
A Branch-and-Cut Algorithm for the

Multi-Depot Rural Postman Problem

Elena Fernández ∗1, 2, Gilbert Laporte †3, and Jessica Rodŕıguez-Pereira ‡1

1Department of Statistics and Operations Research, Universitat Politècnica
de Catalunya-BcnTech, Spain

2Barcelona Graduate School of Mathematics (BGSMath)
3Canada Research Chair in Distribution Management, HEC Montréal, 3000,

chemin de la Côte-Sainte-Catherine, Montreal H3T 2A7, Canada

May 15, 2017

Abstract

This paper considers the Multi-Depot Rural Postman Problem, an extension of the
classical Rural Postman Problem in which there are several depots instead of only
one. The aim is to construct a minimum cost set of routes traversing each required
edge of the graph, where each route starts and ends at the same depot. The paper
makes the following scientific contributions: i) it presents optimality conditions
and a worst-case analysis for the problem; ii) it proposes a compact integer linear
programming formulation containing only binary variables, as well as a polyhedral
analysis; iii) it develops a branch-and-cut algorithm that includes several new exact
and heuristic separation procedures. Instances involving up to four depots, 744
vertices, and 1315 edges are solved to optimality. These instances contain up to 140
required components and 1000 required edges.

Key words: Arc routing; multi-depot rural postman problem; worst-case analy-
sis; polyhedral analysis; branch-and-cut.

1 Introduction

The purpose of this paper is to introduce a compact model and to develop a branch-
and-cut algorithm for the Multi-Depot Rural Postman Problem (MDRPP), which
extends the classical Rural Postman Problem (RPP) [30] where there is only one
depot, but in the MDRPP there are several. Similarly to the RPP, routes must
be designed to serve a given set of required edges. In contrast, in the MDRPP

∗e.fernandez@upc.edu
†gilbert.laporte@cirrelt.ca
‡jessica.rodriguez@upc.edu

1

the depot from which each required edge is served is not known in advance. The
MDRPP combines two types of decisions: the allocation of required edges to depots
and the planning of routes. The objective is to determine a minimum cost set of
routes, each starting and ending at the same depot, and such that each required
edge is traversed at least once.

The motivation for studying the MDRPP comes not only from its theoretical
interest but also from its real-life applications. Similarly to other arc routing prob-
lems, such applications arise in a wide variety of practical cases, namely garbage
collection, road maintenance, mail delivery, snow plowing or pipelines inspection, to
name just a few (see e.g. [9]). In large-scale instances, there is usually more than
one depot from which service demand can be satisfied. Such depots may be vehicle
stations, dump sites, replenishment points or relay boxes. A way of handling such
problems is to first define a smaller operating area for each depot, by using a district-
ing procedure in which each district contains a single depot, and then solving the
RPP associated with each district. This solution strategy is of course suboptimal.

The literature on Multi-Depot Arc Routing Problems (MDARP) is scarce. To
the best of our knowledge, [14, 16] present the only existing exact algorithms for the
MDRPP. Both use natural decision variables which explicitly indicate the depot to
which each traversed edge or arc is associated. An exact branch-and-cut based on
a binary linear formulation was proposed in [16] for the MDRPP on an undirected
graph. A directed MDRRP is considered in [14], where an exact branch-and-cut
algorithm is developed for a collaborative arc routing problem. In [16] which deals
with an undirected MDRPP, instances with up to 100 vertices and four depots are
solved to optimality. Since the lengths of optimal routes in the MDRPP may be
very unbalanced, this paper also considers a min-max type objective function aiming
at balancing the length of the routes. In [14], which addresses a directed MDARP
dealing with carriers collaboration, instances with up to 50 vertices and two de-
pots are optimally solved. Other than this, previous work on MDARPs has focused
on multi-depot capacitated arc routing problems (MDCARPs). Some theoretical
aspects of MDCARPs are considered in [31]. A new formulation and exact solu-
tion algorithm are presented in [25] for the asymmetric multi-depot capacitated arc
routing problem. Heuristics have been put forward for both the undirected and
the directed MDCARPs. Sequential heuristics for the undirected MDCARP are
proposed in [1, 27, 28]. A cluster-first-route-second strategy, where the assignment
of arcs to depots is established before designing the routes is applied in [1], and a
route-first-cluster-second strategy is used in [27, 28], where a single giant route is
created first and later partitioned into smaller routes. Population based heuristics
have also been used for solving MDCARPs. For the undirected case, two differ-
ent ant colony strategies are presented in [24], and a hybrid genetic algorithm with
perturbation that incorporates a local search, a replacement method, and a pertur-
bation mechanism is proposed in [23]. The directed case is addressed in [32], where
an evolutionary approach is presented, which takes advantage of the extensions of
the heuristics for the classical single-depot Capacitated Arc Routing Problem [19].

Multi-depot routing problems are also related to districting-arc routing problems
where a set of clusters or districts that suitably partition the required edge set is
sought. The design of good districts takes place at a strategic level, where demand

2

points or edges are allocated to depots, and allows finding efficient routes in each
district at an operational level in a later phase. There exists a rich districting
literature in relation to arc routing. In fact, some of the above referenced works
stem from this research area. As an example, the heuristics of [27, 28] are devised
as a second phase in districting problems. Two recent works on districting for arc
routing are [6, 17]. The interested reader is referred to [26, 29] for further readings
on this topic.

This paper makes the following scientific contributions: i) it presents optimality
conditions and a worst-case analysis for the MDRPP; ii) it proposes a compact
integer linear programming formulation containing only binary variables for the
problem, as well as a polyhedral analysis; iii) it develops a branch-and-cut algorithm
that includes several new exact and heuristic separation procedures. We show that
instances involving up to four depots, 744 vertices, and 1315 edges can be solved
to optimality. These instances contain up to 140 required components and 1000
required edges.

The remainder of the paper is organized as follows. Section 2 contains a formal
definition of the problem, as well as some properties. The mathematical model and
the polyhedral analysis are presented in Section 3, followed by the branch-and-cut
algorithm in Section 4. Extensive computational results are presented in Section 5.
The paper closes with some conclusions in Section 6.

2 Formal definition and properties

The MDRPP is defined on an undirected connected graph G = (V,E), where V is
the vertex set, |V | = n, E is the edge set, and |E| = m. We denote by D ⊂ V
the set of depots, by R ⊂ E the set of required edges, and by F = E \ R the set
of unrequired edges. The connected components induced by the required edges are
referred to as required components and indexed in a set K. These components are
denoted by Ck = (Vk, Rk), k ∈ K, so R =

⋃
k∈K Rk. Let VR =

⋃
k∈K Vk. We assume

that E contains no edge connecting two depots, and that no component has more
than one depot, although it is possible that a component contains no depot, i.e.
|Vk ∩D| ≤ 1 for all k ∈ K. Let c be a non-negative real cost function defined on the
edges of G.

In the following we assume that G has been simplified so that V is the set of
vertices incident to the edges of R, and E contains the edges of R plus additional
unrequired edges, connecting every pair of vertices not connected with an edge of
R, representing shortest paths in the original graph. To this end, following the
procedure described in [7], we first add to GR = (VR, R) an edge between every pair
of vertices of VR having a cost equal to the shortest path length on G. Hence the
costs of the simplified graph satisfy the triangle inequality.

We use the term route to denote a closed but not necessarily simple path that
starts and ends at the same depot d ∈ D. We say that a required edge e ∈ R is
served if a route traverses it at least once. As usual, the cost of a route is the sum of
the costs of the edges in the route, where the cost of each edge is counted as many
times as it is traversed.

3

We denote by TC the Minimum Spanning Tree (MST) with respect to cost func-
tion c, of the multigraph GC = (VC , EC) induced by the connected components. In
addition, we will use the following usual notation. For any non-empty vertex subset
S ⊂ V , δ(S) = {(u, v) ∈ E|u ∈ S, v ∈ V \ S} = δ(V \ S) is the set edges in the cut
between S and V \S and γ(S) = {(u, v) ∈ E|u, v ∈ S} the set of edges with both
vertices in S. For a singleton S = {v}, with v ∈ V , we just write δ(v) instead of
δ({v}). For H ⊂ E we use δH(S) = δ(S) ∩ H and γH(S) = γ(S) ∩ H. Further-
more, a vertex v ∈ V is H-odd if |δH(v)| is odd; otherwise v is H-even. Finally,
we use the standard compact notation f(A) ≡

∑
e∈A fe where A ⊆ E, and f is a

vector or a function defined on E. If f is only defined on subset B ⊂ E, we use
f(A) ≡ f(A ∩B) ≡

∑
e∈A∩B fe.

In the remainder of this paper, we make the following modeling assumption:

H1) Required edges in the same component can be served in routes from different
depots.

Figure 1 illustrates the effect of this assumption. Figure 1a shows the input graph,
which has two required components with a depot in each one of them (v1 and v2,
respectively). The black lines represent required edges, while the unrequired edges
are drawn in light grey. The numbers next to the edges indicate their cost. Figure
1b shows the optimal solution of cost z = 23 when we impose that all required
edges in the same component be served from the same depot. The route of depot
v1 (represented with solid lines), which serves the required edges of C1, consists of
edges (v1, A), (A, B), and (B, v1). The route of depot v2 (represented with dotted
lines), which serves the required edges of C2, consists of edges (v2, E), (E, C), (C,
D), (D, E), (E, F), and (F, v2). Figure 1c shows that a better solution of cost
z = 19 can be obtained if we allow to serve required edges in the same component
from different depots. Now all the required edges of C1 and some required edges of
C2 are served in the route from depot v1 defined by edges (v1, A), (A, C), (C, E),
(E, D), (D, B), and (B, v1). The remaining required edges of this component are
served in the route from depot v2, which consists of edges (v2, E), (E, F), and (F, v2).

We note that, as a consequence of the modeling assumption H1, feasible routes
are not necessarily vertex-disjoint.

