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This article introduces a variant of the Conflict-Free Pickup and Delivery Problem with Time Windows in

which speeds can be regulated. The problem arises in several areas of transportation and logistics including

routing and scheduling of automated guided vehicles in port terminals and coordination of unmanned aerial

vehicles in controlled airspace. A particular aspect of this problem is that at most one vehicle can traverse

an arc of the transportation network at any time. The problem studied in this paper is to determine the

vehicle paths and speeds on each arc of the path in such a way that no conflicts arise, the time windows are

met and the total energy consumption is minimized. A branch-and-bound algorithm is described in which

a lower bound is obtained by solving a separable nonlinear problem in quadratic time. If the solution of the

relaxation is not conflict-free, a set of space-based and time-based branching constraints are generated to

resolve the detected conflicts. Computational experiments show that, when compared with a state-of-the-art

approach, the proposed method is able to generate a larger number of feasible solutions (42% on average)

and reduce the computation time by an order of magnitude. Moreover, the approach results in an average

energy saving of around 70%.
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1. Introduction

Conflict-free routing problems mainly arise in material handling systems where automated guided

vehicles (AGVs) are used to move loads between pickup and delivery points. In such systems,

vehicles travel on a network made up of arcs called tracks or track-segments, which in turn form

paths between the points. When each track or a track-segment has a unit capacity, it allows the

traversal of only a single vehicle at a time. In this case, if two or more vehicles try to enter a track

at the same time, or they are scheduled to arrive at a given point at the same time, a conflict

arises. In this case, at least one of the vehicles has to be delayed or re-routed. One practical setting

in which the problem arises is in the traffic control of AGVs in warehouses with very narrow aisles

(VNAs). VNA is a type of layout used for improving the utilization of the storage space, where it

suffices to leave as little as a couple inches of clearance on each side of the AGV for it to travel

safely in a narrow aisle. Similar problems also arise in routing and scheduling of automated guided

vehicles in port terminals and coordination of unmanned aerial vehicles in controlled airspace.

If the arc capacity constraints are relaxed and the speeds are fixed, the problem becomes that of

routing with Pickup and Delivery (Dumas et al. 1991, Berbeglia et al. 2007). A variety of conflict-

free routing and dispatching problems have been studied in the literature, which generally involve

assigning a set of requests and their sequence to each vehicle (dispatching), as well determining the

paths that they will traverse (routing) such that they are conflict-free. These problems are typically

formulated and solved in two-stages. In the first stage, a master problem determines a solution to

the dispatching problem, in which the arc capacity constraints are relaxed, where the objective

is often the minimization of the longest route or the minimization of the production delays. The

solution found at this level, however, does not specify the sequence of the network arcs to be

traversed by the vehicle while going from a pickup point to the next one. A second-stage problem

is subsequently solved to check whether a set of conflict-free routes, satisfying the constraints of

the master problem, exists. This subproblem has so far been solved with the assumption that the

vehicle speed is constant.

We now summarize the literature related to the Conflict-Free Pickup and Delivery Problem with

Time Windows. Earlier work on the problem includes that of Krishnamurthy et al. (1993), who

solve the conflict-free routing problem given that a solution to the dispatching problem has already

been determined. The authors describe a set partitioning formulation for the problem, the variables

of which are the routes for each AGV, and solve it using a column generation based heuristic.

Desaulniers et al. (2003) extend the problem to take into account the assignment of requests to

vehicles, and propose an exact algorithm in which column generation is used to solve the relax-

ation at each node of a branch-and-cut search tree. Later studies on the problem have adopted

the two-stage solution algorithm mentioned above. In particular, Corréa et al. (2007) propose a
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decomposition framework where the master problem is formulated as a constraint programming

model and the second-stage problem as a mixed integer programming model. If infeasible, a pool

of logic cuts is identified and added to the master problem to prune solutions that include conflicts.

This particular decomposition suits the problem well in that: (i) the constraint programming model

can easily handle nonlinear constraints, e.g., disjunctions on timing decisions, and provides very

good bounds for the problem, and (ii) the second-stage problem has a minimum cost flow struc-

ture, which can be solved efficiently using the network simplex method within a branch-and-bound

algorithm. The problem studied by Nishi et al. (2011) involves an additional layer of production

scheduling decisions, and is formulated as a mixed integer programming model. The master prob-

lem, which models the production scheduling and request assignment to the vehicles, is solved by

Lagrangian relaxation and yields a lower bound for the original problem. A subproblem checks

the existence of a conflict-free routing of the vehicles, which can either be solved using constraint

programming or, as implemented by the authors, by a distributed optimization algorithm. The

algorithm stops if the solution is conflict-free. Otherwise, a feasible solution to the problem is con-

structed to obtain an upper bound, and cuts are generated to prevent any previously identified

conflicts from appearing again before solving the master problem. One reason behind the choice of

the suggested decomposition is the substantial reduction of the number of integer variables in the

subproblem when they are fixed in the master problem. Other studies on the problem include that

by Nishi and Tanaka (2012) who propose a Petri network decomposition algorithm for the problem,

where the choice of this method is primarily motivated by the need to solve large-scale instances,

for which reason the authors exploit the decomposability of Petri nets. Finally, Saidi-Mehrabad

et al. (2015) describe a similar two-stage partitioning of the problem into a master problem and a

second-stage problem, where both problems are solved by an ant colony algorithm.

As the brief review above indicates, the Conflict-Free Pickup and Delivery Problem with Time

Windows has been examined in some detail under the assumption that vehicle speed is fixed and

cannot be regulated. However, the literature on energy-efficient and conflict-free routes is much less

developed. This is quite surprising since the optimization of the usage of batteries is of primary

concern in AGV-based systems (Onori et al. 2016). Energy consumption and emissions have been

addressed in van Duin and Geerlings (2011) at a strategic level. Xin et al. (2013) investigate

how to improve the performance at the operational level, when combining objectives related to

throughput and energy consumption. The authors describe a speed optimization problem arising

in an automated container terminal, formulated as a quadratic programming model, but does not

consider the potential collisions of vehicles.

In this paper, we study a conflict-free pickup and delivery problem in which a set of pickup and

delivery requests have to be transported between specified pairs of nodes within specified time
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windows by using a homogeneous fleet of vehicles. Time windows are particularly relevant when

the pickup and delivery requests arise as part of a larger distribution problem, where parts to pick

up might not necessarily be readily available at the beginning of the planning horizon and where

the delivery times may be constrained by the subsequent shipment of the parts.

We assume that requests are known in advance, travel times are deterministic and decisions

pertaining to vehicle assignment and sequencing (i.e., vehicle dispatching) have already been made.

The problem we address here is to determine the paths to be traversed by each vehicle between two

consecutive pickup and delivery points, and the speed at which a vehicle travels on each track, such

that there are no conflicts in the resulting solution, and that the overall energy usage of the vehicles

is minimized. One way to avoid conflicts is to operate the vehicles at constant (e.g., maximum)

speed and to insert delays by allowing the vehicles to wait at the end of tracks. We pursue an

alternative approach and provide the vehicles with the ability to change their speeds, which, to the

best of our knowledge, has not yet been considered in the relevant literature. The main advantage

of our approach is that it can reduce the overall energy consumption, for which speed is known to

be one of the main determinants. Regulating the vehicle speeds also avoids unnecessary waiting

at nodes that may block other vehicles and eliminates potential infeasibilities. It may seem that

combining travel at maximum speed with delays allows for the construction of solutions equivalent

to those with variable speeds. If waiting was allowed along the arcs, then the two approaches would

lead to the same set of feasible solutions. We adopt a design assumption here similar to that of

Nandula and Dutta (2000) and Farahvash and Boucher (2004), in which the network has crossover

or intersection points, which are the only locations where an AGV is allowed to wait to access a

link in case of a conflict. Restricting waiting at nodes is sometimes necessitated for technological

reasons, in particular to be able to accurately track an AGV. The position of an AGV can be

determined precisely, only when the vehicle is in aligned with one of a discrete number of so-called

artificial landmarks. Otherwise, the position is estimated. It common practice to select the waiting

locations as a subset of the landmarks (Ronzoni et al. 2011). Whilst the landmark placement in

itself is a difficult problem, it has been suggested that placing landmarks at intersection points in a

grid provides very good, if not optimal, solutions, mainly due to triangulation effects (see Sinriech

and Shoval 2000, for further details).

