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Ride-pooling, which accommodates multiple passenger requests in a single trip, has the potential to signif-

icantly increase fleet utilization in shared mobility platforms. The ride-pooling assignment problem finds

optimal co-riders to maximize the total utility or profit on a shareability graph, a hypergraph represent-

ing the matching compatibility between available vehicles and pending requests. With mixed fleets due to

the introduction of automated or premium vehicles, fleet sizing and relocation decisions should be made

before the requests are revealed. Due to the immense size of the underlying shareability graph and demand

uncertainty, it is impractical to use exact methods to calculate the optimal trip assignments. Two approx-

imation algorithms for mid-capacity and high-capacity vehicles are proposed in this paper; the respective

approximation ratios are 1
p2

and e−1
(2e+o(1))p lnp

, where p is the maximum vehicle capacity plus one. The per-

formance of these algorithms is validated using a mixed autonomy on-demand mobility simulator. These

efficient algorithms serve as a stepping stone for a variety of multimodal and multiclass on-demand mobility

applications.

Key words : ride-pooling assignment problem, approximation algorithm, mixed autonomy traffic

1. Introduction

Shared mobility fosters an ecosystem of connected travelers, disruptive vehicle technologies, and

intelligent transportation infrastructure (Shaheen et al. 2017, Ke, Yang, and Zheng 2020). The

platform aims to maximize vehicle fleet utilization by combining multiple requests into a single trip
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while minimizing the quality of service degradation. We term the process of assigning trip requests

to available vehicles the ride-pooling assignment problem, a notion generalized from the ride-pooling

option in ride-hailing services (Santi et al. 2014), whereas the underlying business model can vary

from microtransit to shared autonomous vehicles. Efficient ride-pooling assignment algorithms must

balance between maximizing the platform’s profits, improving the utility of passengers and drivers,

and reducing total energy usage and emissions. Developing innovative ride-pooling assignment

algorithms that meet the vast scales of customers and vehicles has been a significant research task

in the burgeoning shared mobility industry.

When shared mobility applications migrate from the private to public sectors, the computa-

tional challenge of the ride-pooling assignment problem rises inevitably with the increasing vehicle

capacity. Most heuristic methods focus on operating ride-pooling with at most two or three groups

of customers (Santi et al. 2014, Ke et al. 2021, Erdmann, Dandl, and Bogenberger 2021, Sundt

et al. 2021). Emerging shared mobility applications, such as microtransit, will operate high-capacity

vehicle fleets (between 8 and 14 passengers per vehicle) and will necessitate more scalable algo-

rithms (Markov et al. 2021, Hasan and Van Hentenryck 2021, Tafreshian et al. 2021). Per this

study, a platform can benefit from operating mixed vehicle fleets to accommodate various cus-

tomer preferences. However, including more types of services complicate fleet operations because

of this uncertain customer preference. Now we introduce the Stochastic Ride-pooling Assignment

with Mixed Fleets (SRAMF) problem that arises with the diversification of vehicle fleets in shared

mobility platforms.

1.1. Overview of the SRAMF Problem

The SRAMF problem extends the scalable framework developed for the deterministic ride-pooling

assignment for homogeneous fleets in Santi et al. (2014), Alonso-Mora et al. (2017). The main idea

here is to decouple routing and trip-to-vehicle assignment into two sequential tasks based on the

notion of “shareability graphs”. Given a batch of trip requests and available vehicles in each time

interval, the procedure guarantees the anytime optimality (Alonso-Mora et al. 2017) such that

the resulting ride-pooling assignments attain the exact optimal solution to the joint problem (see

Appendix B.1). The procedure is summarized as follows:

1. First, it constructs a shareability graph that describes the matchable relationship between all

trip requests (demand) and available vehicles (supply) in each batch (see Figure 2) and compute

the associated values of each route.

2. Next, the platform solves a general assignment problem (GAP) on this graph that maximizes

the total matching value.

3. Finally, the shareability graph is updated by removing occupied vehicles and assigned demand

and inserting arriving requests and available vehicles.
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Our research focuses on the stochastic extension of the assignment problem (step 2 above). We

defer the discussion on constructing shareability graphs (step 1 above) to Appendix B. There, we

describe a sequence of matching rules that can construct a hierarchical tree of matchable requests

and significantly reduce the computational time. We show that the framework is computationally

efficient and can be deployed with a rolling horizon with demand forecast (Yang et al. 2020) as

well as varying time intervals (Qin et al. 2021).

While using the shareability graph can reduce the computational burden of solving dial-a-ride

problems, deploying this framework with mixed fleets is nontrivial. Blending two or more types of

vehicle fleets leads to new operational challenges due to uncertainty. SRAMF is a natural yet sig-

nificant generalization of the ride-pooling assignment problem, which is motivated by the following

applications:

Example 1: A platform provides several classes of mobility services for various market segments.

For example, Uber operates a standard service (UberX) alongside a luxury service (Uber Black). In

most instances, the platform tends to match customers with the requested vehicle class. However,

if there are excessive demands in the standard class, it may be more advantageous for the platform

to dispatch vehicles from the luxury class to the standard class to avoid reneging.

Example 2: A ride-hailing platform hires drivers as either permanent employees or freelancers

(Dong et al. 2021). The platform pays a fixed hourly rate to its permanent employees and pays

freelancers per finished trip. As a result, the platform needs to determine the priority of drivers in

the ride-pooling assignment to facilitate the long-term hiring strategy for permanent employees.

Example 3: A shared mobility platform operates both fully automated vehicles (AVs) and conven-

tional human-driven vehicles (CVs) for on-demand mobility services (Wei, Pedarsani, and Coogan

2020). Operating a mixed autonomy platform faces two potential obstacles (see Figure 1). First,

customers may prefer or trust one type of vehicle more than the other type (Lavieri and Bhat

2019). Second, AVs requiring dedicated road infrastructure may induce different pickup times and

restrict the serviceable areas (Shladover 2018, Chen et al. 2017a).

These examples address the importance of investigating the mixed-fleet operations problems. The

platform’s decision in SRAMF is twofold: determining each supply source’s fleet size and location,

which is termed the vehicle selection decision, and identifying potential ride-pooling assignments.

The introduction of mixed fleets creates an endogenous source of stochasticity. The platform must

make the vehicle selection decision before the actual demands are revealed (the detailed procedure

is described in Figure 2).

It is critical to quantify how these sources of uncertainty affect the efficacy of ride-pooling

assignment. For example, the platform with mixed autonomy fleets can only direct AVs to specific

regions with roadside units or other road infrastructure (Chen et al. 2017b). If the number of AVs
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Figure 1 Example of ride-pooling with AVs and CVs. The first-stage decision is positioning vehicles in dedicated

regions; The second-stage decisions are solving the assignment problem.

in each region does not match the estimated demand in the first stage, vehicle repositioning in the

second stage is time-consuming and detrimental to the platform’s profitability.

1.2. Main Results and Contribution

The study’s primary objectives are to explain why solving the SRAMF problem is computationally

intractable and to develop approximation algorithms for different vehicle fleets.

1. We prove that that SRAMF is NP-hard with any finite number of scenarios. Moreover, its

objective does not have favorable submodular properties, which necessitates the development of

new approximation algorithms.

2. Let p denote the largest vehicular capacity plus one. For mid-capacity vehicles, we develop a

local-search-based approximation algorithm with approximation ratio of 1
p2

.

3. For high-capacity vehicles, we develop a primal-dual approximation algorithm with approxi-

mation ratio of e−1
(2e+o(1))p lnp

.

These polynomial-time algorithms leverage the special structure of shareability graphs to reduce

the iteration load of evaluating different positioning policies in the first stage. Mid-capacity vehicles

can carry less or equal to four requests, suitable for applications in Example 1 and Example 2. High-

capacity vehicles can carry more than four requests, suitable for on-demand shuttles in Example 3.

These approximation ratios are close to the best possible: no polynomial-time algorithm can achieve

a ratio better than O( lnp
p

), under standard complexity assumptions.

This work focuses on the profit-maximization setting not only because of the practical concerns

(Ashlagi et al. 2018, Simonetto, Monteil, and Gambella 2019) but also because developing approx-

imation algorithms for maximizing GAPs is generally a more challenging task than minimizing

GAPs (Fleischer et al. 2006). This study contributes to the growing literature on the operations

of ridesharing and other mobility-on-demand platforms as follows:
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1. Design algorithms with worst-case performance guarantees. This work develops approxima-

tion algorithms to facilitate ride-pooling with mixed fleets with provable bounds in the stochastic

setting. These algorithms are easy-to-implement and resemble the best possible bounds for GAP.

2. Evaluate the marginal value of increase fleet size in matching. SRAMF necessitates the

algorithm to assess the marginal value of including additional vehicles in the existing fleet. This

proof technique is of independent interest to the broader fleet sizing studies (Benjaafar et al. 2021).

3. Demonstrate algorithms’ performance in a mixed-autonomy case study. We demonstrate

these algorithms’ computational efficiency and optimality gaps in a mixed autonomy traffic case

study. The performance of these algorithms is competitive in real-data numerical experiments, and

the derived worst-case approximation ratios are conservative.

This work focuses on the rolling-horizon approach with look-ahead demand estimates. Note that

the exact method (i.e., MIP-based algorithms) in Alonso-Mora et al. (2017) and Ke et al. (2021) can

also be replaced with these approximation algorithms to accelerate vehicle dispatching processes.

The performance guarantee of any approximation algorithm built for the dual-source setting also

holds for the single-source (Mori and Samaranayake 2021) and can be extended to mixed fleets of

more than two vehicle types.

1.3. Organization and General Notation

The remainder of the paper is organized as follows. We first review the related literature in Section

2. Section 3 formulates the SRAMF problem and shows its hardness. Two approximation algorithms

are proposed in Section 4 with nearly-tight approximation ratios. We test the effectiveness of these

approximation algorithms using real-world and simulated data in Section 5 and draw conclusions

in Section 6.

The following notation conventions are followed throughout this work. The notation := stands

for “defined as”. For any integer n, we let [n] := {1,2, . . . , n}. We use v(·) as the real value function

and v̂(·) as the approximate or estimated value function. P stands for the class of questions for

which some algorithm can provide an answer in polynomial time, and NP stands for those with

nondeterministic polynomial time algorithms. For any set S, |S| is its cardinality, i.e., the number

of elements in the set. Given two sets A and B, we let A+B or A∪B represent the union of A

and B; we let A−B or A\B represent modifying A by removing the elements belonging to B. We

let A∼B denote that set A intersects with B, i.e., A∩B 6= ∅. i.i.d. stands for “independent and

identically distributed”; w.r.t. stands for “with respect to”. Other notation and acronyms used in

this paper are summarized in Table 6 in Appendix A.
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2. Literature Review

We refer to ride-pooling (also called ride-splitting/carsharing rides) in the broad context and focus

on operations-level decisions. The following review covers the recent development of computational

methods for ride-pooling applications with different objectives of maximizing the utilization of

vehicles or reducing the negative externalities related to deadhead miles.

Overview of ride-pooling algorithms. Solving the optimal ride-pooling assignment is chal-

lenging in essence because a) the number of possible shared trips grows exponentially regarding

the number of trip requests and the vehicle capacity; b) trip requests can be inserted during the

trip. As a result, the exact approaches for solving the dynamic vehicle routing problem (DVRP)

(Pillac et al. 2013) are not suitable for platforms that operates thousands of vehicles and expect

to compute the assignment solutions in real-time.

Compared to the substantial body of literature for matching supply and demand without the

ride-pooling option (Wang and Yang 2019), there exist only several attempts to solve the ride-

pooling assignment problem by heuristic or decomposition methods (Yu and Shen 2019, Herming-

haus 2019, Sundt et al. 2021). Although these methods achieved satisfying performance metrics

in experiments, they cannot balance computational efficiency and accuracy with theoretical guar-

antees. This problem is tractable with fixed travel patterns such as providing services for daily

commuting. Hasan, Van Hentenryck, and Legrain (2020) proposed a commute trip-sharing algo-

rithm that maximized total shared rides for a set of commute trips satisfying various time-window,

capacity, pairing, ride duration, and driver constraints.

