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1. Introduction

In this paper we consider a generic discrete multifacility location problem in which

m new facilities are to be located. The locations of these new facilities are represented by

decision variables Y={yi,...,ym }. Each yp can take a value from the setZ={zi,...,zw }.

Demands for services from the new facilities are located at points (called existing facilities)

denoted by vi,V2,...,vn . The points vi,...,vn and zi,...,zw are in some metric space. The

objective function of the location problem involves distances between pairs of facilities.

Generally, the examples of the generic problem that we cite will be problems on networks

(hence the use of v for existing facilities (at vertices)), but this need not be the case. For

location problems on networks, the distance function, d(.), is taken to be the shortest path

distance.

We first formulate the generic multifacility location problem (denoted by GMLP).

Specific examples are given in section 2.

GMLP: OPT F(yi,...,ym )

s.t. yjeZ i=l,...,m.

In this problem, OPT is an optimization operator, either minimization or

maximization. The function F takes the form F(yi,...,ym ) = g({hb(Yb): be B}), where Yb

c Y, V be B and g is either maximum, minimum or summation operator. For every be B,

hb is a function (maximum, minimum or summation) of one or more distance values. Each

distance value is a weighted distance between some new facility and existing facility, e.g.

<*ipd(vi,yp), or between a pair of existing facilities, e.g. Ppqd(yp,yq).

Each of the examples ofGMLP that we cite is an NP-hard optimization problem.

Our focus in this paper is to specify a sufficient condition under which GMLP (and

therefore the examples) is solvable in polynomial time. The condition for GMLP involves



membership of the sets Yb,be B as follows. Construct an undirected dependency graph

G(V,E) with node set V={yi,. . .,ym }, and (yp,yq) e E if and only if both yp and yq are

members of some Yj,, be B. We delete multiple edges from G. The dependency graph G

has the following simple interpretation: If (yp,yq)
is an edge of G, then an optimal value for

the variable yp (yq) depends upon the value of yq (yp). If yp is connected to several nodes in

G, its optimal value depends upon all of its neighbors in G. If the dependency graph is a k-

tree (to be defined later), then GMLP is solvable in polynomial time for a fixed value of k

with an algorithm that exploits the structure of G.

As mentioned above, the domain of each function hb in GMLP involves weighted

distances between pairs of facilities. As we will see, in order to satisfy the tractability

condition it will be necessary that some of the weights are zero. Thus for example, if aiq
=0

for some i and q, then the weighted distance between existing facility i and new facility q

has no affect on the location problem. Let N={ 1,2,. . .,n} denote the index set of existing

facilities (the vj's) and M={ 1,2,. . .,m} the index set of new facilities (y variables). In what

follows for fixed i€ N we denote by Ai the set of all q in M where aiq * 0. Similarly, for

fixed qe M, we denote by Bq the set of all p in M where pp^ *0, p^q.

The remainder of the paper is organized as follows: In section 2 we give several

discrete location problems, many of which have appeared in the literature. We then relate

each example to GMLP by specifying OPT, g, B, as well as Yb and hb for every be B. In

section 3 we discuss nonserial dynamic programming and indicate how it relates to GMLP.

In section 3 we also define and discuss k-trees. Section 4 contains an algorithm for solving

GMLP when G is a k-tree. For ease of explanation, we assume that k=3 but later on in

section 4 we briefly outline how the algorithm changes when k*3. Section 4 also contains

our complexity analysis of the algorithm. In section 5, we provide an example indicating

how the steps of the algorithm are implemented. Concluding remarks are given in section

6.



2. Examples of the Generic Multifacility Location Problem

We now give several examples of location problems which are instances of

GMLP. Most of these problems have appeared in the literature. For the most part, we do

not provide extensive motivation for the problems herein, since this motivation appears in

the references that we cite. Some of the problems as originally stated in the literature will

not fit our format. An example of this is the first problem below - the m-median problem.

As originally stated, the m new facilities to be located are indistinguishable from each other

in the sense that any new facility can provide service to a given existing facility, provided it

is the closest. To fit our format, it is necessary that only a subset of the new facilities can

provide service, and so the indices of the new facilities must be accounted for in the model

formulation.

One of the keys to obtaining polynomial solvability of the versions of the models

we study is that Z is a finite set. Recall that each yp , peM is restricted to be located at some

point ze Z. All of the problems that we cite are actually "continuous" problems in the sense

that each new facility can be located anywhere on the network. Of course to fit our format,

the solution set Z must be finite. Hooker, Garfinkel and Chen (1991) studied a large

number of continuous network location problems in an effort to identify a finite set of

points on the network which would contain the new facility locations in an optimal

solution. They called such a set of points for a given problem a.finite domination set

(FDS). The first six problems that we cite have known FDS's of polynomial size and we

indicate what this set is in each case. To the best of our knowledge, similar FDS results on

problems 7-14 are not available except in very special cases. We emphasize that our focus

is not on continuous network location problems and thus even if an FDS is known, we do

not require that Z be a subset of the FDS.

In the problems to follow, relative to GMLP we specify OPT, g, B, Yb and hb(Yb).

In problems 1-10, OPT is minimization and in problems 11-14, OPT is maximization.