Our model assumes that the choice of the speed on an arc is completely independent of the

speed in the preceding and the succeeding arc on the path. We also assume that the time spent

accelerating or decelerating is negligible and that a turn does not slow down the vehicle significantly.

This is realistic in port terminal management and in routing Unmanned Aerial Vehicles where the

track length is large enough to justify both assumptions: tens of meters or even a few hundred

meters in the former case (Branch 2012) and several miles in the latter (Mueller et al. 2013). As
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far as energy consumption is concerned, modern AGVs, whilst decelerating, use a regenerative

breaking mechanism that can be used to recover the kinetic energy consumed in the acceleration

phase (Young et al. 2013, Fiori et al. 2016).

We contribute to the literature by (1) introducing and formally defining the problem mentioned

above, (2) describing a lower bounding procedure and an exact algorithm based on branch-and-

bound, and (3) quantifying the benefits of using speed optimization for reducing energy require-

ments through computational experiments.

The rest of the paper is organized as follows. Section 2 presents a formal definition of the problem

studied here along with an illustrative example. The branch-and-bound algorithm is described in

detail in Section 3. Section 4 reports the results of computational experimentation. Conclusions

are presented in Section 5.

2. Problem Statement

Let G = (V,E) be a directed graph, where V is a vertex set and E is the set of arcs. In this

representation, an arc corresponds to a track-segment of a path in the graph, and the vertices

represent endpoints of track-segments. Each arc (i, j) ∈ E represents the movement of a vehicle

i ∈ V to an adjacent node j ∈ V , and its length is denoted by cij. Each path is bi-directional,

meaning that, for a pair of adjacent vertices i ∈ V and j ∈ V , there exists an arc (i, j) ∈ E and

another one (j, i) ∈ E in the opposite direction. For convenience, we will assume that all track-

segments have the same length, that is cij = 1 for all (i, j) ∈ E, although the ensuing exposition

and the algorithm presented apply to networks with non-uniform length track-segments.

Transportation tasks are associated to a subset of vertices V1 ⊆ V . A set R= {r= (ar, br) : ar ∈

V1, br ∈ V1} of unit loads have to be transported between pairs of workstations by a homogeneous

fleet of K vehicles of unit capacity. As in Sarker and Gurav (2005), we assume that there exists a

buffer at each node in V1, which is an area off a lane where a vehicle may enter to perform a pickup

or delivery, thereby allowing another vehicle to traverse the same lane at the same time. Vehicles

may all be based at the same depot i0 ∈ V , as is assumed in the following, or at different depots,

as would be in the case of Material Handling Systems. A time window is associated with each

transportation request r ∈R, relating to pickup or delivery. A vehicle can travel at a speed v ∈ (0, v],

and the energy required per distance unit is described by a non-decreasing convex function f(v).

As stated in Section 1, the model assumes that the choice of the speed on an arc is completely

independent of the speed in the preceding and succeeding arc.

Given a planning horizon [t0, T ], we assume that the dispatching problem has been solved and is

therefore an input to our problem. The task dispatching prescribes a sequence Sk consisting of Hk

pickup/delivery locations to be visited, defined for each vehicle k= 1, . . . ,K. The node in position
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h ∈ {1, . . . ,Hk} on a sequence Sk of vehicle k ∈ {1, . . . ,K} is shown by Sk[h], where Sk[h] ∈ V1,

for which αkh = [αkh, αkh] is the time window, with αkh denoting the earliest and αkh the latest

possible times for service to commence at that node. The set of all time windows αkh assigned to

a vehicle k= 1, . . . ,K is denoted by Ck.

As far as vehicle routing is concerned, each track has a capacity equal to one. There are two types

of possible conflicts: the first, namely Node-conflict, arises when two or more vehicles traveling on

different arcs are moving towards the same node, such that they all arrive at the destined node

at the same time. The second, namely Arc-conflict, arises when one vehicle attempts to enter a

track-segment that is already occupied by another vehicle, regardless of direction. In the following,

we define ε as the smallest significant time duration, which is used for discretization of time, and

using which the conflict definitions will be defined.

The Conflict-Free Pickup and Delivery Problem with Time Windows is to determine, for each

vehicle k= 1, . . . ,K, a conflict-free path starting at time t0 from a given location i0, and the speed

at which the vehicles will travel on each track-segment of the path, so that the requests assigned

to the vehicles according to the sequence Sk are served within the time windows as specified in the

set Ck. The objective of the problem is to minimize a convex function describing the total energy

required to serve the requests.

Figures 1(a) and 1(b) show an example of conflict and two ways in which it can be resolved. The

example is based on a graph with 20 nodes, which are connected by 28 track-segments shown by

the dashed lines in both figures. Figure 1(a) shows two shortest paths, one from node 0 to node 17

(grey arcs) and another from node 11 to node 6 (black arcs).

Assume that there exist two vehicles A and B, initially located at node 0 and node 11, respec-

tively. Vehicle A starts traveling on the shortest path from node 0 to node 17 at time t= 0. Similarly,

vehicle B starts travel from node 11 to node 6 at the same time on the shortest path. If the two

vehicles travel at a constant speed of one track-segment per second, a node conflict will occur at

node 18 at time t= 4. This conflict can be avoided by either modifying the speed or the path of

one of the vehicles. In the former case, changing the speed of vehicle A to half a track-segment per

second will avoid a potential collision. In the latter option, vehicle B can be routed on a different

shortest path, as shown in Figure 1(b) using the black arcs, in order to avoid the conflict, without

the need to change the speed from one track-segment per second.

3. A Branch-and-Bound Algorithm

In this section, we describe a Branch-and-Bound algorithm in order to solve the Conflict-Free

Pickup and Delivery Problem with Time Windows. In particular, we propose a lower bounding

procedure, a feasibility-check procedure and branching rules.
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Figure 1 Conflict Example: gray arcs refers to path of vehicle A and black arcs refers to path of vehicle B

As will be further explained in the following sections, each branching operation adds a pool

of time, sequencing and logical constraints to a node P of the branch-and-bound tree, which are

modeled by the following operations, respectively:

• updating the time constraints in Ck,

• adding new nodes in Sk and the corresponding time windows in Ck,

• forbidding some arcs to be part of a path between two consecutive stops.

Hence, we characterize each node P as a sequence S′k of H ′k nodes, with H ′k ≥Hk, and a set C′k
of time windows, for each vehicle k ∈ {1, . . . ,K}. Moreover, to manage arc conflicts arising in the

search of an optimal solution, we define, for each vehicle k ∈ {1, . . . ,K}, a set Ω′kh ⊆ E of arcs

where h ∈ {1, . . . ,H ′k − 1}. Each arc of the set Ω′kh is associated to a branching logical constraint

defined as follows: if (i, j) ∈ Ω′kh then the arc (i, j) cannot be included in a path from S′k[h] to

S′k[h+ 1] traversed by vehicle k. In the following, we refer to the overall set of branching logical

constraints associated to node P as Ω′k, i.e. Ω′k = Ω′k1
⋃
· · ·

⋃
Ω′

kH′
k
−1. At the root node S′k, C′k and

Ω′k are initialized to Sk, Ck and ∅, respectively.
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3.1. Lower bounding procedure

In order to compute a lower bound for a given node P of the branch-and-bound tree, we define

a relaxation by removing the arc capacity constraint. The resulting relaxation PR is a nonlinear

separable problem, where the optimal solution can be determined by solving a Path and Speed

Optimization Problem (SOPk) for each vehicle k ∈ {1, . . . ,K}. We encode a feasible solution of

SOPk as follows. The sequence of nkh arcs of G corresponding to a path from node S′k[h] to node

S′k[h+ 1] that satisfy the logical constraints associated to Ω′kh is denoted by pkh, where each arc

`= 1, . . . , nkh on the sequence is shown by pkh[`]. Let vkh be a vector of nkh travel speeds, stating

that vehicle k traverses arc pkh[`] at speed vkh[`], for `= 1, . . . , nkh. We denote a feasible solution of

SOPk by (pk,vk), where pk = [pk1, . . . ,pkh, . . . ,pkH′
k
−1] and vk = [vk1, . . . ,vkh, . . . ,vkHk−1], meaning

that if a vehicle k ∈ {1, . . . ,K} starts traversing the sequence pk of paths at time t0 using speeds

vk, then the arrival times satisfy the time window constraints of C′k.

