. Recent
results were also made by Bell and Ceylan [3] as well as Teklu et al. [34] using genetic
programming. Van den Berg et al. [4] proposed a hybrid approach using both methods
from optimal control and mixed integer linear programming. However, in a very recent
paper, Smith [31] summarizes the situation as follows: ’At the moment, in practice, traf-
fic signal timings are designed or optimised without systematically seeking to influence
route choices beneficially.’

This short overview also reveals one of the main conflicts in traffic optimization. On
the one hand, the practitioner favors very realistic and dynamic traffic models. How-
ever, these sophisticated models do usually not allow for strict mathematical optimiza-
tion techniques for solving instances of relevant size. Instead, heuristics, e.g., genetic
algorithms or line search strategies in non-convex settings, have to be used. Yet, they
are very sensitive to local optima and neither provide guarantees on the gap towards
the optimal solution nor on the convergence ratio. Thus, one may only hope to im-
prove the present solution, but the actual optimal solution remains unknown. On the
other hand, strict mathematical optimization approaches like linear programming often
require several assumptions on the problem formulations which lead to very simplified
traffic models. However, these strict mathematical strategies often provide much more
insight in the underlying problems, e.g., via the dual problem formulation. That is,
out of the solution we can directly derive quantified suggestions for an improvement of
the network performance. Therefore, one has to find a compromise between a qualified
optimality result and the model’s accuracy.

Our contribution In this paper we aim at the crossover between static and dynamic
models for traffic assignment. Our main result is a combined optimization approach for
simultaneous traffic assignment and traffic signal coordination with realistic load depen-
dent travel times which still allows applying strict mathematical optimization techniques.

Firstly, we shortly present static and dynamic traffic models and introduce the main
concept of our cyclically time-expanded network model. In Section 3| we show that this
new discretized and linearized model yields load dependent travel times which resemble
main properties of common link performance functions. Moreover, our model is also
capable of capturing platoons of cars of quickly varying density as well as changing phases
of traffic signals. We verify the applicability of our model by simulation with state-
of-the-art simulation tools, namely VISSIM and MATSim. Furthermore, we present
an extension of our cyclically time-expanded model in Section [4] which allows for the



simultaneous optimization of traffic signal parameters to design fixed time or time of day
signal timings. Whereas the previous version of our model was only capable of optimizing
offsets, we extend our approach to the simultaneous optimization of split times and phase
orders. Afterwards, we study solutions of real-world instances in Section [5l Finally, we
use the traffic simulation MatSim to investigate the price of anarchy for our scenarios,
i.e., the gap between system optimum and user equilibrium.

2 A Cyclically Time-Expanded Model for Traffic Assignment

2.1 Static and dynamic models for traffic assignment

Intersections and connecting roads can be represented by the set V' of nodes and the set
A of links of a (directed) network G = (V, A,u), where u : A — R{ assigns a capacity
to each of the arcs in the network. In a static network flow model, we assign flow values
f A — R, such that capacities are not exceeded and flow conservation is satisfied.
That is, the amout of incoming flow equals the amount of outgoing flow. First results on
efficiently computing maximum flows were obtained by Ford and Fulkerson [I1] already
in the 1950s. Due to the abundance of applications ranging from traffic flows to image
processing, numerous algorithms and modifications have been developed.

However, many applications require that the flow is a function of time, i.e., flow values
are changing over time. Generally, a (traffic) flow over time or dynamic flow can formally
be defined as a function f : A x [0,7) — R on a (directed) network G = (V, A, u),
where [0,7) is the time interval under consideration. Flow particles entering e € A at
time t arrive at the head of e at time t + t.(f(e,t)), where t. : Rf — R{ is the travel
time function or link performance function of link e. The amount of flow that passes a
link e can be calculated by fOT f(e,t)dt. Furthermore, flow conservation has to ensure
that flow cannot leave a node before it arrives there. Additionally, one may assume that
flow can be stored in a node for a certain time span representing queues at intersections.
In detail, for load-indepentent travel times t., for each 7 € [0,7'), and each non-terminal
VEV, D es(w) IN ' fle, t)dt > D eest(v) Jo f(e,t)dt, where 6~ (v) and 6% (v) refers to
the set of incoming and outgoing arcs of v.

Flows over time are widely studied in the mathematical literature; Skutella provides
a good overview of recent results [29]. Many dynamic flow problems with travel times
independent of the flow can be solved using time-expanded networks. Already Ford
and Fulkerson introduced time-expanded networks in their seminal work on network
flow theory [11]. To create an expanded network out of a simple network, for every
node, several copies of this node are added to the graph, one for each desired time
step. These nodes are connected by arcs, where the various copies of the vertices are
connected according to the travel times of the original arcs. Additionally, arcs connecting
consecutive copies of the same node model waiting at this node. Yet, time-expanded
networks are rather inefficient if the time horizon T is large, since the number of time
steps determines the number of network copies that have to be provided.

Ford and Fulkerson’s time-expanded networks were also applied in traffic flow theory,
often called space-time expanded networks (STEN) in this context [37]. Dynamic traffic



assignment (DTA) combines flow over time with variable departure times and non-
linear link performance functions. It is used to model flow dependent travel times and
to compute user equilibria according to Wardrop’s principle. This approach allows the
usage of solving techniques of Control Theory or Calculus of Variations. However, even
for medium size networks it is very difficult to derive analytical solutions. Therefore,
to be able to compute at least numerical solutions in an iterative approach, time is
discretized again and several other parameters like the number of routes are limited.

2.2 The cyclically time-expanded network

For traffic signals and their coordination, a time-dependent model, capable of describing
the time-offset between consecutive intersections, is a vital ingredient. The impact of
red signals on the travel times is essential.

Link performance functions, as suggested by the Bureau of Public Roads (BPR),
are a widely accepted approach to model load-dependent travel times. However, these
static link performance functions describe traffic in a rather statistical manner, i.e., they
support an a priori estimation of the expected average delay. Especially without standard
deviations, it is hardly possible to deduce the travel time of an individual driver. Hence,
link performance functions do not provide enough information to be used directly for
traffic signal coordination. Furthermore, to the best of our knowledge, approaches like
DTA are not used to model dynamic flow in realistic large scale scenarios on such a fine
timely level as needed for traffic signals.