The MDRPP is to find a set of non-empty routes, one from each depot, that
serve all the required edges at minimum total cost.

2.1 Optimality conditions

As is usual in related uncapacitated arc routing problems on undirected graphs,
the MDRPP satisfies some optimality conditions that allow to derive formulations
using binary variables only (see, for instance, [15, 18]). In particular, the following
properties were proven in [16]:

O1) There exists an optimal MDRPP solution in which each required edge is served
by exactly one route.

4

Figure 1: Example showing that allowing to split the required components among
routes may produce better solutions

O2) There exists an optimal MDRPP solution in which no edge is traversed more
than twice.

O3) There exists an optimal MDRPP solution where no unrequired edge with the
two end-vertices in the same component (e ∈ γF (Vk)) is traversed more than
once. Furthermore, because of the triangle inequality, the only edges of γF (Vk)
that are used connect two R-odd vertices.

O4) There exists an optimal MDRPP solution in which the only unrequired edges
that are traversed twice are the edges of TC . (See [18] for a similar result on
the RPP).

2.2 Worst-case analysis

In this section we make a worst-case comparison between the MDRPP and the RPP.
We close the section with an analysis of the improvement that can be obtained due
to the modeling hypothesis H1 that allows serving the edges of a required compo-
nent from different depots. Throughout the section we denote by z∗(MDRPP) the
optimal value of an MDRPP instance and by z∗(RPP) the optimal value of the
same instance with only one depot. Note that, when all depots are incident to a
required edge, the optimal value z∗(RPP) of an RPP instance on a given graph is
independent of the location of the depot. We will also use the notation z(H) to
indicate the total cost of the edges in H ⊂ E, for an MDRPP or an RPP instance.

The costs savings that can be obtained with the MDRPP with respect to the
RPP with one single depot can be arbitrarily large. The highest savings are achieved
when a depot is located in each component. Then z∗(MDRPP) is the sum of the
optimal Chinese Postman solution values on each component. Figure 2 illustrates
one such example, which we will use in the proof of Theorem 2.1.

Theorem 2.1 There exists no finite bound for the ratio z∗(RPP)/z∗(MDRPP).

Proof: Consider an MDRPP instance like the one depicted in Figure 2, defined on

5

di di

di di
MM

M Mdi

M didi
M

M
d d

M
dj di

Figure 2: Potential improvement of the MDRPP relative to the RPP

a graph G = (V,E), where each required component Ck, k ∈ K, contains a depot,
represented by a grey square, and its required set Rk consists of a triangle (solid
lines). One required component is located at the center of an imaginary circle and
the remaining |K| − 1 components are displayed around its circumference. The set
F of unrequired edges are |K| − 1 radii of the circle, each of them connecting the
center component and one of the other components (dotted lines). The cost of each
unrequired edge is M . It is clear that the optimal value of the MDRPP is the sum
z(R) of the costs of all required edges. It is also easy to see that the cost of the RPP
with only one depot is z∗(RPP) = z(R) + 2z(F) = z(R) + 2 (|K| − 1)M . Therefore

z∗(RPP)

z∗(MDRPP)
=
z(R) + 2 (|K| − 1)M

z(R)
,

which tends to ∞ when M →∞.

Despite the above result, it is also possible that z∗(MDRPP) will be higher
than z∗(RPP). Broadly speaking, this will happen when the need of using all the
depots worsens the potential quality of a solution. Below we give a lower bound on
the ratio z∗(RPP)/z∗(MDRPP).

Theorem 2.2 z∗(RPP)/z∗(MDRPP) ≥ 1/2, and the bound is asymptotically tight.

Proof: To see that z∗(MDRPP) ≤ 2z∗(RPP) we observe that a feasible solution
for a given MDRPP instance can be obtained from an optimal RPP solution as
follows:

i) Replicate all the edges of the RPP solution.

ii) Eliminate all pairs of unrequired edges connecting two components, both con-
taining one depot.

iii) For each component containing no depot, retain one dipath connecting it with
some component with a depot, and eliminate all remaining such dipaths if they
exist.

The cost of the solution after i) is 2z∗(RPP). Thus if z∗ denotes the cost of the
feasible MDRPP solution at the end of the process we have z∗ ≤ 2z(RPP). Since

6

the optimal MDRPP value cannot be greater than z∗ we have z∗(MDRPP) ≤ z∗ ≤
2z∗(RPP). To see that the bound can be attained asymptotically we provide an
example.

Consider an MDRPP instance like the one depicted in Figure 3a defined on
a graph G = (V,E), where each required component consists of one single edge
represented by a solid line, Rk = {(uk, vk)} of cost M , and contains a depot
(gray square) located at its leftmost vertex uk. Suppose that all required edges
are parallel. The set of unrequired edges (dotted lines) contains edges connect-
ing the leftmost and rightmost end-vertices of each consecutive pair of edges, i.e.
F = {(uk, uk+1) : 1 ≤ k < |K|} ∪ {(vk, vk+1) : 1 ≤ k < |K|}. Let us finally suppose
that the cost of each unrequired edge is ε. In the optimal MDRPP solution to the
above instance, each required edge is traversed twice and no unrequired edge is used.
Hence, z∗(MDRPP) = 2|K|M . The optimal RPP solution (see Figure 3b) traverses
each required edge only once and connects each pair of consecutive components with
one small unrequired edge (in total |K| − 1 such edges) of cost ε. Finally, the last
and first components are connected with a path of unrequired edges, which traverses
all the components (in total |K| − 1 small edges again). The value of the optimal
RPP solution is thus z∗(RPP) = |K|M + 2(|K| − 1)ε. Therefore, for the instance
described above we have

z∗(RPP)

z∗(MDRPP)
=
|K|M + 2(|K| − 1)ε

2|K|M
,

which tends to 1/2 when ε→ 0. �

M
d1

d

d

M

d

d


∶

d

d

∶

d

d

d

(a) Input graph

d1

d
d

d

d
d

d

d

∶

(b) Optimal RPP solution

Figure 3: Potential improvement of the RPP relative to the MDRPP.

We conclude this section by comparing the value of the MDRPP (in which,
according to H1, the edges of a required component can be served from different
depots), with its clustered version MDRPPC (in which it is imposed that all the
required edges in the same component are served from the same depot). Denote by
z∗(MDRPPC) the optimal value to a given MDRPPC instance. Since any feasible
solution to the MDRPPC is feasible for the MDRPP, we have that z∗(MDRPP) ≤
z∗(MDRPPC). Thus a lower bound for the ratio z∗(MDRPPC)/z∗(MDRPP)
is one. It is easy to construct examples for which both problems have the same
optimal solution, so that this lower bound is tight. Below we give a result on an

7

upper bound of the ratio z∗(MDRPPC)/z∗(MDRPP) and show that the bound is
asymptotically tight.

Theorem 2.3 z∗(MDRPPC)/z∗(MDRPP) ≤ 2, and the bound is asymptotically
tight.

Proof: To see that z∗(MDRPPC) ≤ 2z∗(MDRPP) it is sufficient to observe
that replicating all the edges in an optimal MDRPP solution yields a solution in
which the edges of each required component define an Eulerian graph, and all the
edges connecting two different components, are used an even number of times. It is
thus sufficient to remove two copies of some of the edges connecting two different
components to obtain a feasible solution to the MDRPPC .

The example of Figure 4a shows that the bound is asymptotically tight. Con-
sider a graph with an even number of required components, where each required
component consists of two edges depicted with solid lines: a small one, (uk, vk) of
cost δ, and a long one, (vk, wk) of cost M . Suppose that the required edges in each
component are aligned and that all required components are parallel. Each compo-
nent contains a depot represented with a light gray square. The depot of component
one is located at its rightmost vertex w1, whereas the depots of all other components
are located at their leftmost vertex uk. The unrequired edges are shown by dotted
lines. They connect pairs of similar vertices in consecutive components, i.e. F =
{(uk, uk+1) : 1 ≤ k < |K|} ∪ {(vk, vk+1) : 1 ≤ k < |K|} ∪ {(wk, wk+1) : 1 ≤ k < |K|}.
The cost of each unrequired edge is ε.

An optimal solution to MDRPPC is obtained replicating all required edges, since
all the edges of each required component must be served from its depot. The value
of this solution is z∗(MDRPPC) = 2|K|(δ +M).

Figure 4b depicts an optimal MDRPP solution to the above instance. Small
required edges (uk, vk) in all components different from the first one are served from
their depot and are traversed twice. The large required edges (vk, wk) are traversed
once in one single route associated with the depot of the first component. This
route also traverses the small required edge (u1, v1) twice, traverses the unrequired
edges (vk, vk+1) and (wk, wk+1) once if k is odd, and traverses the unrequired edges
(wk, wk+1) twice if k is even. Hence, z∗(MDRPP) = 2|K|δ+(|K|M + 2(|K| − 1)ε).
Therefore, for the instance described above we have

z∗(MDRPPC)

z∗(MDRPP)
=

2|K|(δ +M)

2|K|δ + (|K|M + 2(|K| − 1)ε)
,

which tends to 2 when δ → 0 and ε→ 0. �

3 Mathematical programming formulation and polyhe-
dral analysis

A natural modeling option when dealing with routing problems with multiple de-
pots is to make use of binary variables that associate arcs or edges with depots, and
then define the routes of each depot. This offers two main advantages. On the one

8

∶

u2 v2 w2

u3 v3 w3

M
w1 v1 u1



u3 v3 w3

u3 v3 w3

u3 v3 w3



(a) Input graph

∶

u2 v2 w2

u3 v3 w3

w1 v1 u1

uk vk wk

(b) Optimal MDRPP solution

Figure 4: Potential improvement due to the modeling hypothesis H1.

hand, in absence of capacity or other type of constraints, the feasibility of a route
corresponding to a fixed depot is guaranteed through the imposition of parity and
connectivity constraints. On the other hand, the routes can be easily constructed
once the values of the decision variables are known. The obvious disadvantage of
this modeling approach is that the number of variables increases with the number of
depots, and therefore the success of exact solution methods on large size instances
becomes a challenge. The two MDRPP papers [14, 16] referenced in the introduction
use this type of decision variables. In [16] which deals with exactly the same undi-
rected MDRPP that we study in this paper, instances with up to 100 vertices and
four depots were solved to optimality. In [14], which considers a directed MDARP
dealing with carriers collaboration, instances with up to 50 vertices and two depots
were optimally solved.