Each SOPk can be formally defined as:

min
pk

min
vk

F (pk,vk), (1)

where,

F (pk,vk) =

H′
k−1∑
h=1

nkh∑
`=1

f(vkh[`]). (2)

It is worth noting that if we fix the routing component of (1) to a given routing solution p?
k, the

corresponding optimal speed values v?
k can be determined by solving the following optimization

problem:

F (p?
k,v

?
k) = min

vk

(F (pk,vk)|pk = p?
k). (3)

If f(v) is a non-decreasing convex function, the optimization problem (3) can be solved in quadratic

time by the exact algorithm presented by Hvattum et al. (2013). The optimization problem studied

by Hvattum et al. (2013), namely a Ship Routing Problem (SRP), is defined with respect to

a sequence of ports that a ship must visit with given time windows, where the objective is to

determine the speed on each leg of the route so as to minimize the total fuel consumption.

We cast the optimization problem (3) as a SRP, where the sequence of nodes S′k corresponds to

a sequence of port calls with time windows defined according to C′k. The main difference between

the SRP studied in Hvattum et al. (2013) and the optimization problem (3) concerns the physical

network. In the SRP, there are no transit nodes in G, but instead only a single arc connecting two

consecutive ports on a route. In Hvattum et al. (2013) the authors prove that, if the energy cost

per distance unit f(v) is a convex non-decreasing function, then there always exists an optimal

solution where each leg on the route is traversed at a constant speed. Therefore, the algorithm
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proposed in Hvattum et al. (2013) determines for each path p?
kh an optimal travel speed value ω?

kn,

such that v?
k[`] = ω?

kn, for `= 1, . . . , nkh. This implies that:

F (p?
k,v

?
k) =

H′
k−1∑
h=1

d?khf(ω?
kh),

where d?kh is the length of path p?
kh. Let G′kh be a graph obtained from G by deleting each arc

(i, j)∈Ω′kh. Theorem 1 provides optimality conditions for problem (1).

Theorem 1. If each path p?
kh of p?

k corresponds to a shortest path on G′kh, then (p?
k,v

?
k) is

optimal for (1), that is:

F (p?
k,v

?
k) = min

pk

min
vk

F (pk,vk). (4)

Proof of Theorem 1 The proof is by contradiction. Assume that there exists a feasible solution

(p
(1)
k ,v

(1)
k ) 6= (p?

k,v
?
k) of (1) for which the following holds:

F (p
(1)
k ,v

(1)
k )<F (p?

k,v
?
k),

where we assume, without loss of generality, that v
(1)
k is determined as the optimal solution of the

following subproblem:

F (p
(1)
k ,v

(1)
k ) = min

vk

(F (pk,vk)|pk = p
(1)
k ).

Using the result by Hvattum et al. (2013), we have

F (p
(1)
k ,v

(1)
k ) =

H′
k−1∑
h=1

d
(1)
kh f(ω

(1)
kh ),

where ω
(1)
kh and d

(1)
kh are, respectively, the optimal travel speed and the length associated to path

p
(1)
kh of p

(1)
k . It is worth noting, by the hypothesis that each path p?

kh of p?
k corresponds to a shortest

path on G′kh, that d
(1)
kh ≥ d?kh, given that d?kh is the length of the corresponding shortest path. We

now construct a solution (p?
k,vk) feasible for (3), where the traversal time of each path p?

kh is equal

to the traversal time of path p
(1)
kh in (p

(1)
k ,v

(1)
k ), namely:

ωkh = d?kh×
ω

(1)
kh

d
(1)
kh

,

where vkh[`] = ωkh for `= 1, . . . ,H ′k. The total energy consumption F (p?
k,vk) for the new solution

(p?
k,vk) can be computed as follows:

F (p?
k,vk) =

H′−1∑
h=1

d?khf(ωkh).

Since ωkh ≤ ω(1)
kh and f(v) is non-decreasing, the following holds:

F (p?
k,vk)≤ F (p

(1)
k ,v

(1)
k )<F (p?

k,v
?
k). (5)
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Inequalities (5) contradict the hypothesis that F (p?
k,v

?
k) is optimal for optimization problem

(3). �

According to Theorem 1 we determine the optimal solution (p?
k,v

?
k) of (1) in two steps.

Step 1. Determine each path p?
kh of p?

k by solving a shortest path problem between origin S′k[h]

and destination S′k[h+ 1] on graph G′kh where E′ =E \ (i, j) with (i, j)∈Ω′kh.

Step 2. Set v?
kh[`] = ω?

kh, with `= 1, . . . , n?
kh. In particular (ω?

k1, . . . , ω
?
kH′

k
−1) is determined by means

of the algorithm presented in Hvattum et al. (2013) as the optimal solution of a SRP defined by:

• the sequence S′k of locations visited within time windows C′k, and

• the distance d?kh between two consecutive locations.

Let (p?,v?) be the optimal solution of the relaxed problem PR, i.e., p? = (p?
1, . . . ,p

?
K) and v? =

(v?
1, . . . ,v

?
K). If the total energy consumption

K∑
k=1

F (p?
k,v

?
k) is not greater than the total energy of

the current incumbent solution, then the branch-and-bound algorithm checks if (p?,v?) is conflict

free. For this purpose we propose a mechanism that will be described next.

3.2. Feasibility check

To check whether an optimal solution (p?,v?) to the relaxed problem PR corresponds to a conflict-

free routing on G, and to identify the type of conflict if not, we use a FeasibilityCheck procedure

that is shown in Algorithm 1. The procedure is called on each pair of distinct vehicles k and k′. If

FeasibilityCheck returns None for any pair of vehicles k and k′, then there are no conflicts and

the solution (p?,v?) is feasible. Otherwise, the procedure identifies the type of the conflict by using

a subroutine called the FindConflict procedure shown in Algorithm 2 and operates as explained

below.

Let us consider two distinct vehicles; vehicle k traveling on arc (i, j) during the time interval

[ti, tj], and vehicle k′ on arc (r, s) during the time interval [tr, ts]. No conflicts occur between k and

k′ during the time interval [ti, tj]∩ [tr, ts], if the following conditions hold:

if (r, s) = (i, j)∨ (r, s) = (j, i)⇒ [ti, tj]∩ [tr, ts] = ∅, (6)

if j = s⇒ tj 6= ts. (7)

The FindConflict procedure checks conflict by verifying whether conditions (6) and (7) are

satisfied. If no conflicts occur FindConflict returns the value None. Otherwise, FindConflict

returns the type of the conflict identified. In particular, if conditions (6) or (7) do not hold, then

FindConflict returns an Arc-conflict or a Node-conflict, respectively.

The type of conflict, once detected, is returned by the FeasibilityCheck procedure in its

space-time in the form ((i, j), (r, s), [ti, tj], [tr, ts]) and the corresponding indices h,h′, `, `′, and is

subsequently given as input to the branching procedure that is described in the following section.
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Algorithm 1 Feasibility check procedure

1: function FeasibilityCheck(k,k′,p,v?)

2: ti← 0

3: tr← 0

4: for all h∈ [1, . . . ,H ′
k− 1] and h′ ∈ [1, . . . ,H ′

k′ − 1] do

5: for all `∈ [1, . . . , nkh] and `′ ∈ [1, . . . , nk′h′ ] do

6: (i, j)← pkh[`]

7: (r, s)← pk′h′ [`′]

8: tj← ti + 1/v?
kh[`]

9: ts← tr + 1/v?
kh′ [`′]

10: type ←FindConflict((i, j), (r, s), [ti, tj ], [tr, ts]))

11: if type6= None then

12: return (type,(i, j), (r, s), [ti, tj ], [tr, ts], h,h
′, `, `′)

13: else

14: ti← ti + 1/v?
kh[`]

15: tr← tr + 1/v?
kh′ [`′]

16: return None

17: end function

Algorithm 2 Conflict detection procedure

1: function FindConflict((i, j),(r, s),[ti, tj ], [tr, ts])

2: if (i, j) = (r, s) or (j, i) = (r, s) then

3: if [ti, tj ]∩ [tr, ts] 6= ∅ then

4: return Arc-conflict

5: if j = s and tj = ts then

6: return Node-conflict

7: return None

8: end function

3.3. Branching strategy

When FeasibilityCheck procedure determines a conflict, the branching procedure defines a

partition of the feasible region of P into NB subsets, so that the infeasible solution (p?,v?) is cut

off and no feasible solution is lost. The basic idea is as follows. When a conflict arises on an arc

(or in a node), there are two viable alternatives:

• at least one vehicle is re-routed (space-based branching);

• at least one of the vehicles is time-constrained (time-based branching).
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Figure 2 Time-based and space-based branching for an Arc-Conflict

The latter option can be implemented by adding dummy time windows to the conflicting vehicles in

such a way that their traversal of the conflicting arc (or node) is delayed or anticipated. Formally,

for each conflict type, we devise a branching procedure that produces NB child nodes, each of which

is shown as P`, where `= 1, . . . ,NB. As depicted in Figures 2 and 3, each branching procedure is

modeled as a decision tree where branch-and-bound nodes correspond to the root node (i.e., the

parent node P) and the leaf nodes (i.e., the child nodes P`, with `= 1, . . . ,NB). In particular the

number NB of child nodes is equal to six and 14 for Node-conflict and Arc-conflict, respectively.