Indeed, one should look into the causes for flow dependence of travel times in urban
areas. In inner-city road networks, the individual behavior of road users is of minor
importance for the travel times. In comparison, traffic signals and the rather low speed
limit have a much greater influence on travel times. Thus, for urban networks, we
suggest to decompose the travel time into pure transit time and waiting time at the
intersections. In the following, we assume that the transit time is constant and the
flow-dependent component of travel time is caused only by the delay at traffic signals.

With constant transit times, time-expanded networks come into play again. Even
better, since pretimed traffic signals have a periodic behavior, it is not necessary to use
a full time horizon expansion. Instead, we suggest a cyclic time-expansion where we
expand only a time interval of size of the cycle time I' of the traffic signals and use only
k € N time steps of size t = %

Definition 1 (Cyclically time-expanded network). Let G = (V, A, u) be a network with
capacities u : A — N and non-negative integral transit times t. for each e € A. For a

given number k of time steps of length t = %, the corresponding cyclically time-expanded
network G = (VT, AT u") is constructed as follows.

e For each node v € V, we create k copies vg,v1,...,v_1, thus VI = {wlv € V,t €
{0,...,k—1}}.
e For each link e = (v,w) € A, we create k copies eg,€1,...,ex_1 where arc e;

connects node vy to node W(iys.) mod k- 1hese arcs are called transit arcs and e;
has capacity u(e) = u(e).



e Additionally, there are waiting arcs from vy to v Yo € V and ¥t € {0,...,k—2}
and from vip_1 to vy.

Please note that there is almost no difference between transit arcs and waiting arcs in
the model. On waiting arcs one only moves in time whereas on transit arcs one moves in
space and time. For all arcs the cost is the travel time on this arc. Thus, waiting time is
travel time on waiting arcs. Hence, both kinds of arcs are treated in the same way and we
do not need to explicitly distinguish between them in the modeling of traffic assignment.
In practice, we will compute the transit time via the speed limit and the length of the
road segment, whereas the waiting time on a waiting arc is simply determined as the
duration of a time step in the expansion.

Now, traffic signals with their green and red phases can be modeled by setting the
capacity of a transit arc starting during the red phase to zero, i.e., u(e;) := 0 for some t.
A simple example of a cyclically time-expanded network consisting of two links and one
traffic signal is shown in Figure[I] Additionally, capacities of the waiting arcs correspond
to the maximum queue length on a link and they can be chosen accordingly. This also
allows the modeling of vehicle spillback. If the capacity of a waiting arc is exhausted
and the signal is still red, no more flow can enter the corresponding transit arc due to
the flow conservation constraint. Thus, flow on the upstream link has to use the waiting
arc there, although the associated traffic light might be green.

t=3
| t=2
*l t=1

1

Figure 1: A small network with two links and one traffic signal (left) and its cyclic time-
expansion for k& = 8 (right). The thin, gray arcs starting at the red phase of
the signal are switched off and, thus, they have zero capacity.

Consequently, the cyclically time-expanded network model is a hybrid inbetween static
and dynamic models. On the one hand, it provides several advantages of static flow
models. Due to its linearity and limited size, standard approaches for computing (static)
multi-commodity flows can be applied. On the other hand, it provides sufficient time
resolution to account for traffic signals. Yet, only a narrow time slice is considered, hence
it is not a fully dynamic model.



3 Inherent Link Performance in the Cyclically Time-Expanded
Network

So far, we have introduced a model with constant travel times on transit arcs and
waiting arcs. Consequently, travel times are independent of the flow on the link. From a
practitioner’s point of view, this might seem too restrictive in the first moment. However,
there is in fact a flow-dependent behavior and it is hidden in the time expansion. We
will now study this flow dependency by an analysis of our model for a single road with
a traffic signal. Furthermore, we support the observations by a simulation of traffic flow
on this link. As a main insight, we will see that our high-dimensional linear model can
reproduce the same effects as a classical low-dimensional non-linear traffic flow model.

In the cyclically time-expanded model, we can look at traffic flow in two ways. Firstly,
we can examine each of the copies of an original link and the adjacent waiting arcs on
their own. This provides a dynamic and detailed view on the traffic flow and we can
observe flow particles moving through the network in a timely fashion. Considering only
one road segment, which is modeled by k transit arcs and k waiting arcs, we have a
2k-dimensional linear relation between flow and travel time.

Secondly, we can virtually contract this flow over time back to the original link, i.e.,
we regard all copies of the links and the corresponding waiting arcs as a single link and
compute the average travel time over the whole time horizon. For a single link, we can
imagine this as a projection of the 2k-dimensional space, which yields a piecewise linear
relation between total flow and average travel time. In that way, we have a more static
view on traffic flow on this contracted link and temporal details are lost, but we can
compare the travel time to other static models, now.

In the following, we will use the first point of view to compute the average travel
times for the second perspective. We will see that travel time on a contracted link
depends on numerous parameters, e.g., the distribution of incoming flow values over
time. Furthermore, flow particles on the same (contracted) link at different times will
experience different travel times which is very obvious in the time-expanded model. We
use link performance to denote the average travel time on a contracted link. However,
we will not present a closed function for computing travel times due to the enormous
number of parameters. Nevertheless, we use the term inherent link performance function
according to related static traffic assignment models with flow dependent travel times. In
the following, we fix most of the parameters and restrict the inherent link performance
function to a small subset of its domain to at least demonstrate the most important
properties of this implicit link performance in the cyclically time-expanded model.

3.1 Evolving flow-dependent waiting times

We consider a very small network which consists of a single road with a traffic signal
in the middle similar to the network in Figure Assume that a set of flow values is
assigned to the incoming transit arcs in the cyclically time-expanded network of this
scenario and a fixed signal setting is given. The flow values of the other arcs are chosen
such that flow conservation is fulfilled and flow is assigned to a waiting arc if and only



if the capacity of the outgoing transit arc at this node is exhausted. That is, flow units
only wait when the outgoing road is already blocked by other flow units.