In this section we present a new integer linear formulation for the MDRPP with
binary decision variables which are solely associated with edges, but not with depots.
However, the reduction on the number of decision variables comes at the expense of
additional difficulties. Figure 5, where gray squares represent depots and solid lines
required edges, illustrates that connectivity and parity constraints are not sufficient
to guarantee well-defined routes. Observe that the displayed solution is not feasible
as it is not possible to decompose it into three routes, each starting and ending at
the same depot. To overcome this difficulty we propose a new set of constraints
that guarantee that each route starts and ends at the same depot, which can be
separated in polynomial time.

3.1 Mathematical programming formulation

In addition, our formulation exploits the optimality conditions presented in Section
2.1, which allows the exclusive use of binary variables. In particular, two sets of
binary variables are used, associated with the first and second traversals of edges,
respectively. We denote by Ey ⊂ E the set of edges that can be traversed twice in
an optimal solution, which, according to O4, consists of all required edges plus the
edges of TC . For each e ∈ E, let xe be a binary variable indicating whether or not
edge e is traversed by some route. For each e ∈ Ey, let ye be a binary variable that
equal to one if and only if edge e is traversed twice. Then, an integer linear program

9

8

2

3

7

5

94

61

10

11

Figure 5: Infeasible solution satisfying connectivity and parity constraints

for the MDRRP is as follows:

minimize
∑
e∈E

cexe +
∑
e∈Ey

ceye (1)

subject to

(x+ y)(δ(d)) ≥ 2 d ∈ D (2)

(x+ y)(δ(S)) ≥ 2 S ⊆ V \ D (3)

(x− y)(δ(S) \H) + y(H) ≥ x(H)− |H|+ 1 S ⊂ V, H ⊆ δ(S)

|H| odd (4)

(x− y)(Q) + y(H) ≥ x(H)− |H|+ |D′| S ⊂ V \D,D′ = {di}i∈I ⊂ D, (5)

|D′| > 1, Hi ⊆ δ(S) ∩ δ(di), |Hi| odd, i ∈ I,

H =
⋃
i∈I

Hi, Q = (δ(S) \H) \
(
δ(D \D′)

)
xe = 1 e ∈ R (6)

ye ≤ xe e ∈ Ey (7)

xe ∈ {0, 1} e ∈ E (8)

ye ∈ {0, 1} e ∈ Ey. (9)

Constraints (2) ensure that all depots are used. Inequalities (3) are an adapta-
tion to the case with multiple depots of the RPP connectivity inequalities (see, for
instance [18]). They impose that at least two edges cross the cut-set δ(S) of any set
of vertices S that does not contain a depot, i.e. S ⊂ V \D. Inequalities (4) ensure
the parity (even degree) of every subset of vertices and, in particular, of every vertex.
They impose that if a solution uses a set H consisting of an odd number of edges
incident to a set of vertices S, then the solution uses at least one additional traver-
sal of some edge in the cut-set δ(S). In our case, we further exploit the precedence

10

relationship of the x variables with respect to the y variables imposed by constraints
(7). Therefore, the additional edge will be either a second traversal of some edge of
H or a first traversal of some edge of δ(S)\H. Inequalities (4) are an adaptation
to the MDRPP of those proposed in [2, 3, 4], which were later reinforced for the
Maximum Benefit Chinese Postman Problem [10]. Inequalities (15) are new and will
be referred to as depot inequalities. They impose that for a given subset S ⊂ V \D of
vertices not including any depot, the degree of its cut-set with respect to each of the
depots is even. As we will see in Proposition 3.1, this family of inequalities, jointly
with the remaining connectivity and parity constraints, also guarantees that each
route starts and ends at the same depot. Equalities (6) ensure that each required
edge is served in the solution, whereas inequalities (7) impose that an edge cannot
be traversed for a second time unless that it has been traversed for a first time. The
binary conditions of the variables x and y derived from their definition are imposed
by constraints (8) and (9).

The above formulation contains |E| x variables and |Ey| y variables. There are
|D| constraints of type (2), |R| constraints (6), and |Ey| constraints of type (7). The
size of the families constraints (3), (4), and (15) is exponential in |V |.

Proposition 3.1 Formulation (2)–(9) is valid for the MDRRP.

Proof: We will show that if a solution (x, y) satisfying (2)–(4), (6)–(9) is not fea-
sible for the MDRRP, then there exists a constraint (15) violated by the solution.
Let G(x, y) denote the support graph associated with (x, y). Because of the connec-
tivity and parity constraints (3)–(4), if (x, y) is not feasible for the MDRRP then
there must be a simple tour T traversing at least two depots. Let d1, d2 ∈ D be
two consecutive depots in one of the orientations of T , and Pd1d2 the subpath of
T connecting d1 and d2. The result follows from the observation that the depot
constraint (15) associated with S = V (Pd1d2) \ D, D′ = {d1, d2}, H1 = S ∩ δ(d1),
H2 = S ∩ δ(d2) and Q = (δ(S) \H) \ (δ(D \D′)) is violated by (x, y). �

Let us use again the example of Figure 5 for illustrative purposes. Consider,
for instance, the simple tour T = (11, 3, 10, 8, 9, 7, 5, 6, 1), d1 = 11, d2 = 8, and
P11,8 = (11, 3, 10, 8). Using the notation of the above proof, V (Pd1d2) \D = {3, 10},
H1 = {(3, 11)}, and H2 = {(8, 10)} and Q = (δ(S) \ H) \ (δ(D \D′)) = {(4, 10)}.
Indeed, the associated depot inequality (15) is violated since x(H)− |H|+ |D′| = 2,
but (x− y)(Q) + y(H) = 1 < x(H)− |H|+ |D′|.

Remark 3.1 An additional consequence of the above proof is that depot inequal-
ities (15) associated with subsets D′ with two depots suffice to guarantee that the
proposed formulation is valid.

3.2 Polyhedral analysis

Considering that all required edges must be traversed at least once, the MDRPP can
be equivalently stated as the problem of determining a least cost set of additional
edges which, along with the required edges, define a connected route from each
depot. Accordingly, we can reformulate (2)–(9) by slightly modifying the meaning

11

and the domain of the variables. Now the variables xe will have a different meaning
depending on whether or not e is a required edge. For e ∈ R, xe = 1 indicates
that required edge e is traversed one additional time (second traversal), whereas for
e ∈ E \ R xe = 1 indicates that unrequired edge e is traversed for the first time.
Based on the optimality conditions of Section 2.1, we redefine the domain of the x
variables as E2

x ⊂ E, which contains all required edges, plus the edges that satisfy
condition O3, as well as the unrequired edges connecting two end-vertices in different
components. Now the domain E2

y ⊂ E for the variables associated with the second
traversal of edges, contains only the unrequired edges that satisfy condition O4, i.e.
the unrequired edges of TC . In terms of these new sets of variables, the MDRPP
can be expressed as

∑
e∈R

ce + min{
∑
e∈E2

x

cexe +
∑
e∈E2

y

ceye} (10)

subject to

x(δ(d)) ≥ 2 d ∈ D, |δ(d)| = 1 (11)

(x+ y)(δ(S)) ≥ 2 S = ∪i∈K′Vi \D
∅ 6= K ′ ⊂ K (12)

(x− y)(δ(S) \H) + y(H) ≥ x(H)− |H|+ 1 S ⊂ V, S R-even

H ⊆ δ(S), |H| odd (13)

(x− y)(δ(S)) ≥ 1 S ⊂ V, S R-odd (14)

(x− y)(Q) + y(H) ≥ x(H)− |H|+ |D′| S ⊂ V \D,D′ = {di}i∈I ⊂ D, (15)

|D′| > 1, Hi ⊆ δ(S) ∩ δ(di), |Hi| odd, i ∈ I,

H =
⋃
i∈I

Hi, Q = (δ(S) \H) \
(
δ(D \D′)

)
ye ≤ xe e ∈ E2

y (16)

xe ∈ {0, 1} e ∈ E2
x (17)

ye ∈ {0, 1} e ∈ E2
y . (18)

Next we study the polyhedral properties of (10)-(18). We denote by P(MDRPP)

the polytope defined by the convex hull of feasible solutions to the above formulation:

P(MDRPP) = conv{(x, y) ∈ {0, 1}|E2
x|+|E2

y | : (x, y) satisfies (11)–(16)}.
In the proofs below we abuse notation and assume that there exists an edge

connecting each pair of vertices. When such edges are non-existing in E2
x, they

correspond to T -joins, connecting given pairs of vertices, that only use true edges of
the set E2

x. Examples of such non-existing edges are, for instance, T -joins connecting
two depots, or T -joins connecting two even-vertices in the same component if the
connecting edges do not exist in E2

x. Using edges associated with such T -joins in
the solutions that we will build, will simplify the presentation of the proofs, but will
have no effect on their validity, since the parity of the intermediate vertices in the
T -joins will not be affected.

12

Proposition 3.2 P(MDRPP) is full-dimensional if and only if every cut-edge set
δ(S) ⊂ V \ D has at least three edges, and every cut-edge set δ(S) such that S =⋃
i∈K′ Vi \D (∅ 6= K ′ ⊂ K) has at least four edges, where if e ∈ E2

x and e ∈ E2
y , then

e is counted as two distinct edges.

