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Abstract .   This paper describes a tabu search heuristic for the vehicle
routing problem with soft time windows. This problem allows lateness
at customer locations although a penalty is then incurred and added to
the objective value. By adding large penalty values, the vehicle routing
problem with hard time windows can be addressed as well. In the tabu
search, a neighborhood of the current solution is created through an
exchange procedure that swaps sequences of consecutive customers (or
segments) between two routes. The tabu search also exploits an
adaptive memory that contains the routes of the best previously visited
solutions. New starting points for the tabu search are produced through
a combination of routes taken from different solutions found in this
memory. Many best know solutions are reported on classical test
problems.

K e y w o r d s . Vehicle routing, time windows, tabu search, adaptive
memory, neighborhood.

1. In t roduct ion

An important component of many distribution systems is the
routing of vehicles to service customers. For various applications, like
bank deliveries, postal deliveries or school bus routing, a time interval
or time window is also associated with each customer to constrain the
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time of service. In practice, these time windows are often relaxed to
allow for early or late arrivals at customer locations. In the literature,
such problems are referred to as vehicle routing problems with soft
time windows or VRPSTWs.

From a graph theoretical perspective, the VRPSTW can be stated as
follows. Let G =(V , E ) be a complete undirected graph with vertex set
V ={v0 , v1 , v2 ,..., vn} and edge set E ={(vi,vj): vi, vj ∈ V , i< j}. Each vertex
vi ∈ V  is associated with:

(i) a fixed quantity q i of goods to be delivered (with q 0 =0 at
vertex v0)

(ii) a time window [ei, li], where ei and li are the lower and upper
bound of the time window, respectively (with e0  the earliest
start time and l0  the latest end time of each vehicle route,
respectively).

(iii) a service time si for unloading the goods (with s0=0 at vertex
v0) .

Finally, a symmetric distance matrix D =(dij) that satisfies the triangle
inequality is defined on E  (with travel times t ij proportional to the
distances).

Given a fixed size fleet of m  identical vehicles, each with capacity
Q , the goal is to find a set of minimum cost vehicle routes, originating
from and terminating at the depot, such that:

- each vehicle services one route;
- each vertex vi, i=1,...,n  is visited exactly once;
- the quantity of goods to be delivered on a route never exceeds

the vehicle capacity Q ;
- the start time of each vehicle route is greater than or equal to

e0;
- the end time of each vehicle route is less than or equal to l0;
- the time of beginning of service b i at each vertex v i, i=1,...,n  is

greater than or equal to the time window's lower bound e i; if
the arrival time ti is less than e i, a waiting time w i = (e i - ti) is
incurred.

The objective function f to be minimized over the set of feasible
solutions S is:
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f (s) = dk
k=1

m
∑ + αi × max 0, ti − li{ }

i=1

n
∑ , s ∈S , (1.1)

where d k  is the total distance traveled on route k , k=1,.. . ,m , and α i is a
lateness penalty coefficient associated with vertex vi, i=1,...,n .

This definition implies that each route must satisfy the following
hard constraints:

(a) the total load on a route cannot exceed the capacity of the vehicle
servicing the route.

(b) Each vehicle must start and terminate its route within the time
window associated with the depot.

Furthermore, a soft time window constraint is found at each customer
location. The time window is "soft" because the vehicle can arrive before
the lower bound or after the upper bound. If the vehicle arrives too
early, it must wait up to the lower bound to begin its service. If the
vehicle is too late, a penalty for lateness is incurred. That is, the upper
bound of the time window is relaxed into the objective function in a
Lagrangean relaxation fashion. According to (1.1), the penalty
coefficients can be adjusted to each customer. For example, high
coefficients can be associated with customers with rather strict time
requirements and low coefficients with customers with some flexibility.

Another closely related problem, known as the vehicle routing
problem with hard time windows or VRPHTW does not allow late
services. That is, a vehicle must arrive before the time window's upper
bound at each customer location. Furthermore, the fleet size is typically
a decision variable. Quite often, a hierarchical objective function is
associated with such problems: first, minimize the number of vehicles
and, for the same number of vehicles, minimize the total distance
traveled. Most algorithms reported in the literature address the
VRPHTW (with the exception of [Koskosidis et al. 92]). However, there
are many good reasons for solving the VRPSTW:

(a)  The VRPSTW model is more general and includes the VRPHTW as
well. The latter problem can be solved by appropriately raising
the lateness penalty coefficients.