The total waiting time in this small network can be determined by summing up all
flow value of the waiting arcs and multiplying the result by the length of one time step.
Now, we increase the flow values on the incoming transit arcs. This will increase the
waiting time, because more flow will be assigned to the waiting arcs. Furthermore, due
to the bounded capacities, the flow units on the waiting arcs may not leave completely at
the first green outgoing transit arc if this link does not provide enough capacity. Instead,
the flow will have to use more waiting arcs until the accumulated flow is drained off.
This relation is illustrated in Figure [2l Therefore, if the incoming flow is raised linearly
on all copies of the incoming transit arc, then the growth of the waiting time will not
be linear but quadratic. More precisely, the obtained function is piecewise linear, but
converges to a quadratic function if the length of the time steps tends to zero.

Figure 2: The same single road network with two different flows. The thickness of the
arcs depicts the flow value. On the left side, incoming flow is low. All flow
accumulated during the red phase can leave the signal directly when it becomes
green. On the right side, the incoming flow is tripled. Thus, much more flow
is accumulated on the waiting arcs. Furthermore, due to the capacity bound
of the outgoing street, only a fraction of flow can leave on the first outgoing
transit arc and more waiting arcs have to be used. This yields an increase of
waiting time by a factor of 4.8.

In Figure [3] we present the relation between flow and average waiting time in the
cyclically time-expanded network with a finer time granularity. A cycle time of 60
seconds and 60 time steps are used. The incoming traffic is uniformly distributed on all
transit arcs, a traffic signal which is red for 20 seconds is put at the end of the road, and
a free speed travel time of 10 seconds is assumed. Additionally, a capacity reduction
from two lanes to one lane at the traffic signal was used. We now compute the average
travel time in this scenario with respect to the flow value. The resulting travel time
in Figure [3| demonstrates the capability of our waiting arc model: although using only
constant travel times the inherent, implicit link performance functions of the model are
not linear. Even better, the implicit link performance resembles a common standard
link performance function. Please note that Figure |3| visualizes the average travel time
of a flow particle on the ‘contracted’ link. The individual travel time of a single flow
unit depends on its arrival time at the traffic signal. It ranges from 10 seconds for flow



units arriving at green with no waiting queue at the signal up to 30 seconds for road
users arriving at the beginning of the red phase.
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Figure 3: Relation between average travel time and flow value on a single link in the
cyclically time-expanded network. Incoming traffic is uniformly distributed
over time.

This example implies that our model uses flow dependent travel times even tough they
are not explicitly specified. But within this analysis, we assumed traffic to be uniformly
distributed over time. Obviously, this is an unrealizable assumption when the steady
flow is disturbed by traffic signals. Hence, we extend our study to flows with quickly
changing traffic density.

3.2 Travel times for platoons of cars

In inner-city traffic, one can often observe platoons of cars. Traffic signals cause an
accumulation of cars. During one cycle of the signals, there are periods with cars nose-
to-tail and periods with empty streets. In the cyclically time-expanded network, platoons
of cars can be easily modeled by different flow values on the copies of each particular
transit arc. Some copies may be used at full capacity, other arcs may not be used at
all. Varying flow values can be interpreted as platoons of different lengths and densities.
Thus, platoons are also created, splitted, merged, compressed, or stretched in our model
in a very natural and self-acting manner.

Even in our small example of a single road with one traffic signal, a platoon can
change the characteristics of the average waiting time dramatically. Let us describe a
platoon of cars by its length and its density. Suppose for the moment the platoon to be
homogeneous, i.e., the density is not varying inside the platoon. Therefore, the platoon
length can be considered to be proportional to the average link flow. For simplicity,
we measure the length of a platoon as time elapsing between passing of head and tail
of this platoon. This can be easily transformed to length in meter or number of cars,
when speed or distance between cars is known. Average travel time now depends on two
parameters: the length of the platoon and the arrival time of the head of the platoon at
the traffic signal.

To emphasize the occurring effects even more, we change the green period to 30 seconds
and the capacity of the outgoing road is set to twice the capacity of the incoming road,
e.g., the number of lanes are doubled. The scenario is visualized in Figure [4]



Figure 4: The described scenario was modeled in VISSIM (screenshot detail). Travel
time is measured between A shortly after the upstream signal and B shortly
after the actual signal. Due to the first signal, platoons are generated.

In Figure[5] the calculated average travel time is plotted versus the platoon length. In
Figure || (left), the first flow unit arrives at the intersection 10 seconds before the signal
turns green. In Figure |5 (right), the head of the platoon arrives 20 seconds after the
signal turned green. As a consequence, the traffic signal is used to densify the traffic in
the first setting. In the second setting, long platoons are split into two smaller platoons,
of which the second one has to wait at the signal. The different characteristics of the
functions in Figure [5| demonstrate the impact of these two offsets on our travel times.
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Figure 5: The plots show the inherent link performance function for a platoon of cars in
the cyclically time-expanded model for two different offsets. The thick line also
visualizes the green period, i.e., that part of the platoon arriving at a green
signal. In the left diagram, the head of the platoon is arriving 10 seconds
before the signal turns green. Due to the higher capacity of the outgoing road,
that is, the cars may leave on parallel lanes, the platoon is densified. The
first car of the platoon has to wait for the longest time, subsequent cars may
even pass the signal without stopping. On the right side, the first flow particle
arrives 20 seconds after the signal turned green. Thus, small platoons can pass
without stopping, long platoons are splitted by the traffic signal which turns
red 10 seconds after the head of the platoon has passed.

The implicit travel times for platoons show interesting or even unexpected properties.
The travel times are decreasing or concave in some intervals, so they do not resemble
standard static link performance functions found in traffic literature (e.g., [9) [16, 28]).
There, link performance functions are usually assumed to be convex and monotonically
increasing with the amount of flow on the link. However, this is no inaccuracy or
disadvantage of our model. As we will show, these characteristics of travel time functions
can in fact be observed in state-of-the-art traffic simulation tools which supports our
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model.