Since the supply and demand processes are determined by previous decisions, the design of non-

myopic policies that considers the future effects of assignments is attractive to platforms. Shah,

Lowalekar, and Varakantham (2020) developed an approximate dynamic programming method that

can learn from the IP-based assignment and approximate the value function by neural networks.

Qin, Zhu, and Ye (2021) provided a comprehensive review of the current practice of reinforcement

learning methods for assignment and other sequential decision-making problems in the ridesharing

industry.

Scalable ride-pooling assignment algorithms for shareability graphs. To tackle those

unprecedented technical challenges in shared mobility platforms, Santi et al. (2014) quantified the

trade-off between social benefits and passenger discomfort from ride-pooling by introducing the

concept of “shareability networks”. They found that the total empty-car travel time was reduced

40% in the offline setting (i.e., with ex post demand profiles) or 32% when demands are revealed en

route. This work suffers a limitation in capacity as the matching-based algorithm can only handle

up to three-passenger shared rides.
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Alonso-Mora et al. (2017) expanded the framework to up to ten riders per vehicle. The high-

capacity ride-pooling trip assignment is solved by decomposing the shareability graph into trip sets

and vehicle sets and then solving the optimal assignments by a large-scale integer program (IP).

As the vehicle capacities increase, the moderate size of shared vehicle fleet (2,000 vehicles with

capacities of four rides in their case studies) can serve most travel demand with short waiting time

and trip delay. Simonetto, Monteil, and Gambella (2019) improved this approach’s computational

efficiency by formulating the master problem as a linear assignment problem. The resulting large-

scale assignment on shareability networks is calculated in a distributed manner. However, despite

the easy implementation of these methods, they lack theoretical performance guarantees.

Approximation algorithms for maximization GAP. Approximation algorithms can find

near-optimal assignments with provable guarantees on the quality of returned solutions. Since

the ride-pooling assignment problem is a variant of GAP (Öncan 2007), we list the significant

results here. Shmoys and Tardos (1993) and Chekuri and Khanna (2005) transferred GAP to a

scheduling problem and obtained polynomial-time 1
2
-approximation algorithms. Fleischer et al.

(2006) obtained an LP-rounding based (1− 1
e
)-approximation algorithm and a local-search based

1
2
-approximation algorithm.

Previous studies have explored GAP algorithms for both instant dispatching and batched dis-

patching settings. Instant dispatching assigns requests to available vehicles upon arrival. Lowalekar,

Varakantham, and Jaillet (2020) developed approximation algorithms for online vehicle dispatch

systems. Their setting with i.i.d. demand assumptions is markedly different from the current work.

Batched dispatching utilizes GAP on a hypergraph to search for locally optimal assignments. Mori

and Samaranayake (2021) developed 1
e
-approximation LP-rounding algorithms for the determin-

istic request-trip-vehicle assignment problem. In contrast, the current work considers two-stage

decisions of fleet sizing and trip assignment with stochastic demand in SRAMF. As a batched dis-

patching algorithm, this stochastic formulation can be applied to arbitrary demand distributions.

Shared mobility with mixed fleets. Mixed-fleet mobility systems are emerging research topics

in the ridesharing literature. The first stream of researches is motivated by the change of workforce

structure at present. Dong and Ibrahim (2020) investigated the staffing problem in ride-hailing

platforms with a blended workforce of permanent employees and freelance workers. The platform

needs to determine the number of hired drivers considering its impact on disclosing a flexible work-

force. Dong et al. (2021) justified the dual-source strategy for mitigating the demand uncertainty

in ride-hailing systems and designed optimal contracts to coordinate the mixed workforce. Castro

et al. (2020) modeled the ridesharing market as matching queues where strategic drivers had dif-

ferent flexibility levels. They proposed a throughput-maximizing capacity reservation policy that

is robust against drivers’ strategies.
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The transition from traditional ridesharing services to AVs in the foreseeable future motivates a

second stream of mixed-fleet researches. Lokhandwala and Cai (2018) used an agent-based model

to evaluate the impact of heterogeneous preferences and revealed that the transition to a mixed

fleet would reduce the total number of vehicles, focus on areas of dense demands, and lower the

overall service levels in the suburban regions. Wei, Pedarsani, and Coogan (2020) studied the

equilibrium of mixed autonomy network in which AVs are fully controlled by the platform and

CVs are operated by individual drivers. The optimal pricing for the mixed service is formulated

as a convex program. Lazar, Coogan, and Pedarsani (2020) proposed a network model for mixed

autonomous traffic and showed how the price of anarchy in routing games was affected. In contrast,

this work is one of the first attempts to develop algorithms for the operations of mixed fleets.

3. Problem Description
3.1. Basic Setting

This section introduces the formulation of the SRAMF problem as a two-stage stochastic program

and shows its NP-hardness. These technical challenges motivate the design of new approximation

algorithms in the remainder of this work.

3.1.1. Preliminaries: construction of shareability graph. ride-pooling assignment is con-

ducted on the shareability graph, which is represented by a hypergraph G = {S,D,E}. Here, S

denotes the supply/vehicles and D denotes the demand/ride-requests; S∪D represents the vertices

of the hypergraph. Each hyperedge e ∈E consists of one vehicle and a subset of ride-requests. In

contrast to conventional ridesharing where each vehicle can only serve one ride-request per time

(which corresponds to assignment on a bipartite graph), we consider the hypergraph generaliza-

tion, where each hyperedge e ∈ E can contain any number of ride-requests (within the vehicle’s

capacity). Other constraints such as detour times and preferences for co-riders are also considered

in the construction of the shareability graph (see Appendix B). We also refer to hyperedges as

cliques.

The mixed-fleet supply contains two separate sets of available vehicles SA and SB such that

S = SA ∪ SB, |SA|= nA, and |SB|= nB. The setup costs of vehicles in SA are significantly higher

than those in SB. We denote p= 1+maxi∈SA∪SB{Ci} where Ci is the capacity of vehicle i. Without

loss of generality, we let the cost of using vehicles in SB be 0 and let the cost of each vehicle in SA

be normalized to 1. Depending on the specific applications, the setup cost can include the extra

salary paid to full-time drivers (Example 1 and Example 2 in Section 1.1) or the cost of positioning

AVs in advance (Example 3). The set SB is called the basis supply (which is always available)

and the set SA is called the augmented supply (from which we need to select a limited number of

vehicles). Section 4.3 discusses an extension to more than two vehicle types.
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This setting is a generic model for shared mobility applications described in Section 1.1. Each

hyperedge e= {i, J}i∈S,J⊆D corresponds to a potential trip where vehicle i serves requests J . In

the market segmentation example, the augmented supply includes available luxury-service vehicles.

In the mixed autonomy traffic example, vacant CVs are the basis supply and potential locations

to prearrange AVs are the augmented supply.

Solving the GAP problem on a hypergraph is the final step in the dispatching process (Alonso-

Mora et al. 2017). The main analysis for SRAMF is conditional on having access to a hyperedge

value oracle O(ve) that queries the expected profit obtained from any collection of requests in

polynomial time. The hyperedge values ve include the total travel time of a Hamiltonian path t

picking up all requests j ∈ e. For completeness of deploying these proposed algorithms, Appendix

B summarizes the preprocessing procedure.

3.1.2. Formulation of SRAMF. Given a budget K, the platform chooses a subset SR ⊂ SA
of at most K vehicles from the augmented supply. This decision is made before requests are

revealed. After requests are revealed, the platform can only assign requests to these chosen vehicles

SR ∪ SB and collect profits from finished trips immediately. Using a hypergraph representation,

the second-stage assignment decision is equivalent to choosing a set of hyperedges in which every

pair of hyperedges is disjoint. This condition guarantees that each vehicle and each request can be

included no more than once in the final assignment.

To be more specific in implementation, the sequence of decision-making in SRAMF is as follows:

1. For each vehicle i∈ SA, we let yi = 1 denote if we put the vehicle in service and yi = 0 if not.

These augmented vehicles or potential locations to preposition vehicles are spatially distant from

each other and behave differently in the assignment stage. We use SR := {i∈ [nA] : yi = 1} ⊆ SA to

denote all selected augmented vehicles. All vehicles in the basis supply are included in the first-

stage decision as they are no cost to use; i.e., we set yi = 1 for all i ∈ SB. So, the chosen supply is

SR ∪SB. The first-stage decision space is Y ∈ {0,1}nA+nB .

2. In the second-stage, the platform observes the realized scenario ξ, which corresponds to a

set of ride-requests D(ξ) and hyperedges E(ξ); we also observe the values of all hyperedges. The

scenario ξ follows a random distribution F (ξ) with support on Ξ, which is incorporated into a

demand forecast model.

Each hyperedge e ∈ E(ξ) includes some vehicle i and a subset of requests J ⊂D(ξ). The total

number of passengers in the ride-requests J must be at most the capacity Ci of vehicle i, i.e.,∑
j∈J wj ≤ Ci where {wj}j∈J denote the numbers of passengers in each ride-request. The hyper-

edge’s value considers following elements:

(a) The expected profit uj gained from serving the request j.



Luo, et al.: Efficient Algorithms for Stochastic Ride-pooling Assignment
10 Article submitted to Transportation Science; manuscript no. TS-2021-0349

(a) (b)

(c) (d)

Figure 2 The illustration of SRAMF procedure per step. SB = {sB1 , sB2 } is the basis set (e.g., CVs) and SA =

{sA1 , sA2 } is the augmented set (e.g., AVs). In the first step in Figure 2a, the algorithm observes the

current locations of SA and SB and obtain demand forecast. In the second step in Figure 2b, the

algorithm constructs the shareability graph for each scenario, where each trip is a clique containing one

vehicle and multiple matchable requests. In the third step in Figure 2c, the SRAMF problem is solved

by the approximation algorithm. In the final step in Figure 2d, the two-stage decisions are implemented

and the system state is updated. In each scenario ξ, one or more requests are linked by the assigned

vehicle in a single ride.

(b) Trip t = {j1, j2, · · · : jk ∈ J} as a sequence of requests and the associated traveling cost

c(i, t) for vehicle i to pick up all requests.

(c) Each request j gains additional utility ũij if matched with their preferred vehicle type.

The hyperedge value for e∈E(ξ) collected from a potential assignment is given by

ve =
∑
j∈J

uj +
∑
j∈J

ũij − c(i, t)≥ 0. (1)

This value captures many stochastic factors at play between the 1st and 2nd stages, i.e., vehicle

selection and trip assignment. uj considers the uncertain number of trip requests and their origin

and destination; wj and the set J considers the unknown number of passengers in each trip request;
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ũij considers the customers’ uncertain preference for vehicle types. Finally, due to fluctuating traffic

conditions and different vehicle technology (e.g., CVs and AVs), c(i, t) represents that pickup times

are uncertain. However, in the 2nd stage (after the scenario ξ is observed), all hyperedge values

are known precisely.

In addition, the batched dispatch can be expanded to more general policies by using more

advanced value function approximation. For example, Tang et al. (2019) calculated the associated

hyperedge value as a reward signal derived from a reinforcement-learning-based estimator.

3. The platform assigns ride-requests to each available vehicle by determining xe ∈ {0,1} for

all e ∈ E(ξ). The assignment is only available between the chosen supply SR ∪ SB (denoted as

e∼ SR ∪SB) and realized demand D(ξ) in each scenario.

The optimal value of assignments in scenario ξ is denoted by Q(y, ξ) supported on Q : Y ×Ξ→R.

Given a scenario, the second-stage decisions are trip assignments denoted by x= {xe}e∈E(ξ). Our

objective is to maximize the expected total value.

The SRAMF problem can be formulated as a two-stage stochastic program:

maximize
y

E[Q(y, ξ)] (2)

s.t.
∑
i∈SA

yi ≤K (budget) (2a)

yi ∈ {0,1} ∀i∈ SA ∪SB, (2b)

and the second-stage problem is given by

Q(y, ξ) = maximize
x

∑
e∈E(ξ)

vexe (3)

s.t.
∑

e∈E(ξ):j∈e

xe ≤ 1 ∀j ∈D(ξ) (assignment I ) (3a)∑
e∈E(ξ):i∈e

xe ≤ yi ∀i∈ SB ∪SA (assignment II ) (3b)

xe ∈ {0,1} ∀e∈E(ξ). (3c)

In the first-stage problem (2), K is the maximum number of chosen vehicles from the augmented

supply. In the second-stage problem (3), the constraints (3a) and (3b) guarantee that each supply

and demand are matched at most once and only the vehicles selected in the first stage are used. We

allow both vehicles and requests to remain unassigned in the hypermatching x. The second-stage

problem is also known as the p-set packing problem, where (p− 1) denotes the maximum number

of requests per hyperedge (e.g., Füredi, Kahn, and Seymour (1993) and Chan and Lau (2012)).