(b) The VRPSTW more closely models situations found in practice
and can be used to find a good trade-off between fleet size and
service quality to customers.
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(c) Since there are fewer hard constraints, feasible solutions are
easier to find. In cases where the set of feasible solutions for the
"hard" version of the problem is empty (assuming a fixed size
fleet), a solution with a few time window violations can still be
produced.

However, the generality of the VRPSTW does not come for free. For
example, hard time windows can be exploited within the VRPHTW
model to quickly filter out infeasible solutions. Different techniques are
reported in the literature to check solution feasibility in constant time
after the insertion of a new customer or after a local modification to the
solution [Savelsbergh 86, Savelsbergh 90, Savelsbergh 92, Duhamel et al.
95]. Furthermore, the total distance of the new solution can also be
easily evaluated in constant time. Obviously, the filtering mechanism
cannot be applied to soft time windows, while the penalty component in
(1.1) does not lend itself to a constant time evaluation. Rather,
approximations must be used to achieve this result (see Section 3).

The paper is organized as follows. Section 2 first presents a brief
literature review on vehicle routing problems with time windows.  Then,
Section 3 introduces our neighborhood structure. Section 4 describes the
problem-solving approach and provides a detailed explanation of its
different components. Finally, Section 5 reports computational results on
standard test problems.

2 . Literature review

Due to their wide applicability in practical settings, vehicle routing
problems with time windows have been intensively studied during the
last ten years. These problems being NP-hard, a large spectrum of
heuristics are reported in the literature (mostly for the VRPHTW). The
interested reader will find excellent surveys in [Desrochers et al. 88,
Solomon and Desrosiers 88, Desrosiers et al. 95].

 Generally speaking, these problem-solving approaches can be
classified as follows:

(a) exact algorithms based on branch-and-bound techniques [Kolen
et al. 87, Desrochers et al. 92]. Recently, Desrochers et al. found
the optimum on a few problems with 100 customers. In this case,
a column generation scheme was used to solve the linear
programming relaxation of a set partitioning problem. The
columns were generated by solving a shortest path problem with
time windows.
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(b) route construction heuristics . Different sequential insertion
heuristics are reported in [Solomon 87], while parallel route
construction procedures are found in [Potvin and Rousseau 93,
Russell 95]. A worst case analysis of some of these route
construction heuristics is provided in [Solomon 86].

(c) route improvement heuristics . Edge exchange heuristics for
problems with time windows may be found in [Or 76, Baker and
Schaffer 88, Solomon et al. 88, Thompson and Psaraftis 93, Potvin
and Rousseau 95]. Efficient implementations for speeding up the
screening of infeasible solutions and the evaluation of the
objective function are reported in [Savelsbergh 86, Solomon et al.
88, Savelsbergh 90, Savelsbergh 92, Duhamel et al. 95].

(d) composite heuristics. These heuristics mix both route construction
and route improvement procedures, see [Derigs and Grabenbauer
93, Kontoravdis and Bard 95, Russell 95].

(e) optimizat ion-based heuris t ics . In [Koskosidis et al. 92], the
authors exploit a mixed integer programming model. Through
heuristic means, the original problem is decomposed into an
assignment/clustering subproblem and a series of routing and
scheduling subproblems.

(f) metaheuristics.  This new generation of heuristics is at the core of
many recent developments. Near optimal solutions to the
VRPHTW can now be produced with tabu search [Barnes and
Carlton 95, Carlton 95, Rochat and Taillard 95, Potvin et al. 96],
simulated annealing [Chiang and Russell 93] and genetic
algorithms [Thangiah et al. 91, Blanton and Wainwright 93,
Thangiah 93, Thangiah et al. 94, Potvin and Bengio 96]. An
application of tabu search on a real-world vehicle routing
problem with many side constraints, including time windows,
may also be found in [Semet and Taillard 93].

Finally, asymptotically optimal heuristics are reported in [Bramel and
Simchi-Levi 93, Bramel et al. 93].

