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Abstract

This work proposes a first extensive analysis of the Vehicle Routing Problem with
Fractional Objective Function (vrpfo). We investigate how the principal techniques
used either in the context of fractional programming or in the context of vehicle routing
problems interact. We present new dual and primal bounding procedures which have
been incorporated in an exact method. The method proposed allows to extend specific
variants of vrp to their counterpart with a fractional objective function. Extensive
numerical experiments prove the validity of our approach.

1 Introduction

In this paper, we investigate how to solve to optimality the Vehicle Routing Problem

(vrp) with optional customers and Fractional Objective Function (fo). Given a fleet

of vehicles and a set of customers, the vrp aims at serving the customers with a set of

feasible routes at minimal cost. vrps represent a wide area of combinatorial optimization

and mathematical programming. Most of the works in the literature address the case

where the objective function is linear and all customers must be visited (see Toth and

Vigo 2014). In the case considered in this paper, a subset of the customers is optional.

Therefore, an optional customer is visited only if the objective function improves. With a

linear objective function minimizing the overall cost, the optional customers would never

be part of an optimal solution. However, this is not true when the objective function

analyzed is fractional, i.e., it is of the form f(x)
g(x) . In this work we focus on the case where

f(x) and g(x) are linear. Such type of objective function is used to model the so-called

Logistic Ratio (lr), which is the ratio of the total cost to the overall resources spent to

serve the customers.

In the past, the lr has been widely used in the context of inventory control and

production planning (Bázsa et al. (2001) or Barros et al. (1997)). The lr has been also
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applied to routing problems, more precisely, to the Inventory Routing Problem (irp)

(Morton (2011), Benoist et al. (2011), Garaix et al. (2011) and Archetti et al. (2016)).

The irp can be described as the combination of a vrp with an inventory management

problem, where a supplier has to deliver products to a number of customers over a given

time horizon without running out of stock. Therefore, the irp boils down to simultaneously

decide the inventory management, the vehicle routing and the delivery scheduling (Coelho

et al. (2014)).

When an inventory routing problem is used in practice, a time horizon needs to be

fixed. Nevertheless, a fixed time horizon, neglects the fact that it would be necessary to

solve another optimization problem over the next time horizon. This is due to the fact that

a direct minimization of costs would lead to postponing as many deliveries as possible to

later planning periods (Dror and Ball (1987)). It is difficult to define appropriate models

able to provide solutions that are “robust” also beyond the time horizon considered. The

lr uses more efficiently the resources available in the current planning period, since it

provides a solution with better average cost per quantity of resources used. The needs of

customers are better anticipates by minimizing the lr since it avoids myopic behaviours

of the optimization models at the end of the time horizon. While it is not the case with

the objective function that directly minimize the cost. What it is more, as observed by

Campbell et al. (2001), real-life inventory routing problems are stochastic. Therefore, any

distribution plan covering more than a couple of days will never be executed completely

as planned. Actual volumes delivered differ from planned volumes because usage rates

deviate from their forecasts, the planned driving time is off due to traffic congestion, and

so forth. Therefore, any planning system needs to be flexible. In addition, it needs to

take advantage of the latest changes in the data, such as last minute orders. Therefore, in

practice, long-term plan are often implemented on a daily basis, and the daily planning

needs to capture the costs and benefits of delivering to a customer earlier than strictly

necessary.

The vrpfo presents the advantages of planning the current delivery by also taking

into account the future demand, while optimizing only over a single day (allowing to keep

the size of the problem under control). In this context, a customer whose inventory will

reach the safety stock level at the end of the day is considered as a compulsory customer

(also called must-go customer). On the other hand, a customer whose inventory is below

the earliest delivery level but will not reach the safety stock level in the planning window

becomes an optional customer (also called may-go customer), see Loes (2016) for more

details. Therefore, this work answers to the research question of whether it is possible to

find a model able to capture the multiperiod optimization aspect typical of an irp with

fo that is also able to handle instances of size of practical interest.
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1.1 Literature review

The use of the lr as objective function characterizes the problem to solve as a Fractional

Programming (fp) problem, which is a generalization of linear programming. We refer to

Radzik (1999), Frenk and Schaible (2005), Schaible and Shi (2004) or Stancu-Minasian

(2012) for a brief introduction to fp.

Two main techniques are available in the literature to tackle fp: the variable substitu-

tion presented by Charnes and Cooper (Charnes and Cooper (1962)) and the Dinkelbach’s

algorithm (Dinkelbach (1967)). In the former method, the variable substitution allows to

rewrite the problem as linear, if the divisor of the objective function is always greater than

zero. The main drawbacks of this technique are that it can potentially lead to numerical

instability and that it is difficult to efficiently use it when solving a fractional problem with

discrete variables. Dinkelbach presents an algorithm for problems with (convex) fractional

objective function. The algorithm is valid both in case of linear or nonlinear terms in the

numerator and denominator. The basic idea of the algorithm is to iteratively solve a

parametric linearization of the problem where the parameter represents an estimation of

the original objective function. The author also shows that the algorithm terminates in a

finite number of iterations.

A generalization of Dinkelback’s algorithm to nonconvex (continuous) objective func-

tions is presented in Ródenas et al. (1999). Ródenas et al. also extended the Dinkelbach

approach to integer linear fractional programming and observed that the algorithm con-

verges on a finite number of iterations. In Espinoza et al. (2010), the authors show how

lifting, tilting and fractional programming can be viewed as the same optimization prob-

lem. Espinoza et al. described an exact algorithm for the case of mixed integer linear frac-

tional programming and, by combining results of Dinkelbach (1967) and Schaible (1976),

provided a proof of its superlinear convergence rate. Methods for mixed integer linear

fractional programming with application in cyclic process scheduling problems were also

considered by You et al. (2009). In particular, You et al. extended Dinkelbach approach

to discrete problems by also shoving its superlinear convergence rate.

vrps with fractional objective functions have been studied by Benoist et al. (2011),

Garaix et al. (2011) and Archetti et al. (2016). Archetti et al. (2016) presented a study on

irp with lr and an exact method for its solution. One of the main contributions of their

work is a comparison of the optimal solutions obtained when minimizing the lr to the ones

obtained when minimizing the total cost. The solution technique used is an adaptation

of the one proposed in Dinkelbach (1967) to discrete problems. The authors were able to

solve to optimality instances involving up to 5 vehicles, 15 customers and 3 periods. Garaix

et al. (2011) investigated the maximization of passenger occupancy rate in a dial-a-ride

problem. The specific objective function considered is to maximize the rate defined as the

sum of the passenger travel times divided by the total travel time of vehicles. Garaix et al.

(2011) proposed two approaches for solving the continuous relaxation of a set partitioning
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model based on the Charnes and Cooper’s transformation and on Dinkelback’s algorithm.

Benoist et al. (2011) described a randomized local search algorithm for solving a real-life

routing and scheduling problem arising in optimizing the distribution of fluids by tank

trucks in the long run, with the objective to minimize the lr.

The book edited by Toth and Vigo (2014) provides a comprehensive overview of exact

and heuristic methods for vrps. In particular, the chapter by Archetti et al. (2014) reviews

vrps where the set of customers to serve is not given and a profit is associated with each

customer that makes such a customer more or less attractive. In this case, the difference

between route profit and cost may be maximized, or the profit or the cost optimized with

the other measure bounded in a constraint.

A well know technique used for solving routing problems is column generation (cg).

Column generation exploits the Dantzig-Wolfe Reformulation of the flow formulation of

the original problem and leads to a formulation with an exponential number of variables

(we refer the reader to Desaulniers et al. (2006) for a extensive analysis of such a method).

1.2 Contributions of this paper

In this paper, we describe an exact method to solve the vrpfo. We formulate the vrpfo

using a Set Partitioning (sp) like formulation with a fractional objective function. The

vrpfo formulation adopted can be used to model alternative objective functions, such as

the lr and the maximization of profit over time.

The exact method combines two bounding procedures, derived from the sp like formu-

lation, with an extension of Dinkelbach’s algorithm for fractional programming to integer

programs. More precisely, the bounding procedures are used within a route enumeration

scheme (see Baldacci et al. 2008) to reduce the number of variables of the integer problems

solved at each iterations of the Dinkelbach approach.

The extension of the procedure described is possible thanks to the two following nov-

elties presented in this paper:

• We present a new linear transformation which allows to use a dual ascent heuristic

to solve the master problem. It is alternative to the one presented by Charnes and

Cooper (Charnes and Cooper (1962)).

• We show how the final dual solution of the new linearization can be used to generate

a reduced problem containing only the routes whose reduced costs are smaller than

a given threshold.

We perform extensive computational results on instances derived from the vrp liter-

ature with different fractional objective functions. The results obtained show that the

proposed method is able to solve instances involving up to 79 customers.

The remainder of this paper is organized as follows. In Section 2, we formally describe

the problem addressed in this paper and we present the sp model. In Section 3, we

4



present dual bounds based on both continuous and integer relaxations of the sp model.

This section also describes the bounding procedures used to compute the dual bounds.

Section 4 describes the exact method. Dynamic programming algorithms for generating

nonelementary routes and feasible and elementary routes are described in Section 5. We

provide the computational studies in Section 6 and concluding remarks in Section 7.

2 Problem description and mathematical formulation

The Vehicle Routing Problem with Fractional Objective Function (vrpfo) considered in

this paper can be described as follows.

A complete digraph G = (V,A) is given, where the vertex set V is partitioned as

V = {0}∪V1 ∪V2. Vertex 0 represents the depot, vertex set V1 = {1, 2, . . . , n1} represents

n1 mandatory customers, and vertex set V2 = {n1 +1, . . . , n1+n2} represents n2 optional

customers. We denote with Vc = V1 ∪ V2, n = n1 + n2 and we assume that n1 > 0. With

each vertex i ∈ V is associated a service time si > 0 (we assume s0 = 0). With each arc

(i, j) ∈ A are associated a travel or routing cost dij and a travel time tij ≥ 0. At the

depot it is based a vehicle fleet composed of a set of m identical vehicles. To each vehicle

is associated a maximum working time equal to T .

A vehicle route R = (0, i1, . . . , ir, 0), with r ≥ 1, is a simple circuit in G passing

through the depot, visiting vertices V (R) = {i1, . . . , ir}, V (R) ⊆ Vc, and such that the

total working time computed as the sum of the total service time of the customers visited

and the total travel time of the arcs traversed by the route is less than or equal to T , i.e.,
∑

i∈V (R) si +
∑

(i,j)∈A(R) tij ≤ T , where A(R) is the set of arcs traversed by route R. The

cost of route R is equal to the sum of the travel costs of the arc set traversed by route R,

i.e.,
∑

(i,j)∈A(R) dij .

We consider the problem of visiting the mandatory customers and of choosing a subset

of the optional customers to visit using vehicles based at the depot. More precisely, the

vrpfo consists of designing at most m routes such that (i) each vehicle is used at most

once, (ii) each mandatory customer is visited once, and (iii) each optional customer is

visited at most once.

The vrpfo models the following fractional linear objective functions of practical in-

terest:

(i) Minimization of Cost/Load. Let qi be the demand associated with each customer

i ∈ Vc (we assume q0 = 0). In addition, a fleet of m identical vehicles of capacity Q is

stationed at the depot. The load of a route R = (0, i1, . . . , ir, 0) is equal to the total

demand of visited customers, i.e.
∑

i∈V (R) qi. The objective is to minimize the ratio

of the total travel or routing cost divided by the total load of the routes selected in

solution (i.e., the lr). This vrp can be solved as a vrpfo by setting T = Q, si = qi,

∀i ∈ Vc, and tij = 0, ∀(i, j) ∈ A.
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(ii) Maximization of Profit/Time. Let pi be a nonnegative profit associated with each

customer i ∈ Vc (we assume p0 = 0). The profit of a route is equal to the total profit

of the visited customers, i.e.,
∑

i∈V (R) pi. The objective is to maximize the ratio of

the total profit divided by the total working time of the routes selected in solution.

This vrp can be solved as a vrpfo by setting dij = −pj, ∀(i, j) ∈ A.

It is worthwhile to mention that the special case of the vrpfo where all customers

are mandatory (i.e., n2 = 0) and the objective function is the minimization of Cost/Load,

is the Capacitated vrp (cvrp), which is in turn a special case of the vrp with Time

Windows (vrptw).

For the state-of-the-art exact algorithms for deterministic vrp, we refer readers to

Baldacci et al. (2012), Toth and Vigo (2014), Pecin et al. (2017a,b), among others.

2.1 Mathematical formulation

In this section, we model the vrpfo as a sp problem with side constraints and a linear

fractional objective function.

Let R be the index set of all routes. Given a route ℓ ∈ R, we denote with Rℓ the

sequence (i1 = 0, i2, . . . , ir = 0) of the vertices visited by the route and with V1(Rℓ)

and V2(Rℓ) the sets V1 ∩ V (Rℓ) and V2 ∩ V (Rℓ), respectively. Let aiℓ be a (0-1) binary

coefficient equal to 1 if node i ∈ V (Rℓ), 0 otherwise. Given a route ℓ, we denote with

cℓ and wℓ the routing cost and the working time of route ℓ, respectively, computed as

cℓ =
∑

(i,j)∈A(Rℓ)
dij and wℓ =

∑

i∈V (Rℓ)
si +

∑

(i,j)∈A(Rℓ)
tij.

Let xℓ, ℓ ∈ R, be a (0-1) binary variable equal to 1 if and only if route ℓ is in the

optimal solution. The vrpfo formulation based on the sp model, hereafter called F , is

(F ) z(F ) = min

∑

ℓ∈R
cℓxℓ

∑

ℓ∈R
wℓxℓ

(1)

s.t.
∑

ℓ∈R

aiℓxℓ = 1, ∀i ∈ V1 (2)

∑

ℓ∈R

aiℓxℓ ≤ 1, ∀i ∈ V2 (3)

∑

ℓ∈R

xℓ ≤ m, (4)

xℓ ∈ {0, 1}, ∀ℓ ∈ R. (5)

In the formulation, the objective function states either to minimize the Cost/Load

ratio or to maximize the Profit/Time ratio.

