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ORLab, Faculty of Computer Science, Phenikaa University, Vietnam, hoang.haminh@phenikaa-uni.edu.vn

Technical Report, PUC–Rio

Vehicle routing algorithms usually reformulate the road network into a complete graph in which each arc
represents the shortest path between two locations. Studies on time-dependent routing followed this model
and therefore defined the speed functions on the complete graph. We argue that this model is often inadequate,
in particular for arc routing problems involving services on edges of a road network. To fill this gap, we
formally define the time-dependent capacitated arc routing problem (TDCARP), with travel and service speed
functions given directly at the network level. Under these assumptions, the quickest path between locations can
change over time, leading to a complex problem that challenges the capabilities of current solution methods.
We introduce effective algorithms for preprocessing quickest paths in a closed form, efficient data structures
for travel time queries during routing optimization, as well as heuristic and exact solution approaches for the
TDCARP. Our heuristic uses the hybrid genetic search principle with tailored solution-decoding algorithms
and lower bounds for filtering moves. Our branch-and-price algorithm exploits dedicated pricing routines,
heuristic dominance rules and completion bounds to find optimal solutions for problem counting up to 75
services. Based on these algorithms, we measure the benefits of time-dependent routing optimization for
different levels of travel-speed data accuracy.
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1. Introduction

Congestion in city centers causes massive losses (400 billion dollars per year in the USA reported in
Cookson and Pishue 2018) and a wide range of adverse effects on inhabitants. Transit times can
widely vary during peak hours. With the widespread availability of sensors, mobile devices, and
large databases of historical events, driving speeds can now be modeled more precisely to better
optimize urban transportation in metropolitan areas. As a consequence, the amount of literature on
vehicle routing problems considering time-dependent travel times (TDVRP) has quickly increased
(Gendreau et al. 2015, Cattaruzza et al. 2017). However, we argue that current TDVRP models
present major shortcomings.

1.1. Time-dependent Routing Models are Oversimplified

The wide majority of studies on TDVRP use a complete graph representation of the network in
which each vertex corresponds to a service or depot location. In the seminal article of Ichoua et al.
(2003), piecewise-constant vehicle speed functions are associated with the arcs of this complete
graph to model time-dependent driving speeds. With these assumptions, a unique quickest path
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is known to exist between any two locations. However, this is a rough approximation of reality.
In practice, time-dependent speed profiles are specific to each street or region. In their survey
and practitioners poll, Rincon-Garcia et al. (2018) highlighted that an inadequate management
of time-dependent travel times represents the greatest current barrier to the adoption of vehicle
routing software. As the capabilities of current solvers improve, it is increasingly important to
account for vehicle speeds at the network level and use time-dependent quickest path calculations
(Bast et al. 2016) to find travel-time profiles between service locations. In such conditions, the
quickest path between two locations can change over time, but the FIFO property remains valid
(Ghiani and Guerriero 2014), i.e., leaving earlier cannot result in a later arrival.

Very few TDVRP studies have considered time-dependent speed functions at the road network
level. Eglese et al. (2006) and Maden et al. (2009) first introduced a road timetabling algorithm,
called LANTIME, for TDVRPs with travel time information on streets. The performance of the
algorithm was evaluated on road network data from South West England, leading to an estimated
7% savings in fuel. Huang et al. (2017) later proposed mathematical formulations for a TDVRP
minimizing greenhouse gas emissions, in which the speed profiles are specific to each edge of the
network. Finally, Jaballah et al. (2019) introduced a mathematical formulation and a simulated
annealing solution approach for a TDVRP with time-dependent travel times at the network level.

The aforementioned studies focus on vehicle routing (i.e., node routing) scenarios. Yet, various
applications for waste collection, road maintenance, and postal deliveries are more faithfully modeled
with services on arcs and edges (Corberán and Laporte 2015). The resulting capacitated arc routing
problems (CARP) require to take additional mode decisions, which represent the traversal direction
of each service edge (Irnich 2008, Vidal 2017). These mode decisions influence the choice of entry and
exit points for each service, and therefore the quickest paths. As discussed in Gendreau et al. (2015),
time-dependent travel times have been largely ignored in the CARP literature, a surprising fact
given that most related applications occur in urban contexts. Some research exists on mathematical
formulations and solution methods for single-vehicle cases (Black et al. 2013, Sun et al. 2015, Yu and
Lin 2015), but these methods remain limited to fairly small data sets counting around 25 services.
In a nutshell, critical methodological challenges still need to be overcome to solve multi-vehicle
time-dependent arc routing models at scale.

1.2. Towards a Time-dependent Capacitated Arc Routing Model

We introduce a formal definition of the time-dependent CARP (TDCARP) and propose state-
of-the-art metaheuristics and mathematical programming algorithms to solve it. We consider a
deterministic setting, assuming that travel speed estimates are available (i.e., based on traffic history)
but will also consider, in our computational experiments, scenarios in which this information is
inaccurate. Our travel speed functions are defined according to the IGP model of Ichoua et al.
(2003), but they are specific to the edges of the road network. To our knowledge, this is the first
extensive study on the CARP with time-dependent travel times at the network level.

Our metaheuristic is based on the unified hybrid genetic search (UHGS) with implicit service
mode selection (Vidal et al. 2014, Vidal 2017). It relies on an incomplete solution representation,
where service modes (edge traversal directions during services in our case) are optimized on the fly
during every route evaluation by dynamic programming (DP). Our DP was adapted to account
for time-dependent travel times. Moreover, we develop problem-tailored move evaluation lower
bounds to filter non-promising moves during the local search. Our exact method is based on
branch-cut-and-price (BCP). It exploits valid inequalities, stabilization, ng-route relaxation, tailored
pricing algorithms —fast heuristic pricing, exact pricing with heuristic dominance, and exact
pricing using completion bounds generated by backward pricing with maximum speed— as well
as strong branching techniques. This method produces, for the first time, optimal solutions for
TDCARP instances with up to 75 services. Our solution methods rely on the preprocessing of
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continuous time-dependent quickest paths for all starting times, using a variant of Bellman-Ford
algorithm in which continuous PL functions are maintained in closed form and updated through
lower-envelope and composition operations. The resulting quickest path functions are maintained in
bucket-based data structures to allow O(1) travel-times queries during routing solution. As a result,
our algorithms do not need to use time discretization or perform numerous path calculations with
fixed start times.

We conduct an extensive computational campaign on benchmark instances derived from the
classical CARP benchmarks of Li and Eglese (1996), Beullens et al. (2003) and Brandão and
Eglese (2008). We measure the benefits of time-dependent optimization in scenarios in which only
approximate speed information is available. Therefore, our study gives a clear estimate of the
benefits of time-dependent optimization and the impact of speed data quality. Summarizing, the
main contributions of our work are the following.

1) We introduce a model of time-dependent service- and travel-time functions in the context of
arc routing.

2) We design an effective algorithm to obtain the travel-time functions between origin-destination
pairs in a closed form, without approximation or discretization, as well as efficient data
structures to query these functions in near-O(1) elementary operations.

3) We propose efficient heuristic and exact solution approaches built upon innovative solution
components (e.g., solution decoding algorithms, move filters, heuristic dominance, completion
bounds), which have been specifically designed to be effective for the TDCARP.

4) We conduct extensive computational experiments to evaluate the performance of the proposed
solution strategies and to measure the impact of time-dependent optimization with accurate
or inaccurate speed information.

2. The Time-Dependent Capacitated Arc Routing Problem

Let G= (V,E,A) be an undirected graph, in which V is a set of vertices, E is an edge set, and A is
an arc set. Node 0∈ V represents a depot, where m vehicles of capacity Q are based and available
at time 0. ER ⊆ E and AR ⊆ E represent edges and arcs requiring service, and n= |ER|+ |AR|
represents the total number of services. Each service u∈ER ∪AR is characterized by a nonnegative
demand qu. Each edge u∈ER can be serviced in one of its two possible orientations, called modes
in Vidal (2017). In contrast, the orientation of services to arcs is fixed. To formalize this difference,
we associate to each service u a mode set Mu representing its possible orientations, in such a way
that Mu = {1,2} if u∈ER and Mu = {1} otherwise. Each service should be performed exactly once,
but any edge or arc of E ∪A can be deadheaded multiple times while traveling in the network.
Finally, the arcs and edges are characterized by time-dependent travel and service speed functions.
As a consequence, the FIFO property is respected when traveling and servicing (i.e., starting later
does not allow to arrive earlier), and waiting is never profitable (such that we can eliminate this
possibility). The TDCARP aims to design up to m routes in such a way that:

• Each route starts and ends at vertex 0 (the depot);
• Each service is operated once by a single vehicle;
• The demand on each route does not exceed the vehicle capacity Q;
• The duration of each route does not exceed a maximum value of D;
• The sum of the route durations is minimized.