This p-set packing problem is already NP-hard.
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3.1.3. Road-map for proving SRAMF approximation algorithms. Figure 3 provides

an overview of the performance analysis on two proposed approximation algorithms and their

approximation ratios, respectively. We start with reducing the objective of (2) to the sample-

average estimate in Section 3.2. We then show the hardness of the SRAMF problem in Section

3.3. A key challenge is that the 2nd stage problem (3) is itself NP-hard. So, our approximation

algorithms rely heavily on “fractional assignments” that relax the integrality constraints in (3) and

can be solved in polynomial-time via linear programming. We provide two different approximations

algorithms, LSLPR and MMO, in Section 4.1 and Section 4.2, respectively.

Figure 3 An illustration of the performance analysis on SRAMF algorithms; the approximation ratios on arrows

refer to the results in this paper; SO is the optimal selection of vehicles and SR is the section of vehicles

generated by approximation algorithms.

3.2. Reduction to Sample-Average Estimate

The sample-average approximation (SAA) method is commonly used to solve such two-stage

stochastic programs. It draws N scenarios {ξ`}N`=1 from a scenario-generating oracle (e.g., demand

forecasting and vehicle simulation models) and approximates the expected objective function by a

sample-average estimate E[Q(y, ξ)]≈ 1
N

∑N

`=1Q(y, ξ`).

To simplify the analysis with regard to E(Q(y, ξ)), we reduce the objective function to finite-

sample proximity. The main analysis is conditional on N mutually disjoint sets of hyperedges as

E(ξ). Since the second-stage assignment ensures unique matching per scenario, we can make n′

copies when a trip consisting of one vehicle and several requests duplicates across n′ scenarios. The

consistency and shrinking bias of the sample-average estimate are well-studied in literature. The

optimal value of any approximation algorithm converges to E[Q(y, ξ)] as the number of scenarios

N →∞. We include the standard SAA proof in Appendix A for completeness of the results, which

helps determine the required sample size N for any confidence level.
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The current paper’s focus is developing algorithms to solve the SRAMF problem in eq.(2) with

the sample-average estimate. As mentioned earlier, we will work with an LP relaxation of (3) as

the original problem is NP-hard. For any subset SR ⊆ SA and scenario ξ, define v̂(SR, ξ) to be the

optimal value of the following LP:

maximize
x

∑
e∈E(ξ)

vexe (4)

s.t.
∑

e∈E(ξ):j∈e

xe ≤ 1 ∀j ∈D(ξ) (4a)∑
e∈E(ξ):i∈e

xe ≤ 1 ∀i∈ SA ∪SB (4b)

xe = 0 ∀e∼ SA \SR (4c)

xe ≥ 0 ∀e∈E(ξ). (4d)

We call the LP solution “fractional assignments”. Also, define v(SR, ξ) to be the optimal value of

the IP corresponding to the formulation above; so v(SR, ξ) equals the optimal value in (3). These

are used to define two useful objective functions w.r.t. SR:

• The objective value using the exact GAP in eq.(3) for each scenario is given by:

v∗(SR) =
1

N

∑
`∈[N ]

v(SR, ξ`). (5)

• The objective value using the LP-relaxation (4) is given by:

v̂(SR) =
1

N

∑
`∈[N ]

v̂(SR, ξ`). (6)

Fractional assignments enjoy many well-known properties. First, the integrality gap of the above

LP relaxation for p-set packing is at most p (Arkin and Hassin 1998). Second, a greedy algorithm

that selects hyperedges e in decreasing order of their values ve (while maintaining feasibility) also

achieves a 1
p
-approximation to the LP value. We restate them in the following theorem:

Theorem 1. For any SR ⊆ SA, we have v∗(SR) ≤ v̂(SR) ≤ p · v∗(SR); furthermore, the greedy

algorithm obtains a solution of value at least 1
p
· v̂(SR).

These reductions narrow down the main task to bounding the approximation ratios with regard

to v̂(SR). In particular, we will focus on the SRAMF problem with fractional assignments:

max
SR⊆SA:|SR|≤K

v̂(SR). (7)

If we obtain an α-approximation algorithm for (7), then combined with Theorem 1, we would

obtain an α
p
-approximation algorithm for SRAMF (with integral assignments).

Before jumping into the design of approximation algorithms, the following subsection elaborates

on some technical challenges.
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3.3. Hardness and Properties of SRAMF

We show that solving SRAMF is computationally challenging due to the following reasons. First,

the second-stage SRAMF problem is NP-hard in general, as demonstrated in Proposition 1. Second,

Proposition 2 shows that v̂(SR) is not submodular, which prevents the use of classic algorithms

such as (Nemhauser, Wolsey, and Fisher (1978)). These facts motivate the development of new

approximation algorithms in Section 4.

Proposition 1. There is no algorithm for SRAMF (even with N = 1 scenario) with an approx-

imation ratio better than O( lnp
p

), unless P =NP .

Proof for the hardness of SRAMF : We reduce from the p-dimensional matching problem,

defined as follows. There is a hypergraph H with vertices V partitioned into p parts {Vr}pr=1, and

hyperedges E. Each hyperedge contains exactly one vertex from each part (so each hyperedge

has size exactly p). The goal is to find a collection F of disjoint hyperedges that has maximum

cardinality |F |.

Given any instance of p-dimensional matching (as above), we generate the following SRAMF

instance. The augmented vehicles are SA = V1 and the basis vehicles are SB = ∅. There is N = 1

scenario with ride-requests V2∪ . . . Vp and hyperedges E (each of value 1). Each vehicle has capacity

p−1 and each ride-request has 1 passenger. Note that each hyperedge contains exactly one vehicle,

as required in SRAMF. The bound K = |SA|: so the optimal 1st stage solution is clearly SR =

SA (select all augmented vehicles). Now, the SRAMF problem instance reduces to its 2nd stage

problem (3), which involves selecting a maximum cardinality subset of disjoint hyperedges. This is

precisely the p-dimensional matching problem.

It follows that if there is any α-approximation algorithm for SRAMF with N = 1 scenario then

there is an α-approximation algorithm for p-dimensional matching. Finally, Hazan, Safra, and

Schwartz (2006) proved that it is NP-hard to approximate p-dimensional matching better than an

O( lnp
p

) factor (unless P =NP ). The proposition now follows. �

This intractability is the reason that we work with the fractional assignment problem (7). A

natural approach for budgeted maximization problems such as (7) is to prove that the objective

function is submodular, in which case one can directly use the (1− 1
e
)-approximation algorithm by

(Nemhauser, Wolsey, and Fisher 1978). However, we show a negative result about the submodu-

larity of v∗(SR) as well as v̂(SR), which precludes the use of such an approach. Recall that a set

function f : 2Ω→R+ on groundset Ω is submodular if f(U ∪{i})− f(U)≥ f(W ∪{i})− f(W ) for

all U ⊆W ⊆Ω and i∈Ω \W .

Proposition 2. v∗(SR) and v̂(SR) are not submodular functions.
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Proof: Recall that the groundset for both functions v∗ and v̂ is Ω := SA the set of augmented

vehicles. We provide an SRAMF instance with N = 1 scenario where these functions are not sub-

modular. Consider a shareability graph with |SA|= 3, SB = ∅ and three ride-requests {d1, d2, d3}.

Let p= 3, i.e., each vehicle can carry at most two requests. The set of hyperedges is

{(sA1 , d1), (sA1 , d2, d3), (sA2 , d2), (sA3 , d3)}.

See also Figure 4. The value of each hyperedge is the number of ride-requests covered by it.

Figure 4 An example for non-submodularity of function v∗(SR).

Let subsets U = {sA1 } and W = {sA1 , sA2 }. Also let i = sA3 . Clearly, v∗(U) = 2 (serving d2, d3),

v∗(W ) = 2 (serving d1, d2 or d2, d3), v∗(U ∪{i}) = 2 (serving d1, d3 or d2, d3), and v∗(W ∪{i}) = 3.

Therefore, we have:

v∗(W ∪{i})− v∗(W ) = 1> 0 = v∗(U ∪{i})− v∗(U),

which implies the set function v∗ is not submodular. It is easy to check that the LP value function

v̂= v∗ for this instance: so function v̂ is also not submodular. �

4. Approximation Algorithms for SRAMF

This section provides two different approximation algorithms for SRAMF. Both the algorithms

focus on solving the fractional assignment problem (7), and achieve approximation ratios 1
p

and

≈ e−1
2e·lnp respectively. Combined with Theorem 1, these imply approximation algorithms for SRAMF

with an additional factor of 1
p
.

4.1. Local Search Algorithm for Mid-Capacity SRAMF

The Mid-Capacity SRAMF models the current ride-hailing market where the limit for palletiz-

ing requests is two or three. In this section, we propose a Local-Search LP-Relaxation (LSLPR)

algorithm that obtains 1
p
-approximation for the fractional problem (7).
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4.1.1. Overview of the LSLPR algorithm. Let ε > 0 be an arbitrarily small parameter

that will be used in the stopping criterion. The outline of the LSLPR algorithm is as follows:

1. Start from any solution SR ⊆ SA with |SR|=K.

2. Consider all solutions SR′ = SR − {i} + {i′} where i ∈ SR and i′ /∈ SR (i.e., swapping one

vehicle) and evaluate the corresponding LP value v̂(SR′).

3. Change the current solution SR to SR′ if the objective value improves significantly, i.e.,

v̂(SR′)> (1 + ε) · v̂(SR).

4. Stop when the current solution does not change.

Formally, let k index the iterations, where the current solution changes in each iteration. Let

SkR denote the current solution at the start of iteration k. The following subroutine implements a

single iteration.

Algorithm 1: Local swap subroutine.

for i∈ SkR and i′ ∈ SA\SkR do
obtain v̂(SkR− i+ i′) by solving an LP ;

end
let (c, c′) be the pair that maximizes v̂(SkR− i+ i′) over i∈ SkR and i′ ∈ SA\SkR;
if v̂∗(SkR− c+ c′)> (1 + ε) · v̂(SkR) then

set Sk+1
R ← SkR− c+ c′ and continue with k← k+ 1 ;

else
halt local search and output SkR;

end

In a broad sense, the local swap subroutine does not necessarily enumerate all pairs (i, i′) to

search for the optimal (c, c′). A more efficient alternative is terminating each iteration at the first

pair of i ∈ SR and i′ ∈ SA\SR that increases the objective by more than ε · v̂(SkR). The complete

LSLPR algorithm is now as follows:

Algorithm 2: Local search LP-relaxation algorithm for SRAMF

Data: Augmented supply SA, basis supply SB, scenarios {ξ`}N`=1 and ε > 0.
Result: Near-optimal SR ⊂ SA and the corresponding trip assignment.
Initialization: Set k= 1 and randomly select K vehicles from SA as S1

R;
while k≤ kmax do

Run the local swap subroutine in Algorithm 1;
end
Obtain the final trip assignment with SR = Skmax

R using the greedy algorithm (Theorem 1).

Algorithm 2 obtains the final selection of vehicles Skmax
R where the maximal number of iterations

will be derived below. In the final step, the algorithm obtains an integral assignment for each

scenario instead of the fractional assignments in v̂(SR). To this end, we use the greedy algorithm

(Theorem 1) to select the assignment for each scenario, which is guaranteed to have value at least

1
p

times the fractional assignment. In Section 4.1.2, we first analyze the approximation ratio and

then the computational complexity of LSLPR.
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4.1.2. Analysis of the LSLPR algorithm. Recall that SR is the locally optimal solution

obtained by our algorithm. Let SO denote the optimal solution; note that SO is a fixed subset that

is only used in the analysis. Also, let xxx = 〈xxxξ〉 and zzz = 〈zzzξ〉 denote the optimal LP solutions to

v̂(SR) and v̂(SO), respectively.