Constraints (2) and (3) impose that each mandatory customer has to be visited by

exactly one route and each optional customer has to be visited at most once by the routes

selected in the solution, respectively. Constraint (4) requires that at most m routes are

selected in the solution.
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3 Dual bounds for the vrpfo

In this section, we describe relaxations and bounding procedures for the vrpfo. We

first present two basic dual bounding techniques, the first one, called DK, solves directly

the continuous relaxation of F . The second one, called CG, solves a reformulation of the

continuous relaxation of F , proposed for the first time in Charnes and Cooper (1962). In

section 3.1, we describe an alternative transformation to the one presented in Charnes

and Cooper (1962), such new transformation is used in an advanced dual ascent bounding

procedure called DA. Finally, in Section 3.2, we describe a dual bounding procedure CB

based on an integer relaxation of formulation F .

LetX = {x ∈ R
|R|
+ : (2), (3), and (4)}. We define z(CF ) = min{

∑

ℓ∈R
cℓxℓ/

∑

ℓ∈R
wℓxℓ :

x ∈ X} as the optimal solution cost of the continuous relaxation of formulation F , called

CF . Since the objective function of formulation CF is the quotient of linear functions and

X is a convex feasible set, the algorithm proposed by Dinkelbach (1967) can also be used

to compute z(CF ) by means of the solution of a sequence of linear programming prob-

lems. In the following, we identify with DK the bounding procedure corresponding to solve

CF with the algorithm proposed by Dinkelbach (1967) where each linear programming

problem is solved by column generation.

Under the assumption thatX is non-empty and bounded, the following transformation,

proposed by Charnes and Cooper (1962):

u =
1

∑

ℓ∈R
wℓxℓ

yℓ = uxℓ, ∀ℓ ∈ R

translates formulation CF into the equivalent linear program:

(CCF ) z(CCF ) = min
∑

ℓ∈R

cℓyℓ

s.t.
∑

ℓ∈R

aiℓyℓ = u, ∀i ∈ V1 (6)

∑

ℓ∈R

aiℓyℓ ≤ u, ∀i ∈ V2 (7)

∑

ℓ∈R

yℓ ≤ mu, (8)

∑

ℓ∈R

wℓyℓ = 1, (9)

u ≥ 0,

yℓ ≥ 0, ∀ℓ ∈ R.

CCF contains an exponential number of variables. In practice, such problems are solved
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with a column generation procedure (See Desaulniers et al. (2006)). In the following, we

identify with CG the dual bounding procedure that solves (CCF) via column generation.

The computational results of Section 6 reports a comparison between a DK and CG for

computing the dual bound z(CF ).

3.1 Dual bounding procedure based on an alternative transformation of

CF – DA

The alternative transformation is based on the observation that since β =
∑

i∈V1
si >

0, then the term at the denominator of objective function (1) can be rewritten as β +
∑

ℓ∈R
wℓxℓ, where wℓ = wℓ −

∑

i∈V1(Rℓ)
si. The following lemma holds.

Lemma 1 Let y = x/(β + wTx). Then the objective function of problem CF can be

rewritten as z(CF ) = min cTy. In addition, any inequality αTx ≤ α0, α ∈ R
|R|, α0 ∈ R,

can be rewritten as αTy ≤ α0 where α = (βα1 + α0w1, βα2 + α0w2, . . . , βα|R| + α0w|R|).

Proof. It is easy to see that z(CF ) = cTx/(β +wTx) = cTy. Sice β > 0, we have

αTx ≤ α0 ⇒ αTx+
α0

β
wTx ≤

α0

β
(wTx+ β) ⇒

αTx

wTx+ β
+

α0

β

wTx

wTx+ β
≤

α0

β
⇒

βαTy+ α0w
Ty ≤ α0 ⇒ (βαT + α0w

T )y ≤ α0.�

Formulation CF can now be transformed into the following equivalent linear program:

(NCF ) z(NCF ) = min
∑

ℓ∈R

cℓyℓ

s.t.
∑

ℓ∈R

aiℓyℓ = 1, ∀i ∈ V1 (10)

∑

ℓ∈R

aiℓyℓ ≤ 1, ∀i ∈ V2 (11)

∑

ℓ∈R

bℓyℓ ≤ m, (12)

yℓ ≥ 0, ∀ℓ ∈ R,

where aiℓ = βaiℓ + wℓ and bℓ = β + mwℓ, ℓ ∈ R. Notice that formulation NCF has

the same number of variables and constraints of formulation CF . Clearly, z(NCF ) =

z(CCF ) = z(CF ).

We denote with DNCF the dual of NCF . The variables of DNCF are given by the

vector v = (v0, v1, . . . , vn), where v1, . . . , vn1 ∈ R are associated with constraints (10),

vn1+1, . . . , vn ≤ 0, with constraints (11), and v0 ≤ 0 with constraint (12).
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Let DCCF be the dual of problem CCF . The variables of DCCF are given by vector

µ = (µ0, . . . , µn) and variable ω, where µ1, . . . , µn1 ∈ R are associated with constraints

(6), µn1+1, . . . , µn ≤ 0 with constraints (7), µ0 ≤ 0 with constraint (8), and ω ∈ R with

constraint (9). The following theorem shows how to compute a solution of DCCF given

a solution of DNCF .

Theorem 1 Let v be a feasible solution of problem DNCF of cost z(DNCF ). A feasible

solution (µ, ω) of DCCF of cost z(DCCF ) = z(DNCF ) can be obtained by setting:

ω =
∑

i∈Vc

vi +mv0, µ0 = βv0, µi = βvi − siω,∀i ∈ V1, µi = βvi,∀i ∈ V2. (13)

Proof. The proof is provided in the e-companion to this paper. �

3.1.1 Dual Ascent Procedure DA

The structure of the new formulation NCF allows to use a bounding procedure, called

DA, that is used to compute a near-optimal dual solution of problem NCF . Procedure

DA differs from standard column generation methods based on the simplex algorithm as it

uses a dual ascent heuristic to solve the master problem (see Baldacci et al. 2010).

The bounding procedure is based on the following theorem.

Theorem 2 Let us associate penalties λi ∈ R, ∀i ∈ V1, with constraints (10), λi ≤ 0,

∀i ∈ V2, with constraints (11), and λ0 ≤ 0, with constraint (12). Let Ri = {ℓ ∈ R : aiℓ >

0}. For each i ∈ V1 compute:

φi = πi min
ℓ∈Ri

{

cℓ − λ(Rℓ)− bℓλ0

π(Rℓ)

}

where πi > 0 is a weight assigned to customer i ∈ V1, λ(Rℓ) =
∑

i∈Vc
aiℓλi and π(Rℓ) =

∑

i∈V1
aiℓπi. A feasible DNCF solution v of cost z(DNCF (λ)) is given by the following

expressions:

vi = φi + λi,∀i ∈ V1, vi = λi,∀i ∈ V2, v0 = λ0. (14)

Proof. See Baldacci et al. (2010). �

The optimal solution cost of the following problem

max
λ

{z(DNCF (λ))} (15)

provides the best possible dual bound which can be computed by means of Theorem 2.

In practice, problem (15) cannot be solved even by means of subgradient optimization as

the computation of solution v, for given vector λ requires the a priori generation of the

set R. Method DA is an iterative algorithm which computes a dual bound as the cost of

a suboptimal solution of problem (15) by using a limited subset R ⊆ R and by changing
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the values of vector λ. At each iteration, DA uses expressions (14) to find a solution v,

for given λ, of the reduced DNCF problem defined on route subset R instead of R. A

pricing procedure is used to identify the route subset N ⊂ R \R whose dual constraints

are violated by the current solution v. In case N 6= ∅, then v is not a feasible DNCF

solution, and N is added to the current core problem R. At each iteration, subgradient

vectors are computed and used to change vector λ to maximize the value of the dual

bound.

Section 5.1 describes the method used to compute set N - for the details of method

DA the reader is referred to Baldacci et al. (2010).

3.2 Dual bounding procedure based on an integer relaxation of F – CB

In this section, we describe an alternative dual bound derived from an integer relaxation

of formulation F . The relaxation is based on the observation that the optimal solution

cost z(F ) of formulation F can be computed as z(F ) = min T≤t≤mT

⌈t/T⌉≤m≤m

{

z(F (t,m))/t
}

,

where

(F (t,m)) z(F (t,m)) = min
∑

ℓ∈R

cℓxℓ

s.t.(2), (3) and
∑

ℓ∈R

xℓ = m, (16)

∑

ℓ∈R

wℓxℓ = t (17)

xℓ ∈ {0, 1}, ∀ℓ ∈ R, (18)

and T is a valid dual bound on the total working time of any feasible solution of formulation

F . In practice, problem F (t,m) cannot be solved directly but a valid dual bound on its

optimal solution cost z(F (t,m)) can be obtained as follows.

Let λi, ∀i ∈ Vc, be a set of Lagrangian penalties associated with constraints (2) and

(3), where λi ∈ R, ∀i ∈ V1, and λi ≤ 0, ∀i ∈ V2. The Lagrangian relaxation of formulation

F (t,m) by means of penalty vector λ, is as follows:

(RF (t,m,λ)) z(F (t,m,λ)) =min
∑

ℓ∈R

cℓxℓ +
∑

i∈Vc

λi

s.t.(16), (17) and (18),

where cℓ = cℓ−λ(Rℓ) with λ(Rℓ) =
∑

i∈Vc
aiℓλi. Let Rt

i ⊆ R be the index set of all routes

in R ending in i ∈ Vc and with a total working time t. We have R =
⋃

i∈Vc
1≤t≤T

Rt
i and

Rt
i ∩ Rt′

j = ∅, ∀i, j ∈ Vc, i 6= j, t, t′ ∈ [1, T ].
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Let ϕt
i, i ∈ Vc, 1 ≤ t ≤ T , be a dual bound on the modified cost cℓ of any route ℓ ∈ Rt

i ,

i.e, ϕt
i ≤ cℓ, ∀ℓ ∈ Rt

i . We have

∑

ℓ∈R

cℓxℓ =
∑

i∈Vc

T
∑

t=1

∑

ℓ∈Rt
i

cℓxℓ ≥
∑

i∈Vc

T
∑

t=1

ϕt
i

∑

ℓ∈Rt
i

xℓ.

We assume ϕt
i = ∞, i ∈ Vc, if no feasible routes ending in i ∈ Vc with a total working

time equal to t exists. By setting zti =
∑

ℓ∈Rt
i
xℓ, from relaxation RF (t,m,λ) we obtain

the following relaxation:

(RF (t,m,λ)) z(RF (t,m,λ)) =min
∑

i∈Vc

T
∑

t=1

ϕt
iz

t
i

s.t.
∑

i∈Vc

T
∑

t=1

tzti = t, (19)

∑

i∈Vc

T
∑

t=1

zti = m, (20)

T
∑

t=1

zti ≤ 1, ∀i ∈ Vc

zti ∈ {0, 1}, ∀i ∈ Vc,∀t, 1 ≤ t ≤ T.

Problem RF (t,m,λ) can be solved by dp as follows. Let gi(t, k) be the optimal solution

to problem RF (t,m,λ) with the right-hand-side of equation (19) replaced by t, the right-

hand-side of equation (20) replaced by k, and with ztj = 0 for j > i, t = 1, . . . , T . Function

gi(t, k) can be computed as follows:

gi(t, k) = min

{

gi−1(t, k), min
1≤t′≤min{t−1,T}

{gi−1(t− t′, k − 1) + ϕt′
i }

}

(21)

for k = 2, . . . ,m, i = k, . . . , n−m+k, and ∀t, max{1, T−(m−k)T} ≤ t ≤ min{kT, t}. The

following initialization is required: gi(t, 1) = min{gi−1(t, 1), ϕ
t
i}, i = 2, . . . , n, max{1, T −

(m − 1)T} ≤ t ≤ min{T, t} and g1(t, 1) = ϕt
i, max{1, T − (m − 1)T} ≤ t ≤ min{T, t},

gi(t, i + 1) = ∞, i = 1, . . . ,m − 1, ∀t ∈ [0, t]. The optimal value z(RF (t,m,λ)) can then

be computed as z(RF (t,m,λ)) = gn(t,m).

3.2.1 Bounding procedure CB

Based on relaxation RF (t,m,λ) we designed a bounding procedure, called CB. Procedure

CB is based on the observation that all functions gn(t,m) can be computed using the dp

recursion (21) with t = mT and m = m and for k = 2, . . . ,m, i = k, . . . , n, and ∀t,

max{1, T − (m − k)T} ≤ t ≤ min{kT,mT}. Further, Procedure CB uses subgradient
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optimization to maximize the value of dual bound z(RF (t,m,λ)). Bounding procedure

CB works as follows:

Step 1. Initialization. Initialize the penalty vector λ = 0. Set DBCB = −∞, i = 1,

DB(t,m) = −∞, ∀t, 0 ≤ t ≤ T , ∀m, 0 ≤ m ≤ m.

Step 2. Compute functions ϕt
i. Compute functions ϕt

i, ∀i ∈ Vc, ∀t,max{1, T−(m−1)T} ≤

t ≤ T (see Section 5.1) and set ϕt
i = ∞ ∀i ∈ Vc, ∀t, t < max{1, T − (m− 1)T}.

Step 3. Dual bound computation. Compute function gi(t, k) using dp recursion (21) with

t = mT and m = m. Compute DB(t,m) = max
{

DB(t,m), gn(t,m)

t

}

, ∀t, 1 ≤ t ≤

T , ∀m, 1 ≤ m ≤ m. Compute

z∗ = min
T≤t≤mT

⌈t/T⌉≤m≤m

{

DB(t,m)
}

(22)

and let t∗ and m∗ be the values producing z∗ in expression (22). If z∗ > DBCB,

set DBCB = z∗.

