
Electric Vehicle Charging Station Search in Stochastic Environments

Marianne Guillet1,2,3, Gerhard Hiermann1, Alexander Kröller2, and Maximilian Schiffer1

1TUM School of Management, Technical University of Munich, 80333 Munich, Germany
2 TomTom Location Technology Germany GmbH, 12435 Berlin, Germany

3 Chair of Operations Management, RWTH Aachen University, 52072 Aachen, Germany
marianne.guillet@tomtom.com, gerhard.hiermann@tum.de, alexander.kroeller@tomtom.com, schiffer@tum.de

Abstract

Electric vehicles are a central component of future mobility systems as they promise to reduce
local noxious and fine dust emissions and CO2 emissions, if fed by clean energy sources. However,
the adoption of electric vehicles so far fell short of expectations despite significant governmental
incentives. One reason for this slow adoption is the drivers’ perceived range anxiety, especially for
individually owned vehicles. Here, bad user-experiences, e.g., conventional cars blocking charging
stations or inconsistent real-time availability data, manifest the drivers’ range anxiety. Against this
background, we study stochastic search algorithms, that can be readily deployed in today’s navi-
gation systems in order to minimize detours to reach an available charging station. We model such
a search as a finite horizon Markov decision process and present a comprehensive framework that
considers different problem variants, speed-up techniques, and three solution algorithms: an exact
labeling algorithm, a heuristic labeling algorithm, and a rollout algorithm. Extensive numerical
studies show that our algorithms significantly decrease the expected time to find a free charging
station while increasing the solution quality robustness and the likelihood that a search is successful
compared to myopic approaches.
Keywords: stochastic search, Markov decision process, dynamic programming, EV charging

ar
X

iv
:2

01
2.

00
88

3v
1

 [
cs

.D
S]

 1
 D

ec
 2

02
0

2

1. Introduction

All around the world, governments and companies try to foster the adoption of electric vehicles (EVs),
which are seen as a central component of future sustainable mobility systems that can play a major
role in reducing noise, noxious, and carbon emissions, if fed by clean energy sources. While govern-
ments introduced national programs to support individual EV purchase, e.g., by means of ecological
bonuses (France), tax exemption (Germany), or subsidies (Netherlands), private companies invested
in public charging infrastructure (Bensasson 2019, Fröhlich 2019), and major logistic service providers
progressively integrated EVs to realize sustainable transportation (DHL 2019, Amazon 2019). Yet the
market uptake for EVs fell short in expectation in most countries. One of the main obstacles remaining,
in particular for privately-owned EVs, is the customer’s perceived range-anxiety, triggered by missing
charging infrastructure and incomplete or non-standardized information about charging services avail-
able. Hence, facilitating a reliable EV charging process is crucial to decrease range anxiety in order to
invigorate the adoption of EVs (Bonges & Lusk 2016).
Different stakeholders focus on different measures to facilitate a reliable charging experience for users.

At strategic level, municipalities try to facilitate reliable charging options by improving the overall
charging infrastructure, e.g., by building new charging stations or increasing the capacity of existing
ones. Further, enforcing new pricing schemes that support a higher turnover rate of (re)charged vehi-
cles may help to save additional capacities (Bonges & Lusk 2016). However, infrastructure investments
require long planning lead times and pricing schemes can hardly be realized without standardization
and agreements between charging station operators. At operational level, some online map services
exist and aim to help EV drivers to locate available charging stations. Unfortunately, such services
struggle with data inaccuracy, e.g., an incomplete coverage with real-time status data. Even worse,
charging stations can be blocked by non-charging vehicles (so-called “ICEing”) without the inaccessi-
bility being reflected in status data. An empirical study in Berlin revealed a high correlation between
such inaccessibility and parking availability, showing that in areas without available parking it is three
times more likely for a charging station to be illegitimately blocked than legitimately used (see Table 1).
Drivers may find a selected and seemingly free station to be blocked when arriving there. Such

negative user experiences may require additional detours with an already depleted battery in order
to find a suitable charging station and thus may even increase a driver’s range anxiety. To this end,
a reliable stochastic search algorithm that helps to route drivers to an available charging station as

Table 1.: Parking availability on data accuracy

Legal parking availability in vicinity ≥ 2 spots 1 0

Blocked by charging EV 5% 14% 10%
Blocked without connection (ICEing) 1% 9% 34%
Available 94% 77% 56%

Internal TomTom study in Berlin, 2019. The study
shows how often charge points were legitimately used
(i.e.,“blocked” and actually used), actually available
(correct “free”), or illegitimately blocked by a vehicle.
The data relates to the amount of free parking spots
found in the immediate vicinity. For most of the sta-
tions, real-time availability data was not available.

3

convenient as possible constitutes a valuable algorithmic component for today’s map and navigation
services and may help to reduce the drivers’ range anxiety.
The goal of this paper is to develop such an algorithmic solution that can be readily deployed as

a built-in implementation in today’s navigation systems and map services. In the remainder of this
section, we first review the related literature, before we detail our contribution and elaborate the
organization of this paper.

1.1. Literature review

We now survey literature on EV routing with uncertain charging stations before we focus on related
search problems with stochastic resources.
Sweda et al. (2017) were the first to study probabilistic charging station availability as a multi-

stop shortest path problem under uncertainty. They used a dynamic programming approach on a
grid network and considered waiting times at unavailable stations. Kullman et al. (2017) extended
this work by modeling an electric vehicle routing problem with uncertain charging at public charging
stations, as a Markov decision process (MDP). Given the large action and state spaces, they proposed
an approximate stochastic dynamic programming approach with a look-ahead procedure (Goodson
et al. 2017). Jafari & Boyles (2017) studied a multicriteria stochastic shortest path problem for EVs,
in which stochasticity relates to travel time and energy consumption.
Focusing on related stochastic search problems, Arndt et al. (2016) studied a probabilistic rout-

ing problem for on-street parking search with parking spots as stochastic resources and incorporated
user preferences for stops closer to their destination. Besides showing the problem’s NP-completeness,
they proposed a brand-and-bound algorithm for small problem spaces. More generally, Guo & Wolf-
son (2018) studied a probabilistic spatio-temporal resource search problem, in which resources have a
general usage cost but the resource seeker is not allowed to wait for an occupied resource to become
available again. Contrary to Arndt et al. (2016) in which resources observations are persistent dur-
ing the search, stations can become available again after a defined time threshold. Guo & Wolfson
(2018) proposed a value iteration solution procedure that remains tractable by making a fast recov-
ery assumption at the instance level, which keeps the state space small. Schmoll & Schubert (2018)
studied a dynamic resource routing problem under reliable real-time information, which requires fast
(re)computations as resources frequently change their occupancy state. Assuming a large problem
space, they used real-time dynamic programming to maintain utility values for likely states to deter-
mine the best action on-the-fly.
As can be seen, related research on stochastic charging station search is still scarce. Approaches that

are specifically tailored to EV charging station search are limited to finding best cost paths between an
origin and a destination rather than on an open search with an a-priori unknown destination. Further
these approaches lack the consideration of sufficient real-world problem variants and heterogeneous sta-
tion characteristics. Literature on stochastic resource search focus on an open search concept but lack
EV and charging station specific characteristics. Moreover, the algorithmic solutions that have been
proposed in this domain remain limited to a pure academic interest on artificial and small instances.
Accordingly, these approaches cannot be embedded into real-time environments.

4

1.2. Contribution

With this work, we close the research gaps outlined above by providing a profound algorithmic frame-
work that covers a wide range of problem variants in the context of stochastic EV charging station
search, which can readily be deployed into real-time environments for online optimization purposes.
Specifically, our contribution is fourfold. First, we formalize the problem of stochastic EV charging
station search as a new stochastic search problem. We model this problem as a discrete finite horizon
MDP and consider two objectives: minimizing i) the time until charging, and ii) the time until comple-
tion in case of heterogeneous charging times. Moreover, we present different problem variants in which
a driver may wait or not at occupied stations and charging stations might be homogeneous or hetero-
geneous. Second, we prove the complexity of this problem class and show that it is NP-hard. Third,
we develop an algorithmic tool chain that consists of three algorithms: an exact labeling algorithm for
which we present a cost decomposition of the Markovian policy to derive effective dominance rules; a
heuristic variant of this labeling algorithm which is amenable for real-time application; and a rollout
algorithm. Additionally, we present multiple speed-up mechanisms, e.g., reduced action spaces and
sharpened dominance relations. Fourth, we provide extensive numerical studies that base on real-world
data for the cities of Berlin and San Francisco. Our results show that compared to myopic approaches,
our search algorithms decrease the average time spent finding an available station by up to 44%. We
further benchmark the performance of our heuristic algorithms against the exact algorithm and show
that a combined, case-dependent usage of both allows for effective real-time application.

1.3. Organization

The remainder of the paper is as follows. In Section 2, we introduce the stochastic charge pole
search (SCPS) problem. Section 3 formalizes our problem as an MDP and consecutively develops the
corresponding algorithmic framework. In Section 4, we describe our case study and the experimental
design. Section 5 discusses our numerical results. Section 6 concludes this paper and provides an
outlook on future research. To keep this paper concise, we shift all proofs to Appendix A.

2. Problem definition and representation

In this section, we introduce the SCPS problem for which we specify four problem variants, each
corresponding to a distinct real-world scenario.

2.1. Problem setting

We focus on a routing problem with stochastic charging station availability, where a driver starts at a
given location and seeks to find an unoccupied charging station to recharge her vehicle. Her objective is
to minimize her total expected cost, which consists of the driving time during the search and additional
factors, e.g., the time until the charging is complete, or the time spent walking from the charge point
to the actual destination. We consider this search to be spatially and temporally bounded to account
for the driver’s limited time budget and penalize unsuccessful searches with a high termination cost to
model the resulting discomfort.

5

Formally, we define this problem on a directed and complete graph G = (C,A) that consists of a set
of vertices C and a set of arcs (c, c′) ∈ A. Each vertex c ∈ C, except the vertex where the search starts,
represents a charging station. The driver starts her search at a designated start vertex c0 ∈ C at time
0, with a maximum search time of T . We assume that the driver is willing to charge at any vertex in
C and consider a limited search radius by restricting C to the stations within a maximum distance S
around the start vertex. Driving from c to c′ takes tc,c′ ≥ 0 units of time. We model the availability
of a station c ∈ C at time t ∈ [0, T] as a visit-dependent binary random variable ac ∈ {0, 1}, which the
driver observes by visiting c. Without prior knowledge, i.e., when visiting a station for the first time,
the probability that the station is free (ac = 1) is a constant pc. Table 2 summarizes this notation.
We introduce two time-based penalties: γc is the time-equivalent usage cost for using pole c if it is

available upon arrival; βc denotes the cost for unsuccessfully terminating the search at c in case c is
occupied, which may happen if all vertices in C have been unsuccessfully visited, or it is impossible to
visit another candidate within the remaining time budget T .
We define a solution to our problem as an ordered sequence of charging station visits C = (c0, . . . , cn).

In practice, a driver that uses this solution starts at c0 an visits the charging stations in the given se-
quence up to the first available charging station. Accordingly, our search terminates either successfully
at any c ∈ C (with a total cost of driving time until that vertex, plus extra cost γc), or unsuccessfully
at cn (incurring driving time along C plus cost βcn). We denote by α the expected cost of solution C.

Problem setting variants: In practice, different system characteristics and user preferences may
require to solve different problem variants, e.g., some drivers may want to find a charging station as
fast as possible without considering station heterogeneity, while others may want to finish charging as
quickly as possible. Such differences can be incorporated in our problem through the generic penalties
βc and γc, and an additional parameter W, which states whether it is permitted to finish the search
by waiting at a station W =W1 or not W =W0.
We identify four different problem variants that reflect the most common use cases in practical

applications. Table 3 summarizes these variants and states the respective realizations as a triple
(βc, γc,W). In variant ¬W/¬C, the driver is neither allowed to wait at stations nor do stations have
(heterogeneous) usage costs. To this end, we consider a constant penalty cost β for an unsuccessful
terminated search. While stations remain homogeneous, the driver is allowed to wait in variantW/¬C.
We assume that an expected waiting duration Wc is known for every station c, and to be a constant
independent of arrival time and earlier observations. In variants ¬W/C and W/C, stations have

Table 2.: Notation used to define the SCPS

G = (C,A) Network graph
W Permissible values for waiting decisions
Lc Expected charging time at a charging station c
S Maximal distance allowed between any vertex and the origin vertex c0
T Maximal overall driving time
Wc Expected waiting time at an occupied charging station c
ac Binary random variable modelling c’ availability
pc Initial probability that charging station c is available before any visit

tc,c′ Driving time on arc (c,c’)
βc Termination penalty cost at an occupied station c
γc Termination cost at an available station c

6

Table 3.: Summary of problem setting variants and parameters (βc, γc,W)

No waiting allowed (¬W) Waiting allowed (W)

Charging time insensitive (¬L) ¬W/¬C = (β, 0,W0) W/¬C = (Wc, 0,W1)

Charging time sensitive (L) ¬W/C = (β, Lc,W0) W/C = (Wc + Lc, Lc,W1)

heterogeneous charging durations and the driver seeks to minimize her total time to finish charging up
to a preferred charge level. While the driver is not allowed to wait in ¬W/C (i.e., the constant penalty
cost β is induced in case of failure), this constraint is relaxed in W/C.