Proof: The condition is necessary. We follow the same idea as in [18] for the RPP.
If there exists a cut edge-set with only one edge, then e should be a required edge
and xe = 1. Therefore, P (MDRPP) ⊂ {x : xe = 1}. Assume now there exists a
subset S ⊂ V \ D, with δ(S) = {e(1), e(2)}. If S = ∪i∈K′Vi \ D (∅ 6= K ′ ⊂ K),
then P (MDRPP) ⊂ {x : xe(1) = 1 and xe(2) = 1}. Otherwise, if δ(S) is R-
even, P (MDRPP) ⊂ {x : xe(1) = xe(2)}, and if δ(S) is R-odd, P (MDRPP) ⊂ {x :
xe(1)+xe(2) = 1}. Finally, if S = ∪i∈K′Vi\D (∅ 6= K ′ ⊂ K) or δ(S) = {e(1), e(2), e(3)},
then P (MDRPP) ⊂ {x : xe(1) + xe(2) + xe(3) = 2}
The condition is sufficient. Let us find |E2

x|+ |E2
y |+1 affinely independent solutions

satisfying the connectivity, parity and depot inequalities.

The first solution, denoted by (x0, y0), contains one traversal of the edge connect-
ing each R-odd vertex with an arbitrarily chosen depot d0 ∈ D, plus two traversals
of all the edges of TC (O4). To guarantee the parity of the depots in the solution, it
may be necessary to add some edges connecting some pairs of depots. The remaining
|E2

x|+ |E2
y | solutions, (xe, ye), e ∈ E2

x ∪ E2
y , are obtained from (x0, y0) as follows:

a) Case e = (u, v) ∈ E2
x, with u, v in the same component.

a1) Case u, v R-odd. In this case x0e = 0 whereas the components corre-
sponding to edges eu = (d0, u) and ev = (d0, v), take the value 1, i.e.
x0eu = x0ev = 1. We set xee = 1 − x0e = 1, xeeu = 1 − x0eu = 0, and
xeev = 1 − x0ev = 0, so the parity of u and v does not change. All other
components remain unchanged, i.e., xef = x0f , for all f ∈ E2

x\{e}, yef = y0f ,
for all f ∈ Ey.

a2) Case u, v R-even. In this case x0e = 0 whereas the components corre-
sponding to edges eu = (d0, u) and ev = (d0, v), take the value 0, i.e.
x0eu = x0ev = 0. We set xee = 1 − x0e = 1, xeeu = 1 − x0eu = 1, and
xeev = 1 − x0ev = 1, so the parity of u and v does not change. All other
components remain unchanged, i.e., xef = x0f , for all f ∈ E2

x\{e}, yef = y0f ,
for all f ∈ Ey.

a3) Case u R-odd and v R-even (or vice versa). In this case x0e = 0 whereas
the components corresponding to edges eu = (d0, u) take the value 1
and ev = (d0, v), take the value 0, i.e. x0eu = 1 and x0ev = 0. We set
xee = 1− x0e = 1, xeeu = 1− x0eu = 0, and xeev = 1− x0ev = 1, so the parity
of u and v does not change. All other components remain unchanged,
i.e., xef = x0f , for all f ∈ E2

x \ {e}, yef = y0f , for all f ∈ Ey.

b) Case e = (u, v) ∈ E2
x\E2

y , with u, v in different components. In this case x0e = 0,
and the components corresponding to edges eu = (d0, u) and ev = (d0, v), are
at value 0 as well, i.e. x0eu = x0ev = 0. Again we set xee = 1−x0e, xeeu = 1−x0eu ,
and xeev = 1 − x0ev , resulting now in xee = xeeu = xeev = 1. As in the previous

13

case, the parity of u and v does not change. All other components remain
unchanged, i.e., xef = x0f , for all f ∈ E2

x \ {e}, yef = y0f , for all f ∈ E2
y .

c) Case e ∈ E2
x ∩E2

y . Now x0e = y0e = 1. We now generate two solutions: (xe, ye),
associated with e ∈ E2

x, and (x′e, y′e), associated with e ∈ E2
y . For (xe, ye) we

keep xee = 1 but set yee = 0. Then we set xeeu = xeev = 1 where, as before,
u, v denote the two end-vertices of edge e, and eu = (d0, u), ev = (d0, v).
This guarantees the parity of u and v and the connectivity of the solution.
All other components remain unchanged. For (x′e, y′e) we set x′ee = y′ee = 0.
This guarantees the parity of u and v although the connectivity may be lost.
If needed, additional edges are added to recover connectivity (indeed it is
possible to recover connectivity via a triangle of edges connecting u and v to
an arbitrary depot). All other components remain unchanged.

Note that each of the feasible solutions obtained above contains at least one
component with a value that is different from the values of that component in all
other solutions. Therefore, the associated points are affinely independent and the
result follows. �

In the remainder of this section we study the conditions under which several
families of inequalities define facets of P(MDRPP). The proofs of these results are
similar or adaptations of those for the RPP in [18].

Proposition 3.3 The inequality xe ≥ 0 defines a facet of P(MDRPP) if and only if
every cut-set δ(S) ⊂ V \D containing e has at least four edges and every δ(S) such
that S =

⋃
i∈K′ Vi \D (∅ 6= K ′ ⊂ K) has at least five edges.

Proof: The proof in [18] directly applies to the MDRPP, independently of the
number of depots. The face {x ∈ P(MDRPP) : xe = 0} has the same dimension
as the polytope associated with the MDRPP defined on the graph obtained after
removing edge e from G. �

Proposition 3.4 The inequality xe ≤ 1 induces a facet of P(MDRPP) if and only if
every cut-set δ(S) containing e has at least four edges.

Proof: The condition is necessary. Suppose there exists a cut-edge set with only
three edges, δ(S) = {e, f, g}. Then, either {x ∈ P(MDRPP) : xe = 1} ⊂ {x ∈
P(MDRPP) : xe = 1, xf + xg = 1} if δ(S) is R-even, or {x ∈ P(MDRPP) : xe = 1} ⊂
{x ∈ P(MDRPP) : xe = 1, xf − xg = 0} otherwise.

The condition is sufficient. Under the hypotheses, it is easy to show that there exist
|E2

x|+ |E2
y | feasible and affinely independent solutions on the hyperplane xe = 1.

Let the first solution be solution (xe, ye) as defined in the proof of Proposition
3.2. Recall that xee = 1. The remaining |E2

x|+ |E2
y |−1 solutions may be constructed

following the same process as in Proposition 3.2, modifying in each new solution one
of the other components. �

Proposition 3.5 The connectivity inequality (12) associated with S =
⋃
i∈K′ Vi

(∅ 6= K ′ ⊂ K), S
⋂
D = ∅, induces a facet of P(MDRPP) if and only if the graphs

14

induced by the connected components G(S) and G(V \S) verify the following: i) G(S)
is connected and each connected component of G(V \S) has at least one depot. ii)
For every subset of components in S′ ⊂ S (or S′ in V \S) with S′

⋂
D = ∅, it holds

that |δ(S′)\δ(S)| ≥ 2.

Proof: The condition is necessary. Suppose G(S) is not connected, and let S1 be
a component of G(S). Then the connectivity inequality (12) associated with G(S)
is dominated by the connectivity inequality (12) corresponding to G(S1). A similar
situation arises if some component of G(V \S) contains no depot. Suppose now there
exists a subset of components S′ ⊂ S such that there is only one edge connecting S′

and S\S′. Then, the connectivity constraint associated with G(S) is dominated by
the sum of the connectivity constraints (12) associated with S′ and S\S′.
The condition is sufficient. Under the hypotheses, there exist |E2

x| + |E2
y | feasible

and affinely independent solutions on the hyperplane
∑

e∈δ(S)(xe + ye) = 2.

Consider a solution (x0, y0) that contains: i) one traversal of the edges connecting
each R-odd vertex with an arbitrarily even vertex i ∈ V in its own component; ii)
two traversals of one arbitrarily selected edge of TC , e0 = (u0, v0), which belongs to
the cut-set δ(S), i.e. e0 ∈ E2

y ∩ δ(S); and, iii) two traversals of all the edges of TC
that do not belong to the cut-set δ(S). By construction, (x0 + y0)(δ(S)) = 2. The
|E2

x|+ |E2
y | − 1 additional solutions are obtained from (x0, y0) as follows:

a) Case e = (u, v) ∈ E2
x, with u, v in the same component. We proceed exactly

as in case a) in the proof of Proposition 3.2.

a1) Case u, v R-odd. In this case x0e = 0 whereas the components correspond-
ing to edges eu = (i, u) and ev = (i, v), take the value 1, i.e. x0eu = x0ev = 1.
Hence, we set xee = 1 and xeeu = xeev = 0, so the parity of u and v does
not change. All other components remain unchanged, i.e., xef = x0f , for

all f ∈ E2
x \ {e}, yef = y0f , for all f ∈ E2

y .

a2) Case u, v R-even. In this case x0e = 0 whereas the components cor-
responding to edges eu = (i, u) and ev = (i, v), take the value 0, i.e.
x0eu = x0ev = 0. We set xee = 1 − x0e = 1, xeeu = 1 − x0eu = 1, and
xeev = 1 − x0ev = 1, so the parity of u and v does not change. All other
components remain unchanged, i.e., xef = x0f , for all f ∈ E2

x\{e}, yef = y0f ,
for all f ∈ Ey.

a3) Case u R-odd and v R-even (or vice versa). In this case x0e = 0 whereas
the components corresponding to edges eu = (i, u) take the value 1 and
to edges ev = (i, v) take the value 0, i.e. x0eu = 1 and x0ev = 0. We set
xee = 1− x0e = 1, xeeu = 1− x0eu = 0, and xeev = 1− x0ev = 1, so the parity
of u and v does not change. All other components remain unchanged,
i.e., xef = x0f , for all f ∈ E2

x \ {e}, yef = y0f , for all f ∈ Ey.

b) Case e = (u, v) ∈ E2
x \ E2

y with u, v in different components. In this case
x0e = 0, and there is an edge e′ = (u′, v′) ∈ Ey ∩ δ(S) with u′ in the same
component as u, and v′ in the same component as v with x0e′ = y0e′ = 1. Note
that it is possible that u′ coincides with u or that v′ coincides with v (but not