Tabu search heuristics are of particular interest to us. [Potvin et al.
96] describes a standard tabu search heuristic based on 2-opt* [Potvin
and Rousseau 95] and Or-opt [Or 76] exchanges. The search alternates
between the two neighborhoods and includes intensification procedures
aimed at eliminating routes with only a few customers. The tabu search
in [Rochat and Taillard 95] exploits a neighborhood based on the
exchange of customers between routes. An adaptive memory is defined
to record the best routes produced during the search. This memory is
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then used to construct new starting solutions for the tabu search (see
Section 3). Finally, [Carlton 95] describes a reactive tabu search that
dynamically adjusts its parameter values based on the current search
status. This approach is applied to many different types of problems
with time windows, including the VRPHTW. Its robustness comes from a
simple neighborhood structure that can be easily adapted to different
problems. Namely, each customer is removed and reinserted at some
other location in the current solution.

The main contribution of our work is the development of a new
neighborhood structure, coupled with approximation methods for
evaluating each neighboring solution in constant time (in the presence of
soft time windows). This is the topic of the next section.

3.  The neighborhood structure

In this section, edge exchange heuristics are introduced in general
terms. Then, our exchange method is described. Finally, simplifications
and approximations aimed at speeding up the examination of the
neighborhood are discussed.

3 . 1 Edge exchange heuristics

Edge exchange heuristics, like 2-opt or 3-opt [Lin 65] are widely
used to improve vehicle routing solutions. Typically, these methods are
embedded within a local search framework of the following type:

1. Start with an initial solution and define this solution to be the
current solution.

2. Generate all solutions in the neighborhood of the current solution
by applying all modifications associated with the method under
consideration.

3. Select the best solution in this neighborhood and define this
solution to be the new current solution.

4. Go back to step 2.

Although the number of iterations needed to reach a local optimum
can grow exponentially with the problem size (on carefully designed
"pathological" problems), the neighborhood generated in step 2 is
typically polynomial. This kind of iterative framework is exploited, in
particular, within the tabu search heuristic [Glover 89, Glover 90].

3.2  A new exchange heuristic

In this section, a new exchange heuristic is introduced which
generalizes two edge exchange heuristics previously proposed for
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problems with time windows. This method, called the CROSS exchange, is
illustrated in Figure 1. In this figure, the black square stands for the
depot and the white circles are customers along the routes (with the
depot duplicated at the start and at the end of each route). First, the two
edges (X1, X1') and (Y1, Y1') are removed from the first route while the
edges (X2, X2') and (Y2, Y2') are removed from the second route. Then,
the segments X 1'-Y1  and X 2'-Y2 , which may contain an arbitrary number
of customers, are swapped by introducing the new edges (X1, X2'), (Y2,
Y1'), (X2, X1') and (Y1, Y2').

Note that the time window constraints define an implicit orientation
on each route. In this example, Y1 (respectively, Y2) is visited after X1'
(respectively, X2'). So, the segment X1'-Y1 (respectively, X2'-Y2) has the
same orientation after the move.

X1

Y1

X1
'

Y1
'

X2

Y2

X2
'

Y2
'

X1

Y1

X1
'

Y1
'

X2

Y2

X2
'

Y2
'

Figure 1.  The CROSS exchange

As illustrated in Figures 2(a) and 2(b), the 2-opt* [Potvin and
Rousseau 95] and Or-opt [Or 76] are special cases of this operator. The 2-
opt* only exchanges two edges taken from two different routes, and is
obtained when Y 1  and Y 2  are directly connected to the depot. An Or-opt
exchange moves a sequence of three consecutive customers or less from
one route to another. It is obtained, for example, by setting X 2= Y 2  and
X 2 ' = Y 2 ' so that an empty segment is removed from the second route.
Since the sequence removed from the first route must contain three
customers at most, Y 1  is either X 1 ' or the first successor of X 1 ' or the
second successor of X 1'. In a few cases, a CROSS exchange can create
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empty routes. In Figure 2(b), for example, if X 1' is the first customer on
the route while Y 1  is the last customer on the same route, the entire
route is inserted between X 2  and X 2'.

A CROSS exchange preserves the orientation of the routes, which is
a nice feature for problems with time windows. Furthermore, by
selecting the exchange that leads to the largest improvement over the
current solution, the swapping of segments that are close from a spatial
and temporal point of view is favored. One drawback is the complexity
of this method. That is, assuming that n  customers are evenly
distributed among m  routes, there are:

(a)
m

2

⎛

⎝⎜
⎞

⎠⎟
 ways to select a pair of routes,

(b)

n

m

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 ways to select two edges to be removed in each route,

where 
j

i

⎛

⎝⎜
⎞

⎠⎟
 is  

j!

i! j − i( )!
  .