Problem 1. m-Median Problem (Hakimi, 1964,1965)

n

min £ min pG Ai { aipd(vi,yp)

}

(1)

i=l

In the context of GMLP, g is summation and B=N, so that for be B, Yb={yq:qe Ab} and

hb(Yb) = min pG Ab (cxb^Cv^yp)}.

As originally stated in the literature, Ai=M for all i and aip=ai for all pe M. It is necessary

that Ai be a subset ofM for our approach to apply. For this problem, Hakimi has shown

that an FDS is the set of vertices of the network.

Problem 2. Two-Stage m-Median Problem (Goldman, 1971)

This generalization of the m-median problem involves movement of material

between pairs of existing facilities. This movement is permitted to pass through one or two

servers (new facilities) on the way. For a given ordered pair (i,j) with i and j in N, there are

12 3
nonnegative weights a.., a- and a-, and a set Aij c M.

min I I {minpeA^qGAjj {cc
i

1

j

d(vi,yp)+a?d(yp,yq)+a^j
d(yq,vj) }}. (2)

i=l j=l;j*i
J J J

For this problem, g=summation and B is the set of ordered pairs (i,j) where at least one of

aj , a^. or a3
- is non zero. For be B, Yb={yq:qe Ab) and h(ij) is the expression within the

outer braces in (2). Goldman showed that an FDS for this problem is the set of vertices of

the network.

Problem 3. Vector Assignment m-Median Problem (Weaver and Church, 1985)

In this variant of the m-median problem, an existing facility need not be served by a

closest new facility. Instead, for existing facility i, fit is the fixed fraction of service

provided by the t* closest new facility. With ai as the total service required, define



(Xit=aifit. With Ai the set of indices of the subset of new facilities that can potentially

provide service to existing facility i, we have

n

min I { Ian t-minpe A . { d(vi,yp) } }

,

(3)

i=l t

where t-min is the t* smallest value of {d(vi,yp):pe A*}.

Again, g=summation, B=N, Yb={yq:qe Ab} and hb is the expression within the

outer braces in (3) above. Hooker, Garfinkel and Chen (1991) have shown that if flt
>

fi(t+l) for all i and t, then an FDS is the set of vertices of the network.

Problem 4. Stochastic m-Median Problem (Mirchandani and Odoni, 1979)

In this problem, the length of each arc depends upon the "state of nature." There are

a finite number of states, and in state r (which occurs with probability Pr
) dr(x,y) is the

shortest path distance between points x and y in the network. The problem then becomes

n

min Ir Pr I a* min pe AiWvi.yp)}. (4')

i=l

Interchanging the order of summation in (4'), we have the equivalent problem

£ {oti Zr P'min pG Ai {d'(vi,yp)} }. (4)

i=l

Mirchandani and Odoni have shown that an FDS for (4) is the set of vertices of the

network. The specifications of this problem are the same as problem 1 except that hb is the

expression within the outer braces in (4).

Problem 5. m-Median Problem with Mutual Communication (Dearing, Francis, and Lowe,

1976;Kolen, 1986; Fernandez-Baca, 1989; Chhajed and Lowe, 1990)

This problem is to minimize the sum of weighted distances between pairs of

existing and new facilities as well as pairs of new facilities. As before, for i=l,...,n, Ajc



M. In addition, let y be the set of ordered pairs (p,q) where ppq *0. We assume that there

are a total of X pairs in \\f.

mill 2 I aipd(vi,yp) + I Ppqd(yp,yq).
(5')

i=lpeAi (p,q)G¥

Expression (5') can be written as

min I { I aipd(vi,yp)} + I Ppqd(yp,yq).

p=l i:peAi (p,q)G¥

(5)

In (5), g is summation and letting m+1,. . .,m+x index the ordered pairs in y,

B={l,...,m,m+l,...,m+x}. For b=l,...,m, hb is the expression in braces in (5), with

Yb={yb }. For the remaining be B, hb = fofibpVq) with Yb={yp,yq }
for (p,q)ey. Kolen

(1986) has shown that an FDS is the set of vertices of the network. Since the sets Yb ,
for

b=l,. ..,m generate no edges in the dependency graph G, we can take Ai =M for all i. It is

the membership of each Yb, b > m, that is important in this problem.

Problem 6. m-Center Problem (Hakimi, 1965)

min { max { min { aikd(vi,yp) } }

}

(6)

i=l...n peAi

In this problem, B=N and Yb={yq:qeAb }. hb is the minimum of IAb l weighted

distances, and g is the maximum of n values. As originally stated in the literature, Ai=M for

all i and aip=<Xi, for all pe M. However, we focus on version (6). For fixed pe AinAj, let

x be a point (at a vertex in the interior of an arc of the network) which is on some path

between vertices vj and vj and where aipd(vi,x) = ajpd(vj,x). Such a point is often

referred to as a center botdeneck point (Hooker, Garfinkel and Chen, 1991). Let C be the

union of all such points for all i,j and pe AinAj. It follows from the analysis of Handler

and Mirchandani (1979), that an FDS is the set of vertices along with the points in C.