15

both simultaneously). Now we set xee = 1, yee′ = 0. Furthermore, if u′ 6= u we
set xeeu,u′ = 1. Similarly, xeev,v′ = 1, provided that v′ 6= v. Like in the previous

case, the parity of u and v does not change. All other components remain
unchanged (including xee′ = 1).

c) Case e = (u, v) ∈ E2
y \ {e0}. Now x0e = y0e = 1. We now generate two

solutions: (xe, ye), associated with e ∈ E2
x, and (x′e, y′e), associated with

e ∈ E2
y . Consider the following subcases:

c1) Case e = (u, v) ∈ δ(S). For (xe, ye) we set xee0 = yee0 = 0 and xee = yee = 1.
For (x′e, y′e), we set x′ee0 = y′ee0 = 0, x′ee = 1, and y′e = 0. To recover the
parity at the end-vertices of e and to guarantee the connectivity of the new
solution and (x′e+y′e)(δ(S)) = 2 we use edges eu = (i, u) and ev = (i, v),
and set x′eeu = x′eev = 1. All other components remain unchanged.

c2) Case e = (u, v) /∈ δ(S). For (xe, ye), we keep xee0 = yee0 = 1 and set
xee = yee = 0. Without loss of generality, we assume that u is the end-
vertex in the part that would be disconnected from the part of the solution
containing e0, if all other components remained unchanged. This solution
guarantees the parity of the vertices, but the connectivity may be lost if
some of the two split parts contains no depot. In this case, to recover the
connectivity of the solution we use edges eu0 = (u, u0) and ev0 = (u, v0),
and set xeeu0 = xeev0 = 1. All other components remain unchanged. For
(x′e, y′e), again we keep x′ee0 = y′ee0 = 1, but we now set x′ee = 1 and y′ee = 0.
To recover the parity of u and v, we now use the edges that connect each
of them with some vertex i, denoted by eu = (u, i) and ev = (v, i), and
set x′eeu = y′eev = 1. All other components remain unchanged. �

Proposition 3.6 The parity inequalities (13) and (14) induce facets of P(MDRPP)

if and only if the following conditions hold: i) for every subset S′ ⊂ S (or S′ in
V \S) with S′ ∩D = ∅, then |δ(S′)\δ(S)| ≥ 2. ii) If |H| = 1, then S is not a set of
components (S cannot be expressed as S = ∪i∈K′Vi \D with ∅ 6= K ′ ⊂ K).

Proof: The proof in [18], based on [5], directly applies to the MDRPP, indepen-
dently of the number of depots. �

Proposition 3.7 The depot inequalities (??) induce facets of P(MDRPP) if and only
if for every subset S′ ⊂ S (or S′ ⊂ V \S) with S′ ∩D = ∅, then |δ(S′)\δ(S)| ≥ 2.

Proof: The depot inequalities are an adaptation of the parity inequalities. So, as
in the previous case, the proof in [18], based on [5], directly applies to the depot
inequalities. �

Remark that in Proposition 3.7 condition ii) of Proposition 3.6 is no longer
needed. The reason is that inequalities (??) are defined for r > 1. Therefore, they
are never not dominated by the connectivity inequality (12) associated with S, as it
happens for inequalities (13) when condition ii) does not hold.

16

4 Branch-and-cut algorithm

In this section, we present an exact branch-and-cut algorithm for the MDRPP, based
on formulation (2)–(9) proposed in Section 3. As usual, the families of exponential
size, connectivity, parity and depot constraints, (3), (4) and (15), respectively, are
initially relaxed. Then, after each LP iteration they are separated to detect whether
there are constraints of any of these families violated by the current LP solution.
If so, the detected violated constraints are incorporated to the current formulation,
and the reinforced formulation is solved.

We use the Mixed Integer Linear Programming solver of CPLEX for setting
the enumeration framework. Thus, the above strategy is embedded within an enu-
meration scheme, which means that it is applied not only at the root node of the
enumeration tree but also at all generated nodes. We now describe the main elements
of the algorithm: the initial relaxation and the separation procedures.

4.1 Initial relaxation

The algorithm starts with all integrality conditions relaxed and only a subset of
constraints. In the initial formulation we include all constraints (2), (6) and (7),
plus a small subset of connectivity and parity constraints. In particular, we consider
two small subfamilies of the connectivity constraints (3): on the one hand, the
inequalities associated with the subsets defined by the end-vertices of the edges not
incident with any depot, i.e., S = {u, v ∈ V | (u, v) ∈ E and u, v ∈ V \ D}; on
the other hand, the inequalities associated with the subsets defined by the vertices
of each component without depot, i.e. S = Vk, k ∈ K, with Vk ∩ D = ∅. As for
the parity constraints (4), initially, we only consider the ones associated with R-odd
singletons i.e., S = {v} with v ∈ V and |δR(v)| odd.

4.2 Separation of inequalities

Let G(x, y) denote the support graph associated with the LP solution (x, y) at
any iteration of the algorithm. Inequalities (15) are only separated when the LP
solution (x, y) is integer, while inequalities (3) and (4) are also separated when the
LP solution (x, y) is fractional. In each case we proceed as follows.

a) Case (x, y) is integer: Check for violated inequalities of types (3), (4) and
(15).

a1) Connectivity inequalities (3). Violated inequalities can be identified by
finding connected components of G(x, y) containing no depot. The vertex
set of each such component defines a violated cut.

a2) Parity inequalities (4). Violated inequalities can be identified by checking
the parity of each vertex. In this case each vertex v ∈ V with |(x +
y)(δ(E(v))| odd defines a violated cut.

a3) Depot inequalities (15). Violated inequalities can be easily identified by
first finding a tour decomposition of the solution (applying, for instance,

17

Hierholzer’s algorithm [22]) and then checking if any of the tours contains
a path Pd1d2 connecting two (consecutive) depots. In this case D′ =
{d1, d2} and S = V (Pd1d2) \D′ defines a violated cut.

b) Case (x, y) is fractional: Check for violated inequalities of types (3) and (4).

In each case, we first apply a heuristic and only resort to exact separation when
the heuristic fails. For parity inequalities exact separation is only applied if, in
addition, some parity cut has been added in the last ten iterations and the value
of the objective function has increased by at least ϕ from the previous iteration,
where ϕ is a given parameter. For both types of inequalities, the heuristic looks for
connected components in an ad hoc graph. Heuristic and exact separation for each
case are described below.

4.2.1 Separation of connectivity inequalities (3)

The separation for inequalities (3) is to find S ⊂ V \D, with (x+ y)(δ(S)) < 2, or
to prove that no such inequality exists. As the example of Figure 6 shows, violated
connectivity constraints (3) are not necessarily associated with minimum cuts in
G(x, y) relative to the capacities vector x+y. Thus, for solving the separation prob-
lem for constraints (3) we cannot apply the usual technique, consisting of identifying
the tree of minimum cuts for G(x, y) relative to x + y. Instead, we will operate on
the subgraph GV \D(x, y) induced by the vertex set V \ D and look for minimum
cutsets relative to x+ y. Indeed the value of such cut-sets for GV \D(x, y) need not
correspond to their real value in G(x, y). Nevertheless if vV \D(S) denotes the value
the min-cut of a vertex set S ⊂ V \D for GV \D(x, y), then the real value for G(x, y)
can be easily computed as (x+ y)(δ(S)) = vV \D(S) + (x+ y) (δ(S) ∩ δ(D)).

0 25 0 25
11

0.25 0.25

1 1d1 d2v3
1

1
1

1

1 10.25 0.25

v4

Figure 6: Violated connectivity (3) not associated with a minimum cut in G(x, y)

Heuristic separation
The heuristic for the separation of (3) looks for connected components in the sub-
graph of GV \D(x, y), that contains only those edges with values xe + ye ≥ ε, where
ε is a given parameter. Then, we compute the real value of the cut associated

18

with each connected component C, which, by construction, contains no depots. If
(x + y) (δ(V (C))) < 2, the connectivity inequality (3) associated with V (C) is vio-
lated by (x, y).

Exact separation
For the exact separation of connectivity constraints (3) we build the tree of min-
cuts T of GV \D(x, y) (see, for instance, [20]) with capacities given by xe + ye. Since
(x + y)(δ(S)) = vV \D(S) + (x + y) (δ(S) ∩ δ(D)), the minimum cut-set of T is not
necessarily the cut-set with a minimum value of (x + y)(δ(S)). Thus, it may be
necessary to check more than one min-cut of T . In particular, for each min-cut δ(S)
of T of value vV \D(S) < 2, we check if vV \D(S) + (x+ y) (δ(S) ∩ δ(D)) < 2 as well.
In this case the inequality (3) associated with S is violated by (x, y).

4.2.2 Separation of parity inequalities (4)

The separation problem for inequalities (4) is to find S ⊂ V , H ⊆ δ(S), |H| odd
such that

(x− y)(δ(S) \H) + y(H) < x(H)− |H|+ 1, (19)

or to prove that no such inequality exists. The procedure we use follows the spirit
of the separation used by other authors with similar parity constraints for other arc
routing problems with binary variables [2, 3, 8]. Note that (19) can be written as

(x− y)(δ(S) \H) + |H| − (x− y)(H) < 1. (20)

or equivalently as ∑
e∈δ(S)\H

(xe − ye) +
∑
e∈H

(1− (xe − ye)) < 1. (21)

The above expression indicates that for a given set S ⊂ V , a set H ⊂ δ(S) that yields
the smallest value in the left-hand side is given by H = {e ∈ δ(S) | 1− (xe − ye) <
xe − ye}. Further, the value of the left-hand side of (20) corresponds to the value
of the cut-set δ(S) relative to a capacities vector be = min{(xe − ye), 1− (xe − ye)}.
Hence, the vertex set S ⊂ V , and associated edge set H ⊂ δ(S), which minimize the
left-hand side of (20) can be obtained by finding the minimum cut in Gx,y relative to
the capacities vector be as defined above. Indeed, for a given set S the set H ⊂ δ(S)
defined above need not be odd. If |H| is even, the smallest increment in the value
of the left-hand side of (20) that guarantees that |H| is odd is obtained by either
removing one edge from |H| (and transferring it to δ(S) \H) or by adding to H one
edge currently in δ(S) \H. In particular, the smallest increment is obtained with

∆ = min {min{xe − ye : e ∈ δ(S) \H},min{1− (xe − ye) : e ∈ H}} .