To evaluate the travel times computed by the cyclically time-expanded model, we use
two well established simulation tools, namely VISSIM and MATSim. VISSIM, devel-
oped by ptv group, is a state-of-the-art micro-simulation, featuring nearly every aspect
of urban traffic [35]. MATSim, mainly developed by TU Berlin and ETH Zurich, is an
agent-based simulation capable of computing large scale traffic simulations. MATSim
uses a simpler queuing model, but it supports the computation of equilibrium assign-
ments for thousands of traffic participants [22]. Figures [4] and |§| present the described
scenario and the corresponding measured travel times, respectively. To create the pla-
toons, we use an additional upstream traffic signal (in front of A in Figure [4f). The
arrival time of the platoon at the signal of interest can be influenced by changing the
offset between both signals. The length of the platoon is determined by the green period
of the upstream signal.
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Figure 6: Link performance for the same scenario as in Figure [5, but now simulated and
measured with VISSIM. Note that only the average travel time is displayed.
The actual time depends on the position of the car within the platoon.

As one can clearly see, the predicted travel times in Figure [5] fit remarkably well to
the simulated travel times in Figure [f] even without a careful calibration of our model.
Hence, one can conclude that the cyclically time-expanded model can also capture time
dependency of flow on a very fine level, especially for platoons of cars and traffic signals.
In contrast, static link performance functions are the best choice for describing traffic
flow in rural areas or on highways, but they are not accurate enough for signalized inner-
city traffic. This also affects user equilibrium flows. Here, the common assumptions on
convexity and monotonicity are crucial for the existence of unique equilibria.

However, we cannot present a closed formulation of travel times for platoons and
signals here, since this depends on various parameters, e.g., number, length and density
of platoons, traffic signal settings, and capacity changes of the link. If most parameters
are fixed, the average travel time of a flow unit of a single platoon in our scenario is
depicted in Figure [7| with respect to both parameters platoon length (i.e., traffic flow)
and arrival time at the intersection (i.e., offset of the signal).

Summarizing, our cyclically time-expanded network provides a piecewise linear ap-
proximation of classical non-linear link performance functions, but it can also keep track
of platoons of cars and varying traffic density. To avoid any misunderstanding, please
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Figure 7: Calculated average travel time for a road user in a platoon with respect to
platoon length and arrival time at the traffic signal. The signal turns green at
t =0 and red at t = 30. The inherent link performance functions of Figure
are obtained as profile for ¢ = 50 and t = 20, respectively. Note that for fixed
platoon length one obtains waiting time functions very similar to those used
by Wiinsch [36].

note that the above results are just used to compare our model to other non-linear ap-
proaches. The non-linear link performance functions that were studied in this section
are not used in the remainder of this paper. All further results are obtained by using
the original cyclically time-expanded network with its constant transit times.

4 Traffic Signal Optimization in the Cyclically Time-Expanded
Model

Up to now, we analyzed properties of the cyclically time-expanded model. In the fol-
lowing, we show how our model can be used for traffic signal optimization. While we
only considered offset optimization in our previous paper [20], we now present an ex-
tended approach which allows simultaneous optimization of traffic assignment, traffic
signal offsets, split times and phase order.

4.1 Efficient computation of traffic assignments

Building up on the cyclically time-expanded network, we can now consider the traffic
assignment problem within this framework. Although flow can be considered to travel
in a time-dependent manner through the cyclically time-expanded network, one should
rather see this model as a static model that just captures some time-dependent aspects
of traffic flow. Due to the cyclic repetition of the vertex and arc copies, a flow particle
traveling through this network can be seen as a representative of a whole set of temporally
repeated particles at every multiple of the cycle time.
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There is a closely related interpretation of static network flow for traffic networks. In
this interpretation one considers a flow-carrying path in the static network as a mapping
of a corresponding amount of flow particles traveling over time through the traffic net-
work at the corresponding flow rate. In other words, a flow-carrying path in the static
network represents a constant rate of flow on this path in the ‘real’ time-dependent traffic
network.

This interpretation suggests how to put together the two models, the cyclically time-
expanded network on the one hand and the static traffic assignment model on the other
hand. Basically, the demands for different commoditiesﬂ have to be subdivided to the
number of layers/time steps in the cyclically time-expanded network.

The cyclically time-expanded model is a fully linear model with constant travel times
on the expanded links. Also with the additional extensions in the following sections,
the model is still a linear one. Thus, we can use standard network flow algorithms to
efficiently compute a system optimal traffic assignment, i.e., fast and exact combinatorial
and mathematical programming tools can be applied. A very fine time discretization of
time steps less than one second is easily achievable and quickly solvable even for large
scenarios.

Theorem 1 ([20]). Using the cyclically time-expanded network the traffic assignment
problem for a fixed traffic signal coordination and for a fized time granularity can be
solved efficiently.

Proof. The assignment problem can be formulated as a linear program (see [1]), because
all travel times in the expanded network are constant. Since the LP has polynomial size
with respect to the input, i.e., the cyclically time-expanded network, it can be solved in
polynomial time, e.g., by using the ellipsoid method. O

4.2 Detailed modeling of intersections

In Section we modeled traffic signals by setting capacities of outgoing links to zero.
At an intersection, we have to consider several lights and conflicts between crossing direc-
tions. Thus, to model intersections with different lanes, turning directions, and interior
traffic signal offsets, we initially use a standard approach from traffic networks. Before
the time expansion is employed, every intersection node is split up into several nodes
for incoming and outgoing traffic; for each turning direction an interior arc connects
one incoming node with one outgoing node (see Figure . Each of these interior arcs is
assigned to one traffic light.

We will refer to the subset of all interior arcs of intersections by £ C A. By choosing
appropriate capacities u(e) and transit times t(e), e € E, these interior links limit the
outgoing flow of the waiting arcs of the several turning directions. Hence, we can also
influence the creation of queues and back spill with these parameters.

! According to mathematical network flows, the term commodity denotes an origin-destination pair.
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Figure 8: Standard approach of an expanded intersection with arcs for each turning
alternative. The incoming nodes of the horizontal road are subdivided into
three nodes to model different lanes and queues for the turning directions.
The vertical road is smaller, thus, all cars are waiting in the same queue.