Speed model. In this work, we define time-dependent speed functions directly at the network
level rather than on the complete graph representation. Therefore, given a planning horizon [0,H],
we associate to each arc and oriented edge (i, j)∈AR ∪ER a distance dij along with a piecewise-
constant speed function vij : [0,D]→R+ with hij pieces representing the travel speed on this link as
a function of time, i.e., the distance traveled per time unit. Speeds can change over time according
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to these functions while the vehicle is traveling on a link. In these conditions, the FIFO property
is known to hold (Orda and Rom 1990, Ichoua et al. 2003). We also introduce time-dependent
travel and service time functions. For any (i, j)∈AR ∪ER, we define a positive piecewise-constant
travel-and-service speed function v̂ij : [0,D]→R+ with ĥij pieces representing the distance travelled
and serviced per time unit. Asymmetric edge speeds are allowed, such that possibly vij(t) 6= vji(t)
and v̂ij(t) 6= v̂ji(t). Different arcs and edge orientations can therefore have different speed functions
and different breakpoints.

Based on these definitions, the arrival time values Φij(ti) and Φ̂ij(ti) at j when departing from i
at ti are calculated as:

Φij(ti) =

{
x

∣∣∣∣∫ x

ti

vij(t) dt= dij

}
when travelling on (i, j) (1)

Φ̂ij(ti) =

{
x

∣∣∣∣∫ x

ti

v̂ij(t) dt= dij

}
when servicing (i, j). (2)

In a similar manner, the departure time values Φ−1
ij (tj) and Φ̂−1

ij (tj) from i to arrive at j exactly at
time tj are calculated as:

Φ−1
ij (tj) =

{
x

∣∣∣∣∫ tj

x

vij(t) dt= dij

}
when travelling on (i, j) (3)

Φ̂−1
ij (tj) =

{
x

∣∣∣∣∫ tj

x

v̂ij(t) dt= dij

}
when servicing (i, j). (4)

3. Methodology

We separate the description of our solution methods in four sub-sections: 1) the calculation of a
closed-form representation for arrival time functions, 2) the preprocessing of quickest path profiles,
3) our exact branch-cut-and-price approach for the TDCARP, and 4) our hybrid genetic search
metaheuristic, designed to produce high-quality heuristic solutions in a controlled amount of time.

3.1. Continuous Travel Time Functions

All solution algorithms for vehicle routing with time-dependent travel times need efficient methods for
travel time queries. When travel time information is provided at the network level, computationally-
demanding travel time calculation methods can become a major obstacle to the application of
routing optimization algorithms (Vidal et al. 2020). Two types of queries are recurrent in the
solution process. For this reason, they should be performed as quickly as possible:

• Travel and service time queries: evaluating Φij(t) or Φ̂ij(t) on an arc (i, j) at a given time t;
• Quickest path queries : evaluating the earliest arrival time Ψij(t) at a node j from a node i at a

starting time t.

Most TDVRP algorithms use an iterative algorithm for travel time queries requiring O(hij) time
(see Appendix A). To avoid this overhead, we preprocess continuous representations of Φij and Φ̂ij

as closed-form piecewise-linear (PL) functions and develop efficient data structures which allow
queries in O(1) time in most situations. We first state two important properties of the arrival time
functions, and then proceed with a description of our approach.

Property 1 Functions Φij are piecewise linear, continuous and monotonic.

Proof. This follows directly from Equation (1) given that functions vij are piecewise-constant,
positive and bounded. �
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Property 2 Let t1, · · · , thij−1 be the breakpoints of function vij . Function Φij has up to 2(hij − 1)
breakpoints with values t1, · · · , tk,Φ−1

ij (tl), · · · ,Φ−1
ij (thij−1) where k= arg max{x | tx ≤Φ−1

ij (D)} and
l= arg min{x | tx ≥Φij(0)}.

Proof. Define Vij(x) =
∫ x

0
vij(t) dt. Vij and its inverse V −1

ij are non-negative strictly-increasing
PL functions. Vij has breakpoints t1, · · · , tk where k = arg max{x | tx ≤ Φ−1

ij (D)} and V −1
ij has

breakpoints V (tl), · · · , V (thij−1) where l = arg min{x | tx ≥ Φij(0)}. Based on Equation (1), we
obtain Vij(Φij(t))−Vij(t) = dij leading to:

Φij(t) = V −1
ij (Vij(t) + dij). (5)

Function Φij is PL as a composition of two PL functions. Breakpoints can occur whenever t is a
breakpoint of Vij(t), or whenever Vij(t) + dij is a breakpoint of V −1

ij . In the latter case, there exists
k such that Vij(t) + dij = Vij(tk), i.e., such that t= Φ−1

ij (tk). �

Theorem 2 holds for function Φij as well as Φ̂ij. Its characterization of the breakpoints leads to
a simple procedure to generate a closed-form representation of Φij (or Φ̂ij) in O(h2

ij) time. This
procedure, described in Algorithm 1, is performed once for each link (i, j)∈A∪E in a preprocessing
phase, before the quickest path algorithm and routing solution method.

Algorithm 1: Closed-form construction of Φij

k← arg max{x | tx ≤Φ−1
ij (D)}

l← arg min{x | tx ≥Φij(0)}

Abp =∅
Abp← (0,Φij(0))
for x∈ {1, · · · , k} do Abp← (tx,Φij(tx)) . O(hij) queries to Algo 3

for x∈ {l, · · · , hij − 1} do Abp← (Φ−1
ij (tx), tx) . O(hij) queries to Algo 4

Abp← (Φ−1
ij (D),D)

APieces =∅
Sort and Remove Duplicates(Abp) . O(hij loghij)
for x∈ {1, · · · ,Size(Abp)− 1} do APieces← (Abp[x],Abp[x+ 1])
return APieces

The result can be stored as a simple array of function pieces, giving indexed access in O(1) time
if the index of the piece is known, and O(loghij) otherwise by binary search. To further reduce
the query complexity, we divide the planning horizon into B buckets and create an auxiliary array
whose ith element points towards the function piece that contains time (i− 1)D

B
. Any travel time

query from a time t is resolved by comparing the buckets of indices bt/Bc and dt/Be: if both
buckets point towards the same piece, then this piece is returned in O(1) time, otherwise a binary
search is initiated between the pieces and completed in O(loghij) time.

3.2. Travel Time Profile Queries

Quickest path queries constitute an essential building block of vehicle routing and arc routing
algorithms applied to real networks. In most applications, a complete n×n travel-time matrix is
preprocessed to guarantee O(1) time, cost, or distance queries through the search. Time-dependent
travel times defined at the network level greatly increase the complexity of such preprocessing.
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Indeed, travel times between origin-destination pairs now depend on an additional continuous
parameter, the start time, and the quickest paths may change over time (Ghiani and Guerriero
2014). As a consequence, previous studies did not exploit preprocessing and instead relied on time-
consuming quickest-path queries during routing solution. This computational overhead drastically
limited the number of local-search moves and construction decisions that can be evaluated in a fixed
amount of time, such that only simplistic algorithms, based on much fewer local-search iterations,
were practical (Jaballah et al. 2019).

To circumvent this issue, we use a continuous preprocessing approach, during which we compute
closed-form representations of the arrival time Ψij(t) function at each destination j for all departure
times t at origin i. This effectively avoids the computational overhead of approaches based on
iterative travel time queries as well as the memory overhead and imprecision of approaches based on
time discretization. Since the FIFO assumption holds in our context, we use a dynamic programming
approach that follows the same scheme as the classical Bellman-Ford algorithm, but in which the
discrete labels are replaced by continuous PL functions. This procedure, described in Algorithm 2,
is applied from the depot and every vertex located at the end of a serviced arc or at one extremity
of a serviced edge.

Algorithm 2: Quickest path algorithm from i for all starting times

for j ∈ V,Ψ′ij = Ψij =

{
id if i= j

∞ otherwise

L←{i}
while L 6=∅ do

for (x, y)∈E ∪A : x∈L do
Ψ′iy←LowerEnvelope(Ψ′iy,Φxy ◦Ψix)

L←∅
for y ∈ V do

if Ψiy 6= Ψ′iy then
L←L∪ y
Ψiy←Ψ′iy

In Algorithm 2, “id” represents the identity function. Due to the continuous representation of
functions Ψij(t), each usual label comparison is replaced by a lower envelope operation (Hershberger
1989), and the “◦” operation corresponds to the composition of two PL functions. These operations
are directly performed on the closed-form representation of the functions. The total number of
lower envelope and composition operations remains limited to O|V |(|E ∪A|) as in Bellman-Ford
algorithm, yet the number of function pieces may grow in the worst case as nΘ(logn) (Foschini et al.
2014). As discussed in Section 4.2, the number of pieces obtained in our computational experiments
remains sufficiently small to be efficiently computed and stored in a few seconds.

As a result of this algorithm, we obtain the continuous PL functions Ψij representing the value of
the quickest paths from any vertex i at any time t, and store them using the bucket data structure
described in Section 3.1. We do not maintain the time-dependent paths themselves, since 1) this
information is only useful at the end of routing optimization to produce the detailed solution, 2) this
would lead to a significant memory overhead and 3) one can simply use a discrete time-dependent
quickest path algorithm for fixed departure times between each pair of successive vertices in the
final solution to recover the paths.
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3.3. Branch-Cut-and-Price Algorithm

Our branch-and-price algorithm exploits the same set partitioning model as for most vehicle routing
problems. The critical differences with other works occur in the definition of the pricing problem, the
labeling algorithms designed to solve it, the branching rules, and the selection of valid inequalities.