Step 4. Update the penalty vector λ. Compute the solution corresponding to dual bound

z∗ by backtracking using recursions (21) and (29) and values t∗ and m∗. Let R

be the set of (NG, t, i)-route selected in solution.

Let θi be the number of times that customer i ∈ Vc is visited by the routes in R,

i.e. θi =
∑

ℓ∈R
ail. The value of λ is modified as follows: λi = λi − ǫγ(θi − 1),

∀i ∈ V1, λi = min{0, λi − ǫγ(θi − 1)}, ∀i ∈ V2, where ǫ is a positive constant and

γ = |0.2z∗|/(
∑

i∈Vc
(θi − 1)2).

Step 5. Termination criteria. Set i = i+ 1. If i = Maxit3, stop, otherwise go to Step 2.

At the end of the procedure, the value of DBCB represent the best dual bound computed

by the procedure. Let mmin and mmax be the minimum and maximum values of m,

⌈T/T ⌉ ≤ m ≤ m, such that minT≤t≤mT {DB(t,m)} < UB, where UB is a given primal

bound on the optimal vrpfo solution cost. Values mmin and mmax represent valid dual

and primal bounds on the number of vehicles used in any optimal vrpfo solution.

4 An exact method for solving the vrpfo

The vrpfo can be solved to optimality using the extension of the method proposed by

Dinkelbach (1967) to integer problem once a generic exact method for solving problem (3)-

(5) with a linear objective function is available; to our knowledge, this problem has never

been addressed in the literature. A main drawback of this procedure is that the generic

exact method must be applied from scratch at each iteration of the Dinkelbach’s algorithm.
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In this section, we describe an exact method that combines the bounding procedures DA

and CB described in Section 3.1 and Section 3.2, respectively, to a priori generate a reduced

F problem containing all routes of any optimal solution, thus reducing the dimensions of

the integer problems solved at each iteration of the Dinkelbach’s algorithm. The exact

method relies on a technique, called route enumeration, used by Baldacci et al. (2008) to

solve the cvrp and by Baldacci et al. (2011) to solve both the cvrp and the vrptw. In

particular, in Section 4.1, we revisit the technique for fractional linear objectives.

More precisely, in the exact method we use bounding procedure DA to obtain a near-

optimal solution (µ, ω) of the dual problemDCCF of cost z(DCCF ). This solution allows

us to compute the reduced costs cℓ = cℓ −
∑

i∈Vc
aiℓµi − µ0 − wℓω of each route ℓ ∈ R.

Whenever the reduced cost cℓ of a route ℓ ∈ R exceeds a given threshold, computed as

a function of a known primal bound UB and the dual bound z(DCCF ), it is possible

to eliminate route ℓ from R. Nevertheless, the resulting F might still be too large to be

solved exactly. We propose an iterative procedure for solving the vrpfo where at each

iteration a reduced F problem is solved. Further, each reduced F is solved to optimality

using an exact method based on the extension of the method proposed by Dinkelbach

(1967) to integer problem. The procedure terminates when either an optimal F solution

is achieved or the distance of the solution cost of the reduced F problem from the dual

bound is less than a user-defined value or a maximum number of iterations is reached.

The bounding procedures DA and CB described in Section 3.1 and Section 3.2 respec-

tively, are interwoven with a Lagrangean heuristic that produces a feasible vrpfo solution.

More specifically, whenever an improved dual bound has been computed (see Step 3 of

both procedure DA and CB), the procedure calls an algorithm that produces a feasible

vrpfo solution using the route set R.

In the following, we describe the details of the exact method.

4.1 Variable reduction of formulation F

The aim of this section is to identify a criterion to restrict ourself to only the column that

can be potentially part of the optimal solution, we call such procedure variable reduction.

Let (µ, ω) be a feasible solution of DCCF of cost z(DCCF) equal to ω, since ω is the only

variable in the objective function with coefficient one. Let x be a feasible solution of F of

cost z(F ) and let cℓ be the reduced cost of route ℓ ∈ R with respect to the dual solution

(µ, ω), that is cℓ = cℓ −
∑

i∈Vc
aiℓµi − µ0 − wℓω, and let c0 =

∑

i∈Vc
µi +mµ0.

The variable reduction of formulation F is based on the following Theorem 5:

Theorem 3 Let R = {ℓ : xℓ = 1, ℓ ∈ R}. The following inequality holds:

z(F ) ≥ z(DCCF ) +

∑

ℓ∈R
cℓ + c0

∑

ℓ∈R
wℓ

. (23)
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Proof. From the definition of z(F ) we have:

z(F ) =

∑

ℓ∈R
cℓ

∑

ℓ∈R
wℓ

=

∑

ℓ∈R
(
∑

i∈Vc
aiℓµi + µ0 + wℓω + cℓ)−

∑

i∈Vc
µi −mµ0 + c0

∑

ℓ∈R
wℓ

=

ω

∑

ℓ∈R
wℓ

∑

ℓ∈R
wℓ

+

∑

i∈Vc
(
∑

ℓ∈R
aiℓ − 1)µi +

∑

ℓ∈R
(1−m)µ0 +

∑

ℓ∈R
cℓ + c0

∑

ℓ∈R
wℓ

.

(24)

Since x represents a feasible vrpfo solution, we have (i)
∑

ℓ∈R
(aiℓ − 1) = 0, ∀i ∈ V1, (ii)

∑

ℓ∈R
(aiℓ − 1) ≤ 0, ∀i ∈ V2, and (iii)

∑

ℓ∈R
(1−m) ≤ 0, therefore as µi ≤ 0, ∀i ∈ V2, and

µ0 ≤ 0

∑

i∈Vc

(
∑

ℓ∈R

aiℓ − 1)µi +
∑

ℓ∈R

(1−m)µ0 =

∑

i∈V1

(
∑

ℓ∈R

aiℓ − 1)µi +
∑

i∈V2

(
∑

ℓ∈R

aiℓ − 1)µi +
∑

ℓ∈R

(1−m)µ0 ≥ 0.
(25)

From equation (24) and inequality (25) we obtain (23). �

Corollary 1 Let UB be the cost of a feasible vrpfo solution and let z(DCCF) be the cost

of a feasible dual solution (µ, ω) of DCCF . Any optimal solution x of cost z(F ) less than

UB cannot contain any route ℓ ∈ R such that cℓ ≥ αℓUB − (αℓz(DCCF ) + c0), where

αℓ = wℓ+(m−1)T is an upper bound on the total working time of any solution containing

route ℓ, since m is the maximum number of vehicles in solution.

Proof.(By contradiction) Let R be the index set of the routes of the feasible solution x

of cost z(F ) < UB and suppose that exists ℓ′ ∈ R such that cℓ′ ≥ αℓ′UB−(αℓ′z(DCCF )+

c0).

From Theorem 5 and as cℓ ≥ 0, ∀ℓ ∈ R, and since αℓ′ ≥
∑

ℓ∈R
wℓ we have:

z(F ) ≥ z(DCCF ) +

∑

ℓ∈R
cℓ + c0

∑

ℓ∈R
wℓ

≥ z(DCCF ) +
cℓ′ + c0
∑

ℓ∈R
wℓ

≥ z(DCCF ) +
cℓ′ + c0
αℓ′

≥

z(DCCF ) +
αℓ′UB − (αℓ′z(DCCF ) + c0) + c0

αℓ′
≥ UB.�

Corollary 1 will be used in the exact procedure presented in Section 4.2 to generate

only the columns with a reduced cost lower than the gap αℓUB − (αℓz(DCCF ) + c0).

4.2 Description of the exact method

The method is based on an iterative procedure where at each iteration a reduced version

of F involving at most ∆max routes (∆max is a user-defined parameter) is solved. This

procedure terminates when one of the following three conditions is encountered: (i) an

optimal F solution is achieved, (ii) the distance of the solution cost of the reduced F

problem from the dual bound is less than the user defined value, gapmax, and (iii) the
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maximum number of iterations, itermax, is reached. The scheme of the proposed exact

method for solving F is as follows.

Step 1. Initialization. Set i = 0 and z∗ = ∞. Initialize itermax, ∆max and tlim.

Step 2. Execute bounding procedure CB. Let DBCB and PBCB be the final dual and primal

bounds computed, respectively. Let mmin and mmax be computed as described in

Section 3.2.1.

Step 3. Execute bounding procedure DA. Let DBDA and PBDA be the final dual and primal

bounds computed and let (µ, ω) be the solution of problem DCCF computed by

means of Theorem 1 using solution v corresponding toDBDA. Let cℓ be the reduced

cost of route ℓ ∈ R with respect to the dual solution (µ, ω), that is cℓ = cℓ −
∑

i∈Vc
aiℓµi −µ0 −wℓω, and let c0 =

∑

i∈Vc
µi +mµ0. Set z

∗ = min{PBCB, PBDA}

and let x be the corresponding solution.

Step 4. Define a reduced problem F (R) from F . Set i = i+1. Generate the largest route

set R ⊆ R such that:

a) |R| ≤ ∆max,

b) cℓ < γℓ,∀ℓ ∈ R,

}

(26)

where γℓ = αℓz
∗− (αℓDBDA+ c0) and αℓ = wℓ+(mmax−1)T . Based on Corollary

1, if |R| < ∆max, then R contains the routes of any optimal solution and is

defined optimal. Problem F (R) is obtained from problem F where the route set

R is substituted with R.

Step 5. Solve problem F (R). Let x be the solution obtained and let z(F (R)) be its cost

(we assume that R contains also the routes corresponding to the current solution

x∗); we impose a time limit of tlim seconds in solving F (R). Problem F (R)

is defined optimal if it has been solved to optimality within the imposed time

limit; otherwise it is defined not optimal (see Section 4.3). If z∗ > z(F (R)) set

z∗ = z(F (R)) and x∗ = x.

Step 6. Test if the F (R) solution obtained is an optimal vrpfo solution. Let gapmin

be a dual bound on the reduced cost of any route that has not been generated,

i.e., cℓ ≥ gapmin, ∀ℓ ∈ R \ R, and let DBnew be a dual bound on the cost of

any solution to F involving one or more routes of the set R \ R, computed as

DBnew = DBDA + (gapmin+ c0)/(mmaxT ). If one of the following two conditions

applies, then x∗ is guarantee to be an optimal vrpfo solution and the algorithm

terminates:

(i) Both R and F (R) are optimal, or
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(ii) F (R) is optimal and z∗ ≤ DBnew.

Step 7. Termination condition. If i ≥ itermax or (z∗ −DBnew)/DBnew ≤ gapmax, then

Stop.

Step 8. Updating ∆max and tlim. Set ∆max = ε1∆
max (ε1 > 1) and tlim = tlim + ε2

(ε2 > 0) and go to Step 4 (ε1 and ε2 are two user-defined parameters).

The exact method starts with the use of both bounding procedures CB and DA to

compute valid primal and dual bounds for our problem (Steps 2 and 3). As explained

in Section 3.1, procedure DA provides a good approximation of problem DNCF . Thanks

to Theorem 1 it is hence possible to obtain (µ, ω), the corresponding dual variables of

DCCF . These new duals allow to compute the reduces costs cℓ, ∀ℓ ∈ R.

Step 4 selects the ∆max columns to be used in the solution of F (R), Corollary 1 allows to

restrict set R to only useful columns. It is worth noting that the primal bounds computed

in Steps 1 and 2 play an important role in the identification of such columns. In Step 5,

problem F (R) is solved to optimality (up to a given time limit). The exact procedure

used to solve it is explained in Section 4.3. If the primal solution is better than the best

primal solution found so far, z∗ is updated.

In Step 6, the optimality of the solution of F (R) is checked. If the number of columns

added to R in Step 5 was lower than ∆max (i.e., R is optimal) and we were able to solve

F (R) within the given time limit, then the algorithm terminates. On the other hand, if

F (R) is solved to optimality but some of the columns with cℓ < γℓ has been excluded

from R, a new dual bound DBnew is computed, based on the columns that have not been

added to R. If z∗ ≤ DBnew, the optimal solution of F (R) is also an optimal solution of

F (R).

Step 7 terminates the algorithm if either the number of maximum iterations is reached or

the relative gap between the best primal and dual bounds is sufficiently small. Finally, in

Step 8, ∆max and the time limit are updated.

Notice that whenever the algorithm terminates at Step 7, problem F has not been

solved to optimality and value z∗ represents the cost of the best solution found. The next

section describes the method used to solve problem F (R) whereas the procedure used to

generate the reduced set of routes R is described in Section 5.2.

4.3 Solving problem F (R) to optimality

Problem F (R) can be rewritten as the following mixed integer linear programming prob-

lem using the transformation proposed by Charnes and Cooper (1962):

(F (R)) z(F (R)) = min
∑

ℓ∈R

cℓyℓ

s.t.(6)− (9),
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yℓ ≤ u, ∀ℓ ∈ R (27)

u−M(1− xℓ) ≤ yℓ ≤ Mxℓ, ∀ℓ ∈ R (28)

u ≥ 0,

yℓ ≥ 0, xℓ ∈ {0, 1} ∀ℓ ∈ R,

where in constraints (6)-(9) set R is substituted with R and M is a very large positive

number. The above formulation is impractical to solve, even for moderate size vrpfo

instances, since the numbers of variables and of the additional constraints (27) and (28)

can be huge.

We now describe an exact method for solving problem F (R) based on the extension

of the method proposed by Dinkelbach (1967) to integer problems. For sake of notation,

we rewrite problem F (R) as (F (R)) z(F (R)) = min{n(x)/d(x) : x ∈ P}, where n(x) =
∑

ℓ∈R
cℓxℓ, d(x) =

∑

ℓ∈R
wℓxℓ, X = {x ∈ R

|R|
+ : (2), (3), and mmin ≤

∑

ℓ∈R
xℓ ≤ mmax}

and P = X ∩ {0, 1}|R |. We assume that d(x) > 0, ∀x ∈ P , and that F (R) admits a finite

optimal solution.