Each child node P` is obtained by adding to the parent node P all constraints associated to the

path of the decision tree starting from the root node to the leaf node associated with P`, for

`= 1, . . . ,NB. For example, in Figure 2, the child node P1 is obtained by adding to the parent node

P the constraint (i, j) /∈ pkh.

3.3.1. Space-based branching. For both arc and node conflicts, the algorithm partitions

the feasible solutions of P into two sets:

• feasible solutions satisfying constraint (i, j) /∈ pkh, which states that the vehicle k does not

traverse arc (i, j) when traveling from node S′k[h] to node S′k[h+ 1];

• feasible solutions satisfying constraint (i, j) ∈ pkh, which states that the vehicle k traverses

arc (i, j) when traveling from node S′k[h] to node S′k[h+ 1].

A further branching partitions the feasible solutions satisfying (i, j)∈ pkh in two sets:

• feasible solutions satisfying constraint (r, s) /∈ pk′h′ , which states that the vehicle k′ does not

traverse arc (r, s) when traveling from node S′k′ [h
′] to node S′k′ [h

′+ 1];

• feasible solutions satisfying constraint (r, s)∈ pk′h′ , which states that the vehicle k′ traverses

arc (r, s) when traveling from node S′k′ [h
′] to node S′k[h′+ 1].
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Figure 3 Time-based and space-based branching for a Node-conflict

The remaining time-based branching refers to cutting the solution (p?,v?) off from the set of solu-

tions satisfying the constraints (i, j)∈ pkh and (r, s)∈ pk′h′ . The space-based branching constraints

(i, j) /∈ pkh and (i, j)∈ pkh are added to SOPk of the child nodes by modifying the input data C′k, S′k
and Ω′k of the parent node P as follows:

• constraint (i, j) /∈ pkh is modeled by adding the arc (i, j) to the set Ω′kh;

• constraint (i, j)∈ pkh is modeled by inserting the arc (i, j) between nodes S′k[h] and S′k[h+ 1].

For this purpose, we first set S′k[h+ t] equal to S′k[h+ t+ 2], where 1≤ t≤H ′k − h. Then, we set

S′k[h+ 1] = i and S′k[h+ 2] = j. Finally, we increment H ′k by 2. The set C′k is updated by adding the

time windows αk,h+1 = [t0, T ] and αk,h+2 = [t0, T ] on the new nodes of the sequence.

In a similar way, the space-based branching constraints (r, s) /∈ pk′h′ and (r, s)∈ pk′h′ are added to

SOPk′ of the child nodes by modifying C′k′ , S′k′ and Ω′k′ of the parent node P. It is worth noting that,

removing arc (r, s) from pk′h′ corresponds to traversing a shortest path whose length is greater

than (or the same as) the previous one.

3.3.2. Time-based branching. In the following we describe how the time-based branching

procedure has been tailored for each conflict type. In particular, we refer to arcs (i, j) and (r, s) of

Algorithm 1 as (S′k[h+ 1], S′k[h+ 2]) and (S′k′ [h
′+ 1], S′k′ [h

′+ 2]), respectively.

Arc-conflict. As reported in Algorithm 1, an Arc-conflict occurs if vehicles k and k′ are traversing

the same track-segment during the time interval [t1, t2] = [ti, tj] ∩ [tr, ts]. We first partition the

planning horizon as follows:

[t0, T ] = [t0, t1[∪[t1, t
′
2]∪]t′2, T ], (8)
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Figure 4 The subset Λq with q= 1, . . . ,6

Table 1 Time windows C′
k imposed to subproblem SOPk for each branching constraint γk ∈ Λq (q= 1, . . . ,6)

Branching constraint Time window C′k
γk ∈Λ1 αkh+1 = [t0, t1[, αkh+2 = [t0, t1[
γk ∈Λ2 αkh+1 = [t0, t1[, αkh+2 = [t1, t

′
2]

γk ∈Λ3 αkh+1 = [t0, t1[, αkh+2 =]t′2, T ]
γk ∈Λ4 αkh+1 = [t1, t

′
2], αkh+2 =]t′2, T ]

γk ∈Λ5 αkh+1 =]t′2, T ], αkh+2 =]t′2, T ]
γk ∈Λ6 αkh+1 = [t1, t

′
2], αkh+2 = [t1, t

′
2]

where t′2 = min(t2, t1 +1/v) and 1/v is the minimum time to traverse a track-segment of unit length.

Let Λ be the set of all time intervals γ ⊆ [t0, T ] whose durations are greater than or equal to the

minimum travel time 1/v. According to (8), we use Λ to form six subsets of intervals Λ1, . . . ,Λ6,

as shown in Figure 4. More formally, Λ1, Λ2 and Λ3 consist of time intervals starting in [t0, t1[

and ending in [t0, t1[, [t1, t
′
2] and ]t′2, T ], respectively. Similarly, Λ4 and Λ5 consist of time intervals

starting in [t1, t
′
2] and in ]t′2, T ], respectively, but both ending in ]t′2, T ]. Finally, Λ6 corresponds to

[t1, t
′
2]. The time windows [t0, t1[ are modeled as [t0, t1 − ε]. We recall that ε induces an implicit

time discretization and observe that, with respect to a given ε, the following branch-and-bound

algorithm is an exhaustive search. In particular, running the algorithm to completion determines

feasibility.

Let us denote by zkh the arrival time at node S′k[h]. For notational convenience, we define the

branching constraints in terms of constraints on time intervals γk ∈ Λ and γk′ ∈ Λ, where γk =

[zkh+1, zkh+2] and γ′k = [zk′h′+1, zk′h′+2]. For example, γk ∈ Λ2 is equivalent to stating that zkh+1 ∈
[t0, t1[ and zkh+2 ∈ [t1, t

′
2]. In particular, the time-based partition for the Arc-conflict is defined by

all pairs of time constraints (γk ∈Λq, γk′ ∈Λq′), with q, q′ = 1, . . . ,6. As reported in Table 1, given

a vehicle k, constraint γk ∈ Λq is added to the child nodes by updating time windows αkh+1 and

αkh+2, with q= 1, . . . ,6.

The time-based branching shown in Figure 3 cuts off a set of infeasible solutions satisfying the

following condition:

γk ∩ γk′ ∩ [t1, t
′
2] 6= ∅. (9)
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In particular, condition (9) holds for all solutions satisfying (10)–(13), where:

(γk ∈Λ2, γk′ ∈Λq′), q′ = 2,3,6, (10)

(γk ∈Λ3, γk′ ∈Λq′), q′ = 2,3,4,6, (11)

(γk ∈Λ4, γk′ ∈Λq′), q′ = 3,4,6, (12)

(γk ∈Λ6, γk′ ∈Λq′), q′ = 2,3,4,6. (13)

It is worth noting that the infeasible solution (p?,v?) satisfies constraints (γk ∈ Λ3, γk′ ∈ Λ3). On

the other hand, feasible solutions do not satisfy condition (9), i.e. they do not comprise vehicles

colliding in [t1, t
′
2].

Node-conflict. As mentioned earlier, a Node-conflict occurs at node j, when vehicles k and k′ are

traveling on arcs (i, j) and arc (r, j), respectively, visit node j at the same time t. We observe that

a Node-conflict is a special case of an Arc-conflict, occurring on a dummy arc (j, j) with cjj = 0.