Let Ω be the set of all feasible routes for the TDCARP. Each feasible route r ∈Ω is defined as a
sequence of required links (oriented services) ((i1, j1), (i2, j2), . . . , (ik, jk)) starting and ending at the
depot. Equation (6) permits to calculate the time of each service as well as the route completion
time (return to the depot) as Φr = Ψjk0(T (ik, jk)):{

T (i`, j`) = Φ̂i`j`(Ψj`−1i`(T (i`−1, j`−1)))

T (i1, j1) = Φ̂i1j1(Ψ0i`(0)).
(6)

Let λr be a binary variable taking value 1 if and only if route r ∈ Ω is used in the solution.
Moreover, let arij be a binary parameter which takes value 1 if and only if route r performs service
(i, j). The set partitioning formulation of the TDCARP can be written as follows:

min
∑
r∈Ω

Φrλr (7)

s.t.
∑
r∈Ω

λr =m (8)∑
r∈Ω

arijλr = 1 ∀(i, j)∈ER ∪AR (9)

λr ∈ {0,1} ∀r ∈Ω. (10)

Equation (7) minimizes the total duration of the routes. Constraint (8) sets a limit on the number
of available vehicles, and Constraints (9) ensure that each service is performed exactly once.

Valid Inequalities. Firstly, we use a lifting of the classical odd-edge cutset cuts for the CARP
(Belenguer and Benavent 1998). In its original form, this family of cuts works on any subset S of
nodes with an odd number of incident required links (|δR(S)| odd), by imposing the number of
incident deadheaded links (δ(S)) to be at least one. Bartolini et al. (2013) proved that this family
of cuts can be lifted by imposing the same condition on the paths between two required links. Let
Ĝ= (V, Â) be a complete graph, called the deadheaded graph, where Â= {(i, j)|i∈ V ∧ j ∈ V, i 6= j},
and b̂rij is a binary parameter taking value 1 if and only if route r deadheads the path from i to j
after servicing a required link finishing at i and about to start a service on a required link at j.
Then, the lifted odd-edge cutset cuts can be defined as in Equation (11):∑

(i,j)∈δ(S)

b̂rijλr ≥ 1 ∀S ⊆ V \{0}, |δR(S)| odd. (11)

Secondly, we use a lifting of the classical capacity cuts (Belenguer and Benavent 1998). This
lifting can be obtained by considering another complete graph G̃= (Ṽ , Ã), called the required graph,
where Ṽ =ER ∪AR ∪ {0} and Ã= {(u, v)|u ∈ Ṽ ∧ v ∈ Ṽ , u 6= v}, i.e., a complete graph where the
nodes are the required links plus a node representing the depot. We further use the lower bound
on the number of vehicles required to service a set S ⊆ Ṽ \{0}, represented by k(S), and a binary
parameter b̃ruv which is 1 if route r services required link v after required link u. A capacity cut
defined over this graph, as shown in Equation (12), is similar to a capacitated vehicle routing
problem (CVRP) capacity cut. These cuts, proposed by Bartolini et al. (2013), are a lifting of the
original CARP capacity cuts. ∑

(u,v)∈δ(S̃)

b̃ruvλr ≥ 2k(S) ∀S ⊂ Ṽ \{0} (12)
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Column Generation. Formulation (7–10) has an exponential number of variables and requires
column generation (CG). At each iteration of the CG, the linear relaxation of the set partitioning
formulation is solved, and possible negative reduced-cost variables are detected by a pricing algorithm
and included in the formulation. The process is iterated until no negative reduced costs variable
exists. The reduced costs are computed from the dual information associated with the current
solution, using the dual variables γ, βij, ρij and πuv associated with Constraints (8), (9), (11)
and (12).

Our pricing algorithm is based on dynamic programming. It computes all candidate paths that
start at the depot and that can lead to a negative reduced-cost route. For simplicity, the depot
will be represented as a fictitious link (i0, j0). Any path P = ((i0, j0), (i1, j1), (i2, j2), . . . , (ih, jh))
is represented by a label L(P ) = (i(P ), j(P ), q(P ),Φ(P ), ξ(P ),Π(P )), containing the last link
(i(P ), j(P )), the total load q(P ), the arrival time at the last vertex Φ(P ), the cumulated value
of the dual variables, calculated as ξ(P ) = γ+

∑h

`=1

(
βi`j` + ρj`−1i` +π(i`−1,j`−1)(i`,j`)

)
, and the set

Π(P ) of serviced links. An extension from a path P to a link (i`, j`) is feasible if and only if
q(P )+q(i`,j`) ≤Q, Φ̂i`j`(Ψj(P )i`(Φ(P )))≤D and (i`, j`) /∈Π(P ). This extension produces a new label
given in Equation (13). At the end of the pricing algorithm, we obtain the routes from the paths
such that (i(P ), j(P )) = (i0, j0) and compute their reduced costs as c̄(P ) = Φ(P )− ξ(P ).

L(P ′) =
(
i`, j`, q(P )+q(i`,j`), Φ̂i`j`(Ψj(P )i`(Φ(P ))),

ξ(P ) +βi`j` + ρj(P )i` +π(i(P ),j(P ))(i`,j`),Π∪ (i`, j`)
) (13)

The number of paths considered in the pricing algorithm can grow very quickly. To mitigate this
effect, we use the following rule to discard dominated paths.

Exact dominance: Path P1 exactly dominates path P2 if:

(i) j(P1) = j(P2) (iv) ξ(P1)≥ ξ(P2)

(ii) q(P1)≤ q(P2) (v) Π(P1)⊆Π(P2)

(iii) Φ(P1)≤Φ(P2).

This exact dominance rule uses separate comparisons for the arrival time at the last vertex Φ(P )
and the cumulated value of the dual variables ξ(P ). These two comparisons appear to be necessary to
avoid eliminating promising labels. Consider the following example with two paths: P1 with Φ(P1) =
10 and ξ(P1) = 1, and P2 with Φ(P2) = 20 and ξ(P2) = 10. Suppose that j(P1) = j(P2), q(P1)≤ q(P2)
and Π(P1)⊆Π(P2). In this example, the reduced costs are c̄(P1) = 10−1 = 9 and c̄(P2) = 20−10 = 10.
If we test c̄(P1) ≤ c̄(P2) instead of Rules (iii) and (iv), path P1 would appear to dominate P2.
However, if an extension exists to a link (i`, j`) for which βi`j` + ρj(P1)i` + π(i(P1),j(P1))(i`,j`) = 1,

Φ̂i`j`(Ψj(P1)i`(Φ(P1))) = 3, and Φ̂i`j`(Ψj(P2)i`(Φ(P2))) = 1 (possible due to the time-dependent travel
times), then the reduced costs of paths P1 and P2 after the extension become 10 + 3− (1 + 1) = 11
and 20 + 1− (10 + 1) = 10, respectively. In this case, a promising label would have been discarded.

Due to this additional comparison, the TDCARP dominance rule eliminates much fewer labels
than the typical CARP dominance based on simple reduced cost comparison. To improve this
behavior, we propose the following heuristic dominance rule:

Heuristic dominance: Path P1 heuristically dominates path P2 if:

(i) j(P1) = j(P2) (iv) ξ(P1) +µ(Φ(P2)−Φ(P1))≥ ξ(P2)

(ii) q(P1)≤ q(P2) (v) Π(P1)⊆Π(P2)

(iii) Φ(P1)≤Φ(P2).
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Discussion. In rule (iv) of the heuristic dominance, parameter µ is a positive scalar which weights
the contribution of an earlier arrival time at the current link to the final reduced cost at the end of
the route. Indeed, it makes sense to assume that an earlier arrival time can lead to a smaller reduced
cost at the end of the route. However, as highlighted in Appendix B, arrival time differences can
expand or contract over a path by an arbitrary amount, making it difficult to estimate the value of
a time gain (or a bound thereof) for an incomplete route. Because of this, the pricing algorithm
based on this dominance is only a heuristic. We use it in a first CG phase with a factor µ= 0.5
until no negative cost column is found, and then we switch to the exact pricing algorithm with the
exact dominance. During our computational experiments, we observed that only one iteration of
the exact pricing was needed in 89% of the cases, i.e., only to prove that the CG is completed.

Relaxing elementarity. To further reduce the computational time of the pricing algorithm, we
use a variant of the ng-route relaxation instead of imposing elementarity (Baldacci et al. 2011).
For each required link, the approach builds a list of the “closest” required links considering an
estimated distance measure between two links. Given the required links (i1, j1) and (i2, j2), the
estimated distance between them is Φ̂i1j1(0)/2 + Ψj1i2(0) + Φ̂i2j2(0)/2. The procedure then considers
the minimum between the four possible combinations of service directions. For each required link,
we keep the four “closest” required links, including itself (i.e., the size of the ng-sets is set to four).