The exact method is based on the following theorem (see Dinkelbach 1967).

Theorem 4 r = n(x)/d(x) = z(F (R)) if, and only if, for the parametric problem FP (r),

z(FP (r)) = min{n(x)− rd(x) : x ∈ P}, z(FP (r)) = n(x)− rd(x) = 0.

Proof. The proof is provided in the e-companion to this paper. �

The scheme of the proposed exact method for solving F (R) is as follows.

Step 1. Initialization. Set x0 = x∗, where x∗ is the current best know solution (see Step

5 of the exact method). Set i = 0.

Step 2. Compute the current ratio ri+1. Set ri+1 = n(xi)/d(xi) and set i = i+ 1.

Step 3. Solve the parametric problem. Solve problem FP (ri), zi(FP (ri)) = min{n(x) −

rid(x) : x ∈ P}, and let xi be the solution obtained.

Step 4. Termination condition. If zi(FP (ri)) < 0, go to Step 2; otherwise, set z(F (R)) =

ri, x = xi, r = ri and if solution xi is an optimal solution of problem FP (ri),

define F (R) optimal ; otherwise define F (R) not optimal.

In solving problem FP (ri), the time limit of tlim seconds introduced at Step 5 of the

exact method is imposed, therefore solution xi is a proven optimal solution of FP (ri) if

the problem has been solved within the imposed time limit.

The following Lemma 2 revisits a result from Espinoza et al. (2010) to show the

correctness of the above iterative algorithm by also considering the termination conditions

of Step 4.

Lemma 2 The following properties hold about the exact algorithm for solving F (R).
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(1) The sequence {ri} is monotone decreasing, i.e., ri > ri+1, for all i such that zi(FP (ri)) <

0.

(2) If zi(FP (ri)) ≥ 0 and solution xi is optimal, the value z(F (R)) corresponds to the

optimal solution value and r = n(x)/d(x).

(3) If zi(FP (ri)) < 0, we have d(xi) > d(xi+1).

Proof. The proof is provided in the e-companion to this paper. �

Based on the lemma above, the following theorem shows that the convergence rate of

the algorithm is superlinear (Espinoza et al. 2010).

Theorem 5 For all ri 6= r we have

r − ri+1

r − ri
≤ 1−

d(x)

d(xi)
< 1.

Proof. The proof is provided in the e-companion to this paper. �

5 Pricing problem and generation of sets R

In this section, we describe the details of the pricing problem associated with bounding

procedures DK, CG and DA and the procedure used to compute functions ϕt
i in bounding

procedure CB. Moreover, we describe the details of the procedure used to generate sets R

in the exact method.

5.1 Route relaxation ng-routes

The pricing problem associated with procedure DK, CG and DA requires to find minimum

cost elementary routes over a graph with both positive and negative edge and arc costs,

a strongly NP–hard problem. Therefore, in practice we enlarge the set of routes R to

contain also non-necessarily elementary routes, i.e., coefficients aiℓ are general nonnegative

integers. Although non-elementary routes are infeasible, this relaxation has the advantage

that the pricing subproblem becomes solvable efficiently (by dp). Moreover, Theorem 2

remains valid if the set of routes R is enlarged to contain also non-necessarily elementary

routes. The relaxation we used is based on the route relaxation proposed by Baldacci

et al. (2011) for the vrptw and can be described as follows.

LetNi ⊆ Vc be a set of selected customers for vertex i (according to some criterion) such

that Ni ∋ i and |Ni| ≤ ∆(Ni), where ∆(Ni) is a parameter (e.g., ∆(Ni) = 5, ∀i ∈ Vc, and

Ni contains i and the four nearest customers to i). The sets Ni allow us to associate with

each forward path P = (0, i1, . . . , ik) the subset Π(P ) ⊆ V (P ), V (P ) = {0, i1, . . . , ik−1, ik},

containing customer ik and every customer ir, r = 1, .., k− 1, of P that belongs to all sets
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Nir+1 , . . . , Nik associated with the customers ir+1, . . . , ik visited after ir. The set Π(P ) is

defined as: Π(P ) = {ir : ir ∈
⋂k

s=r+1Nis , r = 1, . . . , k − 1} ∪ {ik}. A ng-path (NG, t, i)

is a non-necessarily elementary path P = (0, i1, . . . , ik−1, ik = i) starting from the depot

at time 0, visiting a subset of customers (even more than once) such that NG = Π(P ),

ending at customer i at time t, and such that i /∈ Π(P ′), where P ′ = (0, i1, . . . , ik−1) is

an ng-path. We denote by f(NG, t, i) the cost of the least cost ng-path (NG, t, i). An

(NG, t, i)-route is an (NG, t, 0)-path visiting at time t the last customer i before arriving

at the depot. The cost of the least cost (NG, t, i)-route is given by f(NG, t, i) + di0.

Functions f(NG, t, i) can be computed using dp as follows. The state space graph H =

(E ,Ψ) is defined as follows: E = {(NG, t, i) : ∀NG ⊆ Ni s.t. NG ∋ i, ∀t, 0 ≤ t ≤

T,∀i ∈ V }, Ψ = {((NG′, t′, j), (NG, t, i)) : ∀(NG′, t′, j) ∈ Ψ−1(NG, t, i),∀(NG, t, i) ∈ E },

where Ψ−1(NG, t, i) = {(NG′, t − si − tji, j) : ∀NG′ ⊆ Nj s.t. NG′ ∋ j and NG′ ∩Ni =

NG \ {i}, t− si − tji ≥ 0, ∀j ∈ V \ {i}}.

The dp recursion for computing f(NG, t, i) is as follows:

f(NG, t, i) = min
(NG′,t′,j)∈Ψ−1(NG,t,i)

{f(NG′, t′, j) + dji}, ∀(NG, t, i) ∈ E . (29)

The following initialization is required: f({0}, 0, 0) = 0 and f({0}, t, 0) = ∞, ∀t such that

0 < t ≤ T .

Computing functions ϕt
i at Step 2 of algorithm CB

We first compute functions f(NG, t, i) using dp recursion (29) and the modified costs dij

instead of dij , where dij = dij−λj. Then we compute functions ϕt
i, ∀i ∈ Vc, ∀t,max{1, T −

(m− 1)T} ≤ t ≤ T , as ϕt
i = min(NG,t−ti0,i)∈E {f(NG, t− ti0, i) + di0}.

5.2 Generating set R: procedure genr

The generation of the reduced route set R performed at Step 4 is based on a similar

procedure proposed by Baldacci et al. (2011) for the vrp with Time Windows, used to

generate elementary and feasible routes. Given a dual solution (µ, ω) of DCCF and a

user defined parameter ∆max, the procedure generates the largest subset R ⊆ R satisfying

conditions (26)-a and (26)-b. Procedure genr is a dp programming that is analogous to

Dijkstra’s algorithm on an expanded state-space graph dynamically generated.

Associate with each arc (i, j) ∈ A modified arc cost dij defined as dij = dij − µj −

(tij + sj)ω. It is easy to see that the reduced cost with respect to the dual vector µ and

value ω can be computed as cℓ =
∑

(i,j)∈A(Rℓ)
dij . Procedure genr dynamically generates

a state-space graph where each state corresponds to a feasible forward path.

A forward path P = (0, i1, . . . , ik−1, ik) is an elementary path starting from depot 0

at time 0, visiting vertices V (P ) = {0, i1, . . . , ik−1, ik} and ending at customer ik = σ(P )

at time t(P ) with t(P ) ≤ T . We denote by A(P ) the set of arcs traversed by path P
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and by c(P ) =
∑

(i,j)∈A(P ) dij the cost of path P . Let DB(P ) be a dual bound on the

reduced cost of any route that contains a forward path P . Any forward path P such that

DB(P ) ≥ γ cannot be part of a route in the set R that satisfies conditions (26), where

γ = αz∗ − (αDBDA + c0) and α = mmaxT .

Let τ be a set of temporary feasible forward paths that is initialized by setting τ = {P0},

where P0 represents the initial empty path such that σ(P0) = 0 and t(P0) = 0. The route

set R is initialized by setting R = ∅. At each iteration of algorithm genr the forward

path P ∈ τ having the smallest dual bound value (i.e., such that DB(P ) = min{DB(P ) :

P ∈ τ} ) is extracted from the set τ . The expansion of a forward path P are derived by

extending P with arc (σ(P ), j) ∈ A, ∀j /∈ V (P ) \ {0}. We have two cases:

i) j = 0. The expansion of forward path P creates a route; if the route is feasible and

satisfy condition (26)-b it is inserted in the set R;

ii) j 6= 0. The expansion of path forward path P creates a path P ′; if the path is feasible

and DB(P ′) < γ (see above) it is added to the set τ .

Procedure genr terminates when either τ = ∅ or |R| = ∆max. Since the size of the

set τ is exponential, we impose that the size of the set τ cannot exceed an a-priori defined

limit NSTATB. If |τ | becomes greater than NSTATB, procedure genr terminates pre-

maturely. At the end of the procedure, value gapmin is set equal to maxP∈τ{DB(P )} if

|R| = ∆max or |τ | = NSTATB, and ∞ otherwise.

5.2.1 Computing DB(P )

We define a backward path P = (σ(P ) = ik, ik+1, . . . , ih, 0) as a path starting from vertex

σ(P ) at time t(P ), visiting vertices in V (P ) = {ik, ik+1, . . . , ih, 0} and ending at the depot

before time T .

A dual bounds on the cost c(P ) of P can be computed using the ng-path by defining

nonnecessarily elementary backward ng − path (NG, t, i) similarly to the forward ng-path

(NG, t, i) defined in Section 5.1. Let f−1(NG, t, i) be the cost of the least-cost backward

ng−path (NG, t, i). Functions f−1(NG, t, i) can be computed with the same dp recursions

used to compute f(NG, t, i) by replacing the cost and time matrices [dij ] and [tij] with

their transposed matrices [dij ]
T and [tij]

T . We have that the cost c(P ) of any elementary

backward path P satisfies the following inequality:

c(P ) ≥ min
NG⊆V (P )∩Nσ(P )

{f−1(NG, t(P ), σ(P ))}.

To compute dual bound DB(P ), function f−1(NG, t, i) are computed with the mod-

ified costs [dij], and the subsets Ni, i ∈ Vc, contain the ∆(Ni) nearest customers to i
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according to dij. Dual bound DB(P ) is computed as follows:

DB(P ) =
∑

(i,j)∈A(P )

dij + min
NG⊆Nσ(P ) s.t. NG∩V (P )={σ(P )}

t′≤T−t(P )

{f−1(NG, t′, σ(P ))}.

5.2.2 Dominance rules

A speed-up in procedure genr can be obtained by removing dominated paths from the set

τ . A dominated path is either a path that cannot lead to a feasible route or a path such

that any route containing it cannot be part of any optimal solution. Dominance rules are

defined based on the type of fractional objective function considered as follows.

Dominance 1 Minimization of Cost/Load A forward path P1 dominates a forward path

P2 if σ(P1) = σ(P2), V (P1) = V (P2) and c(P1) ≤ c(P2).

Dominance 2 Maximization of Profit/Time A forward path P1 dominates a forward path

P2 if σ(P1) = σ(P2), V (P1) = V (P2) and t(P1) ≤ t(P2).

6 Computational results

This section reports on the computational results of the dual and primal bounds and the

exact method described in this paper. All algorithms were coded in C++ and compiled

with Microsoft Visual Studio 2013 compiler. The IBM ILOG CPLEX 12.6.4 callable

library (IBM CPLEX (2016)) was used as the integer programming solver for solving the

parametric problem FP (ri) in the exact method (see Section 4.3). All tests were run on

a Lenovo ThinkStation P300 (i7-4790 CPU @ 3.6 GHz - 32 GB of RAM) running under

Microsoft Windows 7 Professional operating system.

6.1 Instances description

The bounding procedures and the exact method were tested on two classes of instances,

namely [min |c/l]and [max |p/t], corresponding to vrpfo instances with the two objec-

tive functions (described in Section 2) minimization of Cost/Load and maximization of

Profit/Time respectively.

The instances of the two classes were derived from instances proposed in the literature

for the Capacitated vrp (cvrp). More precisely, we considered the 27 instances, and

corresponding optimal solutions, of class A generated by Augerat (1995) and available at

http://vrp.galgos.inf.puc-rio.br/index.php/en/.

Let cvrp(n,[qi],K,Q,[cij ]) be a cvrp instance, where n represents the number of ver-

tices (including the depot), [qi] the customer demands, K the number of vehicles, Q the

vehicle capacity, and [cij ] the cost matrix; cost matrix [cij ] is computed according to the
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Table 1: Parameters used by the different procedures

Procedure Parameters

DA πi = si,∀i ∈ Vc

Pricing (NG, t, i)-routes ∆(Ni) = 12 nearest nodes to i according to cost matrix [dij ]
CB ǫ = 1.0, Maxit3 = 200
genr NSTATB = 200E + 6
Exact method itermax = 3, ∆max = 300, 000, tlim = 3, 600, gapmax = ∞, ε1 = 5, ε2 = 3, 600

TSPLIB EUC 2D standard (see Reinelt (1991)). For each cvrp(n,[qi],K,Q,[cij ]) instance

of class A, we generate an instance for each of two classes as follows.

i) The depot and the set of customers correspond to the depot and the set of customers

of the original cvrp instance. We set n1 = ⌊α(n − 1)⌋, α < 1;

ii) Class [min |c/l]. We set dij = cij , ∀(i, j) ∈ A, tij = 0, ∀(i, j) ∈ A, T = Q, si = qi,

∀i ∈ Vc, and m = min{BPP (n − 1, [qi], Q) + 1,K}, where BPP (n− 1, [qi], Q) is the

cost of the optimal solution of the Bin Packing Problem instance with n − 1 items,

weights [qi] and bin capacity equal to Q.

iii) Class [max |p/t]. We set dij = −qi, ∀(i, j) ∈ A, tij = cij , ∀(i, j) ∈ A. Service times

{si}, maximum working time T and maximum number of vehicles m are computed

using the best solution found for the corresponding cvrp instance and a simple heuris-

tic algorithm for the vrpfo, used to guarantee the feasibility of the corresponding

instance (details are omitted for sake of brevity).