Problem 7. m-Center Problem with Mutual Communication (Dearing, Francis, and Lowe,



1976;Kolen, 1986; Chhajed and Lowe, 1990)

This problem is similar to problem 5, except that instead of summing weighted

distances, the maximum of all weighted distances is important.

min max{maxi{ max { aipd(vi,yp)}}; max { Ppqd(yp,yq) } }

.

(7')

Expression (7') can be rewritten as

min max {maxp { . max {(Xipd(vi,yp)}}; max { pTxid(yp,yq)}}. (7)v i:peAi
v v

(p,q)€V
n v n

g is maximization, B={ l,...,m+i}, where \j/ has x pairs. For b=l,...,m, Yb={yb) with

hb=maxi{aibd(vi,yb):be Ai}. The remaining hb's are Pp>qd(yp,yq) for (p,q)€ \\f with

Yb={yp,yq}. As in problem 5, it is the membership of the Yb's, b>m, that is important in

this problem. Ai can be all ofM for every i.

Problem 8. Minimizing Operating Cost and Service Loss.

This problem has not been previously studied. Operating cost of the multifacility

system is measured by the sum of weighted distances between pairs of facilities, as in

problem 5. In addition, service loss for new facility p is proportional to the maximum

1 2
distance to any customer that it serves. We allow possibly different weights, a- and a-

,

for the operating cost and service loss, respectively.

m
l 2

min I { Ice. d(vi,yp ) +. max (a. d(vi,yp)}}
4- I Ppqd(yp,yq). (8)

p=l i:p€Aj H l.peAi v
(p,q)€\j/

In this problem, B, g and Yb are as in problem 5. hb for b=l,. . .,m is the expression in the

outer braces in (8). The remaining hb's are the same as in problem 5.

Problem 9. m-Median Problem with Interacting Facilities

This is a new problem formed by allowing interaction between new facilities in the

m-median problem. This can be written as:



min £ min { aipd(vi,yp) } + I Ppqd(yp,yq). (9)

i=l PeAi (p,q)GV

In this problem g is summation and B={ 1,. . .,n+x} where X is the number of

ordered pairs in \j/. For b=l,. . .,n, Yb={yq:qe Ab} and hb(Yb) = min peAb

{abpd(vb,yp)}.The remaining t hb's are Ppq(yp,yq) for (p,q)e\|/ with Yb={yp,yq }.

Problem 10. m-Interacting Center

In this problem, which has not been studied before, the objective is to minimize the

maximum (over all new facilities) of the total interaction of a new facility. The total

interaction of a new facility is defined as sum of its interactions with existing and new

facilities.

min maxp { I aipd(vi,yp) + lPpqd(yp,yq)} (10)

i:peAj qeBp

In (10), g is maximization, B=M, Yb=ypu{yq:qe Bp } for p=b and hb is the

expression in the braces in (10).

In the problems to follow, the new facilities to be located possess undesirable

characteristics and so total system utility is nondecreasing in weighted distances between

pairs of facilities. These problems are often called obnoxious or noxious facility location

problems. A recent survey by Erkut and Neuman (1989) addresses many of these

problems. In problems 1 1-14, OPT is maximization.

Problem 11. Maxisum Problem (Erkut, Baptie and Hohenbalken, 1990; Tamir, 1991)

This problem is the same as problem 5 except that the objective function is to be

maximized.

max I { I aipd(vi,yp)}
+ I Ppqd(yp,yq). (11)

p=l i:peAi (p,q)ey



See problem 5 for specifications of g, B, Yb and hb-

This problem with aip
=0 for all i and p is called the defense-sum problem by Erkut

and Neuman (1989), and has been studied by Kuby (1987), Hansen and Moon (1988),

Erkut, Baptie and Hohenbalken (1990) and Erkut and Neuman (1990).

Problem 12. Anticenter Dispersion (Erkut, 1990; Tamir, 1991)

This problem is the same as problem 7 except max and min are interchanged in

expression (7).

max min {minp {. min {aipd(vi,yp)} }; min { (WymVq)}}. (12)F i:peAi v * (p,q)ey

The sets B and Yb are as in problem 7, but g is minimization. For b=l,. . .,m,

hb=mini{ccibd(vi,yb):pe A\} with Yb={yb). The remaining hb's are as in problem 7. Also,

Ai can be all M for every i.

In the above problem, when aip
= °o for all i and p, the resulting problem is called

the dispersion problem. The dispersion problem has been studied by Shier (1977),

Chandrasekaran and Daughety (1981), Tansel, Francis, Lowe and Chen (1982),

Chandrasekaran and Tamir (1982), Kuby (1987), Erkut (1990) and Erkut and Neuman

(1989, 1990).

Problem 13. Dispersion Sum (Erkut and Neuman, 1990).

maxminp { £ aipd(vi,yp) + IftxidCyp'yq)}- ( 13 )

i:peAi qeBp

Erkut and Neuman study a version of this problem where aip
= °° for all i and p. We give

the specifications for the problem as stated in (13). In (13), g is minimization, B=M,

Yb=ypU{yq:qe Bp } for b=p and hb is the sum in the braces in (13).