It will be convenient to consider the overall hypergraph on vertices SA ∪ SB ∪ (∪ξD(ξ)) and

hyperedges ∪ξE(ξ). By duplicating hyperedges (if necessary), we may assume that E(ξ) are disjoint

across scenarios ξ. Recall that xxxξ (and zzzξ) has a decision variable corresponding to each hyperedge

in E(ξ). For each demand d∈∪ξD(ξ), let Hd denote the hyperedges incident to it. For each vehicle

i∈ SA ∪SB and scenario ξ, let Ei,ξ denote the hyperedges in E(ξ) containing i. So, Fi :=∪ξEi,ξ is

the set of hyperedges incident to vehicle i.

For any demand d, the following lemma sets up a mapping between the hyperedges (incident to

d) used in the solutions xxx and zzz. For the analysis, we add a dummy hyperedge ⊥ incident to d so

that the assignment constraints in the LP solutions xxx and zzz are binding at d. So,
∑

e∈Hd
xe+x⊥ = 1

and
∑

f∈Hd
zf + z⊥ = 1. Let H ′d :=Hd ∪{⊥} denote the hyperedges incident to d.

Lemma 1. For any demand d, there exists a decomposition mapping ∆d :H ′d×H ′d→R satisfying

the following conditions:

1. ∆d(e, f)≥ 0 for all e, f ∈H ′d;
2.
∑

e∈H′
d

∆d(e, f) = zf for all f ∈H ′d;
3.
∑

f∈H′
d

∆d(e, f) = xe for all e∈H ′d.

Figure 5 illustrates this mapping. Appendix C includes the definition of ∆d(e, f) and the proof

for Lemma 1. Note that
∑

e∈H′
d

∑
f∈H′

d
∆d(e, f) = 1 for any demand d. For any subset F ∈H ′d, we

use the shorthand ∆d(e,F ) :=
∑

f∈F ∆d(e, f).

Figure 5 Illustration of mapping ∆d(e, f).

Here is an outline of the remaining analysis. Let L denote any bijection between SR (algorithm’s

solution) and SO (optimal solution), consisting of pairs (i1, i2) where i1 ∈ SR and i2 ∈ SO. We
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first consider a swap SR − i1 + i2 where (i1, i2) ∈ L, and lower bound the objective increase. Note

that the local optimality of SR implies that the objective increase is at most ε · v̂(SR). Then, we

add the inequalities corresponding to the objective increase for the swaps in L and obtain the

approximation ratio.

Analysis of a single swap (i1, i2). Consider any i1 ∈ SR and i2 ∈ SO. We now lower bound

v̂(SR−{i1}+ {i2})− v̂(SR). Recall that for any subset S, v̂(S) = 1
N

∑
ξ v̂(S, ξ) where v̂(S, ξ) is the

LP value for scenario ξ. So, we have

v̂(SR−{i1}+ {i2})− v̂(SR) =
1

N

∑
ξ

(v̂(SR−{i1}+ {i2}, ξ)− v̂(SR, ξ)) .

We now focus on a single scenario ξ and lower bound v̂(SR − {i1}+ {i2}, ξ)− v̂(SR, ξ). To this

end, we will define a feasible solution x̄xxξ for the LP v̂(SR−{i1}+ {i2}, ξ). Recall that xxxξ denotes

the optimal solution for LP v̂(SR, ξ). So, we can then bound:

v̂(SR−{i1}+ {i2}, ξ)− v̂(SR, ξ) ≥ vvvᵀx̄xxξ −vvvᵀxxxξ, (8)

where vvv is the vector of hyperedge values for E(ξ). As we focus on a single scenario ξ, we drop ξ

from the notation whenever it is clear.

We are now ready to construct the new fractional assignment x̄xx. Define:

1. x̄e = 0 for all e∈ Fi1 . This corresponds to dropping vehicle i1 from SR.

2. x̄e = ze for all e∈ Fi2 . This corresponds to adding vehicle i2 to SR.

3. x̄e = xe−maxd∈e∆d(e,Fi2 ∩Hd) for all e∈E(ξ) \Fi1 \Fi2 .

If i1 = i2 then we simply drop case 1 above. The third case above is needed to make space for

the hyperedges incident to the new vehicle i2 (which are increased in case 2). The following two

lemmas prove the feasibility of this solution x̄xx and bound its objective value. Below, we assume

that i1 6= i2 (the proof for i1 = i2 is nearly the same, in fact even simpler).

Lemma 2. x̄xx is a feasible solution for v̂(SR−{i1}+ {i2}).

Proof for Lemma 2: We show the feasibility by checking all constraints in eq.(4). Note that

x̄e = 0 for all hyperedges e incident to a vehicle in SA \ (SR−{i1}+ {i2}).

Constraint x̄xx≥ 0. It suffices to check this for hyperedges e∈E \Fi1 \Fi2 . Note that

x̄e = xe−max
d∈e

∆d(e,Fi2 ∩Hd) = min
d∈e

(xe−∆d(e,Fi2 ∩Hd))≥ 0,

where the inequality uses Lemma 1, i.e., xe = ∆d(e,H
′
d)≥∆d(e,Fi2 ∩Hd).
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Constraint (4a): By definition of x̄xx, for any demand d, we have:

∑
e∈Hd

x̄e =
∑

e∈Hd∩Fi2

ze +
∑

e∈Hd\Fi1\Fi2

[xe−∆d(e,Fi2 ∩Hd)]

≤
∑

e∈Hd∩Fi2

ze +
∑
e∈H′

d

[xe−∆d(e,Fi2 ∩Hd)]

=
∑

e∈Hd∩Fi2

ze +
∑
e∈H′

d

xe−
∑

f∈Fi2∩Hd

∆d(H
′
d, f)

=
∑
e∈H′

d

xe = 1.

Constraint (4b): The augmented vehicle set can be divided into three groups.

1. Vehicle i1:
∑

e∈Fi1
x̄e = 0.

2. Vehicle i2:
∑

e∈Fi2
x̄e =

∑
e∈Fi2

ze ≤ 1 by definition.

3. Vehicles j 6= i1, i2:
∑

e∈Fj
x̄e ≤

∑
e∈Fj

xe ≤ 1.

Therefore, x̄xx is a feasible fractional assignment solution. �

Lemma 3. The increase in objective is:

∑
e∈E(ξ)

ve(x̄
ξ
e−xξe)≥

∑
e∈Fi2∩E(ξ)

vez
ξ
e −

∑
f∈Fi1∩E(ξ)

vfx
ξ
f −

∑
e∈E(ξ)

ve
∑
d∈e

∆d(e,Fi2 ∩Hd).

Proof for Lemma 3: By definition of x̄xx,

x̄e−xe =


ze if e∈ Fi2
−xe if e∈ Fi1
−maxd∈e∆d(e,Fi2 ∩Hd) otherwise

.

Note that xe = 0 for all e∼ SA\SR in v̂(SR). So we have

∑
e∈E(ξ)

ve(x̄e−xe)≥
∑

e∈Fi2∩E(ξ)

veze−
∑

f∈Fi1∩E(ξ)

vfxf −
∑
e∈E(ξ)

vemax
d∈e

∆d(e,Fi2 ∩Hd)

≥
∑

e∈Fi2∩E(ξ)

veze−
∑

f∈Fi1∩E(ξ)

vfxf −
∑
e∈E(ξ)

ve
∑
d∈e

∆d(e,Fi2 ∩Hd).

�

Combining Lemmas 2 and 3, and adding over all scenarios ξ, we obtain:

Lemma 4. For any i1 ∈ SR and i2 ∈ SO, we have

v̂(SR−{i1}+ {i2})− v̂(SR)≥
∑
e∈Fi2

veze−
∑
f∈Fi1

vfxf −
∑
e∈E

ve
∑
d∈e

∆d(e,Fi2 ∩Hd).
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Combining all the swaps. Recall that L is a bijection between SR and SO. Using the local

optimality of SR,

Kε · v̂(SR)≥
∑

(i1,i2)∈L

[v̂(SR−{i1}+ {i2})− v̂(SR)]

≥
∑

(i1,i2)∈L

∑
e∈Fi2

veze−
∑
f∈Fi1

vfxf −
∑
e∈E

ve
∑
d∈e

∆d(e,Fi2 ∩Hd)

 (9)

=
∑
i2∈SO

∑
e∈Fi2

veze−
∑
i1∈SR

∑
f∈Fi1

vfxf −
∑
i2∈SO

∑
e∈E

ve
∑
d∈e

∆d(e,Fi2 ∩Hd)

≥
∑
i2∈SO

∑
e∈Fi2

veze−
∑
i1∈SR

∑
f∈Fi1

vfxf −
∑
e∈E

ve
∑
d∈e

∆d(e,Hd) (10)

≥
∑
i2∈SO

∑
e∈Fi2

veze−
∑
i1∈SR

∑
f∈Fi1

vfxf −
∑
e∈E

ve
∑
d∈e

xe (11)

=vT z− vTx−
∑
e∈E

|{d∈ e}|vexe

≥vT z− vTx− (p− 1)vTx = vT z− p · vTx = v̂(SO)− p · v̂(SR). (12)

Above, (9) is by Lemma 4, (10) uses that {Fi2} are disjoint, (11) uses Lemma 1, and the inequality

in (12) uses that each hyperedge has at most p− 1 demands.

Setting ε = 1
pK2 , it follows that v̂(SR) ≥ 1

p+o(1)
· v̂(SO). Combined with Theorem 1, we obtain

v∗(SR)≥ 1
p
· v̂(SR)≥ 1

p2+o(p)
· v̂(SO). Hence,

Theorem 2. The LSLPR algorithm for SRAMF is a 1
p2

-approximation algorithm.

Time complexity of local search. Note that each iteration (i.e., Algorithm 1) involves

considering K(nA−K) potential swaps; recall that nA = |SA|. For each swap, we need to evaluate

v̂, which can be done using any polynomial time LP algorithm such as the ellipsoid method. So,

the time taken in each iteration is polynomial.

We now bound the number of local search iterations. In each iteration, the objective value

increases by a factor at least 1 + ε. So, after k iterations,

v̂(Sk+1
R )≥ (1 + ε)kv̂(S1

R).

Clearly, the assignment associated with the initial selected S0
R has a lower bound v̂(S0

R)≥ 1
N
·vmin

where vmin = mine:ve>0 ve is the minimum value over all hyperedges. Recall that |SA| = nA and

|SB|= nB. The maximum objective of any solution is at most (nA+nB) ·vmax where vmax = maxe ve

is the maximum value over all hyperedges. Hence,

(nA +nB) · vmax ≥ v̂(Sk+1
R )≥ (1 + ε)k · 1

N
vmin,
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which implies that the maximum number of iterations

kmax ≤ log1+ε

(
N(nA +nB)vmax

vmin

)
=O

(
1

ε
log

N(nA +nB)vmax

vmin

)
.

Using ε= 1
pK2 , it follows that the number of iterations is polynomial.

Finally, the last step of Algorithm 2 just implements the greedy p-set packing algorithm (for each

scenario), which also takes polynomial time. It follows that LSLPR solves the SRAMF problem in

polynomial time with regard to parameters p, K, N , |E|, nA, and nB.

4.2. Max-Min Online Algorithm for High-Capacity SRAMF

The LSLPR algorithm is capable of assigning rides in shared mobility applications with midsize

vehicles. When the maximal vehicle capacity is large (e.g., the maximum capacity is ten in (Alonso-

Mora et al. 2017)), 1
p2

-approximation ratio becomes unacceptable in the worst case. We propose

an alternative method for high-capacity SRAMF. The main idea of the Max-Min Online (MMO)

algorithm is to use LP-duality to reformulate v̂ as a covering linear program. Then, we use an

existing framework for max-min optimization from Feige et al. (2007). This framework requires

two technical properties (monotonicity and online competitiveness), which we show are satisfied for

SRAMF. We will prove that the MMO algorithm obtains an approximation ratio of (1− 1
e
) 1

2p lnp
.

Using LP-duality and the definition of v̂(SR) (see the derivation in Appendix C.3), we can

reformulate:

v̂(SR) = minimize
u

∑
ξ

∑
g∈G

ug,ξ (13)

s.t.
∑
g∈e

ug,ξ ≥
ve
N
, ∀e∈ Fi,ξ, ∀ξ, ∀i∈ SR ∪SB

uuu≥ 0.