4.3 Modeling traffic signals

Instead of setting fixed capacities to interior arcs of intersections, traffic signals can be
modeled by binary decision variables that switch the capacities of the interior arcs on
or off by multiplying the capacity with an appropriate binary variable. For each turning
direction e € E we introduce k binary variables b¢ = (b§,...,b¢ ;) € {0,1}*, one for
each time step. Now, we multiply the binary variables with the capacity constraint
of the transit arcs corresponding to e in the cyclically time-expanded network. This
yields k inequalities for the flow in the expanded network, namely f(e:) < bfu(e;) Vt e
{0,...,k—1}. If b§ = 0, then the effective capacity of e; is zero. Thus, turning direction
e cannot be used in time step t, i.e., the corresponding signal group shows a red light.
If bf = 1, then the capacity remains unchanged, hence we may think of a green traffic
light at time step t.

With these binary variables, we can permit or block flow on the interior arcs of an
intersection. However, without further constraints, each signal group would be green all
the time. To ensure the interior logic of traffic lights at a single intersection, we have to
couple these binary variables as in logic-based signal controls [I13]. We concentrate on
the following constraints:

e Each signal group should switch to green only once per cycle.
e Crossing directions must not have green at the same time.

e Some directions must have green at the same time.

There has to be enough time to clear the intersection at phase changes before any
other direction gets green.

There has to be a minimum duration of each green and red phase.
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In reality, many more constraints can occur, e.g., due to pedestrians. For simplicity,
we only discuss here a small standard intersection with four legs and four signal groups
W, X,Y, Z as depicted in Figure [9} The common cycle time is I’ and we use a cyclical
expansion with k time steps. Thus, in the following, all indices apply modulo k. As
described above, we introduce k binary variables b = (bgv Yo ,bg‘il) for signal group
W and similarly for X,Y, and Z that represent the status of the corresponding light
directly. We refer to these variables as status variables.

Figure 9: Simple intersection with four signal groups W, X,Y and Z.

Now, we demand that the signal group W switches from red to green and from green
to red only once during one cycle. To force this, we use 2k binary variables bW =
(bgv o, b}:ﬁcin) and pWoff = (bgv ’OH, ... ,b}gﬁ‘;ﬂ), respectively. These variables act like
the decision variables for the offset in our previous model [20] and consequently, we refer
to them as decision variables. Thus, byv’on = 1 means that signal group W switches
from red to green at time step ¢. The following constraints fix the number of switching
operations per cycle to 1.

k

k
Z by’on =1 and Z bfV’OH =1

i=1 i=1
Now, we link the decision variables to the status variables (remember to regard time
modulo k).

b — o, <oV Vie{o,... k—1}

Thus, if bgv’on = 1, then the signal may switch to green, i.e., bivzl =0 and b}/v =1.1If

byV,on = 0, then biVKl > b}/V, that is, the status is not changed or the signal switches to
red. Similarly, we formulate the constraints for switching the signal to red.

oY~V > b vie{0,... k—1}

However, it is not guaranteed that the signal group switches at all. We combine this
with a constraint for minimum green and red periods. If the signal group should be
green for at least g time steps, we require:
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k
d b >y
=1

If the signal group should show red for at least r time steps, we require:

k
v <k
=1

Therefore, if the signal group is green for at least one time step and it is red for at
least one time step, two switching operations are forced.

So far, we can switch traffic lights and we can control capacities. We continue with the
safety constraints. Crossing directions must not have green at the same time. However,
red for both directions is possible. Obviously, the following constraints ensure safe
crossing for two signal groups W and X (cf. Figure @

WrbX <1vie{o,...,k—1}

Furthermore, we have to guarantee a clearance time. Together with the previous
inequality, a clearance time of at least one time step is forced by the following constraint.

Vot L b b <1 i e {0,k — 1}

Thus, if signal group W switches to red in time step ¢, then X cannot switch to green
at the same time step or at time step ¢ + 1. Longer clearance times are possible. One
may even insert another phase. Hence, clearance time constraints have to be formulated
for each pair of signal groups. In contrast, we may also fix the clearance time and the
phase order using the next equation.

Woff _ X, ,
b, ° :ngn Vie{0,....,k—1}

Finally, if two signal groups should switch to green (or red) at the same time, e.g.,
group W and Y in Figure [9) we may use the following constraints.

by = b Vi € {0, ...,k —1}

4.4 Simultaneous optimization of assignment and signals

Each change in the traffic signal settings changes the travel times in the network. Thus,
traffic signals and assignment have to be optimized simultaneously. We will refer to
this problem as COMBINED TRAFFIC ASSIGNMENT TRAFFIC SIGNAL COORDINATION
problem, i.e., find a traffic signal setting and an traffic assignment such that the overall
travel time of all road users is minimized.

The choice of the objective is motivated by the following consideration. When opti-
mizing the traffic assignment problem and the traffic signal coordination simultaneously,
measuring delays and stoppages does not characterize efficient coordinations. Traffic
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participants may choose arbitrary routes. Thus, taking only stops and delay into ac-
count, a road user may choose a very long detour through the network just to avoid
stopping or waiting in front of a red traffic light. This is rather unrealistic as most road
users are interested in the fastest way to their destination. Therefore, we use the total or
average travel time (pure transit time + delay) as the measure of quality of the solution.

Summarizing the results of the previous subsection, we have introduced several linear
equations or inequalities for the most important safety constraints at a traffic signal.
Let GT = (VT, AT uT) be a cyclically time-expanded traffic network and commodities
0 € O, 0 = (sg,29,dg) (with origin sy € V, destination zy € V , and demand dy € N),
capacities u : A = N, a set £ C A of interior arcs at intersections with associated status
variables b¢ for each e € FE, constant travel times ¢(e) for each link e € A and flow
functions fp : A — R for each commodity.