2.2. Discussion

While our model captures the essential characteristics of the underlying real-world problem, some
comments are in order. First, we differentiate charging stations based on the charging duration in
problem variants ¬W/C andW/C. The model is however not restrictive and allows charging stations to
be heterogeneous with respect to any other criteria, including walking distance to a destination location,
price for charging, etc. Yet one needs to convert non time-based usage costs (e.g., charging prices)
to time-based costs to ensure search cost compatibility. Second, we assume an occupied station to
remain occupied during the search for most problem variants. This seems to be a plausible assumption
based on the large difference between typical search times (minutes) and charging durations (hours)
in an urban setting. However, we also present a problem variant with recovering probabilities in
Section 3.4 and discuss its impact in Section 5. Third, our basic model is agnostic of the energy spent
during the search. Here, a similar argument holds: given that a search typically covers only a small
distance radius compared to a vehicle’s range, we assume this effect to be negligible. Nevertheless,
we present a problem variant which considers the energy spent during the search. Our results for this
problem variant show no significant impact of the respective energy consumption and thus confirm our
assumption.

3. Methodology

We now introduce an MDP representation for the SCPS problem (Section 3.1) and a corresponding
algorithmic framework. As the SCPS problem is NP-hard (see Appendix B) we develop one exact and
two heuristic algorithms. We first present these algorithms for our basic problem variants and focus
on an exact and a heuristic labeling algorithm in Section 3.2, before we present a rollout algorithm
in Section 3.3. We then show how these algorithms must be modified to account for time dependent
recovery probability functions (Section 3.4) and search-related energy consumption (Section 3.5).

3.1. Markov decision process

To model the SCPS problem as a finite-horizon MDP with multiple decisions over a time-budgeted
process, we use the additional notation as summarized in Table 4.

7

Table 4.: Notation used to define the MDP

S State space
U Action space
x State ∈ S

u(x) Action choosen in state x ∈ S
w Decision to wait (and charge) at the last visited station C if occupied

d(u, u(x)) Immediate cost induced by taking action u in state x ∈ S
π Policy

V π Value function, based on policy π
V ∗ Optimal Value function
a Binary variable modeling the availability of the last-visited station
δ Binary variable indicating whether the selected station c in x = (C, 0) is already contained in C

t(π) Driving time follwing policy π
ρ(π, k) Probability that at least one of the first k first stations of policy π is available
α(π) Total search cost for following policy π

3.1.1. Model variables and transition functions

We define a state x as a tuple (C, a), where C is an ordered sequence of stations C = (c0, ..., ck) that
have already been visited, with the driver being located at ck. Let a be the binary realization of the
availability of ck, indicating whether ck is free (a=1) or occupied (a=0). Then, the state space results
to

S = {(C, a) : C = (c0, . . . , ck), cj ∈ C ∀j, a ∈ {0, 1}}.

We denote by u(x) = (c, w) a possible action taken in state x ∈ S to transition to state x′, with w ∈ W
being a binary that indicates whether to wait at the current station (w = 1) or not (w = 0), and c

stating the next station to visit. We note that, either W = W0 = {0} for problem variants without
waiting or W = W1 = {0, 1} for problem variants that allow to wait at a charging station. Since
we assume a station availability status to be persistent during the search, we further assume that for
problem variants without waiting, each station should be visited at most once. For problem variants
with waiting, given the heterogeneous termination costs βc, we assume that the last station can be
visited twice. Actions are only taken at occupied stations: if a = 1, x is a termination state and the
search finishes as the driver charges at the found unoccupied station. Let C̃(C) be the restricted set of
charging station vertices, reachable in less than T −

∑k−1
i=0 tci,ci+1 . Then, the action space for a state

x = (C, 0) results to

U(x) = {(c, w) : w ∈ W, c ∈ C̃, (W =W0 ∧ δ = 0) ∨ (W =W1 ∧ (δ = 0 ∨ (δ = 1 ∧ w = 1)))}, (3.1)

with δ being the binary variable that indicates whether c is already included in C (δ = 1) or not
(δ = 0). If C̃(C) is empty, no more station can be reached under the given time constraints and we
refer to this state as a forced termination state.
We define the function pt(x′ | x, u) to describe the probability that following action u ∈ U(x) from

state x ∈ S would result in state x′ ∈ S, such that
∑

x′∈S pt(x
′|x, u) = 1 and consider two cases:

1. If the selected action is to wait, then the driver stays at the current station. The transition is
deterministic and pt((C, 1)|(C, 0), (ck, 1)) = 1 for a path C ending in ck.

2. If the selected action is to continue searching, the selected next station c is either available or occu-
pied with respect to p̃c(C). Hence pt((C ′, 1)|(C, 0), (c, 0)) = p̃c(C) and pt((C ′, 0)|(C, 0), (c, 0)) =

1− p̃c(C), where C ′ is the sequence C extended by c.

8

We denote by d(x, u) the immediate induced cost for taking action u = (c, w) in state x = (C, a),
which depends on the realized availability a at the last station ck and the respective action

d(x, u) = (1− a)wβck + aγck + (1− w)(1− a)tck,c. (3.2)

We note that if a = 1, the driver charges at station ck, and d(x, u) corresponds to the station usage
cost γck . If a = 0 and the driver waits at the station, the search terminates and cost βck results. If
a = 0 and the search continues at the next station c, the cost results to the travel time tck,c.
Finally, we define a policy π as a function mapping a state x ∈ S to an action π(x) ∈ U(x).

Accordingly, π implicitly describes a search path C(π) = (c0, ..., cn) with π(ci, 0) = (ci+1, 0) ∀i =

0, . . . , n− 1 and state xn = (C(π), a) that terminates the search at vertex cn, either because the driver
runs out of time or because she decides to wait with π(xn) = (cn, 1). We refer to C(π) as C and to
p̃c(C) as p̃c to keep the notation concise.

3.1.2. Cost function

We now analyze the cost function V π(C, a) that describes the expected cost for following a policy π,
from a start state (C, a). Then V π(x0), with x0 = (c0, 0) represents the expected search cost for the
driver when following policy π from starting at vertex c0 and the objective is to find a policy π that
minimizes V π(x0). Then, the cost function V π(C, a) can be expressed as follows

V π(C, a) = aγck + (1− a)
[
wβck + (1− w)(tck,ck+1

+ p̃ck+1
V π(C ′, 1) + (1− p̃ck+1

)V π(C ′, 0))
]
, (3.3)

with C = (c0, . . . , ck), u(C, a) = (ck+1, w), and C ′ = C∪{ck+1}. For both realizations of a, Equation 3.3
can be simplified:

V π(C, 1) = γck , (3.4)

V π(C, 0) = wβck + (1− w)
[
tck,ck+1

+ (1− p̃ck+1
)V π(C ′, 0) + p̃ck+1

γck+1

]
. (3.5)

3.1.3. Cost structure variants

For each problem variant as introduced in Section 2.1, the cost functions V π(C, 0), V π(C, 1), and
V π(xk) for a termination state xn = (C, a) can be expressed as follows, with C ′ denoting the extension
of C by station ck+1 for non-termination states.

No waiting, without charging (¬W/¬C):
V π(C, 0) = tck,ck+1

+ (1− p̃ck+1
)V π(C ′, 0) ,

V π(C, 1) = 0 ,

V π(xn) = (1− p̃cn)β .

(3.6)

Waiting permitted, without charging (W/¬C):
V π(C, 0) = wWck + (1− w)[tck,ck+1

+ (1− p̃ck+1
)V π(C ′, 0)] ,

V π(C, 1) = 0 ,

V π(xn) = (1− p̃cn)Wcn .

(3.7)

9

No waiting, with charging (¬W/C):
V π(C, 0) = tck,ck+1

+ (1− p̃ck+1
)V π(C ′, 0) + p̃ck+1

Lck+1
,

V π(C, 1) = Lck ,

V π(xn) = (1− p̃cn)β + p̃cnLcn .

(3.8)

Waiting permitted, with charging (W/C):

V π(C, 0) = w(Lck +Wck) + (1− w)[tck,ck+1
+ (1− p̃ck+1

)V π(C ′, 0) + p̃ck+1
Lck+1

] ,

V π(C, 1) = Lck ,

V π(xn) = (1− p̃cn)Wcn + Lcn .

(3.9)

3.1.4. Cost function expansion

We now expand V π to derive an explicit evaluation of the search cost. To simplify notation, we use
C[i:j] to denote a sub-sequence (ci, . . . , cj) of a sequence C = (c0, ..., ci, ..., cj , ..., cn).

Proposition 1. Let C = (c0, . . . , cn). Then, the cost for being in state xk = (C[0:k], 0), with k < n,
following policy π until the termination state xn = (C, a) expands as follows

V π(xk) =

n∏
i=k

(1− p̃ci(C[k:i−1]))βcn +

n−1∑
i=k

tci,ci+1

i∏
j=k

(1− p̃cj (C[k:j−1]))


+

n∑
i=k

γci p̃ci(C[k:i−1])

i−1∏
j=k

(1− p̃cj (C[k:i−1]))

 .

(3.10)

Given that policies encode solutions, we can express the solution cost α for a policy, and set α(π) =

V π(x0). Following Equation 3.10 and Proposition 1, this yields

α(π) =
n∏
i=0

(1− p̃ci(C[0:i−1]))βcn +
n−1∑
i=0

tci,ci+1

i∏
j=0

(1− p̃cj (C[0:j−1]))


+

n∑
i=0

γci p̃ci(C[0:i−1])

i−1∏
j=0

(1− p̃cj (C[0:j−1]))

 .

(3.11)

For a more concise notation, let ρ̄(π, k) be the probability that a driver fails in finding at least one
free station in C[0:k], while ρ(π, k) = 1− ρ̄(π, k) is the probability that she succeeds in finding at least
one free station in C[0:k]

ρ̄(π, k) =

k∏
i=0

(1− p̃ci(C[0:i−1])) , (3.12)

with p̃ci(C[0:i−1]) denoting the likelihood that ci is available after having visited all previous stations
from c0 to ci−1. Furthermore, let

A(π) =

n−1∑
i=0

[tci,ci+1 ρ̄(π, i)] +

n∑
i=0

γci p̃ci(C[0:i−1])ρ̄(π, i− 1) . (3.13)

Then, we rewrite Equation 3.11 as

α(π) = ρ̄(π, n)βcn +A(π) . (3.14)

We denote by t(π) =
∑n−1

i=0 tci,ci+1 the accumulated driving time for all stations in C and note that for
a feasible solution, t(π) ≤ T holds.

10

3.2. Dynamic programming based labeling algorithms

To find an optimal solution for the SCPS problem, we develop a dynamic programming based labeling
algorithm. Similar to solving multi-criteria constrained shortest path problems, we propagate partial
policies in order to find an in-expectation cost-optimal policy. Herein, we use a dominance criterion to
withdraw non-promising partial policies early to keep the explored search space as small as possible.
Formally, we associate each partial policy πc with a label Lc whose resources depend on the problem
variant. For no-waiting variants ¬W/¬C and ¬W/C, a label Lc = (tc, Ac, ρc, αc, Sc) consists of the
accumulated driving time tc, the partial cost Ac (cf. Equation 3.14), the likelihood ρc to successfully
finish the search up to vertex c (cf. Equation 3.12), the total cost αc, and the set of reachable and
non-visited poles Sc. For waiting variants W/¬C and W/C, we add an additional resource Rc that
denotes the set of reachable but visited poles.
To describe our labeling algorithm, we denote by La the set of active labels and by L0 the initial label

that corresponds to our start location. Let Fcc′(L) be a set of resource extension functions (REFs)
that expand a label L whose partial policy ends at vertex c to a label L′ whose partial policy ends at
vertex c′. Let α(L) be the cost associated with label L. We define δ+(L) as a function that returns
a set of tuples (c, c′) which denotes all feasible physical successor locations c ∈ C for a label L whose
partial policy ends at c ∈ C.
Using this notation, Figure 1 shows a pseudo code of our dynamic programming algorithm. We

initialize our list of active labels La and our so far best found solution L∗ with L0 (l.1) and start
propagating labels until our search terminates when La is empty (l.2). We then process labels in La in
cost increasing order (l.3). Once a label got selected for propagation, we remove it from La (l.4) and
propagate it considering all of its feasible successors (l.5) using the REFs (l.6). We check whether a
newly created label L′ is dominated by an existing label in La (l.7). If this is not the case, we remove
labels which are dominated by L′ from La (l.8) and add L′ to La respectively (l.9). Whenever the
newly created label is a termination label, i.e., its corresponding state indicates that the driver should
wait or there are no feasible successors left, we check if the found label improves the so far best found
label and update L∗ accordingly (l.10&11).
In the remainder of this section, we detail the REFs used to extend a label and the dominance

criterion to discard a dominated label.