Accordingly, the overall complexity of this neighborhood is:

  
O m2( ) ×O n2

m2

⎛

⎝
⎜

⎞

⎠
⎟ ×O n2

m2

⎛

⎝
⎜

⎞

⎠
⎟ = O

n4

m2

⎛

⎝
⎜

⎞

⎠
⎟ .

Before closing this section, it is worth noting that CROSS exchanges,
while generalizing previous exchange methods, are also a special case of
λ -interchanges [Osman 93]. The latter method selects two subsets of
customers (whose cardinality is less than or equal to λ ) from two
different routes and exchange them. However, the size of this
neighborhood quickly becomes very large, even for small values of λ . A
useful and manageable neighborhood can be obtained by restricting the
exchanges to consecutive customers in both routes (thus, leading to
CROSS exchanges). Our method is also closely related to the chain-
exchange procedure in [Fahrion and Wrede 90]. Here, two chains or
segments of different lengths are removed from the current solution.
Then, each chain is resinserted at the location that introduces the
smallest detour. Looking for the best insertion place of each chain,

however, increases the complexity by a factor of O
n

m
⎛
⎝

⎞
⎠ .
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In the following section, simplification and approximation
procedures for reducing the number of CROSS exchanges and speeding
up their evaluation will be presented.
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Figure 2.  Special cases of the CROSS exchange:
(a) 2-opt*   (b) Or-opt
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3.3   Generating the neighborhood

In this section, we explain how each move can be evaluated in
constant time through approximations. Then, we discuss techniques
aimed at discarding moves that are unlikely to yield any improvement.

3.3.1   Evaluating a move

When we evaluate a move, we are interested in the difference Δ f
between the value of the neighboring solution and the value of the
current solution. An improvement is found when Δ f  is negative. It is
easy to evaluate the modification Δd  to the total distance of the solution
after a CROSS exchange. Namely, (1) we sum up the lengths of the edges
that have been introduced into the solution, (2) we sum up the lengths
of the edges that have been removed from the solution and (3) we
subtract (2) from (1). For the lateness penalty component of the
objective, however, the impact of the CROSS exchange must be
propagated to the end of the route, thus preventing a constant time
evaluation. Hence, approximations must be used.

To simplify the following description, we will assume that α i = α ,
i=1,...,n . In this case, the objective function (1.1)  becomes:

f (s) = dk
k=1

m
∑ + α × max 0, ti − li{ }

i=1

n
∑ , s ∈S  . (3.1)

The second summation in (3.1) is the total lateness of the solution
(similarly, the total lateness on a route would be the summation over
the subset of customers found on this route). The modification to the
total lateness of a solution after a CROSS exchange is obtained by
summing up the modifications to the total lateness of both routes
involved in the exchange. Here, the approximate evaluation procedure
will be illustrated on a single route, namely the new route servicing
customers X1, X2', Y2 and Y1' in Figure 1.

The modification Δ l to the total lateness of this route is estimated
through to the following formula:

Δ̃l = Δl
X2

' −Y2
+ Δ̃l

Y1
' −depot

 , (3.2)

w h e r e Δ̃l
Y1

' −depot
= g

Y1
' Δb

Y1
'

⎛
⎝

⎞
⎠ .
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The first component of the summation is the modification 
 
to the total

lateness of the route segment between X 2' and Y 2 . This component can
be evaluated exactly in constant time. The second component of the
summation approximates the modification to the total lateness on the
last route segment between Y1' and the depot. This component cannot be
evaluated exactly in constant time and is thus approximated through
function gY1'. We will now go further into the details of formula (3.2).

Exact evaluation of Δ lX2'-Y2

In the following, we explain how to update the time of beginning of
service at each customer on route segment X 2 ' -Y2  in constant time.
Through this result, Δ lX 2 '-Y2 

can be easily evaluated in constant time.