Here, G= SA∪SB ∪ (∪ξD(ξ)) is a combined groundset consisting of all vehicles and demands from

all scenarios. For any vehicle i and scenario ξ, set Fi,ξ ⊆E(ξ) denotes all the hyperedges incident

to i in scenario ξ.

We can scale the covering constraints to normalize the right-hand-side to 1 and rewrite the con-

straints as
∑

g∈e
N
ve
ug,ξ ≥ 1. Note that the row sparsity of this constraint matrix (i.e., the maximum

number of non-zero entries in any constraint) is maxe∈E |e|= p and ve > 0 for all hyperedges. Let

ccce be the row of constraint coefficients for any hyperedge e∈E =∪ξE(ξ), i.e.,

ce(g, ξ) =

{
N
ve

if g ∈ e and e∈E(ξ)

0 otherwise
.
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Then, the SRAMF problem with fractional assignments maxSR⊆SA:|SR|≤K v̂(SR) can be treated

as the following max-min problem:

max
SR⊆SA:|SR|≤K

min
u
{1ᵀuuu | cccᵀeuuu≥ 1, ∀e∈ Fi, ∀i∈ SR ∪SB; uuu≥ 0}, (14)

where Fi =∪ξFi,ξ for each vehicle i.

The main result is:

Theorem 3. There is a e−1
(2e+o(1)) lnp

-approximation algorithm for (14).

Before proving this result, we introduce two important properties.

Definition 1. (Competitive online property) An α-competitive online algorithm for the cover-

ing problem eq.(13) takes as input any sequence (i1, i2, . . . , it, . . . ) of vehicles from SA and maintains

a non-decreasing solution uuu such that the following hold for all steps t.

• uuu satisfies constraints cccᵀeuuu≥ 1 for e∈ Fi, for all vehicles i∈ {i1, i2, . . . , it}, and

• uuu is an α-approximate solution, i.e., the objective 111ᵀuuu ≤ α · v̂({i1, i2, . . . , it}).
Note that the online algorithm may only increase variables uuu in each step t.

Definition 2. (Monotone property) For any uuu≥ 0 and S ⊆ SA, let

Aug∗(S|uuu) := {min
www≥0

111ᵀwww : cccᵀe(uuu+www)≥ 1, ∀e∈ Fi, ∀i∈ S ∪SB}.

The covering problem eq.(13) is said to be monotone if for any uuu≥ uuu′ ≥ 0 (coordinate wise) and

any S ⊆ SA, Aug∗(S|uuu)≤Aug∗(S|uuu′).
These properties were used by Feige et al. (2007) to show the following result.

Theorem 4. (Feige et al. 2007) If the covering problem (13) satisfies the monotone and α-

competitive online properties, there is a e−1
e·α -approximation for the max-min problem in eq.(14).

Our max-min problem indeed satisfies both these properties.

Lemma 5. The covering problem (13) has an α = O(lnp) competitive online algorithm. More-

over, when p is large, the factor α= (2 + o(1)) lnp.

Proof: Recall that (13) is a covering LP with row-sparsity p. Moreover, in the online setting,

constraints to (13) arrive over time. So, this is an instance of online covering LPs, for which an

O(lnp)-competitive algorithm is known (Gupta and Nagarajan 2014). See also (Buchbinder et al.

2014) for a simpler proof. Moreover, one can optimize the constant factor in (Buchbinder et al.

2014) to get α= (2 + o(1)) lnp. We note that these prior papers work with the online model where

only one covering constraint arrives in each step. Although Lemma 5 involves multiple covering

constraints Fi arriving in each step, this can be easily reduced to the previous setting: just introduce

the constraints in Fi one-by-one in any order, and then the algorithms in (Gupta and Nagarajan

2014, Buchbinder et al. 2014) can be used directly. �
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Lemma 6. The covering problem (13) is monotone.

Proof: Consider any uuu ≥ uuu′ ≥ 0 and any S ⊂ SA. Let www′ ≥ 0 denote an optimal solution to

Aug∗(SR|uuu′). As all constraint-coefficients ccce ≥ 0, it follows that cccᵀe(uuu+www′) ≥ cccᵀe(uuu′ +www′) ≥ 1 for

all e ∈ Fi and i ∈ S ∪ SB. Hence, www′ is also a feasible for the constraints in Aug∗(S|uuu). Therefore,

Aug∗(S|uuu)≤111ᵀwww′ =Aug∗(S|uuu′), which proves the monotonicity. �

Combining Lemmas 5 and 6 with Theorem 4, we obtain Theorem 3. We note that our Ω( 1
lnp

)

approximation ratio is nearly the best possible for the max-min problem (14), as the problem is

hard to approximate to a factor better than O( ln lnp
lnp

); see Feige et al. (2007).

We now describe the complete algorithm below in the context of SRAMF. This is a combination

of the max-min algorithm from Feige et al. (2007) and the online LP algorithm from Buchbinder

et al. (2014). For any ordered subset S of vehicles, let v̂ON(S) denote the objective value of the

online algorithm for (13) after adding constraints corresponding to the vehicles in S (in that order).

Algorithm 3 describes the updates performed by the online algorithm when a vehicle i is added.

Algorithm 3: Updating subroutine in Max-Min Online algorithm

For a given i∈ SA ∪SB, perform the following updates;
for e∈ Fi =

⋃
ξ Fi,ξ do

let {u−g,ξ}g∈e be the values of variables in hyperedge e and Γ−e =
∑

g∈e u
−
g,ξ;

if Γ−e <
ve
N

then

update ug,ξ←
(
u−g,ξ +

ve
N
δ
)
· 1 + |e| · δ
N
ve

Γ−e + |e| · δ
− ve
N
δ, for all g ∈ e.

end
end

Proof for the updating subroutine in MMO algorithm: Consider the updates when vehicle i is

added. Consider any scenario ξ and hyperedge e ∈ Fi,ξ: the corresponding covering constraint is

cTe u= N
ve

∑
g∈e ug,ξ ≥ 1. Let τ be a continuous variable denoting time. The online LP algorithm in

(Buchbinder et al. 2014) raises variables ug,ξ in a continuous manner as follows:

∂ug,ξ
∂τ

=
N

ve
ug,ξ + δ, ∀g ∈ e, (15)

until the constraint is satisfied. Letting Γe =
∑

g∈e ug,ξ, we have

∂Γe
∂τ

=
N

ve

∑
g∈e

ug,ξ + |e| · δ=
N

ve e
+ |e| · δ.

By integrating, it follows that the duration of this update is

T =

∫ Γ+
e

Γ=Γ−e

∂Γe
N
ve

Γe + |e| · δ
=
ve
N
· ln

(
N
ve

Γ+
e + |e| · δ

N
ve

Γ−e + |e| · δ

)
=
ve
N
· ln

(
1 + |e| · δ

N
ve

Γ−e + |e| · δ

)
.
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Above Γ−e and Γ+
e denote the values of Γe at the start and end of this update step; note that

Γ+
e = ve/N as the updates stop as soon as the constraint is satisfied. For each g ∈ e, using (15),

T =

∫ T

τ=0

∂ug,ξ
N
ve
ug,ξ + δ

=
ve
N
· ln

(
N
ve
u+
g,ξ + δ

N
ve
u−g,ξ + δ

)
.

Again, u−g,ξ and u+
g,ξ denote the values of ug,ξ at the start and end of this update step. Combined

with the above value for T , we get a closed-form expression for the new variable values:

N

ve
u+
g,ξ + δ=

(
N

ve
u−g,ξ + δ

)
· 1 + |e| · δ
N
ve

Γ−e + |e| · δ
, ∀g ∈ e.

�

The complete MMO algorithm is described in Algorithm 4:

Algorithm 4: Max-Min online algorithm for SRAMF

Data: Augmented supply SA, basis supply SB, hypergraph G with E(ξ), and ε > 0.
Result: Near-optimal SR ⊂ SA and the corresponding trip assignment.
Initialization: SR←∅ and dual variables u← 0;
For each vehicle in SB (in any order), run Algorithm 3 to obtain v̂ON(SB)
for k= 1, . . . ,K do

for i∈ SA\SR do
Run the updating subroutine in Algorithm 3 and obtain v̂ON(SB +SR + {i}).

end
i∗ = arg maxi∈SA\SR v̂ON(SB +SR + {i}) ;
SR← SR + {i∗};

end

4.3. Extensions to SRAMF under Partition Constraints

We now consider a more general setting where the augmented set SA is partitioned into M subsets

SA(1), · · ·SA(m) and the platform requires Km vehicles from each subset. For example, there are M

types of vehicles so the cardinality constraint is further specified for each type as
∑

i∈SA(m) yi ≤Km

for all m ∈ [M ]. Alternatively, in the mixed autonomy example, there are M subregions of AV

zones and the requirement is proportional to the demand density in each subregion. Instead of (2),

we now want to solve:

maximize
y

E[Q(y, ξ)] (16)

s.t.
∑

i∈SA(m)

yi ≤Km ∀m∈ [M ] (16a)

yi ∈ {0,1} ∀i∈ SA. (16b)

We can extend our result to obtain:

Theorem 5. The MMO algorithm is a 1
(4+o(1))p log p

-approximation algorithm for SRAMF with

partition constraints.
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The proof is identical to that of Theorem 3. The only difference is the use of the following result

for max-min covering under a partition constraint (instead of Theorem 4, which only holds for a

cardinality constraint).

Theorem 6. (Gupta, Nagarajan, and Ravi 2015) If the covering problem (13) satisfies the

monotone and α-competitive online properties, there is a 1
2α

-approximation for the max-min prob-

lem with a partition (or matroid) constraint.

5. Numerical Experiments in Mixed Autonomy Traffic
5.1. Data Description and Experiment Setup

We evaluate the performance of the proposed algorithms through two settings of experiments.

1. Setting 1 represents the high-capacity SRAMF in which the AV fleet belongs to a public

transit operator. On-demand AVs are treated as a complementary mode to the existing transit

system. A relatively small number of high-capacity microtransit vehicles serve the demand in AV

zones, most of which are first- or last-mile connection trips.

2. Setting 2 represents the mid-capacity SRAMF in which a private platform operates an electric

AV fleet alongside conventional gas vehicles. We assume that the electric AVs will return to a

charging station to recalibrate and top off their battery after completing a trip. However, the exact

station should be chosen carefully so that the AV can serve future demand with minimal pickup

times.

We test the performance of these approximation algorithms in an on-demand mobility simulator.

The simulator operates a mixed autonomy fleet and integrates the batch-to-batch procedure in

Alonso-Mora et al. (2017) for ride-pooling and a demand forecast model to evaluate the performance

with a rolling horizon.

5.1.1. Data description and preprocess. The main components of the data input are:

1. Road network: The road network was constructed from OpenStreetMap data in New York

City (NYC) and traveling times are computed using the average speed profiles from historical data

(Sundt et al. 2021). In Setting 1, two AV zones are located in the high-density areas (Figure 6a).

AVs only operate within these AV zones. These zones were chosen based on high-demand areas

that have been proposed for pedestrianization or could feasibly be closed off to most vehicles other

than AV shuttles. In Setting 2, this zone restriction is lifted and AVs can operate over the entire

area of Manhattan.

2. Supply: The basis set SB represents the CVs with a fixed capacity of two that provides the

conventional ride-hailing service.

• In the high-capacity SRAMF (Setting 1 in Figure 6), the augmented set SA represents the

initial locations of automated shuttles fleets that can be redistributed for the regular mobility

service. Each shuttle is of capacity up to ten and can only operate within AV zones.
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(a) CVs’ and AVs’ initial loca-

tions in Setting 1

(b) Request pickup locations in a sampled experiment

(c) Sampled hyperedge value distributions in shareability graphs

Figure 6 High-capacity mixed autonomy traffic experiment in Manhattan, NYC.

• In the mid-capacity SRAMF (Setting 2 in Figure 7), the augmented set SA represents a set of

locations to preposition taxi-like AVs of capacity three. These locations are sampled from charging

stations in NYC from the NREL Alternative Fueling Stations data NREL (2021). The algorithm

will choose among SA to position idle AVs for charging before the next assignment.

3. Demand: The trip requests are sampled from the NYC Taxi and Limousine Commission trip

data which includes the origin-destination, number of passengers, trip time, and fares (TLC 2021)

(Figure 6b).