Resource extension functions: To extend a label L which corresponds to a partial policy ending at
vertex c ∈ C to a new label L′ which corresponds to a partial policy ending at vertex c′ ∈ C, we write

Figure 1.: Dynamic programming based labeling algorithm.
1: La ← {L0}, L∗ ← L0

2: while La 6= ∅ do
3: L← costMinimumLabel(La)
4: La ← La \ {L}
5: for (c, c′) ∈ δ+(L) do
6: L′ ← Fij(L)
7: if isNotDominated(L′,La) then
8: dominanceCheck(La, L′)
9: La ← La ∪ {L′}
10: if ((w′ == 1) ∨ (δ+(L′) = ∅)) ∧ α(L′) < α(L∗) then
11: L∗ ← L′

12: return L∗

11

L′ ← Fcc′(L) and use the following set Fcc′ of REFs :

Ac′ = Ac + (1− ρc)(tc,c′ + p̃c′γc′) (3.15)

1− ρc′ = (1− ρc)(1− p̃c′) (3.16)

tc′ = tc + tc,c′ (3.17)

Sc′ = Sc \ {c′} −
⋃

d∈Sc,tc′+tc′,d>T

{d} (3.18)

Rc′ = Rc ∪ {c′} −
⋃

d∈Rc,tc′+tc′,d>T

{d} (3.19)

αc′ = Ac′ + (1− ρc′)βc′ (3.20)

Equation 3.15 propagates partial cost Ac along arc (c, c′) with respect to its definition (cf. Equa-
tion 3.13) considering the arc-dependent driving time tc,c′ , the availability probability p̃c′ and usage
cost γc′ of vertex c′. Equation 3.16 propagates the success rate ρc (cf. Equation 3.12) based on the
availability probability of vertex c′. The accumulated driving time tc′ is straightforwardly propagated
along arc (c, c′) considering the arc-dependent driving time tc,c′ (Equation 3.17). To obtain the set
Sc′ from Sc (Equation 3.18), we remove from Sc the last visited vertex c′ and all vertices d ∈ Sc that
cannot be reached from vertex c′ within the remaining search time T − tc′ , i.e., such that tc′,d ≥ T − tc′ .
To obtain Rc′ (Equation 3.19), we insert the visited vertex c′ in Rc and similarly substract all vertices
d ∈ Rc that cannot be reached from vertex c′ within the remaining search time. We propagate cost
straightforwardly by Equation 3.20.

Dominance criterion: Equation 3.14 decomposes the non-monotonous cost α(π) into monotonous
resources A(π) and ρ(π) that partly define a label. Given the monotonicity of A(π), ρ(π), and t(π),
we can then consider two partial policies π1 and π2 that end with the same vertex visit c and their
associated labels L1 and L2 and say that for problem variants ¬W/¬C and ¬W/C, L1 dominates L2

(L1 � L2), if the following conditions are true:

1− ρc(π1) ≤ 1− ρc(π2) (3.21)

Ac(π1) ≤ Ac(π2) (3.22)

tc(π1) ≤ tc(π2) (3.23)

∀c′ ∈ Sc(π2), c′ ∈ Sc(π1) (3.24)

∀c′ ∈ Sc(π1), T̄ − tc(π1) + pc′(γc′ − β̄) ≤ 0 (3.25)

Here, conditions (3.21)–(3.23)&(3.25) ensure that the cost and duration of π1 is smaller than the cost
of π2. Conditions (3.23)&(3.24) check whether all non-visited vertices reachable by π2 can be reached
from π1 as well. Condition (3.25) checks whether all reachable stations from c for π1 contribute to
decrease αc(π1). This check is necessary for settings where π1 can be extended with k more stations
than π2 to detect corner cases in which these k additional stations may increase α(π1) to a value larger
than α(π2).
For problem variants W/¬C and W/C, we recall that a search can terminate before the whole time

budget is spent and that a station terminating the search might have been visited earlier. Accordingly
we drop condition 3.25 and introduce condition 3.26 that checks whether all visited vertices reachable
by π2 can be reached from π1 as well. Recalling that the label reads Lc = (tc, Ac, ρc, αc, Sc, Rc), we

12

then say that for problem variants W/¬C and W/C, L1 � L2 if conditions (3.21)–(3.24) are true and

∀c′ ∈ Rc(π2), c′ ∈ Rc(π1) ∪ Sc(π1) (3.26)

holds. While Algorithm 1 solves the SCPS problem optimally with the dominance criterion above,
one may consider to drop some of the dominance conditions to obtain a heuristic dominance criterion
that withdraws more labels at the price of losing optimality. In the remainder of this paper, we study
a heuristic labeling algorithm, where we preserve conditions (3.21)&(3.22) to obtain cost dominance
but neglect conditions (3.23),(3.24),(3.25) and (3.26). In this context, the label definition simplifies
to Lc = (Ac, ρc, αc). We provide evidences to the selection of this heuristic dominance criterion in
Section 5.2.

3.3. Rollout algorithm

In this section, we introduce a rollout algorithm, built as a forward dynamic programming procedure.
We identify the best action at a given state as the one that yields minimal approximated cost. Here,
the core idea of the cost approximation is to greedily expand the current policy from each candidate
action until a defined horizon to obtain an associated cost value via backpropagation. We first detail
the main procedure for ¬W/¬C and ¬W/C variants before we show how to account for additional
waiting decisions in problem variants W/¬C and W/C. We apply a one-step decision rollout strategy
(cf. Goodson et al. 2017) whose complexity equals a post-state decision rule as the approximation
reduces to w = 0 decisions.
Let k be the index of the kth decision epoch and let xk be the non terminated epoch’s state with

xk = (C = (c0, c1, ..., ck), 0) and ck being the last station visited in epoch k. Let xk+1 = (C ′, 0) be the
state in the (k + 1)th epoch that results from action u = (c, 0) at epoch k, with u ∈ U(xk). Using this
additional notation, Figure 2 details the pseudo-code of our algorithm.
We initialize the sequence of station visits C with the start vertex (l.2) and expand the sequence until

the time horizon is reached (l.3). From the current state xk, we seek to determine the next best action
(c∗, 0) and initialize the variables that encode it (l.4). For all possible succeeding states xk+1 (l.5),
we use a heuristic policy π̃c that bases on a greedy procedure to propagate state xk+1 up to a forced
terminated state xk+K , with a look-ahead of K epoch extensions. For all propagated states xl with
l ∈ [k + 1,K − 1], the greedy procedure chooses the action (cl+1, 0), with station cl+1 being selected

Figure 2.: Forward programming based algorithm.
1: ck ← c0, C ← (c0), xk ← (C, 0), t← 0
2: while t ≤ T do
3: c∗ ← 0, x∗ ← 0, C∗ ← 0, Q←∞
4: for (c, 0) ∈ U(x) do
5: xk+1 ← (C′, 0)
6: V ← greedyCost(xk+1)
7: Q(xk, c, xk+1)← tck,c + (1− p̃c)V + p̃cγc
8: if Q(xk, c, xk+1) < Q then
9: Q← Q(xk, c, xk+1)
10: c∗ ← c, x∗ ← x, C∗ ← C′

11: C ← C∗, xk ← x∗, t← t+ tck,c∗ , ck ← c∗

12: if w′ == 1 then
13: C ← refinePolicy(C)

14: return C

13

based on availability probabilities of vertices reachable from cl and the driving time to each of these
vertices. We then use these anticipated states to evaluate the expected value of the policy-specific
cost V π̃c(xk+1) for the candidate state xk+1. We define Greedycost(xk+1) as the function that carries
out the greedy expansion from xk+1 = (C ′, 0) and returns V π̃c(xk+1) (l.6&l.7). Repeating the greedy
procedure and cost evaluation for all possible next actions u = (c, 0) ∈ U(xk) allows us to find the
action u = (c, 0) that minimizes the cost to transition from state xk to state xk+1 (l.8) that we define
as Q(xk, c, xk+1) (cf. Equation 3.29). Eventually, the selected action u = (c∗, 0) yields minimal cost
Q(xk, c

∗, xk+1) (l.10-l.12). Only for variantsW/¬C andW/C, refinePolicy(C) bases on the resulting
visits sequence C to introduce the waiting decision at the best stage 1 ≤ k ≤ n, with n being the total
amount of station visits in C (l.13).
In this setting, the reduced action space for problem variants ¬W/¬C and ¬W/C reads

Ũ(xk) = {(c, w) : c ∈ C, w = 0} (3.27)

and we calculate the cost for being in state xk+1, V π̃c(xk+1), based on the greedy policy π̃c as

V π̃c(xk+1) =

K∏
l=k+1

(1− p̃cl)βcl +

K−1∑
l=k+1

[d(xl, π̃c(xl))]

l∏
m=k+1

(1− p̃cm), (3.28)

which allows to derive Q(xk, c, xk+1) as

Q(xk, c, xk+1) = tck,c + (1− p̃c)V π̃c(xk+1) + p̃cγc. (3.29)

For problem variantsW/¬C&W/C, we first calculate the no-waiting case and compute policy π with
the associated ordered sequence of charging stations C = (c0, ..., cn). We denote π as an intermediate
policy and introduce πS representing the final search policy. Then, refinePolicy(C) calculates πS
using the intermediate policy π while permitting wait-actions. For each intermediary charging station
ck at the kth decision epoch, ck ∈ (c0, ..., cn), k 6= n, π provides a sub sequence of charging stations to
visit until the end of the search (ck+1, ..., cn) and thus the policy-specific cost value V π(xk), associated
to policy π and state xk = ((c0, ..., ck), 0). We aim to quantify for each station ck whether the
termination cost βck is actually lower that the expected cost for continuing the search V π(xk). If this
is the case, the optimal decision is to wait and we refine π into πS with πS(xk) = (ck, w = 1) and
V πS (xl) ≤ V π(xl)∀l ∈ [0, n].
We define πS as

πS(xk) = arg min
π(xk),(ck,w=1)

wβck + (1− w)[tck,ck+1
+ (1− p̃ck+1

) min(V π(xk+1), V πS (xk+1)) + p̃ck+1
γck+1

],

(3.30)
where π(xk) = (ck+1, w = 0). If there exists an index k such that 0 ≤ k < n, xk = ((c0, ..., ck), 0)

and πS(xk) = (ck, 1), then state xk terminates the search, as the driver will wait at ck if ck is not
immediately available. In this case πS encodes the solution (c0, ..., ck).

3.4. Time-dependent probability recovery function

In the basic setting of the SCPS problem, we assume that a station does not change its availability
during the search’s time horizon and restrict the amount of visits to each individual station. We now
relax these assumptions and show which modifications are necessary to consider a recovery function rc
that allows the availability of an occupied station c to recover over time. In this case, we define p̃c(C)

14

as follows

p̃c(C) =

pc, if c /∈ C

rc(∆c) otherwise,
(3.31)

where ∆c =
∑k−1

j=` tcj ,cj+1 + tck,c, with l denoting the position of the last visit to c in C.
We still consider a charging station c to be initially available at a probability of pc. When it is blocked

at the driver’s arrival time tc =
∑`−1

j=0 tcj ,cj+1 , it may become available over time, i.e., the availability
probability of c recovers according to rc(∆c), which denotes a station’s availability probability for an
arbitrary point in time t = ∆c + tc that remains after the first visit and before the end of the time
horizon. We specify rc(∆) for any ∆ based on Schmoll & Schubert (2018) as

rc(∆) =
µc

λc + µc
(1− e−(µc+λc)(∆)). (3.32)

Here, 1
λc

and 1
µc

denote the average time station c remains available, respectively occupied and remain
constant over the search’s time horizon. We can then express pc as a function of λc and µc, with
pc = µc

λc+µc
(cf. Jossé et al. 2015) and simplify Equation 3.32 to

rc(∆c) = pc(1− e−(µc
pc

)(∆c)) . (3.33)

We now assume that stations can be visited as many times as needed. Then, the action space for a
state x = (C, 0) is slightly modified as follows,

U(x) = {(c, w) : c ∈ C̃(C), w ∈ W}.

In the remainder of this section, we outline the changes that are necessary to adapt the labeling algo-
rithm to such a setting. Apart from the new availability probability definition p̃c(C), no modifications
are necessary for the rollout algorithm.

Modifications for the Labeling Algorithm: The MDP definition remains unchanged, because we can
determine the arrival time at a station based on the arrival time at the preceding station extended by
the driving time that remains deterministic. Thus ∆c and p̃c(C) can be calculated from C without any
further information. However, we need to modify the initial dominance criterion (3.21)–(3.25)(resp.
(3.21)–(3.26)) as the optimal solution may now contain multiple visits to any charging station, inde-
pendent on the problem variant.
We consider two partial policies π1 and π2 that end with the same visit at vertex c and their

associated labels L1 and L2. We recall that Rc(π1) denotes the set of charging stations which have
been already visited by π1. We then say L1 � L2, if (3.21)–(3.26) hold and

1− ρc(π1)

1− ρc(π1)
≤

∏
c′∈Rc(π1)

(1− pc′(1− e−(µ+λ)(∆c′ (π2))))

(1− pc′(1− e−(µ+λ)(∆c′ (π1))))
(3.34)

holds. Here, Equation 3.34 accounts for different probabilities of charging stations that have already
been visited in both policies at different points in time by considering the biggest possible difference
of probability values for c′ between both paths. We note that we leave the heuristic variant of the
dominance criterion unchanged in this context.