Backward pricing and completion bounds. It is not possible to use bidirectional pricing in the
TDCARP without keeping (and dominating) speed functions on each label (Lera-Romero et al. 2020).
However, we can still obtain completion bounds information from a backward pricing algorithm
considering the maximum speed for each link. From its dynamic programming matrix, we build a
matrix B(i, j, q, t) containing the best reduced cost from the backward paths that end before service
(i, j), with load up to Q− (q− q(i,j)), using time up to dD− (t− Φ̂+

ij)e, where Φ̂+
ij is the servicing

time of (i, j) on maximum speed. We then use this information to fathom forward label L(P ) if
c̄(P ) +B(i(P ), j(P ), q(P ), bt(P )c)≥ 0.

Stabilization. The convergence of the column generation is also improved by applying a dual
stabilization procedure. In this work, we use a simple approach that uses a stabilization factor
α ∈ [0,1[, as in Pessoa et al. (2010). The factor is used on each column generation iteration to
perform a convex combination on the dual information from the last iteration and the current one.
Our procedure starts with a value of 0.9, which gives a higher weight to the last iteration dual
information. When the optimal solution of the pricing algorithm is not a route with a negative
reduced cost, the stabilization factor value is decreased in 0.1, and the pricing algorithm is called
again. This procedure is considered until the factor reaches zero.

Fast heuristic pricing. At the beginning of every column generation iteration, we rely on a fast
heuristic pricing to quickly generate promising columns. This procedure is also based on dynamic
programming, but it only maintains the path with the best reduced cost for every link and load
value (Martinelli et al. 2014). Only when this routine fails to find routes with negative reduced
cost, the column generation calls the exact pricing, starting with the heuristic dominance, and
terminating with the exact dominance.

Branch-and-bound. The column generation method solves the linear relaxation of Formulation
(7–10). Even with the valid inequalities (11) and (12), integer solutions are not guaranteed and a
branch-and-bound approach is required. Thus, whenever a feasible solution is found, we test if this
solution is a valid integer solution by checking the arcs on the required graph. If any arc variable
has a fractional value, we branch. As discussed in Pecin and Uchoa (2019), testing the integrality
on the required graph is sufficient to guarantee the correctness of the solution.

In addition, we use three branching rules, (i) on the deadheaded degree of a vertex v ∈ V , (ii)
on the value of an arc (i, j) ∈ Â, and (iii) on the value of an arc (v,w) ∈ Ã. The first branching
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rule follows the same reasoning as the odd-edge cutset cuts (11). If a vertex v ∈ V has an even (or
odd) number of incident required links, then the number of incident deadheaded links must also
be even (or odd, respectively). The other two branching rules are straightforward. The choice of
branching rules is made using strong branching. A subset of candidates with up to 50 elements is
built, and for each candidate, the column generation is solved using only the fast heuristic pricing.
Let zLc and zRc be the objective value of the left and right siblings of candidate c, respectively. The
procedure selects, as in Røpke (2012), the candidate with highest ranking based on the formula of
Equation (14) with α= 3/4.

Rank(c) = αmin(zLc , z
R
c ) + (1−α)max(zLc , z

R
c ) (14)

A new branch with two nodes is then created, and the entire column generation is solved, including
the valid inequalities. The next node to explore is obtained following the best-bound strategy.

3.4. Hybrid Genetic Search

As observed in our experiments, our branch-cut-and-price algorithm optimally solves most problem
instances with up to 75 services in a few minutes. Still, it fails to solve larger instances due to limited
memory and time. Optimal solutions of this scale are invaluable for experimental comparisons and
validations, but remain insufficient for most applications.

To produce solutions for larger instances as well as initial upper bounds, we introduce an
efficient population-based metaheuristic. Our algorithm follows the same principles as the Unified
Hybrid Genetic Search (UHGS), which effectively combines crossover-based solution generation,
local search, and population-diversity management to produce high-quality solutions for numerous
vehicle-routing and arc-routing problem variants (Vidal et al. 2014). The recent application of the
UHGS principle to the family of arc-routing problems (Vidal 2017) exploits two other key strategies:
1) an indirect solution representation in the local search, in which each route is represented as
a sequence of services, with an exact decoding algorithm to find optimal mode choices, and 2)
efficient lower-bounds to filter non-promising moves in amortized O(1) time. Our adaptation of this
method to the TDCARP requires replacing the solution decoder and lower bounds while retaining
the same solution representation and search operators. For the sake of brevity, we concentrate
our description on the new solution decoder (Section 3.4.1) and lower bounds (Section 3.4.2) and
refer to Vidal (2017) for a description of the general search strategy which remains identical.
Moreover, an open-source implementation of the complete TDCARP algorithm is provided at
https://github.com/vidalt/HGS-TDCARP.

3.4.1. Indirect Solution Representation and Search Space. Indirect solution represen-
tations and decoders have been instrumental in designing state-of-the-art solution approaches for
optimization problems mixing different decision-variables classes (Vidal et al. 2015a, 2016, Vidal
2017, Herszterg et al. 2019, Mecler et al. 2019, Toffolo et al. 2019). As illustrated in Figure 1, the
goal of an indirect solution representation is the same as a projection-based problem decomposition.
By representing the solution with a smaller subset of decision variables and systematically using an
optimal (e.g., dynamic programming-based) decoder to complete the solution, the heuristic searches
a smaller space while the rest of the decisions are taken exactly. This representation simplifies the
solution approach by making it more structured and greatly reduces the approximations inherent
to heuristic search.

The TDCARP combines four classes of decisions: Assignment of services to vehicles, Sequencing
of the services within each route, Mode choices for the services (i.e., choices of directions for the
services on edges), and Path choices between the services. Each of these decision sets contains a
number of options that grows exponentially with the number of services. Moreover, in contrast with
the TDVRP where services correspond to nodes in the network, the quickest paths between the

https://github.com/vidalt/HGS-TDCARP
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INDIRECT  
SOLUTIONS 

Smaller Search Space 
 

COMPLETE  
SOLUTIONS 
 

Exact 
Decoder 
(e.g., DP, 

ILP…) 

Additional decisions, not included in the 
indirect solution representation  

 Figure 1 Indirect solution representation and decoding

extremities of successive edge services in the TDCARP are conditioned by the choices of service
orientations, i.e., the Mode decisions.

To efficiently optimize the Mode decisions, we use the same solution representation as Vidal
(2017), in which a solution is represented as sequences of services (routes) without their mode
information, and systematically use a dynamic programming decoding algorithm to complete the
solutions. Figure 2 compares this representation choice (R-Indirect) with a classical complete
solution representation (R-Complete).

R-Complete R-Indirect

Assignment, Sequences and Modes only Assignment and Sequences

Number of
solutions in
search space

NCVRP× 2|ER|

NCVRP representing the number of solutions
of a CVRP instance with n customers

NCVRP

Decoder

Iterative propagation of time-dependent
travel times (example with k= 3 services):

 

 i j   

σ(2)=(i,j) σ(3) σ(4) σ(|σ|) 
0 0 

σ(1) 

Time-dependent quickest path for a discrete
departure date in an acyclic auxiliary graph
(example with k= 3 services to edges):

 

 i j   

 j i   

σ(1) 
0 

σ(2)=(i,j) σ(3) σ(4) 

0 
σ(|σ|) 

Figure 2 Solution representations, search spaces and decoders

Due to the time-dependent travel times, solution evaluations require to propagate arrival and
service completion times over the auxiliary graph illustrated in Figure 2 (rightmost side). In
R-Indirect, this propagation is done using Bellman’s algorithm in topological order, using the
information of the quickest paths Ψ from the preprocessing step to evaluate the travel times between
edge extremities (black edges on Figure 2), as well as the service time functions Φ̂ (gray edges).
For a route σ = (σ(1), . . . , σ(|σ|)) represented according to R-Indirect as a sequence of services
starting and ending at the depot (such that σ(1) = 0 and σ(|σ|) = 0), the completion time TExact

σ(i) [x]
of each service σ(i) for each mode l ∈Mσ(i) can be calculated as:

TExact
σ(i) [l] =

0 if i= 1

min
k∈Mσ(i−1)

{Φ̂l
σ(i)(Ψ

kl
σ(i−1)σ(i)(T

Exact
σ(i−1)[k]))} otherwise, (15)
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and the route duration is given by TExact
σ(|σ|) [1].

In Equation (15), Ψkl
ij (t) represents the arrival time when leaving the end of service i in mode k

at time t towards the origin of service j in mode l, and Φ̂l
i(t) represents the completion time of

service i in mode l starting at time t. Let CΨ and CΦ̂ be the complexity of querying the arrival time
functions Ψ and the service time functions Φ̂, respectively. With this notation, route evaluations in
R-Indirect take 4kCΨ + 4kCΦ̂ time, in comparison to (k+ 1)CΨ + kCΦ̂ time for R-Complete.
This is a fourfold increase of evaluation effort, but it dramatically reduces the size of the search
space (by a factor 2|ER|) and renders Mode and Path decisions optimal and transparent within
the search. As will be discussed in the next section, the computational effort of route evaluations
can be further mitigated with move filters based on route-cost lower bounds, and their evaluation
by preprocessing and concatenation.