4. Hyperedge values: The hyperedge cost follows eq.(1). Each trip’s pickup time is computed

from the shortest path connecting trip requests on a road network. Customer’s preference over CVs

and AVs is randomly generated with ve > 0 for all hyperedges e. N scenarios are independent and
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(a) Public EV charging sta-

tions in Manhattan, NYC

(b) SA and SB for Setting 2 in a given scenario

Figure 7 Mid-capacity mixed autonomy traffic experiment in Manhattan, NYC. SA in Figure 7b are randomly

chosen from the current EV charging stations (NREL 2021) in Figure 7a.

identically distributed and used to compare approximation algorithms and the benchmark model

(Figure 6c).

5. Time intervals: We consider the rolling-horizon policy with a fixed interval of 15 minutes.

This interval allows for repositioning of selected idle vehicles. In addition, many charging stations

in NYC are equipped with high-voltage chargers or superchargers, which can restore up to 200

miles in 15 minutes of charging (Xiong et al. 2017).

5.1.2. Assessment of algorithms in the mixed-autonomy simulator. In both settings,

the objective is to choose a subset of SA to reposition these vehicles between trips and maximize

the total value of assignments through the rolling horizon, including the values of fulfilled demand,

trip costs due to the increasing pickup times, and customers’ preference over the vehicle type

in eq.(1). These candidates in SA can be the real-time GPS locations of vehicles (Example 1 or

Example 2) or transit stops and parking areas for AVs (Example 3). The solution algorithms select

vehicles in each batch at the beginning of each period and determine the trip assignment after

all demands are revealed. During preprocessing, the demand forecast model generates N scenarios

and constructs the shareability graph using the process in Appendix B. It generates all hyperedges

for the sampled demand as well as the hyperedge values associated with all available vehicles. The
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hyperedge numbers and other results reported in figures and tables for experiments in this paper

are averaged out over all samples.

All computation times are reported from performance on a server with an 18-core 3.1 GHz

processor and 192GB RAM. The benchmark model uses a state-of-the-art IP solver (Gurobi 9.1).

Setting 1 reports 4-core performance due to the smaller problem size, while Setting 2 is large

enough to require the use of all CPU cores. Solving the SRAMF problem in (2) to its optimality

by an exact method is impractical considering the massive size of the potential trips. The number

of variables in the IP is equal to the product of the number of hyperedges and the sample size,

both of which can grow exponentially in real-world applications. The computational time limit is

set as six hours per instance. Although the proposed approximation algorithms can handle more

extensive networks, our numerical experiments downsample from the taxicab data to keep solvable

scales for the benchmark IP solver.

The performance of the proposed approximation algorithm is evaluated under different sup-

ply and demand distributions. As the demand profiles are sampled from the taxicab trip data,

these algorithms do not depend on any distributional assumption and can be connected to more

sophisticated demand forecast models (Geng et al. 2019). The system is tested in both a rela-

tively balanced demand scenario as well as a massive under-supply scenario, with mean numbers

of demand across scenarios ranging from 250, to 4000, respectively, which are considerably large

in a stochastic setting.

Table 1 Parameters in numerical experiments

Setting
AVs

(augmented set)
CVs

(basis set)
Ratio of demand to
supply of vehicles

Number of
sampled scenarios

Capacity
Setup
cost

K Capacity
Setup
cost

Vehicle
number

Setting 1 5-10 1 5 3 0 115 1.7-2 50
Setting 2 3 1 30-60 2 0 60 35-45 20-30

5.2. Numerical Results for High-Capacity SRAMF

In Setting 1, the proposed algorithm computes the near-optimal solutions for the mixed-autonomy

fleet, including selecting AVs and routing vehicles for each sampled demand profile. Figure 8 shows

how those chosen AVs (red) and CVs (grey) service trip requests in the face of uncertainty where

AVs only operate within the AV zones. The algorithm allocates one AV in the lower AV zone and

four AVs in the upper AV zone on the map, which matches the density of demand in Figure 6b.

The remainder of this section compares two approximation algorithms with a benchmark IP

method with regard to the total run times and optimality gap. The computation time comparison

is to validate the polynomial-time reduction in terms of the network size, and the optimality-gap

comparison is to examine those proved approximation ratios.
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(a) CV routes (b) AV routes

Figure 8 Optimal trip assignment and routes in mixed autonomy, high-capacity SRAMF.

5.2.1. Computation times. The reported computation time includes solving for the near-

optimal selection of vehicles and exact assignment in each scenario. Since the same hypergraph

is generated beforehand and used throughout all algorithms, we do not report them in this com-

parison. Two parameters that determine the size of the shareability graph is |SA| (the size of

the augmented set) and the number of hyperedges (the number of decision variables in each sce-

nario). Table 2 shows how the total run time grows with the increasing size of the hypergraph. The

computation time of LSLPR and MMO algorithms are shown in Table 2.

Note that a significant difference between the proposed algorithms and the exact solver is that

these tailored algorithms add vehicles from the set SA sequentially. A parallel-computing scheme

can significantly reduce the total run time of approximation algorithms because the evaluation

of each scenario can be carried out simultaneously. The exact approach (viz., IP solver) cannot

reduce the total run time since it must solve the stochastic program (2) across all samples. The

results report the LSLPR and MMO algorithms under a finite-computing-resource (at most eight

threads per time) and an infinite-computing-resource setting. The infinite computing resource

means that we can evaluate all pairs of vehicles in the active set in LSLPR or the dual variables

for all hyperedges in MMO simultaneously. The reported run time is the maximal runtime per

iteration. In our experiments, we were able to achieve times close to the reported MMO infinite

computing setting, because that can be achieved by evaluating all drivers in SA \SR in parallel. The

LSLRP limit is much harder to achieve as the number of potential swaps is combinatorial, however,

the computation time will always improve when additional resources are used. The number of

hyperedges is the maximum number of hyperedges per scenario.
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5.2.2. Optimality gaps. The optimality gaps of algorithms are compared with the IP bench-

mark model. Let the objective of the IP solver be OPT and the approximation algorithm’s solution

be ALG. The optimality gap is measured by (OPT −ALG)/OPT . Table 2 shows how the opti-

mality gaps grow with the increasing network size under various supply-demand ratios.

Table 2 Summary of Numerical Results for High-Capacity SRAMF

Demand-
supply
ratio

SA SB
Total # IP
variables
(hyperedges
× samples)

# of
samples

Benchmark LSLPR MMO

IP
runtime
(second)

LSLPR
runtime
(8-
thread)
(second)

LSLPR
runtime
(max-
thread)
(second)

Opt.
Gap

MMO
(8-
thread)
(second)

MMO
(max-
thread)
(second)

Opt.
Gap

1.78 10 115 366550 50 1177 384 20 0.2% 38 16 0.4%
1.78 15 115 372050 50 1332 383 19 0.9% 51 19 0.8%
1.78 20 115 384650 50 1470 337 23 0.7% 58 15 0.8%
1.78 25 115 392500 50 1354 357 24 0.9% 72 26 0.8%
1.78 30 115 403000 50 1464 548 31 0.5% 82 15 0.9%
1.78 35 115 403250 50 1448 599 27 0.4% 97 17 1.0%
1.83 10 115 385450 50 1425 460 29 0.3% 48 15 0.1%
1.83 15 115 407100 50 1516 509 63 0.1% 60 17 0.0%
1.83 20 115 427400 50 1730 449 33 0.5% 77 19 0.3%
1.83 25 115 433950 50 1817 483 35 0.3% 91 22 0.7%
1.83 30 115 458550 50 2027 566 31 0.7% 104 21 0.8%
1.83 35 115 478000 50 2373 565 44 0.5% 137 31 1.2%
1.87 10 115 356250 50 1180 353 26 0.7% 87 65 0.3%
1.87 15 115 375050 50 1350 398 12 0.5% 66 34 0.1%
1.87 20 115 383100 50 1509 455 55 1.0% 78 38 0.1%
1.87 25 115 408650 50 1650 488 18 1.0% 128 70 0.3%
1.87 30 115 427350 50 1690 536 35 1.0% 105 32 0.3%
1.87 35 115 435950 50 1795 535 77 1.3% 141 42 0.3%
1.93 10 115 579800 50 4468 1011 196 0.4% 121 63 0.2%
1.93 15 115 619000 50 6411 1036 58 0.5% 250 140 0.4%
1.93 20 115 651850 50 11243 1237 204 0.2% 224 72 0.3%
1.93 25 115 692250 50 11820 1318 28 0.4% 390 167 0.2%
1.93 30 115 734800 50 5432 1453 99 0.8% 397 86 0.6%
1.93 35 115 845950 50 7038 1830 64 0.6% 516 133 0.4%
2.02 10 115 593200 50 4348 998 50 0.6% 226 182 1.0%
2.02 15 115 662350 50 5843 1792 157 0.2% 175 93 1.0%
2.02 20 115 860950 50 9802 2177 210 0.2% 442 214 1.0%
2.02 25 115 1123050 50 16787 3508 300 0.5% 609 201 0.9%
2.02 30 115 1212400 50 22141 4143 198 0.6% 1234 477 0.4%
2.02 35 115 1243050 50 20920 6327 161 0.4% 1362 487 0.5%

- The demand-supply ratio is the average trip requests over the total number of vehicles (K+ |SB |); K = 5.

- 8-thread and max-thread are the number of parallel programs; they are not feasible for the IP benchmark.

- The max-thread runtimes assume enough threads to evaluate all potential swaps or drivers at once:

In LSLRP, max threads = 150; in MMO, max threads = 30.

The overall performance of the proposed approximation algorithms is surprisingly satisfactory.

The optimality gap is below 2% throughout all experiments. These results confirm that those

approximation ratios proven for the worst-case, 1
p2

or e−1
(2e+o(1))p lnp

, are loose with the real-world trip

data. In other words, the performance degradation of these approximation algorithms is negligible

when implementing them in shared mobility systems.
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5.2.3. Sensitivity analysis. Three sensitivity analyses conducted in the sensitivity analysis

are a) distribution of hyperedge values, b) vehicle number and capacity, and c) sample size. They

test how the performance of these approximation algorithms is affected based on changes in input

data and model assumptions. We discuss them individually in this section.

Hyperedge value distribution. The first set of sensitivity analyses aims to check algorithms’

performance degrades with different supply and demand distributions. By replacing the empirical

hyperedge values with randomly generated hyperedge values, this analysis examines the robustness

of these algorithms. Figure 9 shows the runtime and optimality gaps with uniformly generated

hyperedge values (see two distributions in Figure 6c). This uniform distribution represents that

the customers’ trust in AV technology is the dominating factor in the hyperedge value such that

ve =
∑

j∈t uj +
∑

j∈t ũij − c(i, t)≈
∑

j∈t ũij for each e∈E(ξ) and the joint utility function follows a

uniform distribution.

The runtime of random hyperedge values is smaller than those of real-world data, and the

optimality gaps stay low across most instances. This is mainly because the empirical hyperedge

values are more concentrated around specific values (i.e., the average trip length). Hence it is

more difficult to find the best vehicle from the augmented set. In this case, the local-search-based

algorithms are more efficient with more uniformly distributed values.

Vehicle capacity. AVs are the mass transport carriers in the mixed autonomy numerical exper-

iment, whose capacity is up to ten requests and each request may contain more than one passenger.

CVs have a fixed capacity of three throughout the experiments. Recall that p bounds the vehicle

capacity, Table 3 shows how the vehicle capacity affects the approximation ratios. Observe that the

vehicle capacity is not the bottleneck of the performance. Since the number of hyperedges increases

with the increasing vehicle capacity, the IP benchmark’s computational time increases. However,

we observe that the number of hyperedges plateaus above a certain capacity. This is due to the

method of construction of the shareability graph, as described in Section 5.1. In order for a high

capacity trip to exist, all subset trips must also exist. This leads to a combinatorially decreasing

number of hyperedges with large trip set sizes, unless an even larger set of compatible trips exist.

At the density of requests chosen in this experiment in the AV zones, we do not see these large

sets of compatible trips. The optimality gaps of both approximation algorithms are not evidently

affected by the AV capacity.