When b(δ(S)) + ∆ < 1, the updated set |H| defines a violated inequality (4) for S
in the current solution (x, y).

Heuristic separation
The heuristic consists of finding the connected components in the subgraph G(x, y)

19

induced by edges with values be = min{(xe − ye), 1 − (xe − ye)} > ε, where ε is a
given parameter. Then, if S ⊂ V is the vertex set of one of the components, we
proceed as indicated above to identify its associated edge set H. If b(δ(S)) < 1 and
|H| is odd, then the parity constraint (4) associated with S and H is violated by
(x, y). Otherwise, if b(δ(S)) + ∆ < 1, the parity constraint (4) associated with S
and the updated set H is violated by (x, y). If |H| is odd and b(δ(S)) + ∆ ≥ 1, then
the heuristic fails.

Exact separation
For the exact separation of the parity constraints (4) we build the tree of min-cuts
T b of Gx,y with capacities given by be. Let S1, ..., Sr be the vertex sets of the

minimum cuts of T b with values vS
i

= b(δ(Si)) strictly smaller than one, ordered
by non-decreasing order of their values, i.e., vS

1 ≤ · · · ≤ vS
r
< 1. Then we proceed

as follows:

end ← false; i← 1

while vS
i
< 1 and end = false do

Define H i ⊂ δ(Si) as explained above.

if(|H i| odd then)
abcd end ← true (constraint (4) violated by (x, y) for Si and H i)

else
abcd Compute ∆ = min

{
min{xe − ye : e ∈ δ(Si) \H i},min{1− (xe − ye) : e ∈ H i}

}
abcd if (vS

i
+ ∆ < 1) then

abcdabcd end ← true
abcdabcd(constraint (4) violated by (x, y) for Si and updated set H i)
abcd else
abcdabcd if (i = r) then
abcdabcdabcd end ← true abcd (no violated constraint (4) exists)
abcdabcd else
abcdabcdabcd i← i+ 1
abcdabcd end-if
abcd end-if

end-if

Summarizing, the exact separation for inequalities (4) reduces to finding the set
S such that δ(S) contains the best possible set H, and indicates that in the worst
case, this problem can be solved by finding the the complete tree of min-cuts of the
support graph G(x, y), for the capacities vector b defined above. It is important to
recall that the smallest value of the left-hand side of inequality (4) after making H
odd is not necessarily associated with the smallest min-cut of the tree.

5 Computational Experiments

The branch-and-cut algorithm was coded in C++ using CPLEX 12.5 Concert Tech-
nology for the solution of the LP relaxations. Default parameters were used, except

20

for the maximum computing time, which has been set to 24 hours per instance,
and the cuts generated by CPLEX, which have been disabled. After some tuning,
we set the value ϕ = 0.25 for the parameter that indicates whether or not to ap-
ply exact separation for the parity inequalities (4). The values for the threshold
ε used in the heuristic separation of constraints (3) and (4) are ε ∈ {0.1, 0.2} and
ε ∈ {0.1, 0.2, 0.3}, respectively. In both cases the heuristic starts with the largest
value and decreases it to the next value if it fails. The code was run on an Intel
Core 2 CPU, 2.67 GHz and 8.00 GB RAM.

The algorithm was tested on two sets of benchmark instances. Both were adapted
to the MDRPP from well-known sets of RPP benchmark instances. The first set
was already used in [16] and contains 118 instances with up to 100 vertices. These
instances were adapted from the AlbaidaA and AlbaidaB instances [12, 13]; the 24
“P” instances of [7]; the 36 instances with vertices of degree 4 and disconnected
required edges (labeled “D”), 36 grid instances (labeled “G”), and the 20 randomly
generated instances (labeled “R”) [21]. The new set of benchmark instances contains
larger instances with up to 750 vertices, which have been adapted from the “ALBA”,
“GRP” and “MADR” GRP instances and from the “URP” URPP instances [11]
available at http://www.uv.es/corberan/instancias.htm.

In all cases we inherited the set of required edges and the cost function c from
the original instances. We have considered two different cases: two and four depots.
The depots were chosen randomly from the set of vertices, ensuring that no con-
nected component has more than one depot. For this, for each selected number of
depots |D| ∈ {2, 4} we have proceeded as follows. First, we randomly generated |D|
different numbers ki, i = 1, . . . , |D|, from a discrete uniform distribution U [1, |K|],
which gives the indices of the clusters were the depots are located. Then, for each
selected cluster, ki the index of the node of Vki that becomes the depot was ob-
tained by randomly generating a number vi from an integer uniform distribution
U [1, |Vki |]. In order to compare the results obtained with two and four depots, the
instances with fewer than four connected components were removed. In total we
have 103 instances of small and medium size in the first group and 52 larger in-
stances in the second group. For each instance there are two variants: one with
two depots and another with four depots. The adapted instances are available at
http://www.eio.upc.edu/en/homepages/elena/mdarp-instances.

Table 1 provides information on the instances, which are grouped according to
their characteristics and sizes. The column headings are as follows: # inst gives
the number of instances in the group after and before eliminating the instances with
fewer than four components; |V0| and |E0| give, respectively, the number of vertices
and edges of the original graph; the columns under |R| and |K| give, respectively,
the number of required edges and the number of connected components in the graph
induced by the required edges. When not all the instances of the group have the same
value, the minimum and maximum values of the group are given. The remaining
columns in the table give information on the effect of the graph transformation. In
particular, |V |/|V0| and |E|/|E0| correspond to the average ratio between the number
of vertices or edges, respectively, in the transformed graph relative to the number of
vertices or edges in the original graph. As is often the case, the transformed graph
is considerably smaller than the original graph, in terms of the number of vertices

21

Table 1: Summary of the instances

inst |V0| |E0| |R| |K| |V |/|V0| |E|/|E0|

ALB 2/2 90–102 144–160 88–99 10–11 1.00 30.0

P 17/24 7–50 13–184 7–78 2–8 1.00 6.55

D16 6/9 16 31 3–16 2–5 0.72 3.87

D36 9/9 36 72 10–38 4–11 0.78 8.75

D64 9/9 64 128 27–75 5–15 0.82 15.75

D100 9/9 100 200 50–121 9–22 0.85 24.75

G16 7/9 16 24 3–13 3–5 0.68 5.00

G36 9/9 36 60 11–35 5–9 0.79 10.50

G64 9/9 64 112 24–68 4–14 0.80 18.00

G100 9/9 100 180 41–113 4–20 0.83 27.50

R20 2/5 20 47–75 3–7 3–4 0.41 3.29

R30 5/5 30 70-112 7–11 4–6 0.47 4.83

R40 5/5 40 82–203 8–18 5–9 0.50 6.15

R50 5/5 50 130–203 13–20 6–12 0.50 7.02

ALB2 14/15 116 174 44–119 4–23 0.78 0.85

GRP 10/10 116 174 52–126 4–34 0.76 0.83

MAD 12/15 196 316 95–219 6–42 0.81 0.91

URP5 8/12 298–493 597–1403 206–672 5–99 1.00 1.00

URP7 8/12 452–744 915–2089 321–1003 16–140 1.00 1.00

and edges. As will be explained in Section 5.1 a postprocess has been applied to
the new set of larger instances after completing the input graph, as described at the
beginning of Section 2, in order to reduce the number of edges of the instances. This
explains the smaller values of the ratios |E|/|E0| for the new set of instances.

The results for the instances with two and four depots used in [16] are sum-
marized in Tables 2 and 3, respectively. For each group of instances, columns 2–6
give information about the root node of the enumeration tree, while columns 7–11
give the results of the search tree. The column under #opt0 shows the number of
instances in the group that were optimally solved at the root node. The column
under gap0 gives the average percentage gap at the root node with respect to the
optimal or best known solution at termination. The following three columns, un-
der the headings cutsC, cutsP, and cutsD, give the average number of connectivity
(3), parity (4), and depot (15) cuts generated, respectively. Similarly, the next five
columns under #opt, gap, cutsC, cutsP, and cutsD give the same information at
termination: the number of instances solved to optimality, the average percent gap
with respect to the optimal or best-known solution and the average number of con-
nectivity, parity and depot cuts generated, respectively. Column under #Nod shows
the average number of nodes explored in the search tree. Finally, the column under

22

Table 2: Computational results for instances with two depots

#opt0 gap0 cutC0 cutP0 cutD0 #opt gap cutC cutP cutD #Nod CPU

ALB 1/2 0.64 12 120 0 2/2 0 3 93 0 6 45.67

P 8/17 2.35 5.82 21.24 0.35 17/17 0 1.00 36.00 0 .18 1.81 1.01

D16 3/6 0.60 2.83 8.67 0.50 6/6 0 0 1.17 0.17 1.33 0.03

D36 7/9 4.82 6.44 27.89 0.33 9/9 0 0 2.11 0 0.56 0.22

D64 6/9 2.65 7.67 36.11 0 9/9 0 1.00 13.44 0.11 1.44 1.36

D100 2/9 0.79 15.33 89.33 0 9/9 0 7.00 219.89 0.22 15.56 104.60

G16 6/7 0.71 2.14 6.57 1.14 7/7 0 0 0.43 0.14 1.29 0.02

G36 6/9 0.72 6.00 17.11 1.33 9/9 0 1.00 5.56 0.44 1.67 0.17

G64 7/9 0.88 7.44 22.56 0.11 9/9 0 1.00 6.44 0.67 1.78 0.52

G100 0/9 1.48 11.78 37.00 0.67 9/9 0 4.00 37.00 0.22 9.00 6.67

R20 2/2 0 1.00 1.50 0.50 - - - - - 0 0.01

R30 3/5 8.72 2.40 9.60 0.80 5/5 0 0 1.80 0.4 1.20 0.02

R40 5/5 0 6.00 12.20 0 - - - - - 0 0.06

R50 4/5 1.88 4.80 10.80 0 5/5 0 0 0 0.20 0.20 0.06

CPU gives the total computing time in seconds.