3.4.2. Efficient Local Search. Local searches maintain an incumbent solution s and explore a
neighborhood N (s) obtained by testing some changes on s, called moves. The local search of UHGS
uses a first improvement policy in which N (s) is explored in random order, and any improving move
is directly applied. It uses classical intra-route and inter-route moves: 2-opt, 2-opt*, as well as
Relocate and Swap of 0, 1 or 2 consecutive services with possible reversals, subject to proximity
restrictions (Laporte et al. 2014, Vidal et al. 2013, 2014). We now recall two properties which are
fundamental to efficiently filter moves in the TDCARP, and then proceed with the definition of the
bounds.

Property 3 All the considered moves consist of disconnecting up to two routes of the incumbent
solution s into a constant number of sequences of consecutive visits and concatenating these
sequences in a different order (Vidal et al. 2015b). Preprocessing auxiliary information on the
sequences of consecutive visits from s can help to reduce the evaluation complexity of routes
obtained from their concatenations.

Property 4 Let Π be a move which transforms a pair of routes (σ1, σ2) into (σ′1, σ
′
2). Let Clb(σ)

be a lower bound on the cost of a route σ. If Clb(σ
′
1) +Clb(σ

′
2)−C(σ1)−C(σ2) ≥ 0, then Π is

non-improving and can be filtered out.

Lower bounds on move evaluations for the TDCARP. To efficiently evaluate move lower bounds,
our method uses preprocessing and concatenation principles and therefore maintains auxiliary
information on the sequences of consecutive services from s. More precisely, any sequence of
consecutive visits σ is characterized by a lower bound Tlb(σ)[k, l] on the travel and service time
over σ, starting the first service in mode k and finishing the last service in mode l, for each mode
combination. This information is calculated by induction. It is preprocessed at the start of the local
search and updated after each change in the solution s using a simple lexicographic calculation
method over the services. For a sequence σ containing a single service i, we have:

Tlb(σ)[k, l] =

{
min
t∈[0,D]

{Φ̂k
i (t)− t} if k= l

∞ otherwise.
(16)

In this equation, mint∈[0,D]{Φ̂k
i (t)− t} is a scalar which represents the minimum time needed to

operate service i in mode k. This value can be easily collected from the closed-form service-time
function and subsequently accessed in O(1). Now, these bounds can be evaluated for larger sequences
of services σ1⊕σ2 arising from the concatenation of any two sequences σ1 and σ2:

Tlb(σ1⊕σ2)[k, l] = min
x,y

{
Tlb(σ1)[k,x] + min

t∈[0,D]
{Ψxy

σ1(|σ1|)σ2(1)(t)− t}+ Tlb(σ2)[y, l]

}
. (17)
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Equation (17) provides a lower bound on the shortest time needed to perform σ1 followed by σ2,
starting and finishing in modes k and l respectively. This equation is used to preprocess the data (by
iteratively appending one node) and to evaluate the moves as a concatenation of existing sequences.
It is important to remark that mint∈[0,D]{Ψxy

ij (t)− t} used in this equation represents the value
of the quickest path at the best starting time t between the end extremity of service i in mode x
and the starting extremity of service j in mode y. This value is obtained as a by-product of the
calculation of the continuous quickest-path functions Ψ (prior to the routing optimization phase, as
discussed in Section 3.2). It gives a much tighter travel-time bound than a discrete shortest path
algorithm on the network that fixes arc and edge lengths to their minimum travel time values over
the planning horizon.

Finally, we can strengthen our bound by remarking that, in a route σ1⊕ · · ·⊕σS obtained by the
concatenation of S sequences, the exact arrival time values (without any approximation) over the
first sequence are known from the current incumbent solution s. The resulting lower bound is:

Tlb+(σ1⊕ · · ·⊕σS) = min
x,y

{
Ψxy
σ1(|σ1|)σ2(1)(T

Exact
σ1(|σ1|)[x]) + Tlb(σ2⊕ · · ·⊕σS)[y,1]

}
(18)

For a route composed of S sequences, calculating this lower bound requires four evaluations of
the travel time functions Ψ as well as a constant number of additions proportional to S. The
lower bound evaluation is thus one order of magnitude faster than the exact move evaluation. Our
algorithm first evaluates this lower bound for each route involved in a move and possibly rejects
this move based on Property 4, otherwise it subsequently uses Equation (15) for an exact time
evaluation. In our experiments, this strategy permits to filter 91% of the moves, to such an extent
that exact move evaluations do not represent anymore a search bottleneck.

4. Computational Experiments

We conduct extensive computational experiments with two main objectives.

1) We evaluate the performance of the proposed algorithms as well as the effectiveness of some of
their principal components: the continuous quickest-path procedure, the pricing using heuristic
dominance and completion bounds in the BCP, as well as the efficient structures for travel
time queries and lower bounds used to filter local-search moves in HGS.

2) We measure the impact of time-dependent routing and path optimization, considering different
levels of speed inaccuracies.

4.1. Experimental Setup and Benchmark Instances

All methods from this paper were implemented in C++, using CPLEX 12.8 for the solution of the
master problems and linear programs in our BCP algorithm. The tests were conducted on a single
thread of an Intel Core i7-8700K 3.70GHz CPU.

For our analyses, we generated three classes of TDCARP benchmark instances with different
levels of time dependency. The network information, customer demands, and vehicle capacities
were extracted from the first ten BMCV data sets (C01–C10, from Beullens et al. 2003) built from
Flanders road network, and from ten EGL data sets (Li and Eglese 1996, Brandão and Eglese
2008) associated with a winter gritting case study in Lancashire. For each of these 20 data sets, we
generated three instances with different degrees of time dependency: low (L), medium (M), and
high (H). In each case, the piecewise-constant speed profile vij(t) of each link (i, j) was generated by
randomly selecting six distinct breakpoints in {0.05D,0.1D,0.15D, . . . ,0.95D}, and then randomly
selecting a speed value for each function segment k ∈ {1, . . . ,7} from a uniform distribution U(ak, bk)
parametrized as indicated in Table 1. Finally, we assumed that travel-and-service speed represents
70% of deadheading speed, i.e., v̂ij(t) = 0.7× vij(t) for all (i, j)∈E ∪A, and used the same fleet-size
limit as the original CARP data sets.
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k Type L Type M Type H

1 [0.6,0.9] [0.5,0.8] [0.4,0.7]

2 [0.8,1.0] [0.7,1.0] [0.6,1.0]

3 [1.0,1.3] [1.0,1.4] [1.0,1.6]

4 [0.9,1.1] [0.8,1.2] [0.7,1.3]

5 [1.0,1.3] [1.0,1.4] [1.0,1.6]

6 [0.8,1.0] [0.7,1.0] [0.6,1.0]

7 [0.6,0.9] [0.5,0.8] [0.4,0.7]

Table 1 Parameters [ak, bk] for the generation of the speed scenarios

4.2. Performance of the Time-dependent Quickest Path Algorithm

We evaluate the performance of the continuous quickest-path algorithm presented in Section 3.2.
Since this algorithm is only run during preprocessing, its results may be retained for successive
routing solutions (e.g., for different customer sets) as long as the speed estimates are unchanged.
Figure 3 reports the total CPU time spent by the algorithm as well as the average number of
function pieces in the resulting Φ functions (over all origin-destination pairs) for each of the three
instance categories. To evaluate the asymptotical behavior of the algorithm, we fitted these values
as a power-law f : |V | → α|V |β via a least-squares regression of an affine function on the log-log
graph.
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Figure 3 Performance of the continuous quickest path algorithm for instances with low (L), medium (M) and
high (H) time dependency

Based on these results, we observe that the magnitude of the time dependency (L, M, and H)
has only a limited impact on the performance of the quickest-path algorithm. The time needed
to preprocess the continuous quickest-paths for all origin-destination pairs grows as |V |x with
2.65≤ x≤ 2.72 and remains smaller than 40 seconds on all test instances. Moreover, the average
number of function pieces for all origin-destination pairs only grows in |V |0.56, reaching approximately
100 pieces in the largest instances. These average-case observations contrast with worst-case analyzes
predicting an exponential growth (Foschini et al. 2014). To further reduce the preprocessing time
whenever needed, the quickest-path algorithm could also be applied in parallel (calculating quickest-
paths from different origins on different processors), or replaced by more sophisticated approaches
based on contraction hierarchies (Batz et al. 2013, Bast et al. 2016).
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4.3. Performance of the Branch-Cut-and-Price Algorithm

Next, we evaluate the performance of the BCP algorithm. Tables 2 to 4 present its computational
performance for the low, medium, and high time dependency instances, excluding the largest two
data sets from Brandão and Eglese (2008) with 347 and 375 services, for which the root-node CG
could not be completed. The results are divided into two groups: Root Node and Branch-Cut-
and-Price. In each group, columns LB, Gap, and T(s) respectively represent the lower bound, the
percentage gap, and the time in seconds. For the complete BCP algorithm, the additional columns
UB, NE, NH, R, and C represent the upper bound, the number of BCP nodes explored with exact
pricing, the number of BCP nodes explored with the fast heuristic pricing during strong branching,
the number of routes and cuts. The percentage gaps are calculated as 100 × (UB – LB) / LB. It is
also important to observe that the BCP algorithm starts with the UB found by the metaheuristic,
and that no further improvement on this solution was obtained for any instance.