Problem 14. Defense (Erkut andNeuman, 1990).

max Imin{{aipd(vi,yp):pGAi} ;
{ppqd(yp,yq

):qGBp}}. (14)

P=l

As in problem 13, Erkut and Neuman study the case with (Xip
= °° for all i and p. In

(14), we note that g is summation, B=M, Yb=ypu{yq:qG Bp } for p=b and hb is the

minimum of the terms in the braces in (14).

3. Variable Elimination

3.1 GMLP and Non-Serial Dynamic Programming

Consider the following problem,

(P) min F(Y) = min Xbe B hb(Yb),

where Y = {yi,. . .yn } is a set of discrete variables, B is a finite index set, and Yb cY.

Problem (P) is an instance of (GMLP) with OPT = minimization and g the summation

operator.

When Yb = {yi,yi+i} for some i=l,...,n-l, (P) is a serial unconstrained problem

which can be solved by the usual dynamic programming method. When YbcY, (P) is a

non-serial dynamic programming problem (Bertele and Brioschi, 1972) and can be solved

efficiently by successive variable elimination in certain cases as we will describe shortly.

Returning to (GMLP), recall that g is either maximum, minimum or summation, so

that g is both separable and monotone nondecreasing in each of its arguments. Thus g is

decomposable (Minoux, 1986, Section 9.2), which is sufficient to justify the following

approach to solving (GMLP).

The idea of variable elimination is to replace the original problem with a new

problem involving fewer variables, but where the new problem is the same as the original.

Suppose Ye c Y is to be eliminated. In (GMLP), let

B(Ye
) = {b€ B:hb is a nonconstant function of at least one member ofYe

}.
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Define Y* = { {UbGB(Ye) Yb }\Ye},

Fi(Ye,Ye) = g({hb(Yb):be B(Ye)}),and

F2(Ye) = OPTyeYe(Fi(Ye,Ye)).

We note that Fi(Ye,Ye) is the result of applying g to a subset , namely all be B(Ye
), of

functions {hb }, F2(Ye) is the result of optimizing Fi(.,.) over y e Ye with Ye fixed. Thus

for any choice of g and OPT, we have, with

F(Y\Y*) = g(F2(Ye
), {hb(Yb):b* B(Ye)}),

OPTF(yi,...ym) = OPT F(Y\Ye).

For this approach to work efficiently we need,

(i) Ye to be a proper subset of Y\Ye . Otherwise the procedure amounts to complete

enumeration.

(ii) A partition of variables in sets and ordering of these sets reflecting the order in which

variables are to be eliminated. This latter problem is called the secondary optimization

problem in non-serial dynamic programming (Bertele and Brioschi, 1972).

It is easy to see that if the dependency graph G is a complete graph, then Ye = Y\Ye

for any choice of Ye and the variable elimination approach will not be effective for this

case. This would occur for example, if for every pair (yp,yq)
there is some be B where

{yP,yq } <=Yb .

Given a new problem, it is possible that a reformulation may be required to make

the problem amenable to our method or to make the problem easier to solve. For example,

problem 5 can also be stated as,

m
min I ( 1 otikd(vi,yk) + Ipkid(yk,yi)}, (5")

k=l i:keAi leBk;l>k

with B={ l,...,m}, g is summation, hb is the term in braces in (5") and for b=k, Yb=Bk-

But this formulation results in a dependency graph which is a supergraph of the

dependency graph of (5) and may require more effort if solved by our method.

We next define a class of graphs for which if the dependency graph is in this class,



it will guarantee that an efficient variable elimination approach will work for GMLP.

3.2 K-Trees

A k-clique is complete graph on k-vertices. A k-tree is recursively defined as

follows: A k-clique is a k-tree. Given a k-tree and a subgraph of the k-tree which is a k-

clique, the graph obtained by introducing a new node and connecting it to every node of the

k-clique is again a k-tree. Subgraphs of k-trees are also referred to as partial k-trees.

A node y with degree k is a k-leaf if all of the k nodes adjacent to it (neighbors)

induces a k-clique. A k-leaf along with its neighbors forms a (k+l)-clique. If we eliminate

a k-leaf of a k-tree, the resulting graph is again a k-tree. Thus, repeated elimination of k-

leaves will result finally in a graph which is a k-clique. For a k-tree with m > k vertices, let

the set Ys = {yi,. . .,ym-k) denote the ordering of vertices in an elimination sequence of k-

leaves and let the k remaining nodes of the k-tree be arbitrarily numbered ym-k+b- • ->ym-

Thus yi represents the node which is eliminated first, followed by y2, V3, and so on, until

Ym-k is eliminated after which we obtain a k-clique formed by nodes ym-k+l>- • ^m- Note

that yt+ i, t < m-k, may not be a k-leaf in the original k-tree but will be a k-leaf after yt
is

eliminated.