Taking into account that t1 = t2 = t, the time partition (8) becomes:

[t0, T ] = [t0, t[∪[t, t]∪]t, T ]. (14)

Since subsets Λ2, Λ3 and Λ4 are empty sets for the dummy arc (j, j), the time-based branching

for a Node-conflict can be modeled as shown in Figure 3. In particular, a first time-based partition

is applied to feasible solutions as follows.

• Feasible solutions satisfying constraint γk ∈Λ1, which states that the vehicle k arrives at node

j before t.

• Feasible solutions satisfying constraint γk ∈Λ5, which states that the vehicle k arrives at node

j after t.

• Feasible solutions satisfying constraint γk ∈Λ6, which states that the vehicle k arrives at node

j at time t.

Then, a further time-based branching cuts off the infeasible solution (p?,v?) from child nodes

{P5,P6} by the following time constraints:

• the vehicle k′ arrives at node j before t, i.e., γk′ ∈Λ1;

• the vehicle k′ arrives at node j after t, i.e., γk′ ∈Λ5.

4. Computational Results

This section presents the results of the computational experiments conducted to (a) evaluate the

performance of the branch-and-bound algorithm, and (b) quantify the value of speed optimization

in terms of the potential savings that can be achieved in energy consumption. All experiments

reported in this section are run on a standalone Linux machine with a processor clocked at 2.67

GHz and equipped with 24 GB of RAM. The algorithm is coded in Java. We first describe the

generation of input data, and then present the results.



Adamo et al.: Conflict-Free Pickup and Delivery
16 Article submitted to Transportation Science; manuscript no. TS-2016-0199.R3

(a) 2-bay graph (b) 4-bay graph

Figure 5 Grid graphs used to generate the instances

4.1. Input data

Instances have been generated to resemble the uniform layout typically found in a warehouse or in

a port terminal. Such layouts are naturally partitioned into interconnected groups of nodes called

bays. To this end, we first create a 10× 10 grid network GB = (VB,EB) corresponding to a bay.

Then, we generate two graphs G= (V,E) by linking together two or four copies of GB using single

arcs between bays as shown in Figure 5, where the number |V | of vertices is either 200 or 400.

For each graph G generated, we use K = 3,5,10 vehicles. For each vehicle k ∈ {1, . . . ,K}, we

generate a random sequence Sk of Hk = 5,10 requests such that Sk[h − 1] and Sk[h] belong to

different bays with a probability equal to p for h = 2, . . . ,Hk. In order to generate graphs with

different level of sparsity, for each instance, we identify arcs (i, j) ∈ VB that do not belong to any

shortest path p?
kh, and delete them from the graph with probability π ∈ {0,0.5}.

As for the time windows, we generate two types of instances, A and B, defined as follows. First,

we randomly generate a speed value v′ ∈]0, v]. For instances of type A, all nodes in Sk for a given

vehicle k share a common time window [0, Tk], where:

Tk =

Hk∑
h=1

n?
kh/v

′.

For instances of type B, for each node Sk[h], we set the time window to [β · αkh, αkh], where the

latest arrival time αkh is computed as (1 +µ) ·
h−1∑̀
=1

n?
k`/v

′, with µ randomly generated in [−θ,+θ].

For each configuration of parameters |V |, K, Hk and π, we have generated and solved 30 instances.

For type B instances, we test three values of θ as 0.1, 0.3 and 0.5 and two values of β as 0 and
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0.5. Each combination (θ,β) corresponds to a different level of tightness of the time windows. In

the following we report results for instances with wide (β = 0, θ= 0.1) and tighter (β = 0.5, θ= 0.3

and β = 0.5, θ= 0.5) time windows, where θ controls the variability of the latest arrival times. The

combination of these parameters yields a total of 1920 instances. In our experimentation, ε was set

equal to 1 millisecond. Given that the problem we solve arises as part of a more complex routing

problem, the computation time should be kept reasonably short. Therefore, a maximum of 300

seconds was imposed on the solution time of each instance.

We model energy consumption as the total tractive power requirements as in Young et al. (2013),

which is particularly relevant for vehicles that run on batteries. In particular, if we assume zero

acceleration and zero road angle, the total energy (in Joule = kg · m2/s2) required by a vehicle

traversing a segment of d (meters) at a constant speed v (m/s) is calculated as follows,

f(v) = (0.5CdAρv
2 +MgCr)d/1000,

where M is the total vehicle weight (kg), g is the gravitational constant, Cd and Cr are the

coefficient of the aerodynamic drag and rolling resistance, A (m2) is the frontal surface area of

the vehicle and ρ is air density (kg/m3). Table 2 shows the parameter settings used in the energy

consumption model.

Table 2 Parameter settings

Parameter Value

Cd 0.70
Cr 0.01
g 9.81 m/s2

A 2.86 m2

v 1.00 m/s
M 320 kg
ρ 1 kg/m3

A series of preliminary experiments were carried out to assess the impact of the search strategy.

We start by observing that due to the time-based branching the depth of the branch-and-bound

tree is not known a priori. In particular, we observe that the ratio between the lower bound at the

root node and the optimal solution is very close to 1. This implies that the Best-First Strategy

(BFS) is equivalent to the Depth-First Strategy (DFS), which might be inefficient in determining

a first feasible solution if the search depth is not known a priori. We overcome this drawback by

using Iterative Deepening Depth-First Search (IDDFS), in which a depth-limited version of DFS is

run repeatedly with increasing depth limits until a dead end is found. Our experiments suggested

that the IDDFS is superior to the BFS as it provides a reduction of about 50% in the number of

instances unsolved, i.e., instances for which no feasible solution can be found within the time limit.

For this reason, all tests are carried out with the IDDFS.
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4.2. Results on the performance of the algorithm

The experiments reported in this section are conducted to assess the effectiveness of the branch-

and-bound algorithm in solving the instances to optimality. Results are reported in Table 3 for

instances of type A, and in Tables 4–6 for instances of type B. All four tables have the same format,

where the first four columns are self-explanatory. The remaining column headings are as follows.

• TIME: time spent to find an optimal solution (in seconds);

• NODES: number of nodes in the search tree;

• SUCC: number of instances solved (see below for a detailed explanation);

• ρ: the depth of the branch-and-bound node corresponding to the best solution available at the

end of the search;

• LB/OPT : ratio between the initial lower bound value on the best objective function available

at the end of the search;

• GAPf : the final optimality gap (×10−3);

• GAPI : optimality gap of the first feasible solution found (×10−3);

• TIMEI : time spent to determine the first feasible solution (in seconds).

We report the results for each instance configuration in three distinct rows, where the first row

presents results for the set of instances solved to optimality within the time limit, the number of

which is reported in column SUCC. The second row pertains to the set of instances for which at

least one feasible solution was found, but optimality was not proven within the time limit. The

third row reports results for the set of instances certified as infeasible within the time limit. For the

sake of conciseness, the second and the third row have been omitted whenever the corresponding

set of instances is empty, i.e., when the corresponding value of SUCC column is 0. Similarly, we

do not report any results on instances for which the algorithm was neither able to find a feasible

solution nor prove infeasibility within the time limit. For columns from LB/OPT to TIMEI we

only report averages for instances with at least one feasible solution determined within the time

limit. All other columns report results which are averaged across the corresponding number of

instances reported in column SUCC. Optimality gaps were computed as 103 × (upper bound−

lower bound)/lower bound. The final optimality gap GAPf is zero if the instance was solved to

optimality. Otherwise, GAPf is evaluated with respect to the best lower and upper bounds found

within the time limit of 300 seconds. Similarly, GAPI is calculated with respect to the first feasible

solution identified and the best lower bound.

Computational results show, for the 480 instances of type A tested, that the algorithm is able

to solve 445 to optimality, and find at least one feasible solution for the remaining 35 instances.