Root Node Branch-Cut-and-Price

Inst |ER| LB Gap T(s) LB UB Gap T(s) NE NH R C

C01 79 2350.97 1.28% 55.26 2365.23 2381.01 0.67% 21599.70 163 4870 20074 748

C02 53 1869.36 0.26% 13.16 1874.24 1874.24 0.00% 131.24 15 432 4246 200

C03 51 1592.70 0.60% 41.03 1602.26 1602.26 0.00% 549.93 19 480 4956 211

C04 72 1953.48 0.31% 131.38 1959.58 1959.58 0.00% 4377.85 39 1191 12658 373

C05 65 2485.97 0.94% 26.57 2509.43 2509.43 0.00% 18320.00 183 5620 16306 596

C06 51 1570.26 0.15% 29.11 1572.59 1572.59 0.00% 371.37 13 393 6204 199

C07 52 2058.63 0.58% 16.80 2070.49 2070.49 0.00% 277.25 17 501 4165 345

C08 63 1880.55 1.02% 21.27 1899.67 1899.67 0.00% 2191.33 87 2596 8482 604

C09 97 3329.41 0.63% 304.26 3345.64 3350.24 0.14% 21599.70 118 3586 17581 759

C10 55 2126.94 1.71% 5.81 2163.26 2163.26 0.00% 660.77 79 2317 5378 478

Avg C 2121.83 0.75% 64.46 2136.24 2138.28 0.08% 7007.91 73 2199 10005 451

egl-e1 51 1618.94 0.56% 41.58 1627.97 1627.97 0.00% 877.12 33 852 5049 244

egl-e2 72 2327.27 0.67% 138.07 2339.52 2342.83 0.14% 21599.70 230 6711 11970 630

egl-e3 87 2875.33 1.01% 255.83 2895.57 2904.36 0.30% 21599.70 191 5575 12574 811

egl-e4 98 3305.87 1.07% 270.04 3323.42 3341.41 0.54% 21599.70 219 6383 11013 832

egl-s1 75 2289.11 0.25% 256.43 2294.85 2294.85 0.00% 2489.01 25 714 6352 414

egl-s2 147 4361.29 0.49% 886.99 4369.29 4382.64 0.31% 21598.50 101 2991 10778 1986

egl-s3 159 4608.44 0.55% 1750.46 4615.94 4633.79 0.39% 21598.50 59 1677 9489 903

egl-s4 190 5470.11 1.21% 1573.58 5477.57 5536.26 1.07% 21598.40 62 1757 9900 1187

Avg egl 3357.05 0.73% 646.62 3368.02 3383.01 0.34% 16620.08 115 3333 9641 876

Table 2 Performance of the BCP algorithm on low time-dependency instances.

These results show that the amount of time-dependency has some impact on the BCP algorithm.
With low time-dependency, eight optimal solutions are obtained for the instances C01–C10 and two
for the EGL instances, leading to ten optimal solutions overall out of the 20 instances. In comparison,
nine and eight optimal solutions have been found for the medium and high time-dependency cases,
respectively. A study of the relative gaps confirms our observations: for the low time-dependency
case, an average relative gap of 0.74% is achieved at the root node, with a final average gap of
0.26%. In contrast, the root node gap increases to 0.85% and 1.02% for the medium and high
time-dependency cases, and the final average gap rises to 0.28% and 0.37%. We also noted that the
number of non-dominated labels explored during pricing at the root node is 30% larger, on average,
on the instances of type H than on the instances of type L. Finally, only a single call to the exact
pricing algorithm was needed for 98.37% of the nodes in type-L instances (i.e., only to prove that
the CG is completed), whereas this ratio drops to 77.61% for type-H instances.
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Root Node Branch-Cut-and-Price

Inst |ER| LB Gap T(s) LB UB Gap T(s) NE NH R C

C01 79 2401.73 0.92% 92.07 2417.71 2423.80 0.25% 21599.70 169 5009 18296 807

C02 53 1882.00 0.75% 13.90 1896.14 1896.14 0.00% 1049.45 69 2129 7879 367

C03 51 1626.26 0.71% 67.76 1637.80 1637.80 0.00% 1082.72 27 762 5768 209

C04 72 1986.64 0.51% 110.18 1996.75 1996.75 0.00% 5089.53 53 1538 13986 427

C05 65 2504.32 0.57% 21.58 2518.55 2518.55 0.00% 199.43 17 478 3630 258

C06 51 1581.11 0.06% 35.10 1582.08 1582.08 0.00% 100.40 5 120 3483 149

C07 52 2095.72 1.09% 18.62 2118.61 2118.61 0.00% 822.74 55 1595 5980 427

C08 63 1922.56 1.18% 17.48 1945.23 1945.23 0.00% 1975.13 97 2822 7438 562

C09 97 3368.35 1.16% 507.60 3389.81 3407.54 0.52% 21599.70 130 3932 15574 742

C10 55 2163.62 2.03% 5.62 2207.63 2207.63 0.00% 1472.44 149 4482 6730 555

Avg C 2153.23 0.90% 88.99 2171.03 2173.41 0.08% 5499.12 77 2287 8876 450

egl-e1 51 1645.35 0.48% 45.46 1653.19 1653.19 0.00% 1446.37 41 1082 4811 252

egl-e2 72 2374.09 0.79% 184.52 2388.03 2392.91 0.20% 21599.70 213 6396 10608 701

egl-e3 87 2925.54 1.04% 222.93 2946.82 2956.03 0.31% 21599.60 215 6232 12588 584

egl-e4 98 3415.99 1.03% 367.68 3430.98 3451.16 0.59% 21599.70 203 5939 10310 566

egl-s1 75 2368.82 0.55% 328.14 2378.22 2381.80 0.15% 21598.60 177 5269 13931 653

egl-s2 147 4490.65 0.53% 975.90 4501.01 4514.46 0.30% 21598.50 129 3825 10822 1330

egl-s3 159 4746.62 0.58% 2405.09 4753.27 4774.16 0.44% 21598.40 37 1089 8630 935

egl-s4 190 5606.52 1.32% 3525.89 5612.43 5680.67 1.22% 21598.40 47 1373 9877 1470

Avg egl 3446.70 0.79% 1006.95 3457.99 3475.55 0.40% 19079.91 133 3901 10197 811

Table 3 Performance of the BCP algorithm on medium time-dependency instances.

Root Node Branch-Cut-and-Price

Inst |ER| LB Gap T(s) LB UB Gap T(s) NE NH R C

C01 79 2416.45 1.15% 82.77 2431.77 2444.24 0.51% 21599.80 213 6211 18006 701

C02 53 1877.57 0.65% 24.79 1889.78 1889.78 0.00% 281.57 29 915 4584 223

C03 51 1637.28 0.62% 77.36 1647.38 1647.38 0.00% 1400.63 27 773 5474 151

C04 72 1988.62 1.20% 102.67 2010.97 2012.42 0.07% 21599.80 155 4470 21694 609

C05 65 2484.81 0.83% 16.81 2505.37 2505.37 0.00% 8776.53 253 7784 12179 509

C06 51 1563.85 0.15% 44.35 1566.24 1566.24 0.00% 225.20 9 216 3939 154

C07 52 2124.90 1.34% 14.53 2153.38 2153.38 0.00% 2118.14 123 3584 7313 395

C08 63 1938.63 1.09% 17.82 1959.71 1959.71 0.00% 4523.27 147 4303 9396 563

C09 97 3362.46 1.74% 645.53 3384.05 3420.94 1.09% 21599.70 132 3962 13146 564

C10 55 2178.21 2.29% 6.54 2228.00 2228.00 0.00% 12399.90 361 10873 10910 821

Avg C 2157.28 1.10% 103.32 2177.67 2182.74 0.17% 9452.45 145 4309 10664 469

egl-e1 51 1659.50 0.71% 53.88 1671.31 1671.31 0.00% 1519.80 51 1401 4353 247

egl-e2 72 2406.54 1.00% 176.47 2426.65 2430.55 0.16% 21599.60 236 7010 9232 504

egl-e3 87 2950.62 0.95% 285.06 2969.42 2978.79 0.32% 21599.70 229 6693 10822 587

egl-e4 98 3524.30 0.89% 601.84 3537.15 3555.56 0.52% 21599.60 133 3992 8941 575

egl-s1 75 2402.08 0.88% 515.27 2417.04 2423.32 0.26% 21598.60 195 5727 10668 644

egl-s2 147 4602.66 0.82% 1499.58 4613.70 4640.30 0.58% 21598.50 89 2665 9846 1073

egl-s3 159 4808.35 0.66% 1717.51 4816.24 4840.15 0.50% 21598.50 84 2509 8636 965

egl-s4 190 5694.69 1.35% 5239.66 5700.98 5771.63 1.24% 21598.50 37 1147 9706 1100

Avg egl 3506.09 0.91% 1261.16 3519.06 3538.95 0.45% 19089.10 132 3893 9026 712

Table 4 Performance of the BCP algorithm on high time-dependency instances.