At can be seen, the optimality of the current solution was proven for all the
instances, independently of the number of depots. Optimality was proven at the
root node for, respectively, 60 two-depot and 62 four-depot instances out of the 103
instances considered in each case.

The computational effort required for solving the instances to optimality can
be evaluated by the required computing times. In this sense, the optimal solution
for nearly all the instances in this set, both with two and four depots, was found
within less than one minute. Among the two-depot instances, the exception were one
ALB, which required 70 seconds, and two D100 instances, which required around
400 seconds each. All three four-depot D100 instances that exceeded one minute of
computing time were optimally solved within less than two minutes. We observed
that the the algorithm is, in general, faster for the two-depot instances than for
the four-depot instances. Nevertheless, for instances with few vertices and a few
connected components, the algorithm is usually faster on the four-depot instances.

With respect to the number of added inequalities, there were considerably more
parity cuts than any other type of cuts, even when the number of added cuts was
not very large. The number of depot inequalities (15) is, on average, smaller than
three. In fact, for only 29 two-depot and 55 four-depot instances was any cut of this
type generated. Tables 4 and 5 provide comparisons with the results obtained in
[16] for instances with two and four depots, respectively. The method used in [16]
is a branch-and-cut algorithm based on a formulation in which the variables depend
explicitly on the depot and uses a time limit of one hour per instance, whereas our
current branch-and-cut algorithm is based on a formulation in which the variables are
associated with traversed edges only. The comparison in terms of computing times
is fair since the experiments of this work were performed on the same computer

23

Table 3: Computational results for instances with four depots

#opt0 gap0 cutC0 cutP0 cutD0 #opt gap cutC cutP cutD #Nod CPU

ALB 0/2 1.14 6.00 110.00 0 2/2 0 4.50 107.00 0 11.5 52.62

P 12/17 0.42 2.35 15.24 0.18 17/17 0 0.18 10.06 0.88 1.81 0.33

D16 6/6 0 0.17 1.17 0 - - - - - 0 0.00

D36 7/9 0.03 4.00 29.56 1.11 9/9 0 0.44 2.33 0.11 0.22 0.19

D64 3/9 0.86 6.89 57.22 1.33 9/9 0 2.56 44.56 0.56 3.78 4.03

D100 0/9 12.24 12.78 90.56 0.56 9/9 0 7.33 171.22 2.56 14.67 56.30

G16 7/7 0 0.43 3.14 0.71 - - - - - 0.29 0.01

G36 6/9 0.90 3.22 21.56 2 9/9 0 0.44 4.33 0.11 1.78 0.13

G64 5/9 0.77 3.22 22.22 0.33 9/9 0 1.33 20.33 1.78 11.56 0.95

G100 4/9 1.32 8.44 35.89 1.33 9/9 0 5.33 71.89 1.22 39.67 15.89

R20 2/2 0 0 2 2 - - - - - 0 0.00

R30 4/5 1.48 0.40 4.40 0.60 5/5 0 0 0 0 0.20 0.01

R40 4/5 0.19 3.60 15.40 0.40 5/5 0 0.40 3.20 1.40 1.60 0.07

R50 2/5 0.68 3.60 21.80 2.80 5/5 0 1.20 4.60 0.60 4.80 0.28

as those of [16]. Each table consists of two blocks of three columns each, the first
one for a summary of results from [16] and the second one for a summary of the
results with the current branch-and-cut algorithm (referred to as BC). Within each
block we present results on the number of instances solved to optimality at the
root node (#opt0), the number of instances optimally solved at termination (#opt)
and the total computing time (CPU). As can be seen, our current results notably
outperform those of [16]. As mentioned we now solve all instances in less than
400 seconds, whereas in [16] only 95% of the instances were solved to optimality
Furthermore, the number of instances optimally solved at the root node is notably
larger than that of [16], increasing from 36 to 60 for two-depot instances, and from
53 to 62 for four-depot instances. As can be seen, the computing times are also
much smaller. within the time limit of 14,400 seconds. Furthermore, the number of
instances optimally solved at the root node is 55% larger than that of [16]. As can
be seen, the computing times are also much smaller. The average decreases from
638.39 and 1746.08 seconds for two and four depots, respectively, to 10.99 and 7.90
seconds.

5.1 Numerical results for the new set of larger instances

The good results obtained for small and medium size instances, encouraged us to
solve larger instances. Tables 6 and 7 summarize the results obtained with the set
of larger two- and four-depot instances with 116 to 744 vertices. Similarly to Table
1, the instances are divided into five groups according their size.

Since formulation (2)–(9) operates on a complete graph, the memory require-
ments of the solution algorithm after completing the input graph, as described at
the beginning of Section 2, become too high when instance size increases. Thus, for

24

Table 4: Comparison of results with [16] for instances with two depots

Results from [16] Results of BC

#opt0 #opt CPU #opt0 #popt CPU

ALB 0/2 2/2 200.18 1/2 2/2 45.67

P 5/17 17/17 1.87 8/17 17/17 1.01

D16 6/6 - 0.03 3/6 6/6 0.03

D36 1/9 9/9 0.60 7/9 9/9 0.22

D64 0/9 9/9 16.24 6/9 9/9 1.36

D100 0/9 8/9 2452.42 2/9 9/9 104.60

G16 5/7 7/7 0.03 6/7 7/7 0.02

G36 3/9 9/9 0.53 6/9 9/9 0.17

G64 2/9 9/9 156.77 7/9 9/9 0.52

G100 0/9 7/9 4631.05 0/9 9/9 6.67

R20 2/2 - 0.02 2/2 - 0.01

R30 4/5 5/5 0.10 3/5 5/5 0.02

R40 4/5 5/5 0.28 5/5 - 0.06

R50 4/5 5/5 0.17 4/5 5/5 0.06

Table 5: Comparison of results with [16] for instances with four depots

Results form [16] Results of BC

#opt0 #opt CPU #opt0 #opt CPU

ALB 0/2 2/2 5476.70 0/2 2/2 52.62

P 11/17 17/17 44.77 12/17 17/17 0.33

D16 6/6 - 0.01 6/6 - 0.00

D36 4/9 9/9 0.96 7/9 9/9 0.19

D64 1/9 9/9 108.64 3/9 9/9 4.03

D100 0/9 7/9 7085.23 0/9 9/9 56.30

G16 7/7 - 0.01 7/7 - 0.01

G36 5/9 9/9 10.50 6/9 9/9 0.13

G64 5/9 9/9 1835.31 5/9 9/9 0.95

G100 1/9 3/9 9640.11 4/9 9/9 15.89

R20 2/2 - 0.02 2/2 - 0.00

R30 4/5 5/5 0.08 4/5 5/5 0.01

R40 4/5 5/5 0.35 4/5 5/5 0.07

R50 3/5 5/5 0.45 2/5 5/5 0.28

25

the larger instances in the benchmark sets ALB2, GRP, MAD, URP5 and URP7,
after completing the input graph, we remove all unrequired edges (i, j) ∈ F for
which cij = cik + ckj for some k ∈ V , and one of two parallel edges whenever they
both have the same cost, resulting in a considerable reduction on the total number
of edges. Unfortunately, in the resulting (uncomplete) graph optimality condition
O2 no longer holds, so MDARP cannot be modeled with binary variables x and y
defined above, since non-required edges representing shortest paths between any pair
of vertices do not necessarily exist. Fortunately, it is possible to adapt formulation
(2)–(9) to that case, with the same meaning for the binary variables xe and consid-
ering general integer ye variables, whose meaning is now the number of additional
traversals of edge e ∈ E. The resulting formulation now reads:

min
∑
e∈E

ce(xe) +
∑
e∈Ey

ce(ye)

(x+ y)(δ(v)) ≥ 2 v ∈ D
(x+ y)(δ(S)) ≥ 2 S ⊆ V \D
(x− y)(δ(S) \H) ≥ (x− y)(H)− |H|+ 1 S ⊂ V,H ⊆ δ(S), |H| odd

(x− y)(Q) + (x+ y)(Q′) ≥ (x− y)(H)− |H|+ |D′| S ⊂ V \D,D′ = {di}i∈I ⊂ D
|D′| > 1, Hi ⊆ δ(S) ∩ δ(di),

|Hi| odd, i ∈ I,H =
⋃
i∈I

Hi,

Q = (δ(S)\H) ∩ δ(D′),
Q′ = (δ(S)\H)\δ(D)

xe = 1 e ∈ R
ye ≤ 2|D|xe e ∈ E
xe ∈ {0, 1} e ∈ E
ye ∈ Z+ e ∈ E.

As can be seen, all 44 instances with up to 500 vertices (ALB2, GRP, MAD, and
URP5) are solved to optimality for both two and four depots. For these instances,
a provable optimal solution was found at the root node for 19 and 18 instances with
two and four depots, respectively.