3.5. Integrating search related energy consumption

In this setting, we assume that the vehicle starts its search with an initial state of charge (SoC) b0, which
reduces over the course of the search depending on the driven distances. Then, longer driving distances

15

result in higher energy consumption and an additional trade-off results between visits to far-distanced
stations with a high availability probability and visits to near-distanced stations with medium to low
availability probabilities. Here, a higher availability probability may be counterbalanced by traveling
longer distances, which increases the energy that must be recharged or limits future visits to potential
stations accordingly.
To account for this setting, we introduce additional notation and denote the energy consumed when

traversing arc (c, c′) as kc,c′ and a vehicle’s SoC after having visited all stations in C = (c0, ..., ck) as
b. In this setting, we can only transition from state (C, b, 0) using arc (ck, ck+1) if b ≥ kck,ck+1

+ b,
with b denoting the minimum feasible state of charge a vehicle must keep. Analogously to common
monotonicity assumptions in related settings (cf. Sweda et al. 2017), we assume that

tc(π1) < tc(π2) ⇐⇒ bc(π1) ≥ bc(π2)

and state the necessary MDP modifications which hold as follows

S = {(C, b, a) : C = (c0, ..., ck), ck ∈ C∀k, b ∈ [0, qmax], a ∈ {0, 1}} , (3.35)

U(x) = {(c, w) : w ∈ W, c ∈ C̄,

(W =W0 ∧ δ = 0) ∨ (W =W1 ∧ (δ = 0 ∨ (δ = 1 ∧ w = 1)))} ,
(3.36)

V π((C, b, a)) = (1− a)wβck + aγck + (1− w)(1− a)[tck,ck+1

+ (1− p̃ck+1
)V π(C ′, b− kck,ck+1

, 0) + p̃ck+1
V π(C ′, b− kck,k+1

, 1)] .
(3.37)

First, we include a vehicle’s SoC into the state space (Equation 3.35). Second, we modify the action
space such that it depends on C̄(C), which denotes a restricted set of charging station vertices that are
reachable from state (C, a) in less than T−t(π) time, with kc,c′+b ≤ b and t(π) =

∑n
k=0 tck,ck+1

(Equa-
tion 3.36). The policy-specific cost function results straightforwardly from the modified action and state
spaces (Equation 3.37). To account for this new setting in our algorithms, the following modifications
are necessary.

Variants ¬W/¬C and W/¬C: The rollout algorithm requires no modification. For the labeling
algorithms, sets Sc and Rc now denote vertices that are reachable within the remaining time budget
and within the remaining energy budget bc. Accordingly, we add to the existing dominance conditions
(3.21)–(3.25) or (3.21)–(3.26) that

bc(π1) ≥ bc(π2), (3.38)

must hold. The heuristic dominance relation remains unchanged, since the modified setting does not
affect conditions (3.21)&(3.22).

Variants ¬W/C andW/C: Here, the charging duration Lc at station c now depends on the amount of
time needed to recharge from b0 up to the maximum SoC b. We introduce δLc to denote the additional
charging time due to the battery depletion δbc during the search, where δbc = b0 − bc =

∑l=i
l=0 kcl,cl+1

.
We then account in each algorithm for the charging duration as

L′c = Lc + δbc
Lcb

(1− b0)
. (3.39)

16

3.6. Computational complexity improvements

In this section, we proof additional characteristics that allow to improve the computational complexity
of certain problem variants. We first introduce three action space reductions, before we focus on a
sharpened dominance relation for both the exact and the heuristic labeling algorithm.

3.6.1. Action space reductions

In the following, we discuss some action space reductions, which we summarize in Table 5. We refer
to the initially defined action space as complete. In addition, we create the following reduced action
spaces.

direct: To further reduce the search space, we restrict the visits from the last visited station ck to
feasible neighbor stations c such that there does not exist any station c′ on the shortest path
from ck to c and denote Ã(C) the set of all feasible arcs (ck, c). We however allow c to be visited
multiple times and show with Proposition 2 that accordingly direct doesn’t lead to a loss of
generality for problem variants ¬W/¬C and W/¬C.

direct/restricted : For very large instances of the problem, we combine the direct action space with
the visits restrictions from complete. The setting significantly reduces the search space but at
the expense of optimality for problem variants ¬W/¬C and W/¬C.

T r-restricted : Finally, we restrict visits from station ck to stations c reachable in less than T r time
units, i.e., tck,c ≤ T r while preserving the visit restriction of complete.

Proposition 2. Action space U can be modified such that U(C, 0) = {(c) : (ck, c) ∈ Ã} without loss of
generality for γc = 0 ∀c ∈ C.

3.6.2. Sharpened dominance relation for the dynamic programming algorithms

In the following, we aim to sharpen the dominance relation, i.e., we aim to discard labels faster without
dropping optimality. In our initial problem setting, we assume that both travel times and charging
station availability probabilities are unbounded. We now account for a bound on each of these values
that still reflects a real-world application. Specifically, we assume that i) the EV driver must travel at
least a certain amount of time between two charging stations

0 < t ≤ tc,c′ ,∀c, c′ ∈ C × C,

and ii) that one can never be entirely sure that a charging station is available

pc ≤ p < 1, ∀c ∈ C.

Table 5.: Modified action spaces

complete U((C, 0) = {(c, w) : w ∈ W, c ∈ C̃, (W =W0∧δ = 0)∨(W =W1∧(δ = 0∨(δ = 1∧w = 1)))}
direct U((C, 0) = {(c, w) : (ck, c) ∈ Ã(C), w ∈ W}
direct/restricted U((C, 0) = {(c, w) : (ck, c) ∈ Ã(C), δ = 0, w ∈ W}
T r-restricted U((C, 0) = {(c, w) : w ∈ W, c ∈ C̃, (W = W0 ∧ δ = 0) ∨ (W = W1 ∧ (δ = 0 ∨ (δ = 1 ∧ w =

1))), tck,c ≤ T
r}

17

These bounds can be computed during a preprocessing step and allow for a sharpened dominance
relation for the dynamic programming based labeling algorithms without invalidating our generic
model. We note that charging and waiting times at a station are bounded as well. Let Wmin and Lmin
(respectively Wmax and Lmax) be the minimal (respectively maximal) waiting and charging times.
We then consider two partial policies π1 and π2 that end with the same vertex visit and their

associated labels L1 and L2 and we refine the initial dominance criterion (3.21)–(3.25) (resp. (3.21)–
(3.26)) into stronger dominance checks. Let ∆Ac = Ac(π1) − Ac(π2), ∆ρ̄c = ρ̄c(π1) − ρ̄c(π2) and
∆αc = αc(π1)− αc(π2)

In the initial setting, if ∆ρ̄c ≤ 0 and ∆Ac > 0, i.e., Equation (3.21) holds but Equation (3.22) not, we
cannot conclude that L1 dominates L2. In the new setting, we can ensure that if quantity ∆αc is small
enough while quantity ρ̄c is large enough, then L1 � L2, as the lower bounds on tc,c′ and upper bounds
on pc bound the propagated values of αc and ρc. We then say L1 � L2, if (3.21)&(3.23)–(3.25)(resp.
(3.26)) still hold and

p∆αc ≤ (−∆ρ̄c)(t+ p(γmin − βmax)) . (3.40)

Table 6 summarizes all variant-specific parameters βmax, γmin.

Table 6.: Parameter affectation for each problem variant

Parameter ¬W/¬C W/¬C ¬W/C W/C

βmax β Wmax β Wmax + Lmax
γmin 0 0 Lmin Lmin

4. Design of experiments

To benchmark our algorithms, we develop real-world instances that allow for extensive simulation
experiments. We consider three different spatial patterns (see Figure 3), based on the west side of
San Francisco, USA (SF-1), the city center of Berlin, Germany (BER-1), and the financial district of
San Francisco (SF-2). Here, we account for free-flow speeds to calculate travel times tc,c′ that denote
the time-shortest path between two stations c and c′. As our search algorithms appear to be rather
insensitive to the search’s starting point, we randomly choose one starting point for each pattern and
use this starting point in every instance that builds on the respective pattern.
Besides the significant sensitivity to the instance size given by S and T , we found during preliminary

studies that our search algorithms are sensitive to two general instance characteristics: the search
area’s charging station density and the charging station availability probability. Accordingly, we use
the patterns described above to create a set of instances that covers a broad parameter range for these
characteristics. Figure 4 shows the amount of charging stations for each pattern, depending on the
search radius S around each patterns starting point.
Our TomTom internal availability study in the city of Berlin (cf. Table 1) shows on average high

charging stations availability in areas with a large number of on-street parking spots. In areas with
few available parking spots, drivers often use available stations as free parking spots, thus blocking
access to EV drivers. In the study, the sole parking availability factor largely impacts the station
availability. To reflect these amplitudes, we introduce three availability settings, drawing probabilities
pc for each charging station c from a β−distribution, which is centered on an expected availability of

18

(a) SF-1 (b) BER-1 (c) SF-2

Each subplot shows the geographic area used to build the respective instance graph. SF-1 represents the west side of
San Francisco, USA, BER-1 the city center of Berlin, Germany, and SF-2 the financial district of San Francisco. This
figure bases on Open Charge Map contributors (2019) data, which is data licensed under CC BY-SA 4.01.

Figure 3.: City maps

1,000 1,500 2,000 2,500 3,000 3,500

0

20

40

60

80

Search Radius S [meters]

N
um

be
r
of

St
at
io
ns

SF-2
BER-1
SF-1

Figure 4.: Amount of stations per spatial scenario

[0.15, 0.60, 0.90] to consider a low- (low-15%), medium- (avg-60%) and high-availability (high-90%)
scenario. The avg-60% and high-90% settings represent areas with average to high parking availability.
The low-15% setting depicts a fictionous extreme case scenario prospectively corresponding to stricter
parking policies and allows us to evaluate our algorithm behavior in such an environment.
For problem variants W/¬C and W/C, we consider a waiting duration Wc for each station c, which

is uniformly distributed in [3, 15, 60, 120] minutes. For problem variants ¬W/C and W/C, we consider
a charging duration Lc, uniformly distributed in [30, 60, 120] minutes, to account for heterogeneous
stations.
With this setup, we create a total of 9 scenarios by combining each area (BER-1 , SF-1 , SF-2) with

each availability probability distributions (low-15% , avg-60% , high-90%). We then consider a small
and a large-size instance for each combination, defined by the search’s time budget and search radius
(T [min]/S[meters]). For denser areas, BER-1 and SF-2 , this corresponds to (5/800), resp. (10/2000).
For the sparse area SF-1 , since an 800 meters-area only comprises 2 stations we consider slightly
wider search spaces (10/2000), respectively (15/2600) for SF-1 , which derives a set of 18 instances per
variant, 72 in total. We denote for each area, the smaller-size instance by area/1 (e.g., SF-1/1) and
the larger-size instance by area/2.

1For more information see https://creativecommons.org/licenses/by-sa/4.0/

19

For our studies, we set the penalty cost to β = 120 minutes for ¬W/¬C and to β = 200 minutes
for ¬W/C and refer to Section 5.2 for a discussion on its selection and sensitivity. To evaluate our
algorithms, we conduct N = 1000 simulation runs, each with a different station availability realization,
drawn from the respective probability distribution. For all average values reported in our results
discussion, we applied two-tailed Wilcoxon signed-rank tests to verify its significance.

5. Results

In the following, we discuss our results. We first detail the performance of our algorithms with respect
to several quality metrics as well as their computational effort (Section 5.1), before we discuss results
of additional sensitivity analysis and modeling assumptions (Section 5.2). We implemented the pro-
posed algorithms single-threaded with Python 3.6.9, using PyPy 7.3.0 with GCC 7.3.1 and performed
all experiments on a Virtual Machine on a Hypervisor, with 19 cores and 60 GB of RAM, running
Ubuntu 18.04.3 LTS. For the following discussion we note that all algorithms can be implemented more
efficiently, e.g., in a C++ environment. However, as this work stems from an industry project, we are
not allowed to disclose the C++ related computational times for confidentiality reasons and use the
Python implementation for a fair discussion of the algorithms’ complexity.

5.1. Performance analysis

We discuss the algorithms’ performance from two perspectives. First, we analyze the practical benefit
of our algorithms and compare their solution quality based on their performance in our simulation
environment. We then relate these results to a technically focused discussion on their computational
complexity.
During algorithm testing and development, we noticed that both the labeling heuristic and the

rollout algorithm are sensitive to the used action space (cf. Section 3.6) in between different problem
variants. For the following discussion, we report results for the respective best-performing reduced
action space and refer to Appendix D for a detailed discussion of this impact.

Applicability
In practice, more than one key performance indicator exists to evaluate the performance of our algo-
rithms. In the following we refer to α̂ as the realized search cost, which corresponds to the realized
driving time needed to find a station for variants ¬W/¬C and W/¬C and to complete charging for
¬W/C and W/C. For W variants, α̂ includes the waiting time whenever the last visited station is
occupied. Specifically, we analyze for each algorithm its

average search cost deviation which we calculate as

∆α̂ =

1.000∑
i=1

(α̂i−α̂∗i)/α̂∗i
1.000

with α̂i being the realized search cost of the respective algorithm for simulation run c and α̂∗i
being the best realized search cost for simulation run c out of all algorithms;

success rate that results straightforwardly from the number of simulations, for which the respective
search strategy finally led to a free charging station;

20

maximum search cost deviation that results to ∆α̂max = α̂max/α̂max∗ with α̂max = max α̂i being the
maximum cost out of all simulation runs for a single algorithm and with α̂max∗ being the maximum
cost over all simulation runs and all algorithms.