Sensitivity analysis. Our BCP relies on new methodological components that were carefully
tailored for the TDCARP. We evaluate the impact of two key strategies: the exact pricing using
heuristic dominance (HD) and the backward pricing + completion bounds (CB). Therefore, we
compare BCP with two alternative configurations named BCP-noHD and BCP-noCB in which
these components were deactivated. Tables 5 and 6 analyze the computational time of the three
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methods on the 27 instances which can be solved to optimality, as well as their final optimality gap
on the remaining open instances.

T(s) BCP BCP-noHD BCP-noCB

Median 1400.63 1637.62 3588.61

Average 2767.74 2965.61 5964.68

# Better — 20 27

# Equal — 0 0

# Worse — 7 0

Table 5 Comparison: Computational time

Gap(%) BCP BCP-noHD BCP-noCB

Median 0.39 0.40 0.55

Average 0.48 0.48 0.60

# Better — 13 27

# Equal — 5 0

# Worse — 9 0

Table 6 Comparison: Final gap

As visible in this sensitivity analysis, the use of the exact pricing with heuristic dominance
contributes to a reduction of computational effort on 20 instances out of 27. Its effectiveness remains
still limited by the necessity of exact dominance to complete the pricing process. In contrast, the
contribution of the backward pricing and completion bounds is visible for all instances, as it directly
impacts the computational efficiency of the exact dominance phase. This approach considerably
speeds up the solution process, permitting a more thorough search until the time limit and a
substantial reduction of the final gap on open instances.

4.4. Performance of the Hybrid Genetic Search

To evaluate the performance of the HGS, we run it ten times with different seeds on all instances,
and compare its solutions with the lower bounds and optimal solutions (LB/Opt) obtained by
the BCP. Tables 7 to 9 report the results of this experiment. The leftmost columns report the
instance names, number of services, and the known LB/Opt solution. Known optimal solutions are
highlighted in boldface. The next columns report the CPU time spent calculating the quickest-path
information. Finally, the remaining columns report the average and best solution quality of the
HGS over the ten runs, the gap between the average and best solution values of the HGS, the gap
between the average solution values of the HGS and the LB/Opt, and finally the CPU time of
the HGS.

As visible in these experiments, the HGS produces solutions of consistently good quality within
a limited computational effort. 26 out of 27 optimal solutions have been attained on every run,
whereas the optimal solution of the remaining instance (M-C05) has been attained on six runs out
of ten. For the remaining instances which have no known optimum, the HGS finds average solutions
that are guaranteed to be no further than 1.46% from the optimum, based on the available lower
bounds. The gap between average and best solutions over ten runs amounts to 0.08% on average
over all instances. This shows that the solution quality of the algorithm is stable over multiple
executions. The HGS takes an average time of five minutes for the BMCV instances (C01–C10)
and 31 minutes for the EGL instances. Faster runs could be achieved, if needed, by reducing the
termination criterion, the population size, or by parallelizing some operations (e.g., generating
multiple solutions in parallel). Finally, the level of time dependency has only a minor impact on
computational performance: comparing the results on the instances with low (L) and high (H) time
dependency, we observe a moderate increase of CPU time (by 24%) but no significant deterioration
of solution quality.

Next, we analyze the move lower bounds used to quickly filter non-improving moves (Equation 18)
and the bucket structure used for fast travel times queries. Figure 4 represents, for each time-
dependency level and instance, the percentage of moves that needed exact evaluation, and the
percentage of travel time queries that needed a binary search.
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BCP SP HGS

Inst |ER| LB/Opt T(s) Best Avg Gap GapLB T(s)

C01 79 2365.23 0.87 2381.01 2381.16 0.01% 0.67% 556.31

C02 53 1874.24 0.34 1874.24 1874.24 0.00% 0.00% 119.40

C03 51 1602.26 0.33 1602.26 1602.26 0.00% 0.00% 183.26

C04 72 1959.58 0.63 1959.58 1959.58 0.00% 0.00% 256.15

C05 65 2509.43 0.49 2509.43 2509.43 0.00% 0.00% 166.92

C06 51 1572.59 0.23 1572.59 1572.59 0.00% 0.00% 282.54

C07 52 2070.49 0.47 2070.49 2070.49 0.00% 0.00% 105.58

C08 63 1899.67 0.79 1899.67 1899.67 0.00% 0.00% 129.31

C09 97 3345.64 1.18 3350.24 3350.24 0.00% 0.14% 479.55

C10 55 2163.26 0.58 2163.26 2163.26 0.00% 0.00% 104.42

Avg C 0.59 0.00% 0.08% 238.34

egl-e1 51 1627.97 1.10 1627.97 1627.97 0.00% 0.00% 149.81

egl-e2 72 2339.52 1.15 2342.83 2342.83 0.00% 0.14% 346.51

egl-e3 87 2895.57 1.12 2904.36 2906.18 0.06% 0.37% 423.22

egl-e4 98 3323.42 1.11 3341.41 3341.67 0.01% 0.55% 694.42

egl-s1 75 2294.85 6.86 2294.85 2294.85 0.00% 0.00% 298.37

egl-s2 147 4369.29 7.06 4382.64 4383.58 0.02% 0.33% 1195.87

egl-s3 159 4615.94 6.70 4633.70 4641.87 0.18% 0.56% 3181.89

egl-s4 190 5477.57 7.05 5524.07 5547.14 0.42% 1.27% 3520.23

egl-g1 347 — 25.17 5659.43 5667.57 0.14% — 3600.12

egl-g2 375 — 28.49 6543.11 6571.46 0.43% — 3600.13

Avg egl 8.58 0.13% 1701.06

Table 7 Performance of the HGS on low time-dependency instances.

BCP SP HGS

Inst |ER| LB/Opt T(s) Best Avg Gap GapLB T(s)

C01 79 2417.71 0.93 2423.80 2423.80 0.00% 0.25% 522.30

C02 53 1896.14 0.34 1896.14 1896.14 0.00% 0.00% 140.61

C03 51 1637.80 0.32 1637.80 1637.80 0.00% 0.00% 247.90

C04 72 1996.75 0.69 1996.75 1996.75 0.00% 0.00% 378.12

C05 65 2518.55 0.51 2518.55 2522.22 0.15% 0.15% 210.63

C06 51 1582.08 0.24 1582.08 1582.08 0.00% 0.00% 323.53

C07 52 2118.61 0.42 2118.61 2118.61 0.00% 0.00% 129.54

C08 63 1945.23 0.85 1945.23 1945.23 0.00% 0.00% 182.00

C09 97 3389.81 1.22 3407.54 3408.20 0.02% 0.54% 574.99

C10 55 2207.63 0.59 2207.63 2207.63 0.00% 0.00% 132.52

Avg C 0.61 0.02% 0.09% 284.21

egl-e1 51 1653.19 1.17 1653.19 1653.19 0.00% 0.00% 211.29

egl-e2 72 2388.03 1.47 2392.91 2392.91 0.00% 0.20% 443.84

egl-e3 87 2946.82 1.16 2956.03 2957.30 0.04% 0.36% 811.01

egl-e4 98 3430.98 1.18 3451.16 3451.35 0.01% 0.59% 873.82

egl-s1 75 2378.22 7.07 2381.80 2382.21 0.02% 0.17% 846.49

egl-s2 147 4501.01 6.95 4514.46 4518.89 0.10% 0.40% 1696.38

egl-s3 159 4753.27 7.03 4774.16 4784.27 0.21% 0.65% 2945.21

egl-s4 190 5612.43 7.22 5663.44 5684.34 0.37% 1.28% 3431.32

egl-g1 347 — 26.54 5776.54 5794.02 0.30% — 3600.16

egl-g2 375 — 27.50 6702.28 6743.45 0.61% — 3600.17

Avg egl 8.73 0.17% 1845.97

Table 8 Performance of the HGS on medium time-dependency instances.
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BCP SP HGS

Inst |ER| LB/Opt T(s) Best Avg Gap GapLB T(s)