Two different behaviors can be observed regarding the computational effort re-
quired for solve these groups of instances. On the one hand, most of the instances
with up to 200 vertices (ALB2, GRP and MAD), are solved within less than two
minutes. Only three MAD instances require up to five minutes of computing time,
whereas the most time consuming instance requires nearly 30 minutes. On the other
hand, the instances of group URP5 require several hours to be solved. The average
computing time to solve URP5 instances is around three hours for the two-depot in-
stances and 10 hours for the four-depot instances. There are two and three two-depot
instances, which can be solved within less than one and two hours, respectively. The
maximum computing time for an instance of this group is around 13 hours. When
four-depot instances are considered, only one instance is solved in less than two

26

Table 6: Computational results for big size instances with two depots

#opt0 gap0 cutC0 cutP0 cutD0 #opt gap cutC cutP cutD #Nod CPU

ALB2 10/14 0.55 13.79 125.57 0 14/14 0 2.64 21.93 0 2.50 11.95

GRP 4/10 0.91 15.50 75.60 0 10/10 0 3.70 31.50 0.10 15.60 6.31

MAD 4/12 0.40 17.08 130.92 0 12/12 0 22.25 166.83 0 15.83 236.31

URP5 1/8 0.53 60.13 442.00 0.88 8/8 0 34.38 447.13 0 17.50 10765.78

URP7 0/8 22.38 83.63 475.50 0 2/8 22.15 50.38 602.63 0 29.75 79011.30

Table 7: Computational results for big size instances with four depots

#opt0 gap0 cutC0 cutP0 cutD0 #opt gap cutC cutP cutD #Nod CPU

ALB2 10/14 0.23 8.14 158.14 0.14 14/14 0 2.00 33.93 0.07 1.36 26.83

GRP 5/10 0.88 12.20 70.90 0 10/10 0 4.90 27.80 0 17.40 5.16

MAD 3/12 0.47 13.92 156.00 0.08 12/12 0 7.00 58.92 0.50 4.00 126.89

URP5 0/8 0.80 53.75 414.00 0.13 8/8 0 59.25 791.00 1.13 75.25 37382.25

URP7 0/8 21.25 84.25 449.38 0 1/8 21.06 44.25 721.25 0 26.00 83741.26

hours, and three of them required more than 12 hours. The maximum computing
time is about 21 hours.

Preliminary experiments highlighted the difficulties of solving the URP7 in-
stances as in several cases the algorithm terminated after 24 hours without even
finding a feasible solution. Therefore, for these instances, we have implemented a
simple heuristic, which allowed us to provide an initial upper bound to the branch-
and-cut algorithm. The heuristic consists of two steps. First, to ensure parity, we
added to the set of required edges the edges of minimum cost perfect matchings in
the subgraphs induced by the odd vertices of each connected component. Then, we
add two copies of the edges of TC , in order to ensure connectivity. However, after the
24 hours limit time, only two instances with two depots (UR732 and UR737) and
one with four depots (UR732) were solved to optimality. The algorithm could not
find a feasible solution for all the other instances, with the exception of the UR737
with four depots. For this last instance, the gap in the root node was 1.28%, which
was reduced to 0.42% at the end. For the other instances, the gap (calculated with
the heuristic solution) was nearly 28% either at the root node or at termination,
because there was almost no improvement in the value of the lower bound.

6 Conclusions

We have studied the Multi-Depot Rural Postman Problem (MDRPP), which is the
extension of the RPP to the case of several depots. A worst-case analysis of the
MDRPP with respect to the RPP and other variations indicates that the potential
savings can be arbitrarily large, but also that in some cases the one-depot RPP
may produce better solutions. A new compact integer linear formulation for the
MDRPP containing only binary variables was presented, in which the variables are
associated only to the traversed edges. The formulation includes a new family of
inequalities that ensure that routes start and end at the same depot. The properties

27

of the polyhedron associated with the formulation were studied. Furthermore, we
have developed a branch-and-cut algorithm for the MDRPP based on the proposed
formulation. The algorithm is capable of solving to optimality instances involving up
to four depots, 744 vertices, 140 required components and 1000 required edges within
reasonable computing times, nearly 60% of which at the root node. At termination
96.4% of all instances were solved to optimality.

Acknowledgements

This research was partially supported by the Spanish Ministry of Economy and Com-
petitiveness and EDRF funds through grants EEBB-I-16-10670, BES-2013-063633,
and MTM2012-36163-C06-05, MDM-2014-044, and MTM2015-63779-R (MINECO/FEDER),
and by the Canadien Natural Sciences and Engineering Research Council under grant
2015-06189. This support is gratefully acknowledged. Thanks are due to the referees
for their valuable comments.

References

[1] A. Amberg, W. Domschke, and S. Voß. Multiple center capacitated arc routing
problems: A tabu search algorithm using capacitated trees. European Journal
of Operational Research, 124(2):360–376, 2000.

[2] J. Aráoz, E. Fernández, and C. Franquesa. The clustered prize-collecting arc
routing problem. Transportation Science, 43(3):287–300, 2009.

[3] J. Aráoz, E. Fernández, and O. Meza. Solving the prize-collecting rural postman
problem. European Journal of Operational Research, 196(3):886–896, 2009.

[4] J. Aráoz, E. Fernández, and C. Zoltan. Privatized rural postman problems.
Computers & Operations Research, 33(12):3432–3449, 2006.

[5] F. Barahona and M. Grötschel. On the cycle polytope of a binary matroid.
Journal of Combinatorial Theory, Series B, 40(1):40–62, 1986.

[6] A. Butsch, J. Kalcsics, and G. Laporte. Districting for arc routing. INFORMS
Journal on Computing, 26(4):809–824, 2014.

[7] N. Christofides, V. Campos, Á. Corberán, and E. Mota. An algorithm for the
rural postman problem. Technical report, Imperial College Report IC.O.R.81.5,
1981.

[8] Á. Corberán, E. Fernández, C. Franquesa, and J.M. Sanchis. The windy clus-
tered prize-collecting arc routing problem. Transportation Science, 45(3):317–
344, 2011.

[9] Á. Corberán and G. Laporte. Arc Routing: Problems, Methods, and Applica-
tions. MOS-SIAM Series on Optimization, Philadelphia, 20, 2014.

28

[10] Á. Corberán, I. Plana, A. Rodŕıguez-Ch́ıa, and J.M. Sanchis. A branch-and-cut
algorithm for the maximum benefit Chinese postman problem. Mathematical
Programming, 141(1):21–48, 2013.

[11] Á. Corberán, I. Plana, and J.M. Sanchis. A branch & cut algorithm for the
windy general routing problem. Networks, 49(4):245–257, 2007.

[12] Á. Corberán and J.M. Sanchis. A polyhedral approach to the rural postman
problem. European Journal of Operational Research, 79(1):95–114, 1994.

[13] Á. Corberán and J.M. Sanchis. The general routing problem polyhedron: Facets
from the RPP and GTSP polyhedra. European Journal of Operational Research,
108(3):538–550, 1998.

[14] E. Fernández, D. Fontana, and M.G. Speranza. On the collaboration unca-
pacitated arc routing problem. Computers & Operations Research, 67:120–131,
2016.

[15] E. Fernández, O. Meza, R.S. Garfinkel, and M. Ortega. On the undirected
rural postman problem: Tight bounds based on a new formulation. Operations
Research, 51(2):281–291, 2003.

[16] E. Fernández and J. Rodŕıguez-Pereira. The multi-depot rural postman prob-
lem. TOP, (to appear), 2017.

[17] G. Garćıa Ayala, J.L. González-Velarde, R. Ŕıos-Mercado, and E. Fernández. A
novel model for arc territory design: Promoting Eulerian districts. International
Transactions in Operational Research, 23:433–458, 2015.

[18] G. Ghiani and G. Laporte. A branch-and-cut algorithm for the undirected rural
postman problem. Mathematical Programming, 87(3):467–481, 2000.

[19] B.L. Golden and R.T. Wong. Capacitated arc routing problems. Networks,
11(3):305–315, 1981.

[20] D. Gusfield. Very simple methods for all pairs network flow analysis. SIAM
Journal on Applied Mathematics, 19(1):143–555, 1993.

[21] A. Hertz, G. Laporte, and P. Nanchen-Hugo. Improvement procedures for the
undirected rural postman problem. INFORMS Journal on Computing, 11:53–
62, 1999.

[22] C. Hierholzer. Über die Mögglichkeit, einen Linienzug ohne Wiederholung und
ohne Unterbrechnung zu umfahren. Matematische Annalen, 6:30–32, 1873.

[23] H. Hu, T. Liu, N. Zhao, Y. Zhou, and D. Min. A hybrid genetic algorithm with
perturbation for the multi-depot capacitated arc routing problem. Journal of
Applied Sciences, 13(16):32–39, 2013.

[24] A. Kansou and A. Yassine. A two ant colony approaches for the multi-depot
capacitated arc routing problem. In International Conference on Computers &
Industrial Engineering, 2009. CIE 2009., pages 1040–1045. IEEE, 2009.

29

[25] D. Krushinsky and T. Van Woensel. Lower and upper bounds for location-
arc routing problems with vehicle capacity constraints. European Journal of
Operational Research, 244(1):100–109, 2015.

[26] L. Muyldermans. Routing, districting and location for arc traversal problems.
Technical report, PhD dissertation, Catholic University of Leuven, Leuven,
Belgium, 2003.

[27] L. Muyldermans, D. Cattrysse, and D. Van Oudheusden. Districting for arc-
routing applications. Journal of the Operational Research Society, 54:1209–
1221, 2003.

[28] L. Muyldermans, D. Cattrysse, D. Van Oudheusden, and T. Lotan. District-
ing for salt spreading operations. European Journal of Operational Research,
139(3):521–532, 2002.

[29] L. Muyldermans and G. Pang. Variants of the capacitated arc routing problem.
In Á. Corberán and G. Laporte, editors, Arc Routing: Problems, Methods and
Applications, pages 223–254. MOS-SIAM Series on Optimization, Philadelphia,
2014.

[30] C. S. Orloff. A fundamental problem in vehicle routing. Networks, 4(1):35–64,
1974.

[31] S. Wøhlk. Contributions to arc routing. Technical report, PhD dissertation,
University of Southern Denmark, Odense, Denmark, 2004.

[32] L. Xing, P. Rohlfshagen, Y. Chen, and X. Yao. An evolutionary approach
to the multidepot capacitated arc routing problem. IEEE Transactions on
Evolutionary Computation, 14(3):356–374, 2010.

30