Suppose that graph G is a k-tree, and let Gt
denote the graph immediately before

node yt
is eliminated. Also let Qt be the k-clique adjacent to node yt

in the graph G t . Given

a reduction sequence Ys, the stage t descendents Dt is the set composed of yt
along with all

nodes yj e Y, j < t, such that when yj was removed in the elimination sequence, each node

to which it was adjacent at the time of its removal, i.e. adjacent in Gj, was either a member

of Qt
or a member ofDt

. We note that unlike Arnborg and Proskurowski (1989), our

definition of descendents does not include any nodes yk with k > t. Note that Qt
may be

equal to Qj, for some j*t (i.e., yt
and yj are adjacent to the same k-clique when eliminated)

but D t
will not be equal to Dj in such cases, since if j<t, then yt

is by definition not in Dj. In

the graph Gt,
node y t

is the only node ofD t
which is in G t, as all other nodes of Dt

have
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been eliminated when G t is obtained.

k-trees form a rich class of graphs and contain several well known graph families.

A tree, defined in the usual sense, is a 1-tree. Series-parallel graphs, circuits, outer-planar

graphs, and cactus graphs are all partial 2-trees. A Halin graph is a partial 3-tree. Many

combinatorial problems have been solved when restricted to partial k-trees (Comeil and

Keil, 1987; Takamizawa, et al., 1982; Arnborg and Proskurowski, 1989; Fernandez-Baca,

1989).

Although efficient algorithms exist for several problems when restricted to partial k-

trees, recognizing whether a graph is a partial k-tree remains a difficult problem. Duffin

(1965) gave a characterization for partial 2-trees as graphs with no subgraphs

homeomorphic to K4. An efficient algorithm for recognizing partial 2-trees is given in Wald

and Colbourn (1983). Such a characterization of k-trees is not found for k>3. However, a

partial 3-tree can be recognized and embedded on a 3-tree in 0(m3
) time by the algorithm

given by Arnborg and Proskurowski (1986), which they indicate can be improved to

O(mlogm). For a fixed value of k, recognizing partial k-trees and embedding them in a k-

tree, if such an embedding exists, can be done in 0(mk+2) (Arnborg and Proskurowski,

1987). Lagergren (1990) has given, for a fixed k, an 0(log3m) parallel algorithm for

finding the tree-decomposition, which can be implemented in 0(mlog2m) time in a

sequential manner.

4. GMLP on K-Trees

In this section we first present, in detail, an algorithm to solve GMLP when the

dependency graph G is a 3-tree. Subsequently, we discuss the k-tree case, where k>3.

4.1 GMLP on 3-Trees

We have chosen to concentrate on 3-trees because they are easy to recognize, and k



being small will keep our exposition simple. Our assumption that the dependency graph is a

3-tree (as opposed to partial 3-tree) is of no consequence since artificial edges (Arnborg and

Proskurowski, 1987) can be added to a partial 3-tree to complete it to a 3-tree. We note that

when the dependency graph is a 3-tree, every function hb is a function of no more than four

y variables. This follows since a k-tree has no clique of size larger than k+1.

Note that the range of each function hb(Yb) can be represented as a table of values

in which for a particular instantiation of the variables in Yb we record the value of the

function. For example if Yb={yu,yp,yq}, then hb(y°u,y p,y q) represents the value of hb

when yu = y°u , yp=y°p, and Vq=y°q. In what follows we suppress the b index of the

functions hb(.) when no confusion results.

During the algorithm as variables are eliminated, we compute new functions

(denoted by hO which represent the value of an optimal solution to a modified GMLP,

restricted to a subset of the variables Y. In essence, the functions hr are like the recursion

functions in ordinary dynamic prograrnming. We refer to all such functions as r-functions.

Suppose at some stage t, variable yt
is to be removed. With Qt the 3-clique adjacent

to yt in Gt,
hr

(Q°t) represents the value ofan optimal solution to GMLP, restricted to

variables in D
t,
given that each y^eQt isfixed at y°k. The computation of hr

(Q°t) involves

a) each original h function whose domain includes yt
and is a subset of y t

u Qt , and b) each

previously computed r-function which has as a domain a three variable subset of yt
u Q t,

and where each variable is of course, fixed at a specific value. At the beginning of the

algorithm, every r-function is initially set to INT. "Updates" of r-functions occur during the

course of the algorithm.

In addition to updating r-functions at each iteration, we also update label sets. The

label set L(Q°t), denotes the values of the variables in Dt which attain the objective hr
(Q°t).

These label sets are used to "trace out" an optimal solution to GMLP once the algorithm

terminates. At the beginning of the algorithm, all label sets are initialized to be empty.

We now give the (update) formulas for hr
(.) and L(.). At stage t (when yt

is
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eliminated) suppose that Qt
= {yu,yp,yq } • Let y°u ,

y°
p ,

y°
q be fixed values of the variables

yu , yp , and yq respectively. Then ,

hr(y°u,y p,y°q) = g(hr(y
o
u,y

o

p,y
o

q),
0PTyteZ (g(h(y

t,y u,y p,y°q)' h(yt>yVyV

h(y°u,yt,y°q). h(y°u,yt.y°p)' h(y°u ,yt), h(yi,y p), h(yt
,y°

q), h(yt), h
r
(y t,y p

,y°
q),

hr
(y UJyby°q), h'(y°u,yt,y p)))» (15)

and

L(y u,yVy q)
=y^uL(y^'y P'y q)uL(y u'y^'y q)^Uy u,y*by°p)^L(y

o
u,y

o

p,y
o

q), (i6)