As the exact labeling algorithm (LE) cannot solve large instances of our problem to optimality, we
limit the comparison to our heuristic algorithms (LH and RO) and add a naive and a greedy solution
as myopic benchmarks. The greedy search (G) creates a sequence of charging station visits based on
a greedy cost combining the travel time weighted by a station’s availability probability and a penalty
cost weighted by its occupancy probability. The naive search (N) mimics a driver without assistance
by selecting the closest non-visited station with highest availability probability.
Tables 7–9 detail the average search cost deviations between all algorithms (Table 7), the success rate

of each algorithm (Table 8), and the maximum search cost deviation between all algorithms (Table 9),
based on 1.000 simulation runs for each problem variant and scenario to avoid a statistical bias.
Table 7 shows that the RO and the LH algorithm significantly outperform the naive and the greedy

benchmark in terms of average search costs. Here, an average deviation of zero implies that an algo-
rithm always found the best search strategy, while increasing deviations indicate that the best search
strategy was not found by the respective algorithm. For scenarios with high and average charging
station availability, RO and LH show a similar performance. For scenarios with a low charging sta-
tion availability, we observe higher differences that result in significant deviations for specific problem

Table 7.: Average search cost deviations

low-15% avg-60% high-90%

N G RO LH N G RO LH N G RO LH

¬W/¬C SF-1/1 1.38 0.78 0.00 0.77 2.63 0.41 0.00 0.00 1.33 0.35 0.19 0.00
SF-1/2 1.13 0.59 0.09 0.14 2.66 2.55 0.00 0.00 2.52 1.08 0.00 0.00
BER-1/1 0.08 0.02 0.02 0.08 0.39 0.39 0.25 0.27 0.28 0.98 0.00 0.00
BER-1/2 0.18 0.08 0.01 0.01 3.38 0.16 0.03 0.03 4.14 0.24 0.00 0.00
SF-2/1 4.74 4.72 0.57 0.28 5.98 5.98 0.01 0.01 6.51 3.18 0.01 0.01
SF-2/2 8.31 6.52 0.25 0.16 10.7 6.16 0.17 0.10 6.43 6.43 0.01 0.01

W/¬C SF-1/1 5.67 6.61 6.68 0.60 2.71 1.72 0.01 0.01 1.08 0.12 0.00 0.00
SF-1/2 2.30 6.19 0.67 0.41 2.71 1.69 0.01 0.01 2.53 0.11 0.00 0.00
BER-1/1 0.41 1.32 0.20 0.20 0.15 0.36 0.04 0.04 0.25 0.00 0.00 0.00
BER-1/2 4.39 1.35 0.20 0.20 4.36 0.62 0.24 0.24 4.12 0.00 0.00 0.00
SF-2/1 58.1 4.55 0.42 0.42 6.41 0.55 0.01 0.01 6.52 0.04 0.01 0.01
SF-2/2 33.1 4.72 0.19 0.19 10.8 0.73 0.17 0.09 6.40 0.05 0.01 0.05

¬W/C SF-1/1 0.12 0.02 0.05 0.03 1.10 0.01 0.00 0.00 0.98 0.07 0.00 0.00
SF-1/2 1.41 0.18 0.11 0.20 2.85 0.02 0.01 0.00 0.06 0.05 0.00 0.00
BER-1/1 0.20 0.19 0.07 0.04 0.13 0.01 0.01 0.01 2.76 0.00 0.00 0.00
BER-1/2 0.42 0.35 0.05 0.21 0.94 0.03 0.01 0.01 2.92 0.06 0.00 0.00
SF-2/1 1.24 0.01 0.12 0.09 0.21 0.03 0.00 0.00 1.02 0.02 0.00 0.00
SF-2/2 0.19 0.06 0.03 0.02 0.99 0.03 0.00 0.00 1.03 0.03 0.00 0.03

W/C SF-1/1 2.37 1.17 0.00 0.00 1.14 0.04 0.00 0.00 0.98 0.00 0.00 0.00
SF-1/2 2.11 4.24 0.01 0.01 2.83 0.04 0.00 0.00 0.06 0.00 0.00 0.00
BER-1/1 0.74 0.01 0.00 0.00 0.12 0.02 0.00 0.00 2.79 0.02 0.00 0.00
BER-1/2 1.37 0.01 0.01 0.01 0.94 0.02 0.00 0.00 2.92 0.00 0.00 0.00
SF-2/1 3.48 0.03 0.01 0.01 0.17 0.01 0.00 0.00 1.02 0.00 0.00 0.00
SF-2/2 0.89 0.04 0.02 0.02 0.98 0.01 0.00 0.00 1.02 0.00 0.00 0.00

The table compares the average search cost deviation ∆α̂ for LH, RO, G and N
for each of the 72 instances.

21

Table 8.: Success rate

low-15% avg-60% high-90%

N G RO LH N G RO LH N G RO LH

¬W/¬C SF-1/1 0.81 0.85 0.36 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SF-1/2 0.95 0.85 0.81 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BER-1/1 0.78 0.77 0.77 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BER-1/2 0.95 0.80 0.78 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SF-2/1 0.70 0.80 0.78 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SF-2/2 0.90 0.86 0.87 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

¬W/C SF-1/1 0.80 0.55 0.79 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SF-1/2 0.94 0.74 0.69 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BER-1/1 0.78 0.73 0.78 0.78 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
BER-1/2 0.93 0.92 0.68 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SF-2/1 0.74 0.51 0.42 0.77 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SF-2/2 0.89 0.89 0.91 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

The table compares the success rate ρ̂ for LH, RO, G and N for each instance
of ¬W problem variants.

variants and classes. As can be seen, higher search cost deviations occur for the W variants, especially
for W/¬C, due to the heterogeneous penalty costs that result from waiting at an occupied station.
Particularly, on the SF-1 instances at low-availability, RO performs significantly worse compared to
LH with respect to the average search time. In this case, a single varying station visit between two
search strategies can cause such differences due to the limited amount of candidate stations and the
large amplitude between penalty costs.
Table 8 shows the success rate of each algorithm for each problem variant and scenario. We disclose

only ¬W problem variants in this table, because W problem variants always end successfully; in
the worst case with a long waiting time at the last visited charging station. As can be seen, the
LH algorithm shows much higher success rates compared to the RO algorithm, which highlights the
superiority of the LH algorithm compared to the RO algorithm as both algorithms show comparable
performances with respect to average search cost. Remarkably, for some scenarios, the naive approach
yields the highest success rates. This highlights that there exists a trade off between search costs
and success rates for ¬W problem variants. Analyzing Tables 7&8 jointly, we conclude that for some
scenarios the naive algorithm outperforms the LH algorithm in terms of success rates at the price of
significantly higher search cost. Vice versa, the RO algorithm outperforms the LH algorithm for some
scenarios in terms of average search costs at the price of significantly reduced success rates (see, e.g.,
¬W/¬C, scenario SF − 1/1).
Table 9 shows the deviation between the maximum search cost of all algorithms for W problem

variants, which are guaranteed to be feasible at the price of high waiting cost. Here, we observe a
trade-off between the average search cost and the maximum search cost. As one can see, the LH
and the RO algorithm show a similar performance for scenarios with medium and high charging
station availability, but the LH algorithm performs better in the SF-1/1 scenario with low charging
station availability. Across all scenarios the greedy algorithm sometimes yields the least maximum
cost. However, this improvement stems from significantly increased search costs (cf. Table 7).
Figure 5 illustrates the trade-offs discussed above by showing for all algorithms the trade off between

average search costs and i) the success rate, aggregated over all scenarios for ¬W problem variants

22

(Figure 5a), or ii) the maximum search cost, aggregated over all scenarios for W problem variants
(Figure 5b).

Table 9.: Maximal Search cost

low-15% avg-60% high-90%

N G RO LH N G RO LH N G RO LH

W/¬C SF-1/1 22.6 2.29 10.8 0.00 1.42 0.00 0.10 0.24 2.11 0.00 0.13 0.13
SF-1/2 4.45 2.29 0.00 0.00 2.01 0.11 0.00 0.00 0.69 0.00 0.13 0.13
BER-1/1 1.12 0.00 0.32 0.32 0.28 2.08 0.00 0.00 0.27 0.34 0.00 0.00
BER-1/2 33.7 0.00 0.32 0.32 0.60 2.08 0.00 0.00 0.71 0.34 0.00 0.00
SF-2/1 29.0 0.27 0.00 0.00 0.89 1.05 0.00 0.00 0.74 0.00 0.70 0.70
SF-2/2 30.2 0.27 0.00 0.00 3.60 2.04 0.00 1.07 0.02 0.55 0.00 0.55

W/C SF-1/1 6.07 1.22 0.00 0.00 2.60 0.00 0.01 0.01 0.85 0.00 0.00 0.00
SF-1/2 2.78 6.24 0.00 0.00 2.61 0.01 0.00 0.00 0.00 0.03 0.03 0.03
BER-1/1 2.69 0.00 0.00 0.00 0.73 0.36 0.00 0.00 1.63 1.70 0.00 0.00
BER-1/2 6.41 0.00 0.00 0.00 0.96 1.38 0.00 0.00 2.39 0.01 0.00 0.00
SF-2/1 6.34 0.06 0.00 0.00 2.57 0.00 0.00 0.00 0.99 0.00 0.01 0.01
SF-2/2 6.49 0.20 0.00 0.00 0.85 0.00 0.02 0.01 0.95 0.00 0.01 0.00

The table compares the maximal search costs ∆α̂max for LH, RO, G and N for
each instance of W problem variants.

0.4 0.6 0.8 1
0

20

40

60

80

LHRO G N

LH

RO G

N

ρ̂

α̂
[m

in
]

low-15%

¬W/¬C
¬W/C

0.4 0.6 0.8 1
0

20

40

60

80

LH
RO

GN

LH
RO

G

N

ρ̂

α̂
[m

in
]

avg-60%

0.4 0.6 0.8 1
0

20

40

60

80

LH
RO G

N

LH RO

G

N

ρ̂

α̂
[m

in
]

high-90%

(a) Averaged search cost vs. success rate for problem variants ¬W/¬C and ¬W/C

0 100 200
0

20

40

60

80

100

LH
RO

G

N

LH
RO

G

N

α̂max [min]

α̂
[m

in
]

low-15%

W/¬C
W/C

0 20 40 60 80 100
0

20

40

60

80

LHRO
G
N

LH
RO

G

N

α̂max [min]

α̂
[m

in
]

avg-60%

0 20 40 60 80 100
0

20

40

60

80

LH
ROGN

LH
RO

G

N

α̂max [min]

α̂
[m

in
]

high-90%

(b) Averaged search cost vs. worst search cost for problem variants W/¬C and W/C

Figure 5.: Trade off between the average search cost and the success rate, resp. the worst search cost

23

For ¬W problem variants and scenarios with medium or high charging station availability, all al-
gorithms yield a 1.00% success rate but the advanced algorithms yield significantly lower cost, with
LH being the best-performing algorithm. In these cases the greedy algorithm performs close to the
advanced algorithms for problem variant ¬W/C. For scenarios with low charging station availability
the LH algorithm yields a better success rate but the RO algorithm yields lower search cost. For
W problem variants, we observe that the advanced algorithms outperform the myopic algorithms sig-
nificantly, independent of the charging station availability. This performance difference is higher for
problem variant W/¬C. For problem variant W/C, G performs close to the advanced algorithms for
scenarios with medium or high charging station availability.
Concluding, our results show that the developed search algorithms can significantly improve the

search quality across all problem variants and scenarios. Compared to G, the advanced algorithms
decrease the search cost by 21 % in average and up to 44% for areas with a scarce number of charging
stations and low charging station availability. For ¬W variants, the failure rate decreases by 30 %
with low charging station availability. Moreover, advanced algorithms allow to reduce search times
by 5 (W/¬C) to 31 (W/C) minutes compared to myopic approaches for W problem variants with
low station availability. This reduction potential decreases for scenarios with average to high station
availability. However, advanced algorithms appear to be more robust in these cases and lower the
worst search costs by 20 % (W/¬C) and 12 % (W/C). Comparing the LH and RO algorithm among
each other, LH prolongs the search compared to RO but obtains a significantly higher success rate for
¬W variants. For scenarios avg-60% and high-90% RO and LH show a similar performance.

Computational tractability
To compare the performance of the LH and RO algorithm against the exact labeling algorithm, we
derive a set of 8064 test instances by varying T ∈ [5, 10, 15, 20] minutes, S ∈ [800, 1.000, ..., 3400] meters,
and the availability distribution in {low-15%, avg-60%,SF-2} for all problem variants and each search
area. Here, we use a large time limit of 15,000 seconds to obtain a maximum set of solutions that are
eligible for our comparison, i.e., solutions for instances that could be solved with all three algorithms.
Table 10 shows the rate of instances solved within this time limit (n̂), and the average computational

time of the successful runs (t̂) for both heuristic algorithms (RO, LH) and for the exact labeling
algorithm (LE), as well as the average ratio (gα) between each heuristic result and the optimal solution.
As can be seen, our LH algorithm provides optimal or close to optimal solutions. The RO algorithm

shows a similar solution quality for problem variants of typeW but shows a significantly worse solution
quality for problem variants of type ¬W with a low charging station availability. While the RO
algorithm succeeds in solving all instances with computational times of a few seconds, the LH algorithm
improves upon its exact counterpart with respect to the number of instances solved and computational
times but can neither solve all instances nor preserve computational times at the order of seconds.
Figure 6 illustrates the solution quality deviations between RO and LH for a representative subset

of scenarios (BER-1 , T = 10) with low and medium charging station availability and varying search
radii S ∈ [800, 1.000, ..., 3400]. As can be seen, the observed differences are sensitive to the problem
variant. Significant differences occur for ¬W problem variants with low charging station availability
and varying search radii, while the algorithms perform similarly on all other problem variants. These
high deviations result from penalty costs for unsuccessful searches, which can only result for ¬W
problem variants and are more likely to occur at low charging station availability.