In generating the instances, we used α ∈ {0.5, 0.75}, therefore two instances per

class are generated for each cvrp instance. Given the original cvrp instance name

“< name >”, the instance with α = 0.5 is denoted with < name > a whereas the

instance with α = 0.75 is denoted with < name > b. A total number of 162 instances

were generated, 54 instances per class. All the instances are available upon request to the

authors as text files.

Based on the results of preliminary experiments to identify good parameter settings for

our algorithms, we decided to use the settings reported in Table 1. The following section

reports on the results about the dual and primal bounds computed by procedures DA and

CB whereas Section 6.3 shows the results obtained by the exact method.

6.2 Computational results on the dual and primal bounds

To compare dual bounds DBCB and DBDA computed by procedures CB and and DA, re-

spectively, we implemented a standard column generation algorithm (called CG) based

on formulation CCF and Dinkelbach’s algorithm (called DK) applied to formulation CF .

Both algorithms CG and DK are based on the (NG, t, i)-routes relaxation and the linear
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Table 2: Summary results on the dual bounds

Class Procedure CB Procedure DA Procedure CG Procedure DK

%B %PB Time %B %PB |R| Time %B |R| Time Iter |R| Time

[min |c/l] 98.5 107.0 18.8 98.7 106.3 374.2 0.4 98.8 7683.7 1.2 2.8 7254.2 1.1
[max |p/t] 106.8 96.3 88.9 106.1 97.7 610.1 0.7 105.9 2282.0 0.7 2.6 2377.5 0.8

programming solver of IBM CPLEX is used to solve the master problem at each iteration

of algorithm CG.

Table 2 summarises the results obtained about the different dual and primal bounds on

the two classes of instances. For bounding procedures CB, DA and CG, the table reports the

average percentage deviation of the dual bound (column %B) and the average computing

time in seconds (column “Time”). The percentage deviation is computed as 100.0×B/z∗,

where z∗ is the cost of the best solution found and B is the value of the dual bound; for

class [min |c/l], B refers to a lower bound whereas for class [max |p/t], B refers to a upper

bound. For bounding procedure DK, the table reports only the average computing time in

seconds, being the value of the dual bound computed by the procedure equal to the one

computed by procedure CG.

For bounding procedures CB and DA, the table also reports the average percentage devi-

ation of the primal bound obtained by the heuristic procedure (column %PB), computed

as 100.0 × PB/z∗, where z∗ is the cost of the best solution found and PB is the value of

the primal bound; column “Time” also includes the time spent for computing the primal

bound and, in the case of procedures CB, the time spent for computing value T .

For procedures DA, CG, and DK, the table also shows the average number of columns

or variables of the final master problem. In particular, for procedure DK the number is

computed as the sum over all algorithm iterations, whose average number is reported

under column “Iter” in the table.

Complete computational results about the dual and primal bounds are reported in

the e-companion to this paper. Moreover, the e-companion also reports statistics about

the best solutions found by the heuristic procedures and the exact method, including the

values z∗ used to compute the different percentage deviations.

Table 2 shows that the dual bounds computed are on average quite tight for instances

belonging to the class [min |c/l]. Clearly, the dual bound computed by procedure CG

dominates the dual bound produced by procedure DA and it is equivalent to the one

computed by procedure DK. Instances of class [max |p/t] are more difficult for our bounding

procedures, as shown by the average percentage deviation reported in the table; this is

probably due to cost structure of the class. The dual bounds computed by procedure

DA are on average very close to the ones produced by CG and can be computed faster.

Column |R| (i.e, the average number of columns of the final master problem) shows that
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procedure DA is not affected by the typical degeneracy of standard column generation

generation based on the simplex, like CG. The detailed results reported in the e-companion

show that the dual bound produced by CB is always inferior with respect to one produced

by CG. Further, its computation is more time consuming due to the complexity of the

corresponding dp recursion - it is worth mentioning that the computation of value T is

negligible.

Concerning the primal bounds computed by procedures CB and DA, the table show that

both the two procedures can compute good quality solutions. The detailed results reported

in the e-companion also show that it is convenient to compute both primal bounds. The

detailed results show that the heuristic algorithm applied during the execution of procedure

DA failed to compute feasible primal bounds for three instances of class [max |p/t].

6.3 Computational results on the exact method

Tables 3-4 show the results about the exact method. For each instance, we report a symbol

to denote if the instance was solved to optimality (“(a)”), and the corresponding total

computing time in seconds, that also includes the time spent by the bounding procedures

executed at steps 2 and 3 of the exact method (see Section 4) and the time spent by

procedure genr.

The next three blocks of columns show the details of the iterations of the exact method.

For each iteration, we report the cardinality of the reduced set R (|R|) generated by

procedure genr, the percentage deviation of the value of the optimal solution of the reduced

integer program F (R) (%z∗), a symbol (“(d)”) to denote if the time limit imposed was

reached in solving F (R) (IP), the number of iterations executed to solve problem F (R)

with the procedure described in Section 4.3, the percentage deviation of bound DBnew

with respect to %z∗ (%B) (see Step 6 of the exact method) and the computing time in

seconds spent to solve problem F (R).

In the tables, under column |R|, symbols “(b)” and “(c)” are reported whenever limit

NSTATB or ∆max of procedure genr has been reached, respectively. Further, the heading

of each table shows, for each iteration of the method, the value of parameters ∆max and

tlim.

Details about the best solution found by the heuristic procedures and the exact method

are reported in the e-companion. In particular, for each instances, it is shown the values z∗

of the best solution found (including the corresponding numerator and denominator), the

number of routes of the solution, the number of optional customers selected in solution,

the percentage of the working time utilization and the average number of customers per

route.

Tables 3-4 show that 53 and 30 out of the 54 instances per class were solved to opti-

mality by the exact method for classes [min |c/l] and [max |p/t], respectively. For classes

[min |c/l], instances with up to 79 customers were solved to optimality whereas the largest
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instance solved to optimality for class [max |p/t] involves 62 customers. Instances of class

[max |p/t] are clearly more difficult for our method, as also shown by the quality of the

corresponding dual bounds, and by the fact that the limit ∆max imposed at the differ-

ent iterations to the exact method is generally reached. For the instances not solved to

optimality for classes [min |c/l], the final bound %B is very tight, thus showing that near-

optimal solutions are also computed for the corresponding instances. Notice that in the

tables, whenever under column |R| of the last iteration appears symbol “(c)” (i.e., ∆max

limit reached) and the instance has been solved to optimality, the condition on the dual

bound DBnew (see Step 6 of the exact method) is used as optimality condition. Most

of the instances of class [min |c/l] can be solved to optimality within the first two itera-

tions of the exact method and the limit generally attained during the different iterations

is the maximum number of columns or routes ∆max. In particular, 46 and 12 instances

were solved to optimality at the first iteration of the exact algorithm for the two classes

of instances, respectively, thus showing the effectiveness of our iterative exact procedure

in reducing the size of the integer problems solved at each iteration of the Dinkelbach’s

algorithm.

In order to have some insights about the type of instances used and the solutions

computed, the e-companion reports some statistics about the best solutions found for the

two classes of instances. In particular, the tables show that the maximum number of

vehicles m is generally tight and that the percentage of the working time utilization is on

average superior to 90%; optional customers are generally included in the best solutions

found.
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Table 3: Instances of class [min |c/l]: exact method

Iter = 1, ∆max = 300, 000, tlim = 3, 600 Iter = 2, ∆max = 1, 500, 000, tlim = 7, 200 Iter = 3, ∆max = 7, 500, 000, tlim = 10, 800

Name Opt Time |R| %z∗ IP Iter %B Time |R| %z∗ IP Iter %B Time |R| %z∗ IP Iter %B Time

A-n32-k5a (a) 8.4 24,022 100.0 2 1.4
A-n32-k5b (a) 21.0 35,174 100.0 2 2.9
A-n33-k5a (a) 25.2 (c) 100.0 3 7.7
A-n33-k5b (a) 20.7 632 100.0 2 0.0
A-n33-k6a (a) 12.4 (c) 100.0 3 6.0
A-n33-k6b (a) 24.2 (c) 100.0 3 11.2
A-n34-k5a (a) 28.1 (c) 100.0 2 18.5
A-n34-k5b (a) 37.5 (c) 100.0 2 21.3
A-n36-k5a (a) 38.4 (c) 100.0 3 11.1
A-n36-k5b (a) 39.5 (c) 100.0 2 19.3
A-n37-k5a (a) 156.8 206,203 100.0 2 21.3
A-n37-k5b (a) 75.1 (c) 100.0 2 52.0
A-n37-k6a (a) 12.1 50,360 100.0 2 4.1
A-n37-k6b (a) 25.3 (c) 100.0 3 14.0
A-n38-k5a (a) 137.7 (c) 100.0 2 132.4
A-n38-k5b (a) 24.7 (c) 100.0 2 14.0
A-n39-k5a (a) 79.4 (c) 100.0 2 41.9
A-n39-k5b (a) 35.8 8,135 100.0 2 0.4
A-n39-k6a (a) 20.7 (c) 100.0 2 9.3
A-n39-k6b (a) 18.7 24,621 100.0 2 2.1
A-n44-k6a (a) 18.8 (c) 100.0 2 7.2
A-n44-k6b (a) 159.3 (c) 100.0 2 142.8
A-n45-k6a (a) 14.9 12,138 100.0 2 0.4
A-n45-k6b (a) 91.1 (c) 100.0 2 69.6
A-n45-k7a (a) 40.7 262,658 100.0 2 27.9
A-n45-k7b (a) 28.8 (c) 100.0 3 12.0
A-n46-k7a (a) 10.4 6,492 100.0 2 0.4
A-n46-k7b (a) 120.9 (c) 100.0 3 113.1
A-n48-k7a (a) 68.1 (c) 100.0 2 54.5
A-n48-k7b (a) 91.6 (c) 100.0 2 70.7
A-n53-k7a (a) 29.5 (c) 100.0 2 4.7
A-n53-k7b (a) 27.1 422 100.0 2 0.0
A-n54-k7a (a) 26.0 (c) 100.0 2 9.2
A-n54-k7b (a) 56.8 (c) 100.0 2 99.9 27.9 149,554 100.0 1 8.5
A-n55-k9a (a) 21.7 (c) 100.0 2 8.8
A-n55-k9b (a) 30.6 (c) 100.0 3 24.4
A-n60-k9a (a) 67.2 (c) 100.0 2 40.7
A-n60-k9b (a) 68.9 (c) 100.0 2 48.2
A-n61-k9a (a) 34.0 (c) 100.0 3 16.8
A-n61-k9b (a) 32.6 (c) 100.0 2 10.9
A-n62-k8a (a) 368.8 99,422 100.0 2 6.6
A-n62-k8b (a) 948.4 (c) 100.0 2 99.1 138.5 (c) 100.0 1 99.6 245.5 5,681,865 100 1 507.0

A-n63-k10a (a) 30.4 (c) 100.0 2 9.8
A-n63-k10b (a) 95.0 (c) 100.0 2 68.6
A-n63-k9a (a) 61.6 (c) 100.0 2 99.4 15.2 35,241 100.0 1 0.4
A-n63-k9b (a) 47.3 (c) 100.0 2 15.5
A-n64-k9a (a) 118.2 (b) 100.0 2 99.6 13.7 2,736 100.0 1 0.0
A-n64-k9b (a) 118.9 (c) 100.0 2 106.8
A-n65-k9a (a) 29.4 (c) 100.0 2 9.6
A-n65-k9b (a) 71.3 (c) 100.0 2 41.7
A-n69-k9a (a) 120.6 (c) 100.0 2 99.8 75.0 6,329 100.0 1 0.0
A-n69-k9b (a) 141.9 (c) 100.0 2 99.2 37.1 565,327 100.0 1 51.5

A-n80-k10a (a) 961.2 (b) 101.0 2 99.5 37.7 (c) 100.0 2 431.7
A-n80-k10b 18338.3 (c) 100.0 2 99.0 153.7 (c) 100.0 (d) 1 99.6 7204.3 (c) 100 (d) 1 99.9 10859.8

(a): solved to optimality (b): NSTATB limit reached (c): ∆max limit reached (d): tlim limit reached
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Table 4: Instances of class [max |p/t]: exact method

Iter = 1, ∆max = 300, 000, tlim = 3, 600 Iter = 2, ∆max = 1, 500, 000, tlim = 7, 200 Iter = 3, ∆max = 7, 500, 000, tlim = 10, 800

Name Opt Time |R| %z∗ IP Iter %B Time |R| %z∗ IP Iter %B Time |R| %z∗ IP Iter %B Time