where y*
t
attains the OPT in (15). The domain of the inner optimization in (15) includes all

h and hr functions whose domains contain yt
and are contained in ytuQt . Note that all

variables are fixed except variable y t,
and if for some subset Y' c ytuQt there are two or

more h functions with domain Y', all such functions are included in the optimization. The

update formula (15) is written with the understanding that if a given problem GMLP does

not have all of the h functions listed in the inner minimization, such functions should be

deleted from (15). Also, we use the convention that any hr
(.) function on the right hand

side of (15) whose current value is INT (its initialized value) should be deleted from the

right hand side of (15). (For any specific instance of GMLP (choice of OPT and g) an

appropriate numerical value of INT can be used, e.g., zero, a very large number, or a very

small number. INT is chosen so that its value does not affect any update. Since the

algorithm is for a general GMLP, we employ the "deletion" convention.) Finally, we note

that in computing hr(y u,y°P,y q), we have not used {h(y u,y°p
,y°

q), h(y°u,y°p), h(y°u,y°q),

h(y°p,y°
qX h(y°u),h(y°u),h(y°u) } . These functions will be accounted for when yu,yp and yq

are removed at a later stage.

We now give the algorithm followed by a proof of its correctness.



Algorithm 3TREE

Step 1 : Find an elimination ordering Y$ of the nodes ofG and renumber the nodes ofG

according to the sequence in Y$.

Set t:=l, Gt=G and all h'(.) = INT, L(.) = 0.

Step 2: Let Qt
= {yu,yp,yq }.

For all y°u,
y°

p and y°
q,

Set hr(y°u,y p5y°q) and L(y u,y°p,y q) using (15) and (16), respectively.

Set Gt+ i
= Gt\yt . Reset t=t+l.

Step 3: If t < m-3, repeat Step 2. Else go to Step 4.

Step 4: Let (yu,yp,yq) be the three nodes remaining in Gm-2.

Find C(y*u,y*p,y*q)
= OPT(g(hr(y°u,y°p,y q), h(y u,y p,y q),

h(y u,y°p),
h(y°

p
,y°

q),

h(y°u,y°q), h(y°u), h(y°
q), h(y°p))

for all y°u,
y°

p
and y°

q
e Z).

L(y*u»y*p>y*q) along with y*u ,
y*

p
and y*

q
will give the values of the y variables

that obtains the OPT solution value C(y*u,y*p,y*q).

To show the correctness of the algorithm we need the following Lemma, which is

easily proven using the definition of descendents and the properties of 3-trees. Consider

some arbitrary stage t >1 of the algorithm, with Qt
= {yu,yp,yq }. If {yu>yp>vq} was a 3-

clique adjacent to a 3-leaf in the elimination ordering at some previous stage, let Tupq < t be

the largest stage index number when this was the case. Similarly if {yt,yp,yq }, {yt,yu>yph

and {yt»yu»yq) were 3-cliques adjacent to 3-leaves in the elimination ordering at some

previous iteration(s), define Ttpq, TtuP, Tmq < t as the largest stage indices when this was

the case. In any of these cases, if a 3-clique {ya>yp>vY} was not adjacent to a 3-leaf, take

Dt
qy
= in the statement of the Lemma.

Lemma 1: At stage t>l with Qt
= {yu,Vp,yq}, we have

a) Let Da and Dp be distinct nonempty sets from Dr
UDQ

» ^TW ^T^p and Dt^- Then
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(i) DanDp = 0,

(ii) with yjG Da and yje Dp, yi and yj are not adjacent in G.

b) Dt
= {ytlulDr.pqUDr^DT^uDT^).

We are now ready to prove the correctness of step 2. In the following Theorem, we

need to identify specific stages when updates of r-functions and label sets occur. Thus

when we write hrx(Q°T) and L^Q ^) we mean the values of the r-functions and the label

sets computed at stage i.

Theorem 1: For t <m-3, hr
t(y u,y°p,y q) (L

t
(y°u,y°p,y°q)) as determined in step 2 of 3TREE

is the optimal value (solution) of (GMLP) restricted to new facilities in D
t
with the locations

yV y°p> an^ y°q are ^xe<^

Proof: We prove this by induction on t. When t=l, Di = {y t }. Since initially all hr
(.) have

value INT, no hr
(.) functions appear on the right hand side of (15) and so,

hr
i(y°u,y p,y°q) = OPTytEZ(g(h(yt,y u,yV q)>iWWV h(y°u,yt,y q)'

h(y°u,yt,y°p), h(y°u,yt), h(y
t,y p), h(y

t
,y°

q), h(yt)),

which is the value of the optimal solution over Di with y°u,
y°

p , and y°
q

fixed and does not

include functions with domain contained in {y°u,y°p,y q}. Also since all label sets are

initially empty, Li(y°u,y°p,y°q)
= {y*t}, where y*

t
attains OPT.