24

Table 10.: Aggregated computational results over all tested instances per scenario

LH RO L-E LH RO L-E

gα t̂ n̂ gα t̂ n̂ t̂ n̂ gα t̂ n̂ gα t̂ n̂ t̂ n̂

¬W/¬C ¬W/C

low-15% SF-1 1.01 1.78 1.00 1.32 0.09 1.00 165 0.64 1.00 104 1.00 1.10 0.04 1.00 87.7 0.64
BER-1 1.04 0.49 1.00 1.43 0.28 1.00 1386 0.46 1.00 412 1.00 1.43 0.18 1.00 1338 0.46
SF-2 1.03 445 0.66 1.22 1.38 1.00 8646 0.04 1.06 1088 0.70 1.48 0.86 1.00 5313 0.02

avg-60% SF-1 1.00 266 0.96 1.04 0.11 1.00 7.02 0.64 1.00 9.34 1.00 1.05 0.05 1.00 7.12 0.64
BER-1 1.00 84.5 1.00 1.01 0.23 1.00 473 0.59 1.00 0.54 1.00 1.03 0.15 1.00 1057 0.64
SF-2 1.00 803 0.34 1.11 1.76 1.00 4816 0.05 1.00 355 0.57 1.00 0.83 1.00 5560 0.25

high-90% SF-1 1.00 106 0.66 1.03 0.10 1.00 16.4 0.64 1.05 75.1 0.93 1.01 0.05 1.00 8.48 0.64
BER-1 1.00 66.7 0.66 1.00 0.35 1.00 517 0.57 1.00 2.82 1.00 1.00 0.15 1.00 266 0.59
SF-2 1.00 1.70 0.25 1.00 0.95 1.00 4156 0.04 1.00 750 0.34 1.00 1.06 1.00 2303 0.04

W/¬C W/C

low-15% SF-1 1.04 0.05 1.00 1.09 0.01 1.00 482 0.68 1.00 1.90 1.00 1.00 0.12 1.00 493 0.68
BER-1 1.00 1.60 1.00 1.00 0.04 1.00 283 0.64 1.00 5.98 1.00 1.00 0.77 1.00 803 0.66
SF-2 1.00 160 0.64 1.03 0.10 1.00 2111 0.25 1.00 358 0.79 1.00 2.95 1.00 2565 0.25

avg-60% SF-1 1.00 0.05 1.00 1.03 0.01 1.00 2.33 0.64 1.00 0.25 1.00 1.00 0.12 1.00 473 0.68
BER-1 1.00 0.72 1.00 1.00 0.01 1.00 1046 0.64 1.00 0.83 1.00 1.00 0.57 1.00 495 0.64
SF-2 1.00 490 0.54 1.09 0.03 1.00 4219 0.25 1.00 527 0.64 1.00 2.59 1.00 2031 0.25

high-90% SF-1 1.00 0.06 1.00 1.00 0.01 1.00 1.68 0.64 1.00 1.99 0.89 1.00 0.08 1.00 352 0.68
BER-1 1.00 0.38 1.00 1.00 0.01 1.00 476 0.64 1.00 0.05 0.89 1.00 0.34 1.00 630 0.66
SF-2 1.00 0.43 0.25 1.00 0.05 1.00 2024 0.25 1.00 4.27 0.29 1.00 1.88 1.00 2661 0.25

Abbreviations hold as follows: gα - averaged optimality gap over all tested instances with gα = αheur

αopt ,
t̂ - averaged computational time[s], n̂ - rate of instances that can be computed in less than 15000
seconds. We note that an average gα of 1.00 indicates that an algorithm (almost) always finds the
optimal solution. If it always finds the optimal solution we highlight the respective gα in bold font,
whereas we leave it in normal font if some solutions remain heuristic but are not reflected in the value
of gα due to rounding.

Figure 7 shows the computational time of LH, RO, and LE for a representative subset of instances
(BER-1 , T = 20, high-90%) for different search radii. As can be seen, RO and LH remain equally
efficient for search radii up to 1400m but the computational time of LH increases exponentially for
bigger search radii. Synthesizing Table 10 and Figures 6&7, we observe a trade-off between LH and
RO: while RO yields robust computational times at the price of varying solution quality, LH yields a
robust solution quality at the price of exponentially increasing computational time.
From a practitioner’s perspective, computational times of a few milliseconds are imperative to deploy

a search algorithm in practice, e.g., embedded into a navigation application. Here, one could resolve
the trade-off between RO and LH in two different ways. On the one hand, one could apply both
algorithms selectively, using LH for tractable problem sizes and RO for larger problem sizes. On the
other hand, one could always apply LH and terminate its search after a given time limit. To analyze
which strategy appears to be more promising in our case, we compare the performance of RO and LH
against each other, limiting the computation time of LH to 1 second, which equals a sufficiently small
computational time when using an efficient implementation.
Figure 8 shows this comparison for problem variant ¬W/¬C, while we provide figures for all other

problem variants in Appendix E to keep this paper concise. In general, the time-limited LH outperforms

25

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
0.8

1

1.2

1.4

1.6

1.8

Maximal Radius S [m]

O
pt

im
al

ity
ga

p
low-15% ¬W/¬C

RO gα

LH gα

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
0.8

1

1.2

1.4

1.6

1.8

Maximal Radius S [m]

O
pt

im
al

ity
ga

p

avg-60% ¬W/¬C

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
0.8

1

1.2

1.4

1.6

1.8

Maximal Radius S [m]

O
pt

im
al

ity
ga

p

low-15% W/¬C

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
0.8

1

1.2

1.4

1.6

1.8

Maximal Radius S [m]

O
pt

im
al

ity
ga

p

avg-60% W/¬C

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
0.8

1

1.2

1.4

1.6

1.8

Maximal Radius S [m]

O
pt

im
al

ity
ga

p

low-15% ¬W/C

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
0.8

1

1.2

1.4

1.6

1.8

Maximal Radius S [m]

O
pt

im
al

ity
ga

p

avg-60% ¬W/C

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
0.8

1

1.2

1.4

1.6

1.8

Maximal Radius S [m]

O
pt

im
al

ity
ga

p

low-15% W/C

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
0.8

1

1.2

1.4

1.6

1.8

Maximal Radius S [m]

O
pt

im
al

ity
ga

p

avg-60% W/C

Figure 6.: Optimality gap for LH and RO for the BER-1 scenario with fixed T=10 min for 15 % and 60
% availability scenarios

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

0

0.5

1

1.5
·104

Maximal Radius S [m]

R
un

ti
m

e
[s

]

high-90% ¬W/¬C T=20

LE runtime
LH runtime
RO runtime

Figure 7.: Computational times for LH, LE and RO for the BER-1 scenario with fixed T=20 min with
90 % availability

RO (blue areas) for small search radii, in particular for instances with low charging station availability,
whereas RO outperforms the time-limited LH (red areas) in some cases for large search time budgets
and bigger search radii. Accordingly, using both algorithms selectively appears to be a reasonable
deployment strategy in practice.

26

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]
BER-1/low-15%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

BER-1/avg-60%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

BER-1/high-90%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-1/low-15%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]
SF-1/avg-60%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-1/high-90%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-2/low-15%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-2/avg-60%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]
SF-2/high-90%

-12.8

-9.6

-6.4

-3.2

0.0

3.2

6.4

9.6

12.8

16.0

∆
α

[m
in

ut
es

]

Figure 8.: Extensive heuristic comparison for problem variant ¬W/¬C

Each subplot shows ∆α = αLH − αRO (with αLH , resp. αRO being the solution cost for LH, resp. RO) as a
function of T and S, where we limit LH computational times to 1 second. Each subplot corresponds to one of the
9 scenarios resulting from the combination of each area (SF-1 , BER-1 , SF-2) with each availability distribution
(low-15% , avg-60% , high-90%). Over all subplots, availability increases from left to right and station density
increases from top to bottom.

5.2. Extended analysis

In the following, we analyze the sensitivity of our algorithms towards parameter and design decisions.
We first analyze the algorithms’ sensitivity towards the penalty cost β̄ for ¬W problem variants,
before we study the impact of a time dependent recovery function, substantiate the heuristic dominance
decisions and study the impact of additional charging times due to battery depletion during the search.

Termination penalty
We limit the discussion of termination penalty sensitivities to low charging station availability instances
as these appear to be the most sensitive. Apparently, analyzing the search cost α does not allow for a
meaningful interpretation of β̄ sensitivities as α naturally increases with increasing β̄. To circumvent
this issue we decompose α into user-relevant metrics (see Appendix C), and analyze the computational
time, the expected search time ts and the probability ρ̄ that the search unsuccessfully terminates,
averaged over six low-15% -instances for problem variant ¬W/¬C (9a) and ¬W/C (9b) in Figure 9.

27

0 50 100 150 200 250

0

20

40

60

80

100

120

140

β̄ [minute]

R
un

ti
m

e
[s

]

0 50 100 150 200 250

10−0.5

10−0.4

10−0.3

10−0.2

10−0.1

100

β̄ [minute]

Fa
ilu

re
P

ro
ba

bi
lit

y

LH RO LE

0 50 100 150 200 250

0.8

1

1.2

1.4

1.6

1.8

2

2.2

β̄ [minute]

Se
ar

ch
co

st
[m

in
ut

es
]

(a) ¬W/¬C

0 50 100 150 200 250

0

50

100

150

β̄ [minute]

R
un

ti
m

e
[s

]

0 50 100 150 200 250
10−0.5

10−0.4

10−0.3

10−0.2

10−0.1

100

β [minute]

Fa
ilu

re
P

ro
ba

bi
lit

y

0 50 100 150 200 250

60

65

70

75

80

85

90

β [minute]

Se
ar

ch
co

st
[m

in
ut

es
]

(b) ¬W/C

Figure 9.: Impact of β̄ on averaged computational time ts and failure rate for the low-15% instances

As can be seen, we observe a goal conflict between the expected search time and the search’s success
rate: with increasing β we obtain better success rates at the price of higher expected search times.
We note that one must choose β ≥ 30 minutes for problem variant ¬W/C, as otherwise the cost for
not visiting any station is lower than the cost for visiting at least one station (i.e., minimal charging
time). We observe that the β values which are necessary to obtain the best possible success rate are
significantly higher (120 minutes respectively 200 minutes for ¬W/¬C and ¬W/C) than this lower
bound.
While the computational times of LE significantly decrease with increasing β, the computational

times of LH and RO remain insensitive to changes in β for low charging station availability scenarios.
However, additional analysis show that LH computational times increase with increasing β in high
charging station availability scenarios, such that varying β for risk-adverse searches in a real-world
implementation (i.e., choosing a higher β) should be chosen with respect to the computational overhead
for LH.

Time-dependent recovery function
To analyze the impact of considering time-dependent recovering probabilities, we compare the objective
values obtained in our main model (without recovering) with the model introduced in Section 3.4 (with
recovering). In the former we compute the search path with a persistent charging station occupancy
but calculate the objective value α considering time-dependent recovery for a fair comparison of both
models. Based on preliminary studies, we set the average occupancy time to two hours, 1

µ = 120

minutes.
Table 11 compares the value of α for both models. As can bee seen no significant difference exists

between the initial model and the updated model at the exception of smaller areas with large time
budget, particularly in case of low station availability. This is the only particular case where visiting

28

Table 11.: Potential solution improvement for the time-
dependent probability recovery function for problem
variant ¬W/¬C

low-15% avg-60%

LH RO LH RO

T S αref αnew αref αnew αref αnew αref αnew

5 800 25.3 25.1 28.5 28.7 1.41 1.41 1.55 1.54
5 2000 13.9 13.9 19.9 19.8 1.34 1.34 1.34 1.34
5 3400 9.63 9.52 19.9 19.8 1.34 1.34 1.34 1.34

10 800 23.9 24.8 28.5 29.3 1.35 1.35 1.57 1.55
10 2000 6.84 6.84 15.2 15.2 1.22 1.22 1.23 1.22
10 3400 3.22 3.22 8.60 4.65 1.22 1.22 1.22 1.22
15 800 23.9 23.4 28.5 28.6 1.35 1.32 1.55 1.53
15 2000 4.23 4.23 8.95 6.84 1.22 1.22 1.22 1.22
15 3400 2.44 2.44 3.11 2.86 1.22 1.22 1.22 1.22
20 800 23.9 17.2 28.5 27.8 1.35 1.33 1.55 1.52
20 2000 3.56 3.52 8.95 9.21 1.22 1.22 1.22 1.22
20 3400 2.41 2.41 2.95 2.83 1.22 1.33 1.22 1.22

The table compares for BER-1 combined with low-15% and avg-
60% the objective value obtained in the updated setting (αnew)
and the initial setting (αref). The table excludes high-90% results
as these do not show any deviations. Significant differences are
shown in bold characters.

stations multiple times within the time budget might be worth an extra detour, as one could expect
at least one of the observed stations to be freed.

Relaxed dominance criteria
To design our labeling heuristic, we relaxed the dominance check of LE as described in Section 3.

In the following, we substantiate the design decision from Section 3. Here, we identify each possible
variant of the dominance check with a boolean quintuple that signifies whether an equation (3.21,
3.22, 3.23, 3.24, 3.25 resp. 3.26) is active (= 1) or not (=0) in the respective dominance check, e.g.,
quintuple (1,0,1,0,0) identifies the dominance check variant in which only equations 3.21 and 3.23 are
active.
Figure 10 shows the trade-off between the optimality gap and the computational times for all dom-

inance criterion and problem variants. As can be seen, the (heuristic) dominance criterion as chosen
in Section 3 – (1,1,0,0,0) – yields the lowest computational times possible to achieve the best pos-
sible solution quality among all heuristic dominance criteria for problem variants ¬W/¬C, W/¬C,
and ¬W/C. For W/C, (1,1,0,0,1) yields the best trade-off by slightly decreasing computational times
obtained with (1,1,0,0,0) but selecting (1,1,0,0,0) allows the best possible generic implementation for
LH.