As for the 480 type B instances with wide time windows (i.e. β = 0 and θ = 0.1), the algorithm

has successfully solved 369 to optimality, and produced at least one feasible solution for 73 of
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Table 3 Computational results for instances of type A

|V | π K |R| TIME NODES SUCC ρ LB/OPT GAPf GAPI TIMEI

200 0 3 5 0.11 9 30 1.00 1.000000 0.000 0.570 0.10
10 0.38 61 28 1.93 1.000000 0.000 1.125 0.31

300.05 371635 2 3.00 0.999817 0.183 0.183 0.34
5 5 3.13 241 28 4.14 1.000000 0.000 1.311 2.82

300.05 301362 2 8.50 0.999928 0.072 0.089 4.56
10 8.70 1164 29 6.48 1.000000 0.000 0.420 6.11

300.05 360680 1 5.00 0.999543 0.431 0.596 0.58
0.5 3 5 0.08 4 30 0.60 1.000000 0.000 2.300 0.08

10 0.15 12 28 0.82 1.000000 0.000 0.058 0.14
300.05 235059 2 1.50 0.999817 0.183 0.183 0.24

5 5 0.32 26 28 1.89 0.999998 0.000 0.721 0.30
300.05 313055 2 5.00 0.999927 0.073 0.089 1.64

10 0.59 29 27 2.19 1.000000 0.000 0.962 0.54
300.05 220491 3 4.33 0.999678 0.322 12.907 0.50

400 0 5 5 0.31 32 28 1.68 1.000000 0.000 0.049 0.23
300.05 208448 2 1.50 0.995611 4.428 13.155 0.21

10 1.83 121 28 3.43 1.000000 0.000 5.783 1.62
300.05 172035 2 7.00 0.956482 47.648 51.610 8.03

10 5 13.24 513 25 6.64 1.000000 0.000 0.368 11.72
300.08 149029 5 6.80 0.996529 3.493 3.901 11.17

10 15.33 379 25 6.64 0.999999 0.000 0.476 12.20
300.06 147221 5 8.00 0.987245 13.623 15.804 6.60

0.5 5 5 0.18 14 30 0.80 1.000000 0.000 1.196 0.15
10 0.37 33 29 1.10 1.000000 0.000 0.602 0.34

300.05 172325 1 4.00 0.999879 0.121 0.128 1.02
10 5 1.66 36 26 2.69 1.000000 0.000 0.660 1.64

300.05 218898 4 3.50 0.996655 3.368 3.878 0.80
10 2.10 31 26 2.69 1.000000 0.000 0.355 1.95

300.05 106808 4 5.25 0.998096 1.913 1.972 1.72

Average 24.53 15116 480 2.90 0.999582 0.445 1.605 2.47

these instances, leaving only 38 instances for which no feasible solution was found. The average

solution time across all the instances is 7.65 seconds, with an average optimality GAPI equal to

3.746× 10−3.

The results presented in Tables 5 and 6 give an indication on the difficulty of the problem with

increasing values of tightness for time windows. For β = 0.5 and θ = 0.3 (θ = 0.5) the algorithm

has successfully solved 354 (148) to optimality, and produced at least one feasible solution for 55

(27) of these instances, leaving only 69 (7) instances for which no feasible solution was found and

2 (298) instances declared infeasible.

For instances solved to optimality, the time TIMEI needed to determine a first feasible solution

is close to the value of the total execution TIME. Indeed, since the ratio LB/OPT is often either

equal to 1 or is very close to 1, the algorithm stops as soon as the incumbent solution is updated

with an optimal solution. We also note that the values shown under column ρ could be interpreted

as the number of conflicts identified and resolved by the algorithm for an infeasible solution at

the root node. The values indicate that the algorithm is able to identify a feasible solution within
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Table 4 Computational results for instances of type B, wide time windows with β = 0, θ= 0.1

|V | π K |R| TIME NODES SUCC ρ LB/OPT GAPf GAPI TIMEI

200 0 3 5 0.13 24 30 1.37 0.999983 0.002 0.527 0.12
10 0.29 57 29 2.03 0.999975 0.000 0.153 0.26

300.05 340822 1 3.00 0.999599 0.401 0.401 0.92
5 5 4.19 703 28 4.14 0.999957 0.000 0.000 4.19

300.05 216926 1 2.00 0.999999 0.001 0.001 0.55
10 18.06 4657 23 6.30 0.999986 0.000 0.406 12.14

300.05 535473 4 5.50 0.999753 0.038 5.150 1.49
0.5 3 5 0.10 20 28 0.96 0.999981 0.002 0.151 0.09

300.05 242743 2 1.50 0.988319 11.844 11.844 0.13
10 0.18 73 26 1.08 0.999986 0.000 2.555 0.17

300.41 217222 4 2.00 0.989332 10.734 38.457 0.21
5 5 1.20 329 21 2.62 0.999173 0.000 0.440 1.18

300.05 285300 8 2.75 0.993443 6.872 15.675 0.26
10 9.71 1630 17 3.06 0.999784 0.000 1.779 9.63

300.05 283810 11 4.18 0.998432 1.142 10.091 2.12
400 0 5 5 8.02 4780 29 2.17 0.999999 0.001 0.742 5.51

300.05 209306 1 2.00 0.990554 9.536 9.536 0.25
10 2.63 302 25 4.48 0.999998 0.001 3.418 1.45

300.05 197604 4 1.50 0.950191 55.567 101.470 0.27
10 5 30.79 1422 17 8.94 0.999996 0.000 1.372 25.68

300.20 170144 4 8.25 0.996231 3.696 3.684 69.61
10 31.59 1756 16 7.25 0.998881 0.000 1.254 30.07

300.07 112612 3 10.00 0.974535 27.170 27.170 5.25
0.5 5 5 0.15 7 23 0.65 0.999997 0.001 0.424 0.14

300.05 248195 7 3.71 0.999116 0.620 19.540 0.75
10 0.78 163 23 2.09 0.999892 0.002 1.960 0.66

300.06 206824 6 2.50 0.994730 5.311 5.710 1.24
10 5 45.22 4894 14 5.36 0.997492 0.000 4.489 39.88

300.06 154561 11 5.00 0.998411 1.319 2.462 21.47
10 25.28 2560 20 5.10 0.999408 0.000 3.057 24.11

300.30 115348 6 5.83 0.997949 1.906 6.986 4.98

Average 56.87 39220 442 3.42 0.998649 1.188 3.746 7.65

the time limit when the number of conflicts is generally less than 10. The results also suggest that

on instances with tightly constrained time windows the algorithm is more effective when π = 0,

as sparser instances appear to be more difficult to solve. A similar behavior can be observed with

respect to the number of vehicles. Indeed, as the fleet size K increases the number of instances

solved by the algorithm decreases, because of the higher network congestion. For instance, when

β = 0.5, θ = 0.3, |V | = 400, π = 0.5 and R = 10 all instances are solved with K = 5 whilst only

six instances are solved with K = 10. This trend becomes even more evident with tighter time

windows (β = 0.5, θ= 0.5). In this case, the number of instances solved are three with K = 5, while

no instances are solved with K = 10.

4.3. The value of speed regulation

To quantify the value of speed regulation in searching for a conflict-free solution, we also solved our

instances using our algorithm with all speeds fixed to the maximum value v and the time-based
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Table 5 Computational results for instance of type B with tight time windows β = 0.5, θ= 0.3

|V | π K |R| TIME NODES SUCC ρ LB/OPT GAPf GAPI TIMEI

200 0 3 5 0.07 11 28 0.75 1.000000 0.000 1.734 0.07
300.05 800345 2 2.00 0.997700 2.237 2.462 0.14

10 1.53 740 28 2.11 0.999907 0.000 2.490 1.26
300.05 198399 1 1.00 0.999279 0.722 0.722 0.17

5 5 1.42 1081 29 3.59 0.999954 0.000 2.500 0.85
10 14.00 2188 23 6.87 1.000000 0.000 0.069 10.32

300.05 103139 1 10.00 0.999996 0.004 0.004 5.85
0.5 3 5 0.06 40 25 0.60 0.999680 0.000 9.562 0.05

300.52 595882 5 3.40 0.998157 0.261 12.686 0.25
10 7.95 3602 24 1.92 0.999260 0.000 10.179 2.64

300.05 272931 6 3.17 0.995233 2.540 14.518 1.09
5 5 1.20 1236 24 2.67 0.995049 0.000 11.729 0.78

300.05 550542 5 2.40 0.998534 1.450 10.041 0.25
10 13.97 2979 16 4.63 0.997346 0.000 5.050 11.49