We now assume that the theorem is true for up to t-1 iterations of step 2. At

iteration t with Qt ={yu,yp,yq }, if {ya,yp,yy} (a subset of {yt,yu,yp,yq }) was not a 3-leaf

in the elimination process at a prior iteration, then hr(y°a,y°p,y°Y) = INT and

L(y°a>y p>y°Y)
= for all fixed values of ya,yp and yy This follows since no updates from

the initialized values has occurred. Otherwise, with Tapy as defined in the discussion prior

to Lemma 1, from the algorithm we have that the hr
(y a,y°p,y°Y) and L(y°a,y°p,y°Y) were

last updated in stage Tapy and have current values = h^, (y°a>y°|3>y Y)
a™*

L-rag
(y°a,y p\y°y), respectively. Lemma 1 now justifies the computation of



hr
(y°u>y p>y q) and the label L(y°u,y p,y q) at stage t in step 2 of the algorithm. «»

Corollary: Algorithm 3TREE solves (GMLP) when the dependency graph is a 3-tree.

Proof: From Theorem 1, hr(y°u,y°p,y°q) is the optimal value of the (GMLP) restricted to

Dm-3 with fixed values y°u,y°p and y°q at the last iteration of Step 2 when ym_3 is eliminated

from the graph. Step 4 accounts for the remaining three variables, which gives the solution

to (GMLP). «»

To derive the running time complexity of the algorithm 3TREE, we first assume

that the functions hb are available in the form of tables. We also assume that evaluating

g(co) takes O(lcol) time, where co is a row vector with cardinality Icol. This assumption is

certainly valid for the forms of g that we consider. Clearly OPT(co) takes Icol time as well.

Using the algorithm of Rose, Tarjan and Lueker (1976), finding a reduction

sequence of a 3-tree on m nodes takes 0(3m)=0(m) time - the complexity of step 1 of

3TREE. For a fixed value of t, a total of w3 r-functions are updated via (15). Each such

update involves an inner optimization (over yt), followed by an application of g to two

values. Referring to the inner optimization, for fixed yt, g is applied to a total of a) no more

than three r-functions (those r-functions with values unequal to INT) and, b) a subset of

original h functions (let \ denote the cardinality of this latter subset of functions). Since

there are a total of w distinct values of yt, the inner optimization takes 0(w(3+^t))- The

outer application of g, to two values, takes constant time. Since Xt
remains constant for

fixed t, it now follows that step 2, for fixed t, takes 0(w4(3+Xi)). We now note that each

original h function is used in at most one stage t (it may appear in step 4). Thus summing
m-3

the Xt over stages 1 to m-3 we have £ Xt
< IBI. It now follows that the total effort for step

t=l

2, over all stages, is 0(w4(3m+IBI)).

Finally, since step 4 can be done in 0(w3
) time, we have a total complexity of

0(w4(3m+IBI)) for 3TREE.
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As a final note in this section, we observe that constrained versions ofGMLP can

be handled with our algorithm. For example, Francis, Lowe, and Ratliff (1978) consider a

version of problem 1 where there are upper bounds on distances between pairs of facilities

((new, existing) as well as (new,new)). These constraints can easily be incorporated in the

functions hb(). For example, for problem 5 if locating the new facility u at i\ and new

facility q at node zj violates an upper bound involving new facilities u and q, then set the

corresponding h(yu,yq) (with yu=Zi and yq=zj) to be prohibitively large.

4.2 GMLP on K-Trees

The modification of the algorithm for k-trees, k>3 is straightforward. Step 1

remains the same. In a k-tree, the clique Qt
adjacent to yt at the time of its removal has a

total of k nodes. To perform step 2, the g function in the inner optimization of (15) is

applied at a) all r-functions, with value unequal to INT, and whose domain includes yt

along with k-1 of the variables in Qt ; and b) a total of X
t
h functions, each of whose

domains are in yt^Qt
and include yt . We note that the number of r-functions in a) is no

more than k. Step 2 is repeated m-k times, i.e. the terminal clique for step 4 has cardinality

k.

Using the algorithm of Rose, Tarjan, and Lueker (1976), step 1 can be performed

in 0(m+IEI)=0(km) time. The dominating effort for the k-tree case is in step 2. For fixed t,

m-k
the effort for all hr

(.) updates takes 0(wk+1 (k+kt)). Since, as in the 3-tree case, £k
t
<IBI,

t=l

it follows that the total effort for step 2 is 0(wk+1(mk+IBI)), which is the effort for the

algorithm.

5. An Example

We now give an example to illustrate the steps in the algorithm. Consider the m-

median problem (problem 1) with 5 new facilities to be located and 5 existing facilities



,{vi,V2,...,V5). There are two candidate location points, so Z={zi,z2). Facility 1 interacts

with new facilities 2, 3 and 5, thus Ai={y2,y3,ys}. Other interactions are given by

A2={y2>y5}> A3={yi,y3,y4,y5 }, A4={yi,y3) and A5={y2,y3,y4). The values 0Cip and

d(vj,zj) are given in Figure 1. We will have five h functions with Yi={y2,y3,ys},

Y2={y2,y5)» Y3={yi,y3,y4,y5), Y4={yi,y3} and Y5={y2,y3,y4). The dependency graph

is shown in Figure 2 while the h functions, represented as tables, are given in Figure 3.

Note that the dependency graph in Figure 2 is a 3-tree. We use the reduction sequence

{yi>y3}- We now give details of step 2 and the termination step (step 4).