We extend a common multicommodity min-cost circulation program (i.e., use a back-
ward arc from zy to sy for each commodity § € ©) for the cyclically time-expanded
network by adding the binary variables and capacity constraints above. Adding these bi-
nary variables and constraints to the linear program leads to the following mixed integer
program for the COMBINED TRAFFIC ASSIGNMENT TRAFFIC SIGNAL COORDINATION
problem:

min Z Z tefole)

c€A €O
st 0< Y fale) = f(e) < ule) Vec A\ E (1)
e

S fole)= D> fole) VOeO YuveV (2)

e€dt (v) € (v)
fo((20,50)) = dp Voeo (3)
f(e) < bvu(e) Vee E (4)
Constraints of Section [4.3] (5)

f(e) >0, b° € {0,1}"

The constraints of type fix the capacity bounds, type implements the flow
conservation and the constraints force the circulation. Equation permits flow
only on arcs that are switched on by the binary variables and in (b)), we insert all
necessary constraints for these status variables. Due to the numerous equations for
every intersection and every lane we omit the details here.

4.5 Solving the MIP

The mixed integer linear program for the COMBINED TRAFFIC ASSIGNMENT TRAFFIC
SIGNAL COORDINATION problem can be passed to every appropriate solver, for example
CPLEX or GUROBI. Due to the time-expansion and the decision variables, the MIP-
formulation of our model is rather large. In practice (see also Section , good solutions
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are found quite fast, but it takes a lot of time to close the gap between primal and
dual solution. In some larger scenarios, a gap of 10 to 30 % remains even after hours of
computation.

On the one hand, some further efforts are necessary to get fast and provable good
solutions with help of the presented model. On the other hand, the COMBINED TRAFFIC
ASSIGNMENT TRAFFIC SIGNAL COORDINATION problem is an A/P-hard problem and
we may not hope for efficient algorithms (see, e.g, [14] for a guide to N'P-completeness).
Even approximate solutions for a constant approximation ratio will be hard to get as
shown in the following theorem.

Theorem 2. For traffic signals which may only switch at discrete points in time, there
exrists no polynomial-time a-approximation algorithm for any constant o > 1 for the
COMBINED TRAFFIC ASSIGNMENT TRAFFIC SIGNAL COORDINATION problem unless
P =NP.

Proof. We use a reduction from the k-DIRECTED VERTEX DISJOINT PATHS problem.
This problem is defined as follows. Given a directed graph G with k terminal pairs (s, ;)
to (sk,tr), are there k node-disjoint paths that connect the corresponding terminals?
Even for k£ = 2, this problem is strongly N'P-complete [12].

Given an arbitrary instance of the 2-DIRECTED VERTEX DISJOINT PATHS-problem, we
construct the following combined traffic assignment traffic signal coordination problem.
The network is formed by assigning unit capacities to the arcs, i.e., u = 1, and zero
transit times, i.e., te =0 Ve € E. We use two commodities, each with demand dy/, =
1. Commodity ¢ (i € {1,2}) starts at s; and ends at ¢;. Each node of the graph is
transformed to a signalized intersection and we assume that each traffic signal may only
switch at integral points in time. At each signal, each turning direction has a separate
traffic light and only one traffic light is allowed to be green at each time step. That is,
for all interior intersection arcs ) bZ-X < 1 for all time steps i. Further, after each green
period of the signal there is a clearance time of at least [2«a/]| time steps with all lights
red.

Consequently, each single commodity can be routed in one time step. Due to the signal
settings, commodities cannot split without waiting. Hence, both commodities can be
routed in one time step if and only if there exist two vertex disjoint paths in the original
network. In contrast, if there exists no pair of vertex disjoint paths, both commodities
have to meet at an intersection. They have to cross this intersection one after the other.
Thus, half of the flow needs at least [2«] time steps to reach its destination.

Therefore, any solution of the COMBINED TRAFFIC ASSIGNMENT TRAFFIC SIGNAL
COORDINATION problem that needs less than [2«] time steps (or less than [a] total
travel time) implies the existence of two vertex disjoint paths. This yields the claim. [

Obviously, the construction in the proof is somewhat extreme. Thus, one should not
be discouraged by the above result, since one may get quite good solutions for realistic
traffic networks in an acceptable time. However, even for traffic signals which may
switch continuously, i.e., at arbitrary points in time, and without clearance times as
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well as planar networks with a maximum node degree of 4, the problem remains N P-
hard (see [32]). Consequently, mixed integer programming is a reasonable approach
for solving the COMBINED TRAFFIC ASSIGNMENT TRAFFIC SIGNAL COORDINATION
problem, since we may not hope for an efficient algorithm unless P = N'P.

4.6 System optimum vs. user equilibrium

Since the famous example of Braess [5], one should be aware that road users may behave
in a selfish way that is not optimal for the system as a whole.

However, up to here, we only computed system optimal assignments based on the
cyclically time-expanded model. This has two reasons. Firstly, we use a network with
constant travel times. Thus, the system optimum is also a user equilibrium by definition.
None of the road users can switch to a faster path towards the destination. Secondly, we
use a network with capacities. Hence, [8] implies that the user equilibrium is not unique
anymore and that different equilibria may occur.

The theoretical results on the gap between system optimum and user equilibrium in
static models are based upon properties of the link performance functions [26]. In the
cyclically time-expanded model, these assumptions are not fulfilled. Instead, we have
seen in Section 3| that we can capture much more details of the time dependent behavior.
Thus, it is not possible to compare the (system optimal or user equilibrium) solutions
of the static model and the cyclically time-expanded model directly.

Furthermore, we have seen non-convex and non-monotone travel time functions in
Section 3|, which were created due to signals and platoons. Hence, considering signals and
platoons in the static case with help of more sophisticated link performance functions
would not meet the conditions which ensure the existence and uniqueness of an user
equilibrium, neither.

Since we cannot provide a positive theoretical result here, we move the discussion of
user equilibria to Section [5| where we compare our system optimal solutions to equilibria
obtained with a multi-agent simulation.

5 Evaluation of real world scenarios

In this section, we will use two real-world scenarios to demonstrate the capabilities of
the cyclically time-expanded model. The first instance is a small part of the inner-city
of Brunswick, Germany. Here, the focus is the optimization of offsets, split times and
phase orders. In the second scenario, the inner-city of Cottbus, Germany, we investigate
the interplay of offset optimization and traffic assignment. Afterwards, simulation tools
are applied to study the gap between system optimum and user equilibrium.