300.05 209570 5 6.20 0.997735 0.138 0.332 64.57
400 0 5 5 0.89 199 27 2.07 0.999836 0.000 13.076 0.85

300.06 255834 3 3.00 0.996791 2.556 22.986 0.71
10 2.75 401 25 3.88 0.999967 0.000 3.819 2.32

300.05 236848 5 6.00 0.991224 9.006 18.568 3.92
10 5 9.87 1880 23 5.74 0.998515 0.000 1.240 9.48

300.05 102799 4 7.50 0.984593 14.717 27.541 11.37
0.01 1 1 0.00 – – – –

10 63.30 1911 12 8.25 1.000000 0.000 0.000 63.30
0.5 5 5 0.35 308 27 1.11 0.999515 0.018 4.343 0.27

300.05 359574 3 4.00 0.995520 3.656 13.779 0.78
10 6.55 1751 21 3.05 0.999072 0.000 7.015 5.23

300.05 269085 9 4.56 0.999344 0.403 8.842 5.56
10 5 21.43 6445 17 4.06 0.997639 0.000 3.478 13.50

300.05 331370 5 5.80 0.997404 1.054 5.825 2.31
0.01 1 1 0.00 – – – –

10 43.61 6910 5 5.20 0.999025 0.000 0.666 9.24
300.10 26529 1 8.00 0.997064 0.002 0.971 189.18

Average 46.86 45000 409 3.34 0.998728 0.395 6.047 6.54

branching disabled (Algorithm H), as well as with the approach proposed by Corréa et al. (2007),

where conflicts are avoided by operating the vehicles at maximum constant speed and allowing the

vehicles to wait at the end of edges (Algorithm C). As stated in Section 1, the master problem

proposed by Corréa et al. (2007) is a Constraint Programming model to determine the requests

assigned to each AGV (assignment decisions), the order in which they are visited (sequencing

decisions) and the arrival times at each destination node (scheduling decisions). The second stage

Mixed Integer Programming model checks if there exists a conflict-free solution satisfying the

constraints of the master problem (conflict-free routing decisions). The algorithm stops as soon

as a conflict-free solution is determined. Since our algorithm makes scheduling and conflict-free

routing decisions, we solved each instance with the approach proposed by Corréa et al. (2007),

where assignment and sequencing variables are fixed according to what is prescribed by Sk, with

k= 1, . . . ,K. The results are reported in Table 7 for type A instances, and in Tables 8, 9 and 10 for

B instances for wide and tight time windows, respectively. The column headings of these tables are
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Table 6 Computational results for instance of type B with tight time windows β = 0.5, θ= 0.5

|V | π K |R| TIME NODES SUCC ρ LB/OPT GAPf GAPI TIMEI

200 0 3 5 0.51 677 23 0.96 0.999808 0.000 0.072 0.51
0.01 1 7 0.00 – – – –

10 0.28 151 8 2.13 0.999987 0.001 0.165 0.26
300.05 318805 1 4.00 0.999966 0.034 4.540 0.29
0.01 1 21 0.00 – – – –

5 5 0.90 415 15 3.20 0.999995 0.000 1.093 0.87
300.05 828228 1 2.00 0.999109 0.892 0.892 0.25
0.01 1 14 0.00 – – – –

10 17.34 2215 1 12.00 1.000000 0.000 0.000 17.34
300.05 28861 1 9.00 0.999551 0.449 0.595 10.36
0.01 1 26 0.00 – – – –

0.5 3 5 0.08 58 19 0.63 0.999873 0.000 1.139 0.07
300.05 661959 4 3.25 0.995888 0.906 1.320 0.39
0.01 1 7 0.00 – – – –

10 0.30 237 8 1.75 0.999883 0.025 2.696 0.22
300.05 542396 1 11.00 0.999251 0.531 1.201 2.53
0.01 1 21 0.00 – – – –

5 5 1.04 1153 13 2.92 0.996334 0.000 5.508 0.71
300.05 606412 3 3.00 0.998975 0.948 32.934 0.33
0.01 1 14 0.00 – – – –

10 11.12 4292 1 6.00 0.998972 0.000 7.449 1.82
300.05 89671 1 15.00 0.998871 0.429 0.584 23.47
0.01 1 26 0.00 – – – –

400 0 5 5 0.52 156 19 1.74 0.997378 0.000 1.199 0.49
300.05 311447 2 1.00 0.996523 3.501 24.041 0.14
0.01 1 9 0.00 – – – –

10 0.96 295 3 2.67 0.996197 0.000 4.237 0.45
0.01 1 27 0.00 – – – –

10 5 41.32 7560 13 5.46 0.995279 0.001 0.303 40.33
300.05 36785 1 5.00 0.984943 15.287 15.287 3.11
0.01 1 15 0.00 – – – –

10 0.01 1 30 0.00 – – – –
0.5 5 5 0.23 206 16 1.00 0.998893 0.000 3.600 0.21

300.05 370201 5 4.60 0.997406 1.799 22.469 1.98
0.01 1 9 0.00 – – – –

10 1.55 351 3 2.00 0.999990 0.000 0.081 0.33
0.01 1 27 0.00 – – – –

10 5 13.71 4371 6 4.00 0.994386 0.000 1.725 13.70
300.05 252039 7 5.29 0.994837 3.682 4.154 25.79
0.01 1 15 0.00 – – – –

10 0.01 1 30 0.00 – – – –

Average 50.37 61315 175 2.61 0.998146 0.378 3.234 5.22

self-explanatory with the following exceptions. The column IT reports the number of iterations

of the algorithm proposed by Corréa et al. (2007). The column N is the number of instances

either solved to optimality or for which a feasible solution has been found, using fixed speeds.

The columns SUCCS and SUCCH present the same statistic for our algorithm and Algorithm H,

respectively. Similarly, columns ESH and ESC present the savings in energy (in percent) yielded

by the solutions found by our algorithm over those found by Algorithms H and C, respectively.

Finally, column W reports the overall average waiting time in the Corréa et al. (2007) solutions.



Adamo et al.: Conflict-Free Pickup and Delivery
Article submitted to Transportation Science; manuscript no. TS-2016-0199.R3 23

Table 7 The value of speed regulation on instances of type A

|V | π K |R| TIME IT N W (%) ESC(%) SUCCS SUCCH TIMEH ESH(%)

200 0 3 5 17.33 1.00 27 16.20 73.63 30 30 0.09 63.85
10 41.79 1.00 24 20.78 72.04 30 30 0.35 63.93

5 5 30.04 1.00 24 12.62 74.79 30 28 0.77 63.82
10 75.55 1.00 22 12.11 74.98 30 24 24.84 63.92

0.5 3 5 14.48 1.00 21 15.19 74.05 30 27 0.06 64.11
10 32.18 1.00 17 19.34 72.90 30 29 0.18 63.96

5 5 25.63 1.00 16 14.07 74.35 30 25 0.23 64.28
10 55.67 1.00 6 20.20 72.30 30 27 20.08 64.21

400 0 5 5 64.96 1.00 24 16.15 73.65 30 30 0.40 63.88
10 182.47 1.00 19 15.17 73.96 30 30 12.57 64.01

10 5 145.79 1.00 14 10.10 75.60 30 24 24.17 63.79
10 292.60 1.00 5 8.49 76.30 30 9 51.41 63.91

0.5 5 5 56.10 1.00 20 15.25 74.09 30 28 0.14 63.89
10 135.11 1.00 9 17.85 73.26 30 26 1.10 64.08

10 5 110.00 1.00 1 8.73 76.15 30 15 3.14 64.22
10 252.00 1.00 1 8.30 76.32 30 14 61.12 64.20

Average 66.72 1.00 250 15.37 73.94 480 396 8.99 63.99

Table 8 The value of speed regulation on instances of type B with wide time windows, i.e. β = 0, θ= 0.1

|V | π K |R| TIME IT N W (%) ESC(%) SUCCS SUCCH TIMEH ESH(%)

200 0 3 5 17.19 1.00 27 16.20 71.12 30 30 0.10 60.30
10 41.50 1.00 24 20.78 67.91 30 30 0.36 58.57

5 5 29.79 1.00 24 12.62 72.57 29 28 0.88 60.62
10 75.50 1.00 22 12.11 71.32 27 24 24.67 58.65

0.5 3 5 14.29 1.00 21 15.19 71.71 30 27 0.06 60.42
10 32.00 1.00 17 19.34 68.95 30 29 0.18 58.58