Step 2: Iteration I:

The variable eliminated at this step is yi. Thus, yt=yi and Qt = {y3,y4>v5}° Relevant h

functions for the right hand side of (15) are {h3(.),h4(.)}. The function hr
(y3,y4,y5),

computed at this step is given in Figure 4. Eliminate yi and repeat step 2.

Step 2 : Iteration 2:

y3 is eliminated at this step, so yt=y3, Qt = {y2>y4>ys}- Relevant h functions are

(hi(.),h5(.),hr(y3,y4,y5)}. The output of this step is hr
(y2,y4,y5) which is given in Figure

5. Eliminate y3, and since only three nodes remain, go to step 4.

Step 4: Termination Step

{y2,y4,y5} are the remaining variables. Relevant h functions to be used in the g operator

are {hr(y2,y4,ys), h2(.)} • Figure 6 gives the value of the objective function for various

choices for variables y2,y4 and ys. From this figure we can identify two optimal solutions:

{yi=zl»y2=z2»y3=z2>y4=z l»y5=z l or z2) with objective function value 21.
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6. Conclusion

In this paper we have introduced a generic multifacility location problem (GMLP)

which subsumes several well known location problems. In addition, three new multifacility

location problems are introduced By appropriately defining the dependency graph (perhaps

after reformulation of the problem) and exploiting special structure of this graph, we

obtained a polynomial time algorithm for GMLP when the dependency graph is a k-tree.

The algorithm can be used to solve each one of the example problems, when k-tree

structure is present, by applying the appropriate g function and optimization operator. This

work should be useful to researchers in the field of location theory in the following way.

Given a new multifacility location problem, first determine whether it has an FDS.

If the problem is naturally a discrete location problem (e.g., locations restricted to nodes)

this step is unnecessary. The objective here is to find the set Z. We note that it is

unnecessary that every variable y take on a value from the same finite set Z. In fact one can

define a finite set Z(y) for every variable y. The next task is to determine the functions

hb(Yb). Since the edges of the dependency graph G are deteirnined by variable pairs in the

sets Yb, the key is to find a valid formulation where G is as sparse as possible. (See our

discussion on this point regarding problem 5 in section 3.1.) Then a check is made to

determine whether G is a k-tree. Forfixed k, a polynomial time algorithm is available to do

this (Arnborg and Proskurowski, 1987). Finally, if a k-tree is found and g is

decomposable, the algorithm given in this paper leads to a polynomial time algorithm for

problem solution.
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d(vi,zj) zi Z2
<Xip yi y2 y3 y4 ys

vi 2 1 vi 4 5 4

V2 1 5 V2 6 2

V3 1 3 V3 2 2 4 3

V4 2 1 V4 8 7

v
5

3 4 v
5

3 2 2

Figure 1. Data for the Example

Figure 2. Dependency Graph for the Example Problem



n y3 ys hi(.)

i 1 1 8

2 1 1 4

1 2 1 5

2 2 1 4

1 1 2 4

2 1 2 4

1 2 2 4

2 2 2 4

y2 y3 y4 h 5 (.)

l l 1 6

2 l 1 6

1 2 1 6

2 2 1 6

1 1 2 6

2 1 2 6

1 2 2 8

2 2 2 8

a) hi(y2,y3,y5) b) h5 (y2,y3,y4)

y2 y4 h2(.)

l l 2

2 l 2

1 2 6

2 2 10

c) h2(y2,y4)

yi y3 M.)
i i 14

2 l 8

1 2 7

2 2 7

yi ys y4 ys h 3 (.)

1 l 1 2

2 l 1 2

1 2 1 2

2 2 1 3

1 1 2 2

2 1 2 2

1 2 2 2

2 2 2 3

1 1 1 2 2

2 1 1 2 2

1 2 1 2 2

2 2 1 2 4

1 1 2 2 2

2 1 2 2 2

1 2 2 2 2

2 2 2 2 6

d) My2,y4) e) h3(yi,y3,y4,y5)

Figure 3. The h functions
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hr
(y3 ,Y4,y5)

Y3 Y4 Y5 hr
(.) y*i

1 1 1 10 Z2

2 1 1 9 zi

1 2 1 10 Z2

2 2 1 9 zi

1 1 2 10 Z2

2 1 2 9 zi

1 2 2 10 Z2

2 2 2 9 zi

Figure 4. Step 2 - Iteration 1,

hr
(y2 ,y4,y5)

y2 y4 ys hr
(.) y*3 y*i

l l 20 Z2 zi

2 l 19 Z2 zi

1 2 20 zi Z2

2 2 20 zi Z2

1 1 2 20 Z2 zi

2 1 2 19 Z2 zi

1 2 2 20 zi Z2

2 2 2 20 zi Z2

Figure 5. Step 2-Iteration 2.

y2 y4 ys g(h r,h2 )
y*3 y*i

l 1 i 22 Z2 zi

2 1 i 21 Z2 zi

1 2 i 26 zi Z2

2 2 i 30 zi Z2

1 1 2 22 Z2 zi

2 1 2 21 Z2 zi

1 2 2 26 zi Z2

2 2 2 30 zi Z2

Figure 6. Final Step.