5.1 Brunswick

The first scenario consists of five signalized intersections and two pedestrian crossings in
the inner-city of Brunswick. This scenario was provided by Sandor Fekete from Technical
University of Brunswick. It consists of the Bohlweg, a main arterial street through
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the city center connecting university and main station between Fallersleber Strafie and
Schlofiplatz.

The network is presented in Figure We study three commodities visualized by
colored arcs. The orange commodity and purple commodity have each twice the demand
of the blue commodity. Since there are no alternative routes, route choice is of no
importance in this scenario. As an additional constraint, the pedestrian signals 6 and 7
have to switch twice during one cycle of 84 seconds. Due to a nearby shopping mall and a
tram station, a rather long minimum green time was assigned to these pedestrian signals.
Consequently, these two signals will most likely be the bottleneck in this scenario.

Figure 10: The Brunswick network with 5 signalized intersections (1-5) and two pedes-
trian signals (6,7). The three commodities under consideration are visual-
ized with arcs in different colors. The underlying map was created with
WWW.openstreetmap.org.

Usually, the optimal solution for instances of this scenario in our framework is found
and proved within a few seconds. Solution time depends on demands, signal parameters,
optimization parameters in CPLEX or Gurobi, respectively, and destroying symmetry
of the cyclic network, e.g., by fixing an offset of one intersection. An exemplary solution
is shown in Figure

The path-time diagrams in Figure|l1|indicate that road users on the Bohlweg (orange)
may pass every signal with a speed of 30 miles per hour (50 km/h) without stopping. Also
for the purple commodity, the second signal becomes green exactly at the arrival of the
first flow. The main bottleneck are the pedestrian crossings. Here, the blue commodity
has to wait at signal 6, but signals 3, 7, and 4 can be passed without stopping. Green
splits are automatically adapted to flow values. Summarizing, our approach can be used
to optimize traffic signal settings and to find good coordinations of signals.

5.2 Cottbus

Whereas the first example does not allow any route choice, the second scenario is based on
a much larger network. Cottbus is a German town just south of Berlin with about 100,000
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Figure 11: Optimized green bands for the Brunswick scenario. Time and state of the
signals is shown on the vertical axis. Signals are labelled with intersection
numbers and signal groups, e.g., signal 3A and 3B must not be green at
the same time. Distances on the horizontal axis are chosen with respect to
transit time, the slope of the parallelograms is chosen with respect to free
speed. Note that the purple commodity is travelling from right to left and
the cyclic overflow is visualized by a negative slope.

inhabitants. The scenario consists of the whole inner-city with an area of 10 square
kilometers and 32 signalized intersections. The scenario is presented in Figures [12] to [T5

The network itself was created with data from www.openstreetmap.org. Very small
streets, traffic-calmed areas, dead ends, etc. were removed. Traffic demand, i.e, origin-
destination pairs, was generated based on anonymised data obtained from the German
employment agency. We have access to aggregated home addresses and workplaces of all
employees in the area of Cottbus and the surrounding rural district. This allows a good
approximation of traffic in the morning and afternoon peak. We reduced the number
of commodities by aggregating commodities with similar origins and destinations. That
is, we merged all points of interest within a certain neighborhood to a single terminal.
Furthermore, we only consider commodities where the shortest path connection passes
through the city center. This yields about 250 commodities.

For our first experiments, we used 17 out of these 250 commodities to save computation
time. However, demand was scaled back to 100 percent. We also limited our model
to offset optimization, all split times and phase orders were fixed to measured values.
We started with an already optimized signal setting for a fixed assignment, i.e. the
signals provide minimum delay for this fixed assignment. This assignment was computed
by VISUM (ptv AG, http://www.ptvgroup.com) and we applied our mixed integer
program without rerouting to optimize the signal settings. Afterwards, our approach
could reduce waiting time in the network by another 11 % by rerouting traffic flow and
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resetting traffic signals.

An interesting property of our optimized solutions is the creation of circulations around
the traffic center (see Figure . This omits a lot of conflicts between opposing traf-
fic streams and allows progressive signal settings for many road users. The computa-
tional results were verified by simulation with VISSIM (ptv AG, www.ptvgroup.com)
and MATSim (www.matsim.org).

OCH O

e, ot 0
== 0 — 100
River Spree @ == 100 — 200

200 — 300
300 — 400

400 — 500
7 @ 9 500 — 600

600 — 800
i @ > 800

Figure 12: Traffic assignment calculated with VISUM for 17 commodities in the Cottbus
scenario. The color encodes the traffic density from dark green (up to 100
cars per hour and lane) to dark red (more than 800 cars per hour and lane)
separately for both directions. It can be observed that the traffic is distributed
fairly equally in the network. Only a few commodities deviate from their
shortest paths due to exhausted capacities. Some changes in traffic density
are caused by capacity changes, i.e., a varying number of lanes.
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Figure 13: Traffic assignment for the same scenario as in Figure calculated with the
cyclically time-expanded model. The traffic on the outer road is increased in
clockwise direction.

Figure 14: Splitting of two commodities in the scenario of Figure 400 road users per
hour travel from a shopping mall in the North (intersection 3) to a housing
area in the South (intersection 12). Their paths are displayed in red. The
same amount of cars is traveling in the opposite direction (green paths).
VISUM assigns all flow units to the shortest path which runs straight through
the city center (not shown in the diagram). In our model more than 50% of the
road users join the circulation on the outer road. Here, the color brightness
encodes the traffic density (dark means higher density).

23



<5
5—50

50 — 100
100 — 150
150 — 200
200 — 250
250 — 300
300 — 400
> 400

Figure 15: This diagram shows the waiting time integrated over all cars during one cycle
at each traffic signal after optimization with our model. Dark green means
total waiting time of less then 50 seconds, dark red stands for more than 400
seconds at the specific traffic signal. With the assignment in Figure in
mind the waiting time on streets with high traffic volume is rather low. A
good coordination is found. The highest waiting times occur at the incoming
roads from rural areas where traffic is equally distributed over time.

Unfortunately, a gap of 20 percent between the obtained solution and the lower bound
remains when solving this scenario with CPLEX or Gurobi even after hours of computa-
tion. Hence, we cannot prove optimality and 20 percent leaves space for improvements.
However, experiments with smaller scenarios showed that the dual bounds are much
harder to compute. That is, the primal solution converges faster towards the optimal
solution than the dual bound does. Thus, the gap between the obtained solution and
the optimal solution is most likely much smaller than 20 percent.