Battery depletion
For the following experiments, we consider a flat topography and base additional charging time calcu-
lations due to battery depletion on the technical characteristics of a Renault Zoe (battery: Z.E.50 [52
kWh], engine: R110/R135, (Renault 2020)). Furthermore, we assume that the battery level remains
at minimum at 20% of its maximum capacity to account for safety considerations or driver anxiety.
We approximate the extra charging time based on a linear charge curve since the additional depletion

29

0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

00000

00001

00010

00011

00100

00101

00110

00111

01000
01001

01010
01011

01100 01101
01110 01111

10000

10001

10010

10011
10100

10101

10110

10111

11000
11001 11010

11011
1110011101 11110

11111

Averaged time gap

A
ve
ra
ge
d
op

ti
m
al
it
y
ga

p
¬W/¬C

0.2 0.4 0.6 0.8 1

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0000000001

0001000011

00100
00101

00110
00111

01000

01001

01010 01011

01100 01101 01110
0111110001

10100,10000,10101,10111,10010,10110,10011

11000
11001 11010 110111110011101 11110

11111

Averaged time gap

A
ve
ra
ge
d
op

ti
m
al
it
y
ga

p

W/¬C

0.2 0.4 0.6 0.8 1

1

1.1

1.2

1.3

1.4

1.5 00000

00001

00010

00011

00100

00101

00110

00111

0100001001

01010 010110110001101
01110 01111

10000

10001

10010

10011

10100

10101

10110

10111

11000
11001 11010 1101111100 11101 11110

11111

Averaged time gap

A
ve
ra
ge
d
op

ti
m
al
it
y
ga

p

¬W/C

0.2 0.4 0.6 0.8 1

1

1

1

1

1

1.01

1.01

1.01

0000000001

00101, 00011,00110,00111,00100,00010,10000,10001,10100,10110

0100001001

01010
010110110001101 01110

01111

10111,10101,10010,10111

11000
11001

11010 1101111100 11101
11110

11111

Averaged time gap

A
ve
ra
ge
d
op

ti
m
al
it
y
ga

p
W/C

Figure 10.: Comparison of heuristic dominance criteria for all problem variants

The Figure shows the averaged optimality gap gα =
∑
i
αi/αopt

i as a function of the averaged computational time
gap gt =

∑
i
ti/topt

i for each possible heuristic criterion for all variants. For each variant, both values are averaged
over 16 instances corresponding to BER-1 and SF-1 combined resp. with low-15% , avg-60% and high-90% for
S ∈ [1200, 1400, 1600, 1800] and fixed T = 10. Red triangles show results for our selected dominance criteria.

adds only a limited amount to a (partial) recharge and remains in the linear part of the overall charge
curve. To calculate energy consumption, we assume a constant speed of v = 50km/h, which remains a
worst case estimate in an urban context. We define Lc as the expected time to charge the battery from
its initial state to a full state at station c. Then, the depleted amount of energy after t (additional)
minutes of driving results to δbc(v) = t

Ta(v) × 52.
In this setting, our results show that the impact of additional charging times due to an extended

search and the resulting battery depletion is very limited in urban areas. For LH, we observe an average
objective value change of 0.02%, which amounts to a maximum deviation of 1.5% for single instances.

30

The RO algorithm appears to be even less sensitive to the changed objective and shows no significant
differences.

6. Conclusion and outlook

In this paper, we studied charging station search algorithms for stochastic environments, motivated
by real-world applications in today’s navigation system applications. We introduced the underlying
problem as a finite horizon MDP that covers several real-world problem variants. In this setting, we aim
to find cost minimal search paths for an individual driver. We developed three solution algorithms:
an exact labeling algorithm as well as a heuristic labeling algorithm and a rollout heuristic. We
benchmarked these algorithms using an extensive real-world case study with instances for the cities of
San Francisco and Berlin. Our results show that the heuristic algorithms allow for a significant speed-
up compared to the exact algorithm at a price of a reasonable performance loss. Moreover, we show
that our algorithms significantly improve a driver’s success to find a free charging station compared
to myopic and greedy search approaches. This is in particular the case if the number of free charging
stations in the search area is scarce. In this case, our algorithms reduce a driver’s search time by up
to 44%.
In future work, we aim to leverage this work to study the impact of coordination and information

sharing between multiple drivers. By so doing, we can study the impact of additional coordination
that reduces the amount of uncertainty in the system. Moreover, studying the charging station search
problem from a system perspective with a perfect information setting may yield an interesting upper
bound that allows for an improved assessment of the solution quality of our algorithms in a stochastic
setting.

Acknowledgements

This work was partially funded by the German Federal Ministry for Economic Affairs and Energy
within project iMove (01ME16003B). The authors would like to thank Marko Rosenmüller and Andreas
Linscheid for their support in the Berlin availability study.

References
Amazon (2019). Amazon co-founds the climate pledge, setting goal to meet the paris agreement 10 years early. https:

//www.businesswire.com/news/home/20190919005609/en/ (last accessed: 2019-12-14). Last accessed: 11.27.2019.
Arndt, T., Hafner, D., Kellermeier, T., Krogmann, S., Razmjou, A., Krejca, M. S., Rothenberger, R., & Friedrich, T.

(2016). Probabilistic routing for on-street parking search. In 24th Annual European Symposium on Algorithms
(ESA 2016) (pp. 6:1–6:13). volume 57.

Bensasson, B. (2019). Pivot power acquisition press release. https://www.edf.fr/sites/default/files/20191104pr_edf_
group_acquires_pivot_power_certified.pdf_ang_0.pdf. Last accessed: 11.27.2019.

Bonges, H. A., & Lusk, A. C. (2016). Addressing electric vehicle (ev) sales and range anxiety through parking layout,
policy and regulation. Transportation Research Part A: Policy and Practice, 83 , 63–73.

DHL (2019). Dhl electro mobility press release. https://www.dpdhl.com/en/media-relations/specials/electro-
mobility.html. Last accessed: 11.27.2019.

Fröhlich, K. (2019). Bmw electro mobility press release. https://www.press.bmwgroup.com/global/article/detail/T0302391EN/bmw-
group-continues-to-expand-charging-infrastructure-for-electrified-vehicles. Last accessed: 11.27.2019.

Goodson, J. C., Thomas, B. W. T., & Ohlmann, J. W. (2017). A rollout algorithm framework for heuristic solutions to
finite-horizon stochastic dynamic programs. European Journal of Operational Research, 258 , 216–229.

https://www.businesswire.com/news/home/20190919005609/en/
https://www.businesswire.com/news/home/20190919005609/en/
https://www.edf.fr/sites/default/files/20191104pr_edf_group_acquires_pivot_power_certified.pdf_ang_0.pdf
https://www.edf.fr/sites/default/files/20191104pr_edf_group_acquires_pivot_power_certified.pdf_ang_0.pdf

31

Guo, Q., & Wolfson, O. (2018). Probabilistic spatio-temporal resource search. GeoInformatica, 22 , 75–103.
Jafari, E., & Boyles, S. D. (2017). Multicriteria stochastic shortest path problem for electric vehicles. Networks and

Spatial Economics, 17 , 1043–1070.
Jossé, G., Schmid, K. A., & Schubert, M. (2015). Probabilistic resource route queries with reappearance. In Proceedings

of the 18th International Conference on Extending Database Technology (pp. 445–456).
Kullman, N., Goodson, J. C., & Mendoza, J. E. (2017). Electric vehicle routing with uncertain charging station availability

& dynamic decision making. In INFORMS Transportation and Logistics Society Triennial Conference.
Open Charge Map contributors (2019). Charging stations retrieved from Open Charge Map. https://api.openchargemap.

io/v3/referencedata/.
Renault (2020). Autonomie, batterie et recharge, nouvelle renault zoe. https://www.renault.fr/vehicules-electriques/

zoe/batterie-recharge.html.
Schmoll, S., & Schubert, M. (2018). Dynamic resource routing using real-time dynamic programming. In Proceedings of

the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18 (pp. 4822–4828).
Sweda, T. M., Dolinskaya, I. S., & Klabjan, D. (2017). Adaptive routing and recharging policies for electric vehicles.

Transportation Science, 51 , 1326–1348.

Appendix A Proofs

Proof of Proposition 1. Let π be the policy associated to sequence C = (c0, c1, ..., cn). We consider
state xk = (ck, 0) with charging station ck not being available and ck 6= cn. Thus, for i < n,

∏i
j=i(1−

pcj) = 1. For i = n,
∏i
j=i(1− pcj) = 1− pcn .

We then introduce F as follows

F π(xk) =
n∏
i=k

(1− p̃ci(C[k:i−1]))βcn +
n−1∑
i=k

tci,ci+1

i∏
j=k

(1− p̃cj (C[k:j−1]))


+

n∑
i=k

γci p̃ci(C[k:i−1])
i−1∏
j=k

(1− p̃cj (C[k:i−1]))

 .

(A.1)

We notice that F π(xn) = (1− pcn)βcn + pcnγcn = V π(xn).
We now show that F fulfills the recursive definition of the policy specific cost function and by recursion
that F = V . From state xk = (C[0,k], 0), we let the cost for being in next state xk+1 = (C[0,k+1], 0)

and seek to express F π(xk) as a function of F π(xk+1) to fulfill the recursive definition 3.5.

F π(xk+1) =
n∏

j=k+1

(1− pcj)(βcn) +
n−1∑
i=k+1

[tci,ci+1

i∏
j=k+1

(1− pcj)]

+
n∑

i=k+1

[γcipci

i−1∏
j=k+1

(1− pcj)]

(A.2)

F π(xk) = (1− pck)

n∏
j=k+1

(1− pcj)(βcn) + tck,ck+1
+ (1− pk)

n−1∑
i=k+1

[tci,ci+1

i∏
j=k+1

(1− pcj)]

+ pckγck + (1− pck)

n∑
i=k

[γcipci

i−1∏
j=k

(1− pcj)]

F π(xk) = tck,ck+1
+ (1− pck)F π(xk+1) + pckγck

(A.3)

https://api.openchargemap.io/v3/referencedata/
https://api.openchargemap.io/v3/referencedata/
https://www.renault.fr/vehicules-electriques/zoe/batterie-recharge.html
https://www.renault.fr/vehicules-electriques/zoe/batterie-recharge.html

32

Accordingly, F fulfills the recursive definition 3.5 for w = 0, which concludes the proof.

Proof of Proposition 2. We consider two simple search sequences (c) and (c, c′) extended with the same
visit sequence C = (c0, ..., cn). Let C ′ = (c) ◦ C, resp. C ′′ = (c, c′) ◦ C, associated to policies π′, resp.
π′′. Let tc,c0 = tc,c′ + tc′,c0 and let c′ be a direct neighbor of c (i.e., there is no station d such that
tc,c′ = tc,d + td,c′) and let c0 not be a direct neighbor.
We now show that from the considered state x0 = ((c), 0), visiting c′ before c0 is always better than

straightforwardly visiting c0. We get

V π′((c), 0) = tc,c0 + (1− p̃c0)V π′((c, c0), 0),

V π′′((c), 0) = tc,c′ + (1− p̃c′)tc′,c0 + (1− p̃c′)(1− p̃c0)V π′′((c, c′, c0), 0)

and distinguish two cases:

Case 1 (c′ /∈ C): In this case, the valuation of any unexplored station after c0 does not depend on
preceding visits in the respective sequence, i.e., V π′′((c, c0), 0) = V π′′((c, c′, c0), 0). Given that
(1− p̃c) ≤ 1, we straightforwardly obtain V π′′((c), 0) ≤ V π′((c), 0).

Case 2 (c′ ∈ C): In this case, the valuation of any unexplored station after c0 depends on preceding
visits in the respective sequence and we obtain the following cost expansions, visiting c′ at position
k:

For path C ′, c′ is visited for the first time such that p̃ck = pc′ and we get

V π′(C ′, 0) =
n∏
j=0

(1 − p̃cj)(β) +

k−1∑
i=0

tci,ci+1

i∏
j=0

(1 − p̃cj) +

n−1∑
i=k

[tci,ci+1(1 − p̃c′)
i∏

j=0,j 6=k
(1 − p̃cj)

(A.4)

For path C ′′, c′ is visited for the second time such that p̃ck = 0 and we get

(1− p̃c′)V ≈
′′
(C ′′, 0) = (1− p̃c′)

n∏
j=0

(1− pcj)(β) + (1− p̃c′)
k−1∑
i=0

[tci,ci+1

i∏
j=0

(1− pcj)

+

n−1∑
i=k

[tci,ci+1(1− p̃c′)
i∏

j=0,j 6=k
(1− pcj) (A.5)

Since (1− p̃c′) ≤ 1, we have

(1− p̃c′)V ≈
′′
((c, c′, c0), 0) ≤ V π′((c, c0), 0)

and consequently
V π′′(x0) ≤ V π′(x0).

In both cases, π′′ is preferred over π′ (thus C ′′ over C ′), such that candidate stations can be
restricted to neighbor stations only, which concludes the proof.

33

Appendix B Problem Complexity

Proposition 3. The SCPS problem is NP-hard, even with metric travel times.