A-n32-k5a (a) 134.6 605 100.0 2 0.0
A-n32-k5b (a) 53.5 176,046 100.0 2 2.8
A-n33-k5a (a) 74.0 283 100.0 2 0.0
A-n33-k5b (a) 77.3 2,285 100.0 1 0.0
A-n33-k6a (a) 550.0 (c) 100.0 2 105.4 33.7 (c) 100.0 1 102.7 69.3 4,433,401 100.0 1 387.1
A-n33-k6b (a) 455.9 (c) 100.0 2 105.7 40.7 (c) 100.0 1 103.6 183.7 6,732,081 100.0 1 168.9
A-n34-k5a (a) 39.7 60,015 100.0 1 1.5
A-n34-k5b (a) 35.5 460 100.0 2 0.0
A-n36-k5a (a) 151.8 (c) 100.0 2 7.6
A-n36-k5b (a) 165.7 74,972 100.0 2 3.2
A-n37-k5a (a) 98.9 290,301 100.0 2 37.0
A-n37-k5b (a) 166.0 (c) 100.0 2 102.0 31.7 1,401,121 100.0 1 48.7
A-n37-k6a (a) 27.0 171,702 100.0 2 3.5
A-n37-k6b (a) 31.2 (c) 100.0 2 100.2 5.5 259,368 100.0 1 2.2
A-n38-k5a (a) 99.4 (c) 100.0 2 101.1 5.7 352,959 100.0 1 32.4
A-n38-k5b (a) 64.8 (c) 100.0 2 103.0 4.9 1,152,405 100.0 1 8.2
A-n39-k5a (a) 155.8 (c) 100.0 2 102.4 7.2 (c) 100.0 1 100.8 12.1 2,701,913 100.0 1 21.6
A-n39-k5b (a) 182.7 (c) 100.0 2 101.9 9.5 (c) 100.0 1 100.3 15.0 1,909,058 100.0 1 19.1
A-n39-k6a (a) 222.9 (c) 99.7 2 103.3 8.8 (c) 100.0 2 100.8 65.3 1,997,245 100.0 1 41.8
A-n39-k6b (a) 100.6 (c) 100.0 2 102.7 6.8 (c) 100.0 1 100.7 12.9 2,070,281 100.0 1 16.7
A-n44-k6a (a) 90.0 (c) 100.0 2 102.4 8.6 1,088,748 100.0 1 11.7
A-n44-k6b 286.3 (c) 100.0 2 102.9 29.5 (c) 100.0 1 102.0 33.1 (c) 100.0 1 100.7 126.9
A-n45-k6a (a) 202.9 (c) 100.0 2 132.9
A-n45-k6b (a) 153.5 (c) 100.0 2 101.3 18.1 1,220,510 100.0 1 70.7
A-n45-k7a (a) 73.5 (c) 100.0 2 105.3 6.9 (c) 100.0 1 103.0 12.9 3,416,812 100.0 1 26.6
A-n45-k7b (a) 75.2 (c) 100.0 2 104.1 6.8 (c) 100.0 1 102.4 12.4 3,568,626 100.0 1 27.1
A-n46-k7a (a) 102.8 (c) 100.0 2 101.8 39.9 970,793 100.0 1 12.0
A-n46-k7b 235.0 (c) 100.0 2 104.0 15.8 (c) 100.0 1 102.5 24.7 (c) 100.0 1 100.5 131.2
A-n48-k7a (a) 82.2 226,299 100.0 2 22.9
A-n48-k7b (a) 87.0 (c) 100.0 2 100.3 7.4 278,742 100.0 1 17.3
A-n53-k7a (a) 503.7 (c) 98.8 2 103.5 40.3 (c) 100.0 2 101.1 225.1 2,185,209 100.0 1 166.9
A-n53-k7b 355.6 (c) 99.8 2 104.1 21.8 (c) 100.0 2 103.2 66.6 (c) 100.0 1 102.1 183.1
A-n54-k7a 265.7 (c) 100.0 2 102.7 8.0 (c) 100.0 1 101.7 15.7 (c) 100.0 1 100.4 59.4
A-n54-k7b 1065.3 (c) 99.7 2 104.8 146.6 (c) 100.0 2 104.1 414.6 (c) 100.0 1 103.2 412.3
A-n55-k9a 599.1 (c) 96.4 2 109.6 78.4 (c) 97.7 2 108.8 41.0 (c) 100.0 3 107.8 372.5
A-n55-k9b 377.7 (c) 97.5 1 106.5 4.3 (c) 100.0 2 105.7 57.3 (c) 100.0 1 104.9 204.3
A-n60-k9a 948.9 (c) 98.1 2 106.6 54.8 (c) 99.8 2 105.7 336.2 (c) 100.0 2 104.5 444.7
A-n60-k9b 21619.5 (c) 96.9 2 104.9 100.8 (c) 96.9 1 104.3 2269.1 (c) 100.0 3 103.5 19142.3
A-n61-k9a 592.5 (c) 99.3 1 108.0 3.9 (c) 99.3 1 107.1 24.5 (c) 100.0 2 106.1 288.9
A-n61-k9b 1020.9 (c) 98.2 2 106.2 32.6 (c) 98.3 2 105.6 366.7 (c) 100.0 2 104.9 469.8
A-n62-k8a 446.2 (c) 95.5 2 104.9 9.6 (c) 100.0 2 104.0 54.5 (c) 100.0 1 103.1 122.0
A-n62-k8b 1432.0 (c) 99.5 2 104.8 21.4 (c) 100.0 2 104.3 572.1 (c) 100.0 1 103.7 562.1

A-n63-k10a 1446.4 (c) 98.8 2 107.0 16.7 (c) 99.9 2 106.0 1043.6 (c) 100.0 2 105.1 313.5
A-n63-k10b 348.7 (c) 99.1 2 104.7 61.8 (c) 100.0 2 104.1 61.1 (c) 100.0 1 103.4 132.7
A-n63-k9a (a) 77.7 (c) 100.0 2 101.6 6.9 700,337 100.0 1 6.6
A-n63-k9b 242.9 (c) 100.0 2 103.2 12.4 (c) 100.0 1 102.3 27.6 (c) 100.0 1 100.6 106.0
A-n64-k9a 894.1 (c) 98.6 2 103.9 73.0 (c) 99.6 2 103.2 87.4 (c) 100.0 2 102.1 624.6
A-n64-k9b 1120.9 (c) 98.0 2 104.7 37.7 (c) 99.7 2 104.2 229.1 (c) 100.0 2 103.7 677.5
A-n65-k9a 340.5 (c) 99.4 2 105.2 8.0 (c) 99.4 1 104.3 20.5 (c) 100.0 2 103.0 209.2
A-n65-k9b 298.4 (c) 99.1 1 106.0 3.9 (c) 100.0 2 105.0 67.8 (c) 100.0 1 103.8 127.1
A-n69-k9a 3493.2 (c) 98.8 1 107.5 1.3 (c) 99.7 2 105.4 754.6 (c) 100.0 2 103.9 2579.9
A-n69-k9b 1833.4 (c) 96.8 2 107.2 11.2 (c) 97.2 2 106.4 161.4 (c) 100.0 2 105.7 1559.4

A-n80-k10a 599.5 (c) 98.4 2 104.1 36.1 (c) 100.0 2 103.6 100.7 (c) 100.0 1 102.9 263.9
A-n80-k10b 1240.5 (c) 99.3 2 102.8 30.2 (c) 99.8 2 102.4 334.2 (c) 100.0 2 102.0 671.4

(a): solved to optimality (b): NSTATB limit reached (c): ∆max limit reached (d): tlim limit reached
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7 Conclusions

In this paper, we considered vehicle routing problems that can be modelled as a Set

Partitioning (sp) problem with a linear fractional objective function. More precisely, we

considered two objective functions: minimization of cost over load (also known as logistic

ratio) and maximization of profit over time.

We investigated both continuous and integer relaxations of the spmodel. In particular,

we proposed an alternative transformation to the transformation proposed by Charnes

and Cooper (1962) for linear fractional programming and a dual ascent heuristic used

to compute both dual and primal bounds. The dual and primal bounds computed are

embedded in an iterative exact procedure where at each iteration a reduced sp problem is

solved by the extension of Dinkelbach’s algorithm for fractional programming to integer

programs.

We reported computational results showing that the proposed method solves to opti-

mality instances involving up to 79 customers. The method can be easily adapted to deal

with other routing constraints, simply by taking into account of such constraints in the

route generation phase.
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Appendix

Proofs of statements

Theorem 2. Let v be a feasible solution of problem DNCF of cost z(DNCF ). A feasible

solution (µ, ω) of DCCF of cost z(DCCF) = z(DNCF ) can be obtained by setting:

ω =
∑

i∈Vc

vi +mv0, µ0 = βv0, µi = βvi − siω,∀i ∈ V1, µi = βvi,∀i ∈ V2. (13)

Proof. It is easy to see that z(DCCF) = z(DNCF ) due to the definition of ω in expressions

(13). We have

−
∑

i∈Vc

µi −mµ0 = −
∑

i∈V1

βvi +
∑

i∈V1

siω −
∑

i∈V2

βvi −mβv0 =

−β(
∑

i∈Vc

vi +mv0) + β(
∑

i∈Vc

vi +mv0) = 0,

showing that the dual constraint associated with variable u of CCF is satisfied. Further,

∑

i∈Vc

aiℓµi + µ0 + wℓω =
∑

i∈V1

ailβvi −
∑

i∈V1

ailsi(
∑

i∈Vc

vi +mv0)+

∑

i∈V2

aiℓβvi + βv0 + wℓ(
∑

i∈Vc

vi +mv0) =

∑

i∈V1

ailβvi +
∑

i∈V2

aiℓβvi + βv0 + (wℓ −
∑

i∈V1

ailsi)(
∑

i∈Vc

vi +mv0) =

∑

i∈Vc

(βail + wℓ)vi + (β +mwℓ)v0 ≤ cℓ,

showing that the dual constraint associated with variable yℓ, ℓ ∈ R, of CCF is satisfied.

�

Theorem 4. r = n(x)/d(x) = z(F (R)) if, and only if, for the parametric problem FP (r),

z(FP (r)) = min{n(x)− rd(x) : x ∈ P}, z(FP (r)) = n(x)− rd(x) = 0. Proof.

(a) Let x be an optimal solution of problem F (R). We have r = n(x)/d(x) ≤ n(x)/d(x),∀x ∈

P . Hence

(i) n(x)− rd(x) ≥ 0,∀x ∈ P , and

(ii) n(x)− rd(x) = 0.

This implies that x is an optimal solution of FP (r) of value z(FP (r)) = 0.

(b) Let x be an optimal solution of FP (r) such that z(FP (r)) = n(x) − rd(x) = 0. We

have n(x)−rd(x) ≥ 0,∀x ∈ P , and r ≤ n(x)/d(x),∀x ∈ P , therefore r is the minimum

of problem F (R) that is taken at x.�
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Lemma 2. The following properties hold about the exact algorithm for solving F (R).

(1) The sequence {ri} is monotone decreasing, i.e., ri > ri+1, for all i such that zi(FP (ri)) <

0.

(2) If zi(FP (ri)) ≥ 0 and solution xi is optimal, the value z(F (R)) corresponds to the

optimal solution value and r = n(x)/d(x).

(3) If zi(FP (ri)) < 0, we have d(xi) > d(xi+1).

Proof.

(1) Since d(xi) > 0 and zi(FP (ri)) = n(xi)− rid(x
i) we have

ri > n(xi)/d(xi) = ri+1. (30)

(2) Assume that the algorithm terminates on the i-th iteration. We have zi(FP (ri)) ≥ 0.

Consider a value r̂ > r = ri, we have:

(i) r = n(xi−1)/d(xi−1) and n(xi−1)− rd(xi−1) = 0

(ii) As d(xi−1) > 0, we have n(xi−1) − r̂d(xi−1) < 0, therefore value r̂ does not

satisfies the termination condition.

(3) We have:

(a) n(xi)− ri+1d(x
i) = 0 (since the definition of ri+1),

(b) n(xi+1)− ri+1d(x
i+1) < 0 (zi(FP (ri+1)) < 0),

(c) n(xi+1)− rid(x
i+1) ≥ n(xi)− rid(x

i) (xi+1 is a feasible solution of FP (ri)).











(31)

From (31)-a and (31)-b we have

n(xi+1)− n(xi) ≤ ri+1(d(x
i+1)− d(xi)) (32)

and by considering (31)-c from (32) we have (ri+1 − ri)(d(x
i+1) − d(xi)) ≥ 0. From

the above inequality and inequality (30) we have d(xi+1) ≤ d(xi). Below we show

that d(xi+1) 6= d(xi). Let Pi = {x ∈ P : d(x) = d(xi)} - we have xi = argmin{n(x) −

rid(x) : x ∈ Pi} = argmin{n(x) : x ∈ Pi)}. If x ∈ Pi, we have n(x) − ri+1d(x) =

n(x)−ri+1d(x
i) ≥ n(xi)−ri+1d(x

i) = 0, therefore n(x)−ri+1d(x) ≥ 0, ∀x ∈ Pi. Since

ri+1 is not optimal, we have zi+1(FP (ri+1)) = n(xi+1) − ri+1d(x
i+1) < 0, therefore

xi+1 is not in Pi. �

Theorem 5. For all ri 6= r we have

r − ri+1

r − ri
≤ 1−

d(x)

d(xi)
< 1.
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Proof. Inequality n(xi)− rid(x
i) ≤ n(x)− rid(x) implies

n(xi)

d(xi)
− ri ≤

n(x)

d(xi)
− ri

d(x)

d(xi)
,

therefore

ri+1 − r =
n(xi)

d(xi)
−

n(x)

d(x)
≤

n(x)

d(xi)
−

n(x)

d(x)
+ ri

(

1−
d(x)

d(xi)

)

=

(

1

d(xi)
−

1

d(x)

)

(n(x)− rid(x))) =

(

1

d(xi)
−

1

d(x)

)

(r − ri)d(x),

since r = n(x)/d(x). Since from Lemma 2-(1) we have r < ri and dividing by (ri − r) > 0

and since d(xi) > d(x) (Lemma 2-(3)) we obtain

ri+1 − r

ri − r
≤

(

1

d(xi)
−

1

d(x)

)

r − ri
ri − r

d(x) =

(

−
d(x)

d(xi)
+ 1

)

< 1. �

7.1 Details about the computational results

Tables 5-6 report the details about the bounding procedures. In particular,for bounding

procedures CB, DA and CG, the table reports the percentage deviation of the dual bound

(column %B) and the total computing time in seconds (column “Time”). The percentage

deviation is computed as 100.0×B/z∗, where z∗ is the cost of the best solution found and

B is the value of the dual bound; for classes [min |c/l], B refers to a lower bound whereas

for class [max |p/t], B refers to a upper bound. For bounding procedure DK, the table

reports only the computing time in seconds, being the value of the dual bound computed

by the procedure equal to the one computed by procedure CG.