Sample size. Although SAA guarantees a uniform convergence to the optimal value, it is not

clear how the number samples affect the computation times and the optimality gaps. The results

of running the same experiments with increasing sample size are summarized in Table 4. This

table reports the runtime with unlimited computational resources (i.e., evaluating all scenarios in

parallel). The cases with finite multithreading can refer to Figure 6.
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(a) Computation time comparison

(b) Optimality gap comparison

Figure 9 Impact of input distribution on computation time and optimality gap.

Table 3 Impact of vehicle capacity on computation time and optimality gap

Number of
AV locations

AV capacity
CAV

Number of
hyperedges

Runtime of
IP (second)

Optimality
gap of LSLPR (%)

Optimality
gap of MMO (%)

35 2 8121 220 0.62 1.12
35 4 11396 288 0.80 0.88
35 6 12048 299 0.99 0.43
35 8 12068 298 1.00 0.03
35 10 12070 301 1.00 0.02

5.3. Numerical Results for Mid-Capacity SRAMF

In Setting 2, a relatively large fleet of electric AVs (|SA|= 114) and CVs (|SB|= 60 serve the travel

demand in tandem over the entire city area. The results are summarized in Table 5. We also show

the optimal assignment and routes in Figure 10.

5.3.1. Computation times. At low sample sizes, the runtime of solving the IP is fairly

competitive with the approximation algorithms. Gurobi is a powerful and heavily optimized solver,

so this is not very surprising. However, the advantage of MMO and LSLRP at higher sample sizes

is clear because they can leverage parallel computation resources.
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Table 4 Impact of sample size on computation time and optimality gap

Number of
samples

Number of
AV locations

AV capacity
Avg number
of hyperedges

Runtime of
IP (second)

Runtime of
LSLPR
(second)

Optimality
gap (%)

10 20 5 3100 14 2 3.23
25 20 5 3100 104 5 1.63
50 20 5 3100 445 12 2.03
75 20 5 3100 907 15 2.01
100 20 5 3100 2088 25 0.91
150 20 5 3100 4076 38 3.15
200 20 5 3100 7485 109 1.01

Table 5 Summary of Numerical Results for Mid-Capacity SRAMF

Demand-
supply
ratio

S A S B K
Total # IP
variables
(hyperedges
× samples)

# of
samples

Benchmark LSLPR MMO

IP
runtime
(second)

LSLPR
runtime
(36-
thread)
(second)

LSLPR
runtime
(max-
thread)
(second)

Opt.
Gap

MMO
(36-
thread)
(second)

MMO
(max-
thread)
(second)

Opt.
Gap

22.7 114 60 30 8468768 20 2656 718 213 0.011% 263 87.6 0.11%
34.1 114 60 30 18124448 20 5622 1238 336 0.015% 573 191 0.08%
45.5 114 60 30 31516528 20 8934 3814 2151 0.001% 1050 350 0.05%
22.7 114 60 30 12572544 30 5322 672 267 0.037% 381 127 0.48%
34.1 114 60 30 27495912 30 11559 983 446 0.036% 838 279 0.26%
45.5 114 60 30 47274792 30 19763 1913 1504 0.013% 1457 485 0.14%
22.7 114 60 60 8195056 20 2608 2665 9.26 0.007% 469 227 0.20%
34.1 114 60 60 17905712 20 6277 4898 55.9 0.004% 1022 520 0.11%
45.5 114 60 60 31516528 20 11080 28051 72.0 0.004% 1998 1620 0.076%
22.7 114 60 60 12867024 30 5599 3811 56.7 0.005% 649 544 0.39%
34.1 114 60 60 27147312 30 11220 34360 79.0 0.001% 1516 1210 0.14%
45.5 114 60 60 47274792 30 DNF DNF DNF - 2962 1407 -

- 36-thread and max-thread are the number of parallel programs; they are not feasible for the IP benchmark.

- The max-thread runtimes assume enough threads to evaluate all potential swaps or drivers at once:

In LSLRP, max threads = 3420; in MMO, max threads = 114).

The runtime of LSLRP varies widely as the swap order greatly affects the runtime. In the K = 60

case, we occasionally observe very long runtimes for the LSLRP algorithm. This is primarily due

to the number of swaps that the algorithm has to evaluate in order to guarantee that it has found

a solution. If the algorithm randomly finds a good swap, finding another one that further improves

the objective value becomes increasingly difficult. This can lead to the algorithm evaluating a

combinatorial number of swaps but the quality of approximation almost attains the optimality.

5.4. Limitations

Since this work focuses on offline algorithms, the limitations of the current experiments include:

1. The system does not allow alternative pickups and dropoffs in trip planning, i.e., the total

number of requests is no greater than vehicle capacity in each trip clique.
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(a) CV routes (b) AV routes

Figure 10 Optimal trip assignment and routes in mixed autonomy mid-capacity scenario.

2. The penalties of balking trips or carryover supply or demand are not directly considered, but

can be incorporated into the hyperedge value as discussed in Section 3.1.

The computational time increases linearly with the sample size. The optimality gaps are small

across different sample sizes. The algorithm can use a large sample size when the stochasticity in

the platform is of major interest and has access to abundant computational resources.

6. Conclusion

SRAMF is a generic formulation for operating shared mobility platforms with blended workforces

or mixed autonomy traffic. This paper proposes mid-capacity and high-capacity approximation

algorithms for joint fleet sizing and trip assignment in ride-pooling platforms. Widely used real-

time ride-pooling frameworks (Alonso-Mora et al. 2017, Simonetto, Monteil, and Gambella 2019)

can integrate these approximation algorithms to accelerate the vehicle dispatching process and

improve the quality of service with mixed fleets. We give provable guarantees for their worst-case

performance and test their average performance in numerical experiments.

To close this paper, we point out several promising future research avenues to address the

following limitations. First, we focus on the SRAMF problem in the face of a simple uncertainty

structure (i.e., two-stage decision). Since the demand forecast can be time-varying and the vehicle

repositioning decisions should adapt to revealing scenarios, extending our framework to a multi-

stage setting would be interesting. Second, the construction of hypergraph remains a computational

challenge in the worst-case, hence developing efficient reformulation for updated batches of potential
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matchings may provide computational advantages. Finally, the current trip assignment does not

consider cancellation and re-assignment after dispatching vehicles to passengers. Considering these

factors in practice may improve the stability of ride-pooling algorithms.
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Appendix A: Summary of Notation

Table 6: Summary of notation and acronyms

Notation Description
SA, SB Augmented set and basis set of vehicles
ξ Randomly generated scenario
`∈ [N ] Index for sampled scenarios and the total number of samples
D(ξ) Set of demand in scenario ξ
E(ξ) Set of hyperedges in scenario ξ
G Shareability graph, a hypergraph consists of supply and demand vertices and hyperedges
e Each hyperedge e= {i, J}i∈S,J⊆D is a potential trip where vehicle i serves requests J
uj The expected profit of request j
ũij Utility gained from matching request j with preferred vehicle type i
c(i, t) Travel cost for vehicle i to serve trip t
α Approximation ratio
n Total number of vehicles such that |SA|= nA and |SB|= nB
K Maximum number of vehicles allowed from the augmented set
Ci Capacity of vehicle i∈ SA ∪SB
wi Number of passengers in request j
p Maximum capacity of hyperedge, p= maxi∈SA∪SB

{1 +Ci}
j Index for travel demand j ∈D(ξ)
wj Size of travel demand j ∈D(ξ)
Ei,ξ Set of hyperedges contains vertex i∈ SB ∪SR in scenario ξ
t Trip is a set of demand following the shortest pickup-and-then-dropoff order
ve Value of hyperedge e∈E(ξ)
nb(e) Neighboring hyperedges e′ ∈E(ξ) intersecting with e
xe Decision variable for hyperedge e, xe ∈ {0,1}
x̄e Decision variable for fractional assignment, xe ∈ [0,1]
yi Decision variable for vehicle i∈ [SA], yi ∈ {0,1}
v∗(·) Optimal value of the exact GAP
Q(y, ξ) Optimal value of the assignment in scenario ξ
vmax Maximal hyperedge value for all e∈E
vmin Minimal hyperedge value for all e∈E such that ve > 0
I Independent set as a union of hyperedges satisfying the set-packing constraint
SO Optimal choice of vehicles for SRAMF SO ⊂ SA
SR Choice of vehicles from the algorithm SR ⊂ SA
L The bijection between SR and SO
v̂(·) The objective value of fractional assignment
zzz Optimal LP solutions to v̂(SO)
Fi Hyperedges intersect with vehicle i
Hd Hyperedges intersect with demand d
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⊥ Dummy hyperedge in LSLPR
∆d(e, f) Decomposition mapping between hyperedge e and f
Ui1i2 Marginal value function with i1 ∈ SR and i2 ∈ SO
v̂ON Objective value of the online algorithm
ug,ξ Dual variable in the MMO algorithm for g ∈ e and scenario ξ
Γe Γe =

∑
g
ug,ξ as the left side of dual constraints

ccce Row of cost coefficient in the dual covering problem with entry ce(g, ξ)
M The augmented set is partitioned into M subsets
ε Error tolerance (for stopping criteria)
δ Error tolerance (for sample average approximation) or constant in MMO update subroutine
OPT Optimal value of the SRAMF problem
ALG Objective value of solving SRAMF by approximation algorithms

Acronym Description
CV/AV Conventional/automated vehicle
GAP General assignment problem
LP Linear program
IP Integer program
LSLPR Local-search linear-program-relaxation algorithm
MMO Max-min online algorithm
SAA Sample average approximation
SRAMF Stochastic ride-pooling assignment with mixed fleets
VRP Vehicle routing problem
DVRP Dynamic vehicle routing problem

Appendix B: Performance Analysis of Construction of Shareability Graphs

The main idea of recent ride-pooling assignment papers (Santi et al. 2014, Alonso-Mora et al. 2017, Simonetto,

Monteil, and Gambella 2019) is to separate the problem into two parts: 1) constructing the shareability

graph and compatible requests and vehicles, and 2) optimally assigning those trips to vehicles by solving

GAP. This paper primarily focuses on algorithms and approximation bounds for the stochastic extension to

the second part, but we acknowledge the importance and difficulty of the first task and describe them in

detail below for completeness.

B.1. Procedure for Constructing Shareability Graphs

D(ξ) is a set of all trip requests revealed in scenario ξ, and this section omits ξ when there is no confusion

because the hyperedges for scenarios are generated separately. We consider a number of parameters to be

given by the customer or externally dictated to the platform (based on desired service parameters). These

include, for each customer j, the maximum waiting time, ωj , and allowable delay, rj .

• (Constraint I) Travel time from vehicle location to pick-up of customer j in order must be less than

ωj .

• (Constraint II) Travel time from origin to destination of customer j in order must be less than rj .

Additionally, as defined in the setting, the hyperedge weight consists of three parts: value of trip requests∑
j
uj , preference of the vehicle type ũsj , and travel cost of delivering all trip requests in a single trip. We

take a three-request clique (j1, j2, j3) as an example. Let tk = {Oj1 ,Oj2 , . . . ,Dj2 ,Dj3} be a specific ordered

sequence of origins and destinations and SP (tk) be the shortest path route connecting them. Let Te =∪ktk.
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Note that this is slightly less demanding than finding all feasible Hamiltonian paths if we enforce that in all

trips, the origins must be picked up before any destination is visited. Let c(s, e) = mintk∈Te
v(tk) where c(tk)

is the cost of serving all requests following the shortest-path SP (tk). We define a set function f(e) that takes

a hyperedge consisting of a vehicle s and a potential combination of trips, Te, as below:

f(e) =

{
0 if ∀tk ∈ Te, SP (tk) violates constraints I and II

c(s, e) otherwise
.

The bottleneck of computation time is still finding vehicle routes that satisfy the given constraints by solving

a constrained VRP problem, which is NP-hard. Therefore, all heuristic methods can only minimize this

bottleneck as much as possible by reducing the number of combinations to check at each step. For example,

Ke et al. (2021) suggested a reformulation for finding c(s, e) to avoid enumerating all possible paths.

We combine multiple heuristic methods in literature to construct the shareability graph. First, we need

to identify the valid single customer trips for a given vehicle s. Let Ds be the demand that can be served

by vehicle s in a single trip within the allowable pickup time. We may further reduce the number of trips

by planning on a spatiotemporal graph and examining compatible trips’ cliques. By testing trips in order of

increasing size and only considering a trip if all subsets of trips (where one request is removed from the trip)

are feasible, we reduce the number of candidate trips by orders of magnitude. This heuristic generates the

shareability graph in Figure 2 in which a set of requests is tested for trip compatibility only if every subset

of that set of requests is also compatible.