Proof. We show hardness through reduction from the traveling salesman problem (TSP) with metric
and integer travel times. The decision problem variant of the TSP can be defined as follows: we consider
a set C of n sites and travel times tc,c′ ∈ N between these. Travel times are bounded 1 ≤ tc,c′ ≤ ∆ for
all c, c′ ∈ C. We are asked for a tour (i.e., a Hamiltonian path) c0, . . . , cn = c0 whose length satisfies∑n−1

i=0 tci,ci+1 ≤ θ for a given θ. Given that travel times are integer, we can assume w.l.o.g. θ ∈ N.
Further, we assume that triangle inequality holds, i.e., tc,c′ + tc′,c′′ ≥ tc,c′′ for all c, c′, c′′ ∈ C. We note
that hardness for this restricted metric case implies hardness for the generic case as well.
Step 1: We construct an instance for the station search from the TSP instance as follows: We select

an arbitrary vertex s ∈ C and designate it as start vertex c0 := s for the search. We then create
a duplicate s′ in the same location (ts,s′ = 0), which serves as the termination vertex. Let q be an
arbitrary value satisfying (

1− 1

∆(n+ 1)

) 1

n− 1 ≤ q < 1 . (B.1)

We parameterize the search as follows: All vertices c have an availability of pi := 1 − q without
recovery. There is no penalty for successful charging (γi := 0 ∀i). For unsuccessfully terminating at
s′, the penalty is

βs′ :=
2∆

q(1− q)
+ 1 . (B.2)

For all other vertices c 6= s′ the penalty is

βc :=
1

qn+1
(βs′ + n∆) + 1 . (B.3)

Now for any search path C = (c0, . . . , ck) that does not visit any vertex multiple times, it holds that

α(C) =

(
k∏
i=0

(1− pci)

)
βck +

k−1∑
i=0

tci,ci+1

i∏
j=0

(1− pcj) +
k∑
i=0

γcipci

i−1∏
j=0

(1− pcj)

= qk+1βck +
k−1∑
i=0

qi+1tci,ci+1 .

(B.4)

Step 2: We now claim that the TSP instance possesses a solution with cost at most θ ∈ N if, and only
if, the station search admits a search path C with α(C) ≤ qθ + qn+1βs′ . This is done by transforming
solutions between the two problems and carefully mapping their objective values.
For the first direction, we assume that a TSP tour is given. We convert it to a search path C =

(c0, . . . , cn) by cutting at s such that c0 = s and cn = s′. Then

α(C) = qn+1βs′ +
n−1∑
i=0

qi+1tci,ci+1 ≤ qn+1βs′ + q
n−1∑
i=0

tci,ci+1 ≤ qn+1βs′ + qθ .

Vice versa, we assume that we are given a search path P with α(P) ≤ qθ + qn+1βs′ . Then for an
optimal search path C = (c0, . . . , ck) it holds that α(P) ≤ α(C) ≤ qθ + qn+1βs′ . Given metric travel

34

times and no recovery, we can assume that C does not visit any vertex more than once. We construct
a tour through the following observations:

1. C visits s′: Assume it does not. Let C ′ be C extended by ending at s′. Then

α(C ′) = α(C)− qk+1βck + qk+2βs′ + qk+1tck,s′

= α(C)− qk+1(βck − qβs′ − tck,s′)
(∗)
< α(C)

(B.5)

using in (*) that βck > qβs′ + ∆ by (B.3). This contradicts the optimality of C.

2. C visits s′ last: Assume it does not. We obtain C ′ from C by moving s′ to the end. Then it
holds that

α(C) ≥ qk+1βck ≥ q
n+1βck and

α(C ′) ≤ qk+1βs′ +

k−1∑
i=0

qi+1∆ ≤ βs′ + n∆ .
(B.6)

Given that qn+1βck > βs′ + n∆ (B.3), it holds that α(C) > α(C ′), contradicting optimality.

3. C visits every vertex: Assume C = (c0, . . . , ck−1, s
′) omits some vertex c′. Let C ′ = (c0, . . . , ck−1, c

′, s′).
Then

α(C)− α(C ′) =
(
qktck−1,s + qk+1βs′

)
−
(
qktck−1,c′ + qk+1tc′,s′ + qk+2βs′

)
= qk(tck−1,s − tck−1,c′ − qtc′,s′ + (q − q2)βs′)

≥ qk(−2∆ + q(1− q)βs′)
(B.2)
> 0 ,

(B.7)

again contradicting optimality.

4. It is clear now that C corresponds to a TSP tour, by identifying s with s′. It holds that

α(C) =

n−1∑
i=0

qi+1tci,ci+1 + qn+1βs′ ≤ qθ + qn+1βs′ . (B.8)

Assume the tour would violate the threshold, i.e.,
∑n−1

i=0 tci,ci+1 > θ. Given integrality, the length
then is at least θ + 1. It follows that

n−1∑
i=0

qi+1tci,ci+1 ≥
n−1∑
i=0

qntci,ci+1 = q

n−1∑
i=0

qn−1tci,ci+1

(B.1)
≥ q

n−1∑
i=0

(1− 1

∆(n+ 1)
)tci,ci+1 = q

[
n−1∑
i=0

tci,ci+1 −
n−1∑
i=0

tci,ci+1

∆(n+ 1)

]

≥ q

[
θ + 1−

n−1∑
i=0

1

n+ 1

]
> qθ .

(B.9)

This contradicts (B.8), thereby proving that
∑n−1

i=0 tci,ci+1 ≤ θ.

35

Appendix C Search cost decomposition

In this section, we show by proving Proposition 4 that the total search cost α(π) as derived in Section 2
can be expressed as a function t(π), ρ(π) and an additional quantity ts(π) representing the expected
time to find a station assuming at least one station is available among C, the visits sequence associated
with π. We derive the quantity ts(π) based on the work of Arndt et al. (2016) that describes ts(π) as
a sum of the partial accumulated driving time to a station (parking spot in their work) weighted by
the probability the driver charges exactly at this station.

Proposition 4. Cost α can be decomposed to exhibit ts(π) as follows,

α(π) = ts(π) · ρ(π) + ρ̄(π) · (t(π) + βcn). (C.1)

Proof. We recall that α(π) = A(π) + ρ̄(π) · βcn (cf. Equation 3.13). For the sake of conciseness, we
simplify the notation for the remainder of this proof as follows: C = (0, 1, .., n) such that tk,k+1 =

tck,ck+1
, ρ̄k =

∏k
i=0 p̄k We let ρn = ρ(π), An = A(π), tn = t(π), tsn = ts(π).

We then define ts based on Arndt et al. (2016) as

tsn =

∑n−1
k=0 ρ̄k−1pk(tk + γk)

ρn
.

We now note that ρ̄kpk represents the probability of station k being available when visited, given that
no station in i ∈ (0, .., k − 1) was available.
We then introduce the quantity Bn =

∑n−1
k=0 ρ̄k−1pk(tk + γk) such that tsn · ρn = Bn and note that to

prove C.1, it is sufficient to show
An = Bn + ρ̄n · tn, (C.2)

which follows by recursion:
Step 1: For n = 0, C.1 holds : A0 = t0,1 and B0 = p1t0,1 + p̄1t0,1 = A0.
Step 2: We assume that C.1 holds and show that An+1 = Bn+1 + ρ̄n+1 · tn+1 holds, too:

An+1 = An + ρ̄n · (tn,n+1 + pn+1γn+1)

Bn+1 = Bn + ρ̄npn+1 · (tn+1 + γn+1)
(C.3)

Given C.1,

An+1 = Bn + ρ̄n · tn + ρ̄n(tn,n+1 + pn+1γn+1)

⇔ An+1 = Bn + ρ̄n · tn + ρ̄n(tn,n+1 + pn+1γn+1) + ρ̄npn+1 · (tn+1 + γn+1)− ρ̄npn+1 · (tn+1 + γn+1)

(C.4)
From C.3 and C.4, we get :

An+1 = Bn+1 + ρ̄n · (tn) + ρ̄n(tn,n+1 + pn+1γn+1)− ρ̄npn+1 · (tn+1 + γn+1)

⇔ An+1 = Bn+1 + ρ̄n · tn+1 − ρ̄n(pn+1)tn+1

⇔ An+1 = Bn+1 + ρ̄n+1 · tn+1

(C.5)

This concludes the proof.

36

Appendix D Reduced action spaces results

Table 12 compares the cost α, the computational times, and the percentage share of instances that can
be computed in less than 15000 seconds by each heuristic. Further, for the instances that can be solved
to optimality within 15000 seconds, the table compares for both heuristics the averaged optimality gap
and computational time gap.

Table 12.: Aggregated computational results over all tested instances for each problem
variant

Graph setup LH RO

Problem variant Action space gt gα t̂ α̂ n̂ gt gα t̂ α̂ n̂

¬W/¬C direct 0.21 1.01 197 7.90 0.73 0.35 1.27 0.08 11.2 1.00
direct/restricted 0.16 1.04 235 7.91 0.82 – – – – –
T r-restricted 0.17 1.00 221 7.84 0.74 – – – – –
complete – – – – – 0.23 1.13 0.58 9.54 1.00

W/¬C direct 0.20 1.00 72.7 2.48 0.83 0.20 1.03 0.03 2.52 1.00
direct/restricted 0.16 1.02 16.7 2.49 1.00 – – – – –
T r-restricted 0.16 1.01 250 2.46 0.78 – – – – –
complete – – – – – 0.36 1.04 0.76 2.53 1.00

¬W/C T r-restricted 0.17 1.01 311 48.6 0.84 0.18 1.12 0.31 53.1 1.00
complete 0.16 1.01 486 48.4 0.84 0.19 1.12 0.38 53.6 1.00

W/C
T r-restricted 0.26 1.00 120 34.5 0.83 0.31 1.00 0.88 34.5 1.00
complete 0.20 1.00 100 34.5 0.83 0.33 1.00 1.05 34.5 1.00

Abbreviations hold as follows: gα - averaged optimality gap over all tested instances
with gα = αheur

αopt , gt - averaged computational time gap with gt = theur

topt , α̂ - averaged
search cost α [min], t̂ - averaged computational time[s], n̂ - rate of instances that can be
computed in less than 15000 seconds.

Preliminary results show that using the complete action space for problem variants ¬W/¬C and
W/¬C with LH is computationally too heavy to be of any practical use, such that we restrict results to
the other restricted action spaces. As can be seen, while direct only slightly helps saving computational
times on average for ¬W/¬C and LH, it allows to solve 6% more instances within the allocated time
for W/¬C. For RO, in W/¬C, results show a 96% decrease of the computational time. For ¬W/C,
restricting the next station visits from the current location to the ones accessible in less than 5 minutes
allows to save 36% of the computational times compared to complete. Accordingly, Table 13 shows
the most appropriate action space for each heuristic and problem variant.

Table 13.: Best action space /heuristic combination per problem
variant

Problem variant LH RO

¬W/¬C direct complete
W/¬C direct direct
¬W/C T r-restricted complete
W/C complete complete

For all problem variants, the table shows for each heuristic (LH,
RO) the graph setting to that provides the best trade-off between
computational times and solution quality.

37

Appendix E Additional tractability analysis results

Figure 11 shows the extensive heuristic comparisons for the remaining problem variantsW/¬C, ¬W/C,
W/C.

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

BER-1/low-15%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

BER-1/avg-60%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

BER-1/high-90%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-1/low-15%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-1/avg-60%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-1/high-90%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-2/low-15%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-2/avg-60%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-2/high-90%

-14.4

-12.6

-10.8

-9.0

-7.2

-5.4

-3.6

-1.8

0.0

1.8

∆
α

[m
in

ut
es

]

(a) Heuristic comparison for problem variant W/¬C

38

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

BER-1/low-15%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

BER-1/avg-60%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

BER-1/high-90%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-1/low-15%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-1/avg-60%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-1/high-90%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-2/low-15%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-2/avg-60%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-2/high-90%

-14.5

-11.6

-8.7

-5.8

-2.9

0.0

2.9

5.8

8.7

11.6

∆
α

[m
in

ut
es

]

(b) Heuristic comparison for problem variant ¬W/C

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

BER-1/low-15%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

BER-1/avg-60%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

BER-1/high-90%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-1/low-15%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-1/avg-60%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-1/high-90%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-2/low-15%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-2/avg-60%

5 10 15 20

T [minutes]

1000

1500

2000

2500

3000

S
[m

et
er

s]

SF-2/high-90%

-0.01

0.19

0.39

0.59

0.79

0.99

∆
α

[m
in

ut
es

]

(c) Heuristic comparison for problem variant W/C

Figure 11.: Extensive heuristic comparison for problem variants W/¬C, ¬W/C, W/C

Each subplot shows ∆α = αLH −αRO (with αLH , resp. αRO, the solution cost for LH, resp. RO) as a function
of T and S, where we limit LH computational times to 1 second. Each subplot corresponds to one of the 9
scenarios resulting from the combination of each area (SF-1 , BER-1 , SF-2) with each availability distribution
(low-15% , avg-60% , high-90%). Over all subplots, availability increases from left to right and station density
increases from top to bottom.

	1 Introduction
	1.1 Literature review
	1.2 Contribution
	1.3 Organization

	2 Problem definition and representation
	2.1 Problem setting
	2.2 Discussion

	3 Methodology
	3.1 Markov decision process
	3.1.1 Model variables and transition functions
	3.1.2 Cost function
	3.1.3 Cost structure variants
	3.1.4 Cost function expansion

	3.2 Dynamic programming based labeling algorithms
	3.3 Rollout algorithm
	3.4 Time-dependent probability recovery function
	3.5 Integrating search related energy consumption
	3.6 Computational complexity improvements
	3.6.1 Action space reductions
	3.6.2 Sharpened dominance relation for the dynamic programming algorithms

	4 Design of experiments
	5 Results
	5.1 Performance analysis
	5.2 Extended analysis

	6 Conclusion and outlook
	Appendix A Proofs
	Appendix B Problem Complexity
	Appendix C Search cost decomposition
	Appendix D Reduced action spaces results
	Appendix E Additional tractability analysis results