In contrast, other approaches for traffic signal optimization and traffic assignment use
genetic programming or similar heuristics. Thus, these approaches do not provide such
duality gaps at all.

Concluding, one of the main intentions of our model — feedback between traffic assign-
ment and coordination during the optimization process — is achieved. A conventional
approach would first determine the assignment, afterwards it would optimize the traffic
signals. This could lead to a very uniform distribution of traffic in the network.

In contrast, the computed solutions of the simultaneous optimization with our model
are quite different. Traffic is assigned to a few roads. Consequently, the flow rate is
high on these roads. However, these routes automatically get very high priority in the
signal optimization subproblem and traffic is concentrated in a small number of dense
platoons. In artificial scenarios [32], we could save up to 75 percent waiting time by
simultaneous optimization compared to the consecutive approach.

These completely different but high-performance assignments characterize the pre-
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sented model. We believe that similar efficient results cannot be obtained without si-
multaneously considering assignment and coordination, i.e., a highly-adaptive traffic
signal optimization will have problems to find a competitive solution. These results also
suggest that traffic signal coordination could be used to actively route or redirect traffic.

5.3 System optimum vs. user equilibrium revisited

In this section, we will compare the computational results of the cyclically time-expaned
network model with simulation results obtained with MATSim.

MATSim is a multi-agent traffic simulation. It can simulate user equilibrium traffic
flows with an iterative approach consisting of simulation and replanning rounds. There-
fore, each agent has its own set of plans. A single plan consists of activities, routes,
and departure times. Furthermore, a plan executed in a simulation round is evaluated
and gets an individual score. This score includes travel times and other parameters with
arbitrary weighting. New plans can also be generated via shortest paths calculations in
the network with the current travel times. In the replanning phase, the plans for execu-
tion in the next simulation round are chosen. A certain percentage of the agents simply
chooses the plans with the best score so far, whereas the other agents try a randomly
chosen alternative plan. After several rounds of simulation and replanning, this process
converges to a stable state. Since each agent has its own set of plans with individual
scores, this state can be accepted as a user equilibrium.

We consider the Cottbus network. Out of the 250 commodities, we chose 54 commodi-
ties with the highest demands which add up to about 50 % of the total demand. At first,
we optimized traffic and signals with our approach. Afterwards, we used the obtained
signal settings and the same origin-destination pairs to compute user equilibrium assign-
ments with the multi-agent simulation MATSim. Furthermore, we fixed traffic signal
offsets to random values to compare assignments only. Hence, the base for the results
presented in Table [1| differs in two aspects. Firstly, we compare calculated results to
measured results. Secondly, we compare system optima to user equilibria.

scenario cyclically expanded network MATSim simulation Gap (%)
opt 1,103,380 1,140,077 3.33
best random 1,156,888 1,173,303 1.41
med random 1,197,666 1,210,419 1.06
avg random 1,198,688 1,236,851 3.18
worst random 1,285,766 1,291,993 1.00

Table 1: Comparison of system optimal solutions of the cyclically time-expanded network
model and user equilibrium solutions of MATSim. All values represent total
travel times in seconds for the morning peak from 6:30 to 9:30 am. Besides the
optimized traffic signals (opt), we also compare optimized assignments for 100
random traffic signal settings.

First of all, the optimized solution and the random signal settings appear in the same
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order for both calculation and simulation. But surprisingly, the difference between the
travel times in the cyclically time-expanded network and in MATSim is really small, i.e.,
one to four percent. Since no calibration was applied and some simplifying assumptions
were made in the developing of the cyclically time-expanded model, this suggests that the
gap between system optimum and user equilibrium is almost negligible in this scenario.

Furthermore, the optimized signal settings of the system optimal assignment also
improve the value of the user equilibrium by three percent compared to the best random
solution. Thinking in absolute values, optimized offsets can already save about 10 hours
of delay in every peak compared to a good random traffic signal setting in this scenario.
Extrapolating this result to full demand, two peaks per day, and 250 working days per
year, this adds up to about 10.000 hours per year. Even for a small city like Cottbus,
where traffic congestion is not a serious problem, this is a worthwhile economic gain.

Additionally, the consecutive approach of first computing an assignment and after-
wards optimizing traffic signals which was used as our benchmark described in the pre-
vious subsection yields a total travel time of 1,172,967 seconds. Thus, the consecutive
approach is worse than the best random guess.

6 Conclusions

In this paper, we focused on travel times in our cyclically time-expanded network. As a
main insight, we have shown that even a completely linear model is capable of creating
complex travel time functions. This is achieved at the cost of a much higher dimension,
i.e, much more variables are used to describe traffic flow on a single link. Simulation
results show that the cyclically time-expanded model is realistic and can capture much
more properties of inner-city traffic than static link performance functions can do.

Even better, the cyclically time-expanded model can be used to optimize traffic as-
signment and traffic signal settings simultaneously. This yields very efficient solutions
compared to iterative approaches. Furthermore, the model allows strict mathematical
programming. Thus, we can use solvers like CPLEX, which provide a guarantee on the
optimality of a solution. This is a considerable advantage compared to other approaches
like TRANSYT and others, which use genetic programming or similar heuristics. These
tools produce very good solutions, but they do not provide an estimate of the gap towards
the optimal solution.

After this proof of concept, our further research focuses on the applicability of our
model. Thus, we will try to develop branch&bound strategies or to adapt cutting plane
techniques to accelerate the optimization process. There are some other shortcomings
in the modeling. For example, we cannot guarantee the First In First Out property in
every situation. Besides this rather technical problems, studying user equilibria in our
model is also interesting from a theoretical as well as from a practical point of view.
One main question is the influence of traffic signal optimization on user equilibria. In a
network without signals, system optimum and user equilibrium may look quite different.
Is our method of simultaneously optimizing signals and assignment capable of pushing
the equilibrium flow towards the system optimum flow by privileging the routes of the
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system optimum with progressive signal settings and penalizing the bad links of the user
equilibrium with high waiting times?
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