Lemma 7. (Alonso-Mora et al. (2017)) A trip associated with the hyperedge e is feasible for vehicle s only

if, for all j ∼ e, j ∈Ds, hyperedges (subtrips) e′ = e\{j} are feasible.

The heuristic reduces the candidate hyperedge sets by leveraging the topological relationship between

matchable trips of size k and k + 1 (see Figure 11), without eliminating potentially feasible trips. The

hypergraph can then be constructed in order of increasing capacity to minimize the number of request sets

tested. Additionally, we adopt the following rules to further reduce the number of candidate trips:

1. Since only hyperedges with nonnegative edge weights are of interest, we remove all the trips from the

candidate set subject to f(e)<= 0.

2. If a vehicle v is not feasible for trip tk at time τ , it will not be feasible for tk at any time τ ′ > τ (Liu

and Samaranayake 2020).

Let Ck(D) be the set of combinations of size k of the elements of the set D. This process is summarized

as follows:
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Algorithm 5: Construction of Shareability Graph

Data: Vehicle locations and requests (request time, pick-up, drop-off, preferred vehicle type,
acceptable delay)

Result: Set of hyperedges, E, each containing a vehicle, s, and a set of compatible requests for that
vehicle to serve in one trip. Hyperedge values are ve for all e∈E.

Initialize E =∅
for s∈ SA ∪SB do

Identify candidate passengers
D1
s ←{e∈D | f((s, e))> 0}

Add hyperedges of size one
Ek←

⋃
e∈D1

s
(s, e)

for k= 2, . . . , c do
for Demand set d∈Ck(Dk−1

s ) do
Add trips of size k if all subsets exist and value greater than 0
if (s, e′)∈Ek−1∀i∈Ck−1(d) and f((s, e′))> 0 then

Ek←Ek ∪ (s, d)
Dk
s ←Dk

s ∪ d

E =
⋃p−1
k=1Ek

Return hyperedges E and their values ve

Figure 11 Topological relationship between cliques of matchable requests. In this example, (2,3,4) is not a valid

combination of requests because the (2,4) combination was not valid.

B.2. Performance and Complexity Analysis of the Hypergraph Construction Procedure

B.2.1. Optimality analysis. The two-step ride-pooling assignment that first constructs the hypergraph

and then solves GAP obtains the exact optimal solution of solving the joint VRP and enjoys the computa-

tional advantage for large fleets. Since this work focuses on stochastic assignment, the optimality analysis

does not consider the errors of computing hyperedge values. The following results from Alonso-Mora et al.

(2017) provide positive guarantees for returning a feasible set of hyperedges in the shareability graph: without

enumerating all trip combinations:

1. v∗ from solving GAP on the shareability graph obtains the optimal value for ride-pooling for an arbitrary

batch of supply and demand.

2. The construction of the shareability graph is anytime optimal, i.e., given additional computational

resources, the set of hyperedges is only expanded to allow for improved matching.
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The second property guarantees using a capacity bound, the threshold of which is derived below, as an

early stopping criterion in generating the hypergraph will still provide satisfactory results. Solving GAP on

this reduced shareability graph can guarantee anytime optimality such that the output is near-optimal for

the original problem with high probability.

B.2.2. Computational complexity analysis. We consider a fixed sample of demand D and vehicles

S in this section as the hyperedges of each scenario can be generated in parallel. The realized demand has

size |D|= d.

Lemma 8. In the worst case, where all demand is compatible and can be served by all vehicles, the runtime

is O(|S|dp−1).

While in the worst-case runtime is large, this scenario only arises when all trips are compatible for ride-

pooling, which is unlikely in practice. Therefore, we consider the Erdos-Renyi model in which an arbitrary

pair of demand is matchable (i.e., satisfy the conditions above) with probability q. Empirical studies showed

that q was often a small number (< 0.1) over a large area (Ke et al. 2021).

Lemma 9 (Bollobás and Erdös (1976)). The expected number of cliques of size k is
(
d

k

)
q(

k
2).

For example, with d= 1000 and q = 0.1, the expected number of cliques of size 3 (each vehicle deliver at

most two requests in a single trip) is 500. Often we observe the size of complete cliques of compatible trips

to be less than 10, our maximum tested capacity, and the total number of hyperedges is manageable.

Lemma 10 (Matula (1976)). As d→∞, the maximal clique size ρ takes on one of at most two values

around 2 log d
log1/q

with probability tending to one, i.e. with b= 1/q, b2 logb dc<ρ< d2 logb de.

Therefore, we only need to consider hyperedges with size less than p∗ = min{p, ρ+ 1} (i.e., the height of

the cliques’ graph in Figure 11). We have the following theorem for the runtime of constructing shareability

graphs.

Theorem 7. In the average case that the demand and supply profiles satisfying the random geometric

graph conditions, the runtime is O(|S|dp∗−1).

Proof: The expected number of hyperedges connected to vehicle s, Es,max, is bounded by

Es,max =

(
d

1

)
12 +

(
d

2

)
22q+ · · ·+

(
d

(p∗− 1)

)
(p∗− 1)2q(p

∗−2)

≤ ed+

(
ed

2

)2

22q+ · · ·+
(

ed

p∗− 1

)p∗−1
(p∗− 1)2q(p

∗−2)

= ed+
1

q

[(
eqd

2

)2

22 + · · ·+
(

eqd

p∗− 1

)p∗−1
(p∗− 1)2

]
=O(dp

∗−1),

where e is the Euler’s number.
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Appendix C: Supplementary Results for Approximation Algorithms

C.1. Proof for Sample Average Approximation in SRAMF

Proof: We denote the optimal value of the SRAMF problem (2) as v∗ and the optimal value of problem

for the objective from Algorithm 2 as v̂(SO). Let δ be the upper bound of the optimality gap v∗− v̂(SO). We

assume that E[Q(y, ξ)] = Ω(m−2) for any ξ where m is a given constant. The main task is to show that:

1. E[v̂(SO)] = Ω(m2) with the sample size N = m4

δ2
.

2. Pr(v̂(SO) /∈ [(1− δ)v∗, (1 + δ)v∗])≤ exp(− δ2

2
E[v̂(SO)]).

Let D(ξ)<D for all ξ. For any selection of vehicles in SA denoted by y ∈ Y , E[Q(y, ξ)2]<∞, because we

can choose K vertices in SA with maximum number of D edges. The upper bound of of hyperedge value

vij is vmax. Thus we have E[Q(y, ξ)2]<K2|vmax|2D2 <∞. Without loss of generality, we draw the following

observations from the standard stochastic programming literature (Pagnoncelli, Ahmed, and Shapiro 2009):

1. v̂(SO)→ v∗ as N →∞;

2. E[v̂(SO)]≥ v∗.

Since N samples are i.i.d., we can use the Chernoff bound on the measure:

Pr(v̂(SO) /∈ [(1− δ)v∗, (1 + δ)v∗])≤ exp(−δ
2

2
E[v̂(SO)]).

Setting N =m4/δ2 and using the assumption that E[Q(y, ξ)] = Ω(m−2), by Jensen’s inequality, we have:

δ2E[v̂(SO)]≥ δ2N ·E[Q(y, ξ)],

i.e., δ2 ·E[v̂(SO)] = Ω(m2). We have

Pr
(
v̂(SO) /∈ [(1− δ)v∗, (1 + δ)v∗]

)
≤ exp(−Ω(m2)),

which achieves the second task as

Pr

(
(
1

2
− ε)v̂(SO)< (

1

2
− ε)(1− δ)v∗

)
+Pr

(
(
1

2
− ε)v̂(SO)> (

1

2
− ε)(1 + δ)v∗

)
≤Pr

(
v̂(SR)< (

1

2
− ε)(1− δ)v∗

)
+Pr

(
v̂(SR)> (

1

2
− ε)(1 + δ)v∗

)
≤ exp(−Ω(m2)).

The first inequality is because 1
p2
v̂(SO)≤ v̂(SR)≤ v̂(SO). This concludes the approximation ratio for LSLPR

algorithm for the stochastic counterpart of the ride-pooling problem. �

C.2. Proof for Lemma 1

We use a network flow formulation to prove the existence of the mapping ∆d :H ′d ×H ′d→ R+. Consider a

bipartite graph with nodes L= {`e : e ∈H ′d} and R= {rf : f ∈H ′d}, and arcs L×R. There is an additional

source node s, and arcs from s to each L-node and arcs from each R-node to s. Every arc (i, j) in this

network has a lower bound α(i, j) and an upper bound β(i, j). The goal is to find a circulation z such that

α(i, j)≤ z(i, j)≤ β(i, j) for all arcs (i, j). Recall that a circulation is an assignment of non-negative values to

the arcs of the network so that the in-flow equals the out-flow at every node. The lower/upper bounds are

set as follows.
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1. For each arc (i, j)∈L×R, we have α(i, j) = 0 and β(i, j) =∞.

2. For each arc (s, `e) where e∈H ′d, we have α(s, `e) = β(s, `e) = xe.

3. For each arc (rf , s) where f ∈H ′d, we have α(rf , s) = β(rf , s) = zf .

Recall that xxx and zzz are the LP solutions corresponding to v̂(SR) and v̂(SO).

Given any circulation z, we define ∆d(e, f) = z(`e, rf ) for all e, f ∈H ′d. Then, it is easy to see that all 3

conditions in Lemma 4 are satisfied.

It just remains to prove the existence of some circulation. By Hoffman’s circulation theorem (Hoffman

2003), there is a circulation if and only if

α (δ−(T ))≤ β
(
δ+(T )

)
, ∀T subset of nodes. (17)

Above, δ−(T ) denotes all arcs from a node outside T to a node inside T ; similarly, δ+(T ) denotes all arcs

from a node inside T to a node outside T . This condition can be verified using the following cases:

• T ∩L 6=∅ and T ∩R 6=R. In this case, there is some arc from L×R in δ+(T ), so the RHS in (17) is ∞,

which is clearly satisfies the condition.

• T ∩L= ∅. If source s 6∈ T then α(δ−(T )) = 0; so (17) is clearly true. If source s ∈ T then β(δ+(T ))≥∑
e∈H′

d
xe = 1 as all of L lies outside T , and clearly α(δ−(T ))≤ 1; so (17) holds.

• T ∩R=R. If s∈ T then α(δ−(T )) = 0; so (17) is clearly true. If source s 6∈ T then β(δ+(T ))≥
∑

f∈H′
d
zf =

1 as all of R lies inside T , and clearly α(δ−(T ))≤ 1; so (17) holds.

C.3. Supplementary Results for MMO Algorithm

Recall that v̂(SR) =
∑

ξ v̂(SR, ξ) where v̂(SR, ξ) is defined as the LP in (4). So, we can write v̂(SR) as the

following LP:

v̂(SR) = maximize
x

1

N

∑
ξ

∑
e∈E(ξ)

vex
ξ
e (18)

s.t.
∑

e∈E(ξ):j∈e

xξe ≤ 1 ∀j ∈D(ξ) ∀ξ

∑
e∈E(ξ):i∈e

xξe ≤ 1 ∀i∈ SA ∪SB ∀ξ

xξe = 0 ∀e∼ SA \SR ∀ξ

xξe ≥ 0 ∀e∈E(ξ) ∀ξ.

For any vehicle i and scenario ξ, set Fi,ξ ⊆ E(ξ) denotes all the hyperedges incident to i in scenario ξ.

Note that all variables xξe with e∼ SA \SR are set to zero. So, it suffices to consider the LP with variables

xξe for e∈ Fi,ξ and i∈ SB ∪SR.

We now consider the dual of the above LP (which has the same optimal value by strong duality). Let G=

SA ∪SB ∪ (∪ξD(ξ)) denote a combined groundset consisting of all vehicles and demands from all scenarios.

The dual variables are ug,ξ for all g ∈G and scenarios ξ. The dual LP is:

v̂(SR) = minimize
u

∑
ξ

∑
g∈G

ug,ξ

s.t.
∑
g∈e

ug,ξ ≥
ve
N
, ∀e∈ Fi,ξ, ∀ξ, ∀i∈ SR ∪SB

uuu≥ 0.
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