5 5 25.69 1.00 16 14.07 72.03 29 23 0.22 60.53
10 55.50 1.00 6 20.20 68.39 28 26 9.15 58.58

400 0 5 5 65.75 1.00 24 16.15 71.39 30 30 0.39 60.60
10 184.11 1.00 19 15.17 70.14 29 29 13.47 58.70

10 5 146.43 1.00 14 10.10 73.43 21 21 24.49 60.01
10 295.20 1.00 5 8.49 72.91 19 9 50.62 58.51

0.5 5 5 57.60 1.00 20 15.25 71.95 30 28 0.15 60.51
10 135.67 1.00 9 17.85 69.60 29 26 0.79 58.63

10 5 111.00 1.00 1 8.73 73.67 25 15 3.50 60.23
10 256.00 1.00 1 8.30 73.25 26 13 43.48 58.55

Average 67.06 1.00 250 15.37 70.97 442 388 7.61 59.57

The results shown in Tables 7–10 have several implications. First, they indicate that the instances

become harder to solve for fixed speeds. In particular, the number of type A instances solved,

either to optimality or for which a feasible solution has been identified, is equal to 250 and 396 for

Algorithms C and H, respectively. This is in stark contrast to the 480 feasible instances identified

when speed regulation is allowed. More remarkably, our approach takes 2.47 seconds to determine

a feasible solution, whilst Algorithms C and H take 66.72 and 8.99 seconds on average, respectively.

The results are similar with type B instances with wide time windows, i.e., β = 0 and θ= 0.1. Such

gain in terms of success rate decreases with tighter time windows. In particular, the number of

instances with tight time windows solved by Algorithms C and H is equal to 265 and 365 for θ= 0.3,

and 97 and 144 for θ = 0.5. In this case, speed regulation allows to solve 409 and 175 instances
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Table 9 The value of speed regulation on instances of type B with tight time windows (β = 0.5, θ= 0.3)

|V | π K |R| TIME IT N W (%) ESC(%) SUCCS SUCCH TIMEH ESH(%)

200 0 3 5 17.22 1.00 27 15.87 65.92 30 29 0.08 52.61
10 50.04 1.35 23 17.64 61.30 29 28 0.64 47.06

5 5 31.41 1.11 27 13.78 66.85 29 29 0.72 53.04
10 72.79 1.00 19 15.33 61.75 24 22 16.87 47.49

0.5 3 5 15.17 1.13 24 15.23 66.04 30 27 0.06 52.72
10 68.12 3.12 17 20.84 59.64 30 24 0.17 47.28

5 5 56.16 3.53 19 16.74 65.43 29 24 0.26 53.08
10 48.80 1.00 5 19.87 59.90 21 21 25.68 46.66

400 0 5 5 68.26 1.00 27 14.50 66.58 30 30 0.22 53.00
10 167.13 1.00 16 16.67 61.32 30 30 18.00 46.64

10 5 137.94 1.00 17 10.58 67.86 27 27 38.21 52.84
0.30 1.00 1 – – 1 1 0.01 –

10 292.22 1.00 9 8.79 65.76 12 7 97.64 48.02
0.5 5 5 71.77 1.45 22 16.37 60.40 30 24 0.14 53.27

10 130.44 1.00 9 14.08 56.59 30 22 0.78 46.45
10 5 142.00 1.50 4 13.01 65.78 22 15 1.31 52.66

0.28 1.00 1 – – 1 1 0.01 –
10 0 6 6 45.54 48.63

Average 73.56 1.42 265 15.44 64.15 409 365 10.35 50.36

Table 10 The value of speed regulation on instances of type B with tight time windows (β = 0.5, θ= 0.5)

|V | π K |R| TIME IT N W (%) ESC(%) SUCCS SUCCH TIMEH ESH(%)

200 0 3 5 20.67 1.33 15 17.06 59.85 23 22 0.08 43.68
0.21 1.00 14 – – 7 8 0.01 –

10 40.86 1.00 7 16.69 55.68 9 7 0.24 39.61
0.24 1.00 23 – – 21 23 0.01 –

5 5 30.30 1.00 10 10.07 64.93 16 15 0.75 47.35
0.21 1.00 18 – – 14 15 0.01 –

10 81.00 1.00 1 11.86 57.73 2 1 5.97 38.04
0.21 1.00 28 – – 26 26 0.01 –

0.5 3 5 21.29 1.93 14 16.48 59.92 23 21 0.06 43.10
0.22 1.00 14 – – 7 9 0.01 –

10 32.00 1.00 4 16.67 56.22 9 6 0.18 40.37
0.21 1.00 23 – – 21 24 0.01 –

5 5 50.63 3.00 8 12.77 64.31 16 12 0.25 47.56
0.21 1.00 18 – – 14 18 0.01 –

10 0 2 1 6.17 37.97
0.23 1.00 28 – – 26 26 0.01 –

400 0 5 5 72.15 1.08 13 15.18 66.28 21 21 0.46 44.60
0.25 1.00 13 – – 9 9 0.01 –

10 155.00 1.00 1 7.62 62.93 3 3 0.80 38.84
0.29 1.00 28 – – 27 27 0.01 –

10 5 140.43 1.00 7 12.16 67.75 14 14 15.78 46.40
0.25 1.00 19 – – 15 15 0.01 –

10 0.25 1.00 30 – – 30 30 0.01 –
0.5 5 5 62.70 1.20 10 18.22 60.71 21 12 0.12 46.54

0.26 1.00 13 – – 9 18 0.01 –
10 127.00 1.00 2 24.63 49.88 3 2 0.24 37.22

0.25 1.00 28 – – 27 28 0.01 –
10 5 167.00 1.80 5 9.04 65.48 13 7 0.84 46.53

0.25 1.00 19 – – 15 23 0.01 –
10 0.25 1.00 30 – – 30 30 0.01 –

Average 57.76 1.42 97 14.96 61.86 175 144 1.99 44.46
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for θ = 0.3 and θ = 0.5, respectively. Savings in computation time are more remarkable. When

speed regulation is not permitted, a first feasible solution for instances with tight time windows is

determined in 73.56 and 10.35 (57.76 and 1.99) seconds on average for θ= 0.3 (θ= 0.5). This is in

contrast to the average computation time of 6.54 (5.22) seconds needed to solve the problem using

speed regulation. Speed regulation also allows to achieve remarkable savings in energy consumption

across the four sets of instances. Indeed, as shown in Tables 7–10, when compared to Algorithm

C, our procedure achieves an average energy saving equal to 73.94%, 70.97%, 64.15% and 61.86%,

respectively. As far as Algorithm H is concerned, average energy savings amount to 63.99%, 59.57%,

50.36% and 44.46%, respectively. These results suggest that, whilst a great majority of the energy

savings reported are achieved by speed regulation, additional improvements are also possible due

to the methodology proposed here, ranging from approximately 10% to just over 17%.

5. Conclusions

In this paper we described a path and speed optimization algorithm for the conflict-free pickup and

delivery problem under time windows, which arises in automated material handling systems, port

terminals and controlled airspace. We proposed a branch-and-bound algorithm in which a lower

bound is obtained by relaxing the arc capacity constraints. The relaxed problem is separable, for

which an optimal solution can be found in quadratic time. If the optimal solution of the relaxed

problem violates the arc capacity constraints, then a conflict is detected through a feasibility-check

procedure. Finally, a branching procedure determines a set of space-based and time-based branch-

ing constraints cutting off infeasible solutions associated to the detected conflicts. Computational

experiments showed that the algorithm can successfully solve instances of up to 400 vertices in

grid graphs within a few seconds of computational time. When compared with a state-of-the-art

approach (Corréa et al. 2007), our procedure generated an average of 42% additional feasible solu-

tions and reduced the computation time by an order of magnitude. Furthermore, our algorithm

achieved a remarkable energy saving (around 70%).

There are two future research directions that we propose. The first is to extend this study to

account for tracks of sufficiently small length, as would be the case in small warehouses, where arc

speeds cannot be assumed to be independent and for which acceleration and deceleration profiles

have to be considered. The second is to consider disturbances to a solution as it is executed (e.g.,

increased travel times). In this case the model proposed here can be used in a rolling-horizon

scheme to ensure that the feasibility of the solution is retained.
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