For bounding procedures CB and DA, the table also reports the percentage deviation

of the primal bound obtained by the heuristic procedure (column %PB), computed as

100.0 × PB/z∗, where z∗ is the cost of the best solution found and PB is the value of

the primal bound - column “Time” also includes the time spent for computing the primal

bound and, in the case of procedures CB, the time spent for computing value T .

For procedures DA, CG, and DK, the table also shows the number of columns or variables

of the final master problem. In particular, for procedure DK the number is computed as

the sum over all algorithm iterations, whose average number is reported under column

“Iter” in the table.

The percentage deviations are computed with respect to the values of the best solutions

found which are reported in Tables 7-8.

Tables 7-8 show details about the best solutions found. More precisely, for each in-

stances, the tables show the values of the best solution found (z∗) (including the corre-

sponding numerator “Cost” or “Profit” and denominator “Load” or “Time”), the number
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of routes of the solution (#r), the number of optional customers selected in solution (#o),

the percentage of the working time utilization (%ut) and the average number of customers

per route (ac).
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Table 5: Dual and primal bounds on instances of class [min |c/l]

Procedure CB Procedure DA Procedure CG Procedure DK

Name %B %PB Time %B %PB |R| Time %B |R| Time Iter |R| Time

A-n32-k5a 98.6 103.1 7.2 99.3 103.1 160 0.1 99.3 2,690 0.2 3 2,394 0.2
A-n32-k5b 98.1 102.2 18.8 98.2 102.2 232 0.1 98.2 3,340 0.2 3 3,439 0.3
A-n33-k5a 98.1 112.5 18.4 98.1 112.5 252 0.1 98.1 2,689 0.1 2 2,503 0.2
A-n33-k5b 99.4 100.4 22.3 99.5 100.4 150 0.1 99.5 2,765 0.1 3 3,090 0.2
A-n33-k6a 99.5 119.4 6.3 100.0 119.4 147 0.1 100.0 2,079 0.1 3 1,787 0.1
A-n33-k6b 97.9 103.0 13.3 97.7 103.0 261 0.1 97.9 2,444 0.1 3 2,379 0.1
A-n34-k5a 99.4 107.5 19.6 99.4 107.5 207 0.1 99.4 2,731 0.1 3 3,237 0.2
A-n34-k5b 98.8 106.6 16.5 98.9 106.6 314 0.1 98.9 3,222 0.2 3 2,777 0.2
A-n36-k5a 99.5 115.4 25.2 99.7 113.4 315 0.5 99.7 4,103 0.4 3 4,356 0.8
A-n36-k5b 99.0 106.6 25.3 98.8 106.5 411 0.4 99.1 5,104 0.6 3 5,691 0.9
A-n37-k5a 96.1 102.8 17.0 97.5 102.8 200 0.2 97.5 4,020 0.4 3 4,126 0.4
A-n37-k5b 98.4 104.8 23.5 98.3 103.8 396 0.2 98.6 7,444 1.2 3 6,008 0.8
A-n37-k6a 99.2 105.3 8.1 99.3 103.6 313 0.1 99.3 2,899 0.1 3 2,595 0.2
A-n37-k6b 97.4 110.6 11.1 97.5 112.5 396 0.2 97.5 3,795 0.3 3 3,763 0.4
A-n38-k5a 99.8 112.5 4.7 100.0 112.5 299 0.1 100.0 3,915 0.3 2 4,434 0.3
A-n38-k5b 95.7 108.1 10.1 95.9 107.4 328 0.2 95.9 4,434 0.3 2 4,204 0.3
A-n39-k5a 97.8 106.4 33.5 97.8 109.2 313 0.2 97.8 3,646 0.3 3 3,799 0.5
A-n39-k5b 99.2 100.8 36.4 99.3 102.9 329 0.3 99.3 5,449 0.5 2 4,850 0.5
A-n39-k6a 97.8 107.9 11.0 98.2 107.9 197 0.2 98.2 3,505 0.2 3 3,133 0.2
A-n39-k6b 98.1 100.9 16.7 98.4 100.9 278 0.3 98.4 4,878 0.4 3 3,788 0.3
A-n44-k6a 100.0 118.9 10.0 100.0 118.9 349 0.2 100.0 4,661 0.4 2 5,211 0.5
A-n44-k6b 97.7 102.8 15.9 97.8 102.7 484 0.3 97.8 5,620 0.6 3 5,744 0.7
A-n45-k6a 99.0 101.7 13.7 99.1 102.5 220 0.4 99.1 4,738 0.4 3 4,647 0.5
A-n45-k6b 98.5 104.6 21.0 98.6 104.1 354 0.2 98.6 6,183 0.6 3 5,769 0.7
A-n45-k7a 98.7 104.0 12.2 98.8 102.7 304 0.2 98.8 4,597 0.4 3 5,268 0.5
A-n45-k7b 99.4 106.4 16.1 99.6 105.9 350 0.3 99.6 5,647 0.5 3 5,043 0.5
A-n46-k7a 98.3 103.5 9.6 98.7 100.7 221 0.3 98.7 5,387 0.5 3 4,206 0.4
A-n46-k7b 96.8 102.4 6.8 98.5 102.4 352 0.4 98.5 6,694 0.7 3 6,927 0.8
A-n48-k7a 97.6 106.1 12.7 97.7 106.1 214 0.2 97.7 4,831 0.4 3 5,146 0.5
A-n48-k7b 98.5 104.5 20.2 98.7 104.5 413 0.3 98.7 7,221 1.1 2 7,214 1.1
A-n53-k7a 100.0 116.0 21.7 100.0 105.7 405 0.2 100.0 9,810 1.4 2 9,232 1.4
A-n53-k7b 99.8 100.8 26.9 100.0 100.2 261 0.3 100.0 13,143 2.7 3 13,137 2.9
A-n54-k7a 99.7 111.1 15.1 99.9 111.1 426 0.3 99.9 7,265 0.9 3 6,080 0.8
A-n54-k7b 98.1 105.2 18.3 98.0 104.4 574 0.5 98.2 9,760 1.7 3 11,170 2.3
A-n55-k9a 98.5 108.5 11.6 98.8 107.9 379 0.4 98.8 4,514 0.3 3 4,487 0.4
A-n55-k9b 98.8 105.2 15.0 98.9 105.1 456 0.3 98.9 7,061 0.7 3 6,687 0.7
A-n60-k9a 98.2 110.2 23.6 98.4 102.7 264 0.6 98.4 9,161 1.2 2 8,787 0.9
A-n60-k9b 98.5 109.0 35.0 98.6 106.1 677 1.0 98.6 10,938 1.9 3 11,252 2.3
A-n61-k9a 98.0 109.8 14.9 98.2 109.9 468 0.4 98.2 6,989 0.7 3 6,510 0.7
A-n61-k9b 99.5 106.0 19.0 99.8 106.0 441 0.5 99.8 9,001 1.3 3 8,235 1.2
A-n62-k8a 97.7 103.3 13.6 98.6 100.5 604 1.0 98.6 13,514 2.2 3 12,301 2.1
A-n62-k8b 98.0 102.9 27.1 98.2 102.9 502 1.0 98.2 15,392 3.4 3 18,403 4.4
A-n63-k10a 98.8 111.3 18.0 98.9 110.3 296 0.5 98.9 8,630 1.1 2 7,417 0.8
A-n63-k10b 98.1 102.6 23.0 98.7 101.6 409 1.1 98.7 11,353 1.7 3 10,505 1.6
A-n63-k9a 98.6 109.7 19.0 98.7 108.1 369 0.4 98.7 11,333 1.6 2 9,417 1.3
A-n63-k9b 98.6 104.2 30.2 98.8 104.2 494 0.7 98.8 11,169 1.7 3 9,443 1.7
A-n64-k9a 99.1 108.6 12.9 99.3 109.3 368 0.6 99.3 10,926 1.5 3 10,341 1.4
A-n64-k9b 97.5 112.0 8.6 99.1 106.8 719 1.0 99.1 15,511 3.2 2 14,823 3.4
A-n65-k9a 98.4 104.3 17.0 98.8 111.6 344 0.3 98.8 8,175 1.0 3 7,978 1.0
A-n65-k9b 98.5 104.1 27.4 98.6 106.2 404 0.7 98.6 14,128 2.5 3 11,708 2.2
A-n69-k9a 98.9 112.4 34.1 99.1 110.9 370 0.8 99.1 15,303 3.0 3 13,363 2.4
A-n69-k9b 97.5 110.7 49.3 97.8 107.8 675 1.0 97.8 17,575 4.3 3 15,376 3.4
A-n80-k10a 99.2 108.7 18.3 99.4 107.9 775 1.3 99.4 16,459 2.8 3 15,720 3.0
A-n80-k10b 98.4 107.6 30.7 98.5 106.5 769 1.9 98.5 27,078 8.5 3 21,825 5.5

98.5 107.0 18.8 98.7 106.3 374 0.4 98.8 7,684 1.2 2.8 7,254 1.1
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Table 6: Dual and primal bounds on instances of class [max |p/t]

Procedure CB Procedure DA Procedure CG Procedure DK

Name %B %PB Time %B %PB |R| Time %B |R| Time Iter |R| Time

A-n32-k5a 105.8 99.8 134.8 103.7 99.8 228 0.1 103.5 719 0.6 2 597 1.0
A-n32-k5b 106.5 96.3 49.8 106.2 98.3 286 0.1 106.0 1,009 0.3 2 950 0.2
A-n33-k5a 100.5 99.3 69.0 100.5 99.9 413 0.2 100.3 1,367 0.4 2 1,874 1.9
A-n33-k5b 101.5 99.6 72.5 101.2 100.0 511 0.3 101.1 1,589 0.4 3 1,631 0.3
A-n33-k6a 110.7 97.7 47.9 110.6 98.3 586 0.1 110.4 1,412 0.2 3 1,754 1.0
A-n33-k6b 109.6 99.1 50.1 109.6 99.6 566 0.2 109.4 1,713 0.2 3 1,609 0.1
A-n34-k5a 107.5 98.2 37.5 106.8 100.0 323 0.1 106.8 1,366 0.3 3 1,292 0.6
A-n34-k5b 100.9 99.7 34.3 100.8 99.7 317 0.1 100.6 1,128 0.3 3 1,457 0.3
A-n36-k5a 105.2 94.2 141.2 104.7 95.7 458 0.4 104.6 1,133 0.4 2 1,051 0.8
A-n36-k5b 103.7 96.0 159.6 103.5 97.2 516 0.5 103.5 1,469 1.1 2 1,127 0.6
A-n37-k5a 111.1 98.8 61.2 110.2 98.0 464 0.1 110.0 1,292 0.2 2 1,150 0.4
A-n37-k5b 105.3 99.5 81.6 105.1 99.6 441 0.2 105.1 1,684 0.2 3 1,517 0.2
A-n37-k6a 104.1 97.8 22.4 103.6 97.8 522 0.3 103.4 1,281 0.1 2 1,377 0.2
A-n37-k6b 105.2 96.0 20.7 104.2 96.8 540 0.3 104.0 1,210 0.2 2 1,333 0.1
A-n38-k5a 106.5 95.3 61.5 106.3 96.4 395 0.1 106.2 1,406 0.2 3 1,641 0.2
A-n38-k5b 107.6 96.4 49.2 107.7 99.0 394 0.2 107.4 1,545 0.2 3 1,597 0.1
A-n39-k5a 105.9 98.0 106.7 106.0 96.1 371 0.3 105.8 1,349 0.5 3 1,970 1.0
A-n39-k5b 105.2 95.8 131.7 104.8 97.7 342 0.4 104.7 1,458 0.5 3 1,628 0.3
A-n39-k6a 107.6 98.6 101.6 107.4 98.6 450 0.2 107.4 1,140 0.6 3 1,584 0.6
A-n39-k6b 106.3 94.5 58.1 106.3 98.3 402 0.3 106.0 1,282 0.2 3 1,211 0.3
A-n44-k6a 109.5 94.4 65.8 107.6 97.0 545 0.4 107.5 1,568 0.6 2 1,485 0.5
A-n44-k6b 106.4 95.0 79.9 105.8 96.7 536 0.5 105.7 1,999 0.8 3 1,881 0.3
A-n45-k6a 102.5 95.9 67.1 102.5 97.3 611 0.3 102.3 1,980 0.5 3 2,056 0.3
A-n45-k6b 104.0 96.2 60.9 103.9 99.0 634 0.5 103.7 2,127 0.4 3 2,272 0.4
A-n45-k7a 110.9 97.7 19.7 110.0 98.8 461 0.3 109.8 1,168 0.1 2 1,142 0.1
A-n45-k7b 110.5 96.7 19.9 107.0 97.6 436 0.4 107.0 1,366 0.1 3 1,406 0.1
A-n46-k7a 106.5 98.9 47.9 106.1 99.2 547 0.3 105.8 2,146 0.3 2 1,849 0.7
A-n46-k7b 107.4 96.6 46.7 107.0 97.4 691 0.4 106.8 2,198 0.3 3 2,471 0.2
A-n48-k7a 103.4 98.6 56.7 103.6 99.0 411 0.3 103.3 1,473 0.4 3 1,641 0.3
A-n48-k7b 103.7 97.4 58.3 103.5 97.8 510 0.6 103.4 1,984 0.3 2 1,931 0.3
A-n53-k7a 107.7 90.4 63.1 107.0 96.5 523 0.3 107.0 2,529 0.5 2 2,049 1.1
A-n53-k7b 106.4 97.3 65.5 106.0 98.6 604 0.7 105.8 2,504 0.4 3 2,688 0.2
A-n54-k7a 105.7 95.2 163.6 105.4 97.2 596 0.8 105.2 2,139 1.6 3 2,281 2.2
A-n54-k7b 107.2 98.3 72.2 106.3 96.7 597 0.8 106.2 2,463 0.5 3 2,375 0.4
A-n55-k9a 111.5 91.5 91.6 110.7 95.3 513 0.4 110.5 2,421 0.7 3 3,156 0.6
A-n55-k9b 108.5 92.9 93.3 107.3 97.5 799 0.7 107.1 3,726 1.9 3 3,595 0.6
A-n60-k9a 108.9 96.1 95.7 108.5 98.6 681 1.2 108.4 2,892 1.1 3 3,157 2.2
A-n60-k9b 106.8 93.5 85.1 105.9 96.3 703 1.3 105.7 3,375 1.3 2 3,680 2.2
A-n61-k9a 110.9 98.2 258.5 109.4 99.8 751 1.1 109.2 2,854 3.4 3 4,223 2.0
A-n61-k9b 108.7 95.9 131.9 107.4 95.5 993 1.2 107.3 4,317 1.4 3 4,053 0.9
A-n62-k8a 106.7 91.1 240.2 106.0 94.2 813 1.4 105.9 3,140 1.2 2 3,101 1.9
A-n62-k8b 106.0 94.4 242.3 105.6 95.1 847 2.0 105.6 4,475 1.4 3 4,020 0.7
A-n63-k10a 109.2 96.1 51.9 108.7 98.4 764 0.6 108.6 3,072 0.8 3 3,730 1.2
A-n63-k10b 107.0 98.6 68.7 106.2 98.7 1,026 1.3 106.1 3,054 0.7 3 3,686 0.4
A-n63-k9a 105.8 98.0 56.4 105.8 - 560 0.8 105.6 1,896 0.4 2 1,719 0.3
A-n63-k9b 109.7 96.5 72.7 104.9 - 650 1.2 104.8 2,110 0.4 3 2,132 0.3
A-n64-k9a 107.6 95.1 88.9 105.6 95.6 812 1.5 105.5 2,176 0.7 3 2,423 0.8
A-n64-k9b 106.5 93.0 152.6 105.8 - 1,325 1.5 105.7 4,154 1.6 3 4,439 2.2
A-n65-k9a 107.5 93.9 82.7 106.8 97.4 624 0.7 106.8 2,861 0.6 3 3,671 0.5
A-n65-k9b 107.7 93.6 76.9 106.9 96.0 746 1.2 106.8 3,185 0.6 3 3,283 0.4
A-n69-k9a 108.5 95.9 104.8 107.7 98.8 814 0.9 107.5 4,513 2.1 2 3,863 2.5
A-n69-k9b 109.1 94.5 78.1 108.0 96.0 951 1.3 107.9 5,028 1.4 3 4,633 0.7
A-n80-k10a 107.8 97.5 173.5 105.3 98.0 1,096 1.5 105.2 4,087 1.8 2 4,408 2.3
A-n80-k10b 104.9 95.9 175.2 103.6 97.4 1,250 2.6 103.6 5,697 2.6 2 5,535 2.4