C01 79 2431.77 1.01 2444.24 2444.63 0.02% 0.53% 937.36

C02 53 1889.78 0.35 1889.78 1889.78 0.00% 0.00% 189.71

C03 51 1647.38 0.35 1647.38 1647.38 0.00% 0.00% 398.39

C04 72 2010.97 0.68 2012.42 2012.42 0.00% 0.07% 400.12

C05 65 2505.37 0.53 2505.37 2505.78 0.02% 0.02% 242.49

C06 51 1566.24 0.24 1566.24 1566.24 0.00% 0.00% 331.34

C07 52 2153.38 0.46 2153.38 2153.38 0.00% 0.00% 217.34

C08 63 1959.71 0.88 1959.71 1959.71 0.00% 0.00% 216.92

C09 97 3384.05 1.31 3420.94 3421.60 0.02% 1.11% 927.25

C10 55 2228.00 0.62 2228.00 2228.00 0.00% 0.00% 174.13

Avg C 0.64 0.01% 0.17% 403.50

egl-e1 51 1671.31 1.27 1671.31 1671.31 0.00% 0.00% 289.68

egl-e2 72 2426.65 1.30 2430.55 2430.55 0.00% 0.16% 557.60

egl-e3 87 2969.42 1.27 2978.79 2979.35 0.02% 0.33% 907.83

egl-e4 98 3537.15 1.27 3555.56 3555.65 0.00% 0.52% 1082.23

egl-s1 75 2417.04 7.23 2423.32 2423.32 0.00% 0.26% 754.46

egl-s2 147 4613.70 7.28 4640.30 4653.51 0.28% 0.86% 2171.17

egl-s3 159 4816.24 7.43 4840.15 4855.75 0.32% 0.82% 3461.12

egl-s4 190 5700.98 7.75 5766.76 5784.47 0.31% 1.46% 3600.04

egl-g1 347 — 35.29 5834.33 5849.39 0.26% — 3600.21

egl-g2 375 — 30.88 6827.08 6846.86 0.29% — 3600.26

Avg egl 10.10 0.15% 2002.46

Table 9 Performance of the HGS on high time-dependency instances.
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Figure 4 Proportion of filtered moves and avoided binary searches in HGS

As visible in these results, Equation (18) allows to filter 91% of the moves on average. The
quality of the lower bounds depends on the amount of time dependency. For low time-dependency
instances (type L), 96% of the moves are filtered on average, whereas this number drops to 87% for
high time-dependency instances (type H). The bucket structures are also very effective, allowing to
complete 90% of the queries without binary search, regardless of the time dependency level.

Both of the previously mentioned components contribute to speed up critical operations repre-
senting the bottleneck of the HGS. To highlight more directly their impact, Figure 5 compares
the CPU time of HGS on the instances C01–C10 with that of three alternative algorithm variants
obtained by deactivating the move filters (HGS-noF), the bucket data structures (HGS-noB), or
both of those (HGS-noBF). As shown by this experiment, the use of the move filters diminishes
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the computational effort by a factor five, while these two simple techniques jointly reduce the
computational time by a factor ten on average, reaching up to 20 for some instances. This time
reduction allows to perform a much larger number of iterations within a reasonable time budget,
therefore transforming speed-ups into quality gains.
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Figure 5 Impact of the move filters and bucket-based function queries on the search time

4.5. The Value of Time-dependent Route and Path Optimization

In a final experiment, we compare the solutions of the TDCARP and CARP algorithms in the
presence of inaccurate speed information. For this analysis, we focus on the data sets C01–C10 for
each time-dependency level (L, M, and H). For each of these 30 instances, we consider five levels of
inaccuracy and generate each time 20 travel-time scenarios by replacing the speed vij(t) of each
travel (and service) speed function piece by a value v′ij(t) =Cvij(t), in which coefficient C is sampled
from a truncated normal distribution centered on 1, with standard deviation σ and truncation
range [1−σ,1 +σ]. Each level of inaccuracy corresponds to a different σ in {0.05,0.1,0.2,0.4,0.6}.

We assume that only the original speed information vij is available to the TDCARP optimization
algorithm, whereas the CARP algorithm assumes uniform speed in the network. We measure the
average quality of the solutions produced by the two methods over the 20 randomized scenarios.
This solution quality is then translated into an average error gap relative to the baseline TDCARP
solutions obtained by running HGS with perfect knowledge of the speed conditions v′ij on each
scenario. Figure 6 displays the result of this experiment, illustrating the average gap of the two
methods on the five groups of scenarios and three instance types. The gap between the CARP
and TDCARP solutions is grayed-out on the figure. It represents the value of time-dependent
optimization.

As confirmed by these experiments, the accuracy of the speed information has an impact on
TDCARP solutions. Inaccurate speed profiles naturally lead to larger gaps relative to the baseline.
The grayed-out regions of Figure 6 represent possible improvements that can be achieved by
time-dependent routing optimization, whereas the regions below the TDCARP curve represent
possible improvements which can arise by improving speed data collection processes.

It is noteworthy that TDCARP solutions always improve upon CARP solutions, even in settings
with very inaccurate knowledge of travel speeds (scenario 5 with σ = 0.6). Indeed, even in those cases,
imperfect speed estimates give a better approximation of real scenarios than uniform speeds. Small
inaccuracies (e.g., configurations with σ≤ 0.2) do not reduce the edge of TDCARP optimization,
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Figure 6 The value of time-dependent routing, considering five level of speed information inaccuracy

with gaps below 1.38% in all cases relatively to the baseline. In contrast, merely omitting time
dependency and using average speeds instead leads to a dramatic increase of travel time, which
amounts to 6.28% on average for these scenarios, and rises up to 9.32% in high time-dependency
cases (type H, scenario 3). Overall, despite data inaccuracies, time-dependent optimization remains
essential for a good operational performance.

5. Conclusions and Perspectives

Time-dependent travel times defined at the network level pose significant challenges for solution
algorithms. They dramatically increase the (methodological and computational) complexity of
travel-time queries and significantly weaken label dominance in column generation-based approaches.
Nevertheless, we demonstrated that these challenges can be overcome with dedicated solution
strategies, including solution-decoding algorithms, move filters, heuristic dominance, enhanced
pricing, and completion bounds. These methodological components allows us to solve small- to
medium size-problems to optimality, and to produce good heuristic solutions for larger instances
with several hundred services.

Our experiments demonstrate that time-dependent optimization is essential to slash down routing
costs, even in scenarios in which speed information is inaccurate. This observation encourages us to
use time-dependent routing algorithms in a broader range of applications, including cases with less
accurate data sources (Bertsimas et al. 2019).

The research perspectives are numerous. Firstly, our solution evaluations with inaccurate speed
assumed that the routes should be fully defined at the start of the operations. As also mentioned
in Gendreau et al. (2015), a meaningful research line concerns the investigation of stochastic or
dynamic routing problem, in which the travel-speed information collected during the day is used
to rearrange customer-visit orders. Secondly, time-dependency dramatically weakens dominance
relationships in column generation based methods, now based on simultaneous time and cost
comparisons. A similar issue arises when considering generalized vehicle routing problems with time
windows in which travel time and cost are not directly proportional (Ben Ticha et al. 2019). New
methodological contributions are needed for these problems: better dominance rules, reduced-cost
fixing techniques and completion-bounds may help. Finally, although we focused on arc-routing
settings, we remind that an adequate management of time-dependent travel times at the network
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level remains a key issue for the entire vehicle routing community, and that most of the solution
strategies listed in this paper are extensible to this broader context.
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Appendix A: Standard Iterative Algorithm for Arrival-Time Queries

Algorithms 3 and 4 allow to calculate Φij(ti) and Φ−1ij (tj). We denote vij(t
−) = limx→t− vij(x) and vij(t

+) =
limx→t+ vij(x). These algorithms have been commonly used in the time-dependent vehicle routing literature
(Ichoua et al. 2003). Their worst case complexity grows linearly with the number of pieces in the speed
functions (in O(hij)).

Algorithm 3: Calculation of Φij(ti)

t← ti
d← dij
k← arg min{x | tx > ti}
tj← t+ d/vij(t

+)
while tj > tk do

d← d− vij(t+)× (tk− t)
t← tk
k← k+ 1
tj← t+ d/vij(t

+)

return tj

Algorithm 4: Calculation of Φ−1
ij (tj)

t← tj
d← dij
k← arg max{x | tx < tj}
ti← t− d/vij(t−)
while ti < tk do

d← d− vij(t−)× (t− tk)
t← tk
k← k− 1
ti← t− d/vij(t−)

return ti

Appendix B: Title Appendix B

In the following examples, we demonstrate that time differences can arbitrarily diminish over a path.
Consider two partial paths P1 and P2 currently finishing on the same service arc (1,2) with Φ(P1) = 1 and
Φ(P2) = 5. Both paths are extended on a sequence of three additional services (2,3)→ (3,4)→ (4,5) with
service-and-travel speed functions defined as:

v̂23(t) =

{
1 if t∈ [0,5]

2 otherwise
v̂34(t) =

{
1 if t∈ [0,7]

2 otherwise
v̂45(t) =

{
1 if t∈ [0,8]

2 otherwise

With these parameters, label P1 will complete the services to (2,3), (3,4) and (4,5) at time 5, 7 and 8
respectively, whereas label P2 will complete the same services at time 7, 8 and 8.5. The original time difference
of ∆ = 4 units between the two labels has been reduced to 0.5 units only after three services, and a trivial

generalization of this example shows that it can diminish to ∆
(
vmin
vmax

)x
after x service or travel links, where

vmin and vmax are the minimum and maximum possible speed values (here vmin = 1 and vmax = 2).
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