106.8 96.3 88.9 106.1 97.7 610 0.7 105.9 2,282 0.7 2.6 2,377 0.8
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Table 7: Details of the best solutions found for class [min |c/l]

Name V n1 n2 m z∗ Cost Load #r #o %ut ac

A-n32-k5a 32 15 16 4 1.8264 705 386 4 13 96.5 7.0
A-n32-k5b 32 23 8 4 1.8677 734 393 4 6 98.3 7.3
A-n33-k5a 33 16 16 4 1.3984 523 374 4 11 93.5 6.8
A-n33-k5b 33 24 8 5 1.3960 557 399 5 3 79.8 5.4
A-n33-k6a 33 16 16 4 1.1654 444 381 4 5 95.3 5.3
A-n33-k6b 33 24 8 6 1.2990 630 485 6 4 80.8 4.7
A-n34-k5a 34 16 17 4 1.5106 500 331 4 8 82.8 6.0
A-n34-k5b 34 24 9 5 1.5606 682 437 5 5 87.4 5.8
A-n36-k5a 36 17 18 4 1.7247 664 385 4 12 96.3 7.3
A-n36-k5b 36 26 9 5 1.7532 689 393 4 5 98.3 7.8
A-n37-k5a 37 18 18 3 1.7508 520 297 3 7 99.0 8.3
A-n37-k5b 37 27 9 4 1.6292 637 391 4 6 97.8 8.3
A-n37-k6a 37 18 18 4 1.6051 634 395 4 6 98.8 6.0
A-n37-k6b 37 27 9 5 1.6862 833 494 5 4 98.8 6.2
A-n38-k5a 38 18 19 4 1.3813 547 396 4 10 99.0 7.0
A-n38-k5b 38 27 10 5 1.4846 677 456 5 7 91.2 6.8
A-n39-k5a 39 19 19 4 1.4987 559 373 4 10 93.3 7.3
A-n39-k5b 39 28 10 5 1.5894 658 414 5 4 82.8 6.4
A-n39-k6a 39 19 19 5 1.4158 664 469 5 12 93.8 6.2
A-n39-k6b 39 28 10 6 1.4969 723 483 6 4 80.5 5.3
A-n44-k6a 44 21 22 4 1.6286 627 385 4 9 96.3 7.5
A-n44-k6b 44 32 11 6 1.6313 907 556 6 10 92.7 7.0
A-n45-k6a 45 22 22 4 1.6500 627 380 4 6 95.0 7.0
A-n45-k6b 45 33 11 6 1.5650 867 554 6 7 92.3 6.7
A-n45-k7a 45 22 22 4 1.7051 665 390 4 7 97.5 7.3
A-n45-k7b 45 33 11 6 1.7082 960 562 6 6 93.7 6.5
A-n46-k7a 46 22 23 4 1.5291 604 395 4 7 98.8 7.3
A-n46-k7b 46 33 12 6 1.4663 827 564 6 8 94.0 6.8
A-n48-k7a 48 23 24 5 1.6511 814 493 5 12 98.6 7.0
A-n48-k7b 48 35 12 6 1.6712 986 590 6 9 98.3 7.3
A-n53-k7a 53 26 26 5 1.4429 720 499 5 10 99.8 7.2
A-n53-k7b 53 39 13 6 1.4661 821 560 6 5 93.3 7.3
A-n54-k7a 54 26 27 5 1.6430 810 493 5 12 98.6 7.6
A-n54-k7b 54 39 14 6 1.6965 1,006 593 6 7 98.8 7.7
A-n55-k9a 55 27 27 6 1.2271 724 590 6 12 98.3 6.5
A-n55-k9b 55 40 14 8 1.2105 897 741 8 6 92.6 5.8
A-n60-k9a 60 29 30 5 1.4888 734 493 5 7 98.6 7.2
A-n60-k9b 60 44 15 7 1.5768 1,099 697 7 8 99.6 7.4
A-n61-k9a 61 30 30 6 1.1142 634 569 6 10 94.8 6.7
A-n61-k9b 61 45 15 8 1.1207 882 787 8 7 98.4 6.5
A-n62-k8a 62 30 31 4 1.8693 744 398 4 6 99.5 9.0
A-n62-k8b 62 45 16 7 1.7125 1,120 654 7 8 93.4 7.6
A-n63-k10a 63 31 31 6 1.3548 798 589 6 10 98.2 6.8
A-n63-k10b 63 46 16 8 1.4383 1,142 794 8 8 99.3 6.8
A-n63-k9a 63 31 31 6 1.7487 1,044 597 6 10 99.5 6.8
A-n63-k9b 63 46 16 8 1.7898 1,405 785 8 8 98.1 6.8
A-n64-k9a 64 31 32 6 1.5874 935 589 6 9 98.2 6.7
A-n64-k9b 64 47 16 7 1.6440 1,136 691 7 5 98.7 7.4
A-n65-k9a 65 32 32 6 1.3232 786 594 6 10 99.0 7.0
A-n65-k9b 65 48 16 8 1.3197 1,036 785 8 9 98.1 7.1
A-n69-k9a 69 34 34 5 1.4061 696 495 5 10 99.0 8.8
A-n69-k9b 69 51 17 7 1.3968 968 693 7 7 99.0 8.3
A-n80-k10a 80 39 40 7 1.8371 1,286 700 7 14 100.0 7.6
A-n80-k10b 80 59 20 9 1.8401 1,623 882 9 11 98.0 7.8
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Table 8: Details of the best solutions found for class [max |p/t]

Name V n1 n2 m z∗ Profit Time #r #o %ut ac

A-n32-k5a 32 15 16 3 0.3835 306 798 3 5 97.8 6.7
A-n32-k5b 32 23 8 4 0.3809 406 1,066 4 6 98.0 7.3
A-n33-k5a 33 16 16 3 0.6014 433 720 3 13 98.0 9.7
A-n33-k5b 33 24 8 4 0.5989 433 723 3 5 98.4 9.7
A-n33-k6a 33 16 16 3 0.7856 458 583 3 10 82.3 8.7
A-n33-k6b 33 24 8 4 0.6521 506 776 4 5 81.5 7.3
A-n34-k5a 34 16 17 3 0.5759 368 639 3 9 91.4 8.3
A-n34-k5b 34 24 9 4 0.5617 437 778 4 5 83.1 7.3
A-n36-k5a 36 17 18 4 0.3834 403 1,051 4 13 99.9 7.5
A-n36-k5b 36 26 9 4 0.4044 421 1,041 4 6 99.0 8.0
A-n37-k5a 37 18 18 3 0.4067 305 750 3 5 98.4 7.7
A-n37-k5b 37 27 9 5 0.4325 397 918 4 7 90.4 8.5
A-n37-k6a 37 18 18 4 0.5044 516 1,023 4 11 98.7 7.3
A-n37-k6b 37 27 9 6 0.4371 559 1,279 5 7 98.8 6.8
A-n38-k5a 38 18 19 4 0.5111 437 855 4 12 86.2 7.5
A-n38-k5b 38 27 10 4 0.4922 476 967 4 8 97.5 8.8
A-n39-k5a 39 19 19 4 0.5070 397 783 4 8 78.6 6.8
A-n39-k5b 39 28 10 5 0.4751 449 945 4 4 94.9 8.0
A-n39-k6a 39 19 19 4 0.5310 403 759 3 4 95.8 7.7
A-n39-k6b 39 28 10 5 0.4747 479 1,009 4 4 95.5 8.0
A-n44-k6a 44 21 22 4 0.4084 437 1,070 4 10 98.7 7.8
A-n44-k6b 44 32 11 5 0.4470 540 1,208 5 7 89.2 7.8
A-n45-k6a 45 22 22 5 0.5667 514 907 4 14 80.7 9.0
A-n45-k6b 45 33 11 5 0.5261 585 1,112 4 9 98.6 10.5
A-n45-k7a 45 22 22 5 0.4049 462 1,141 5 10 98.8 6.4
A-n45-k7b 45 33 11 7 0.3666 569 1,552 7 5 96.0 5.4
A-n46-k7a 46 22 23 4 0.5554 531 956 4 13 98.4 8.8
A-n46-k7b 46 33 12 5 0.5672 574 1,012 5 7 83.3 8.0
A-n48-k7a 48 23 24 5 0.4369 530 1,213 5 12 95.5 7.0
A-n48-k7b 48 35 12 6 0.3955 598 1,512 6 9 99.2 7.3
A-n53-k7a 53 26 26 4 0.5405 554 1,025 4 13 98.9 9.8
A-n53-k7b 53 39 13 7 0.4699 594 1,264 5 5 95.0 8.8
A-n54-k7a 54 26 27 5 0.4814 594 1,234 5 15 98.7 8.2
A-n54-k7b 54 39 14 7 0.3949 605 1,532 7 7 87.2 6.6
A-n55-k9a 55 27 27 5 0.7779 746 959 4 16 94.0 10.8
A-n55-k9b 55 40 14 5 0.8000 760 950 4 8 93.1 12.0
A-n60-k9a 60 29 30 5 0.5878 656 1,116 5 13 85.8 8.4
A-n60-k9b 60 44 15 6 0.5281 760 1,439 6 8 92.2 8.7
A-n61-k9a 61 30 30 5 0.7976 717 899 4 16 97.3 11.5
A-n61-k9b 61 45 15 6 0.7754 825 1,064 5 9 92.1 10.8
A-n62-k8a 62 30 31 5 0.4335 619 1,428 5 16 96.5 9.2
A-n62-k8b 62 45 16 7 0.4085 719 1,760 6 11 92.5 9.3
A-n63-k10a 63 31 31 5 0.6993 800 1,144 5 16 89.7 9.4
A-n63-k10b 63 46 16 7 0.6105 887 1,453 6 9 94.6 9.2
A-n63-k9a 63 31 31 7 0.3203 583 1,820 7 7 99.2 5.4
A-n63-k9b 63 46 16 9 0.3597 838 2,330 9 10 98.8 6.2
A-n64-k9a 64 31 32 7 0.4333 770 1,777 7 19 98.8 7.1
A-n64-k9b 64 47 16 6 0.4548 821 1,805 6 12 97.4 9.8
A-n65-k9a 65 32 32 7 0.6879 787 1,144 5 20 97.4 10.4
A-n65-k9b 65 48 16 8 0.6189 851 1,375 6 13 97.1 10.2
A-n69-k9a 69 34 34 4 0.6641 678 1,021 4 16 99.7 12.5
A-n69-k9b 69 51 17 6 0.5939 756 1,273 5 8 99.1 11.8
A-n80-k10a 80 39 40 6 0.3911 761 1,946 6 16 99.8 9.2
A-n80-k10b 80 59 20 7 0.3894 903 2,319 7 11 98.9 10.0
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