The new link that now connects X 1  to X 2' (after the CROSS exchange)
implies that the modification ΔbX2' to the time of beginning of service at
customer X2' is:

Δb
X2

' = b
X2

'
new − b

X2
'

b
X2

'
new = max e

X2
' , bX1

+ sX1
+ t

X1X2
'

⎧
⎨
⎩

⎫
⎬
⎭

(3.3)

Now, the impact on customer Y 2  can be evaluated by propagating
ΔbX2' along the route segment X 2'-Y2 . This propagation is necessary due
to possible waiting times along the segment that can absorb totally or
partially ΔbX2'. Fortunately, the exploration of the neighborhood is done
in such a way that this propagation can be avoided. Four nested loops
generate the entire neighborhood, namely:

For  X1 from depot  to last customer

Set X1' to the immediate successor of X1;
...
For  X2 from depot  to last customer

Set X2' to the immediate successor of X2;
... (3.4)
For  Y1 from X1 to depot

Set Y1' to the immediate successor of Y1;
...
For  Y2 from X2 to depot

Set Y2' to the immediate successor of Y2;
...
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For a fixed X 1 , X 2  and Y 1 , the first segment to be moved from the
second route to the first route only contains customer Y2=X 2', that is, the
immediate successor of customer X 2 . Then, the segment is progressively
extended by setting Y2  to the second successor of X 2, the third successor
of X 2 , etc. Hence, Δ b Y 2  can be easily evaluated in constant time by
exploiting the value computed at the previous neighboring solution
(given that Y 2  in the previous neighboring solution is the predecessor of
Y2  in the current neighbor).

Approximation of Δ lY1'-depot

With Δ b Y 2 , Δ b Y 1 ' is easily evaluated in constant time via the new
link (Y2 , Y1 '). The impact of Δ b Y 1 ' on Δ lY 1 '-depot  is then approximated

through function g Y 1 ' (see equation (3.2)). Such an approximation
function is found at each customer location i  and is constructed as
follows. First, the exact modification Δ l  to the total lateness of the route
is evaluated for a few Δ b i values, noted z j, j=1,... ,Z.  Then, a piecewise
linear function is produced by interpolation, as illustrated in Figure 3 for
Z=6. This function is quite different on the positive and negative sides.
Increasing Δbi on the positive side, thus shifting the time of beginning of
service later in time, always increases Δ l. On the other hand, decreasing
Δ b i on the negative side, thus shifting the time of beginning of service
earlier in time, causes no additional effect over a certain threshold (for
example, when the lateness on the route is completely eliminated). The
dotted curve in Figure 3 illustrates what could be the true function.

An update of these approximation functions is performed only
when the best CROSS exchange is applied to the current solution to
produce a new solution (i.e., these functions remain the same during the
neighborhood evaluation). Furthermore, the update is only performed at
customer locations found on the two routes involved in the CROSS
exchange.

In regard to the implementation, Z=6 values were used to construct
the approximation function g i  at each customer location. A larger
number of values would provide a better approximation of the true
function, but would also require more computations. Preliminary
experiments have shown that Z =6 is a good compromise, with a
correlation between the approximation and the true modification
varying from 0.5 to 0.8. The value z1  was set to the maximum positive
shift to the time of beginning of service observed at any customer
location during the search. The values z 2  and z 3  were obtained by
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dividing z1  by 50 and 2500, respectively. In our test problems, z2  i s
typically around 25 time units, and z3  around 0.5 time units. On the
negative side, z6  was set to the maximum lateness found at customer i
and all its successors on the route. Note that Δ l cannot be reduced by
more than z6  time units through a shift (earlier in time) at customer i.
The values z 5  and z 4  were set by dividing z 6  by 50 and 2500,
respectively.

x

x

x

x
xx

Δb i

Δl

1z2z3z

4-z5-z6-z

exact

approximation

Figure 3.  Approximation function gi at customer location i

Although a good exchange according to the approximation is likely
to be good according to the true objective, the E  best solutions in the
neighborhood (according to the approximation) are kept for further
consideration. These solutions are then evaluated exact ly  and the best
one (according to the exact evaluation) becomes the new current
solution for the next iteration.

3.3.2  Discarding moves

The size of the neighborhood can be reduced by discarding moves
that are unlikely to yield any improvement. In (3.4), four nested loops
generate the entire neighborhood. At the level of Y 2 , the loop is
interrupted when the current segment leads to a violation of the
capacity constraint when it is moved to the first route. Obviously, the
situation can only be worse if the length of this segment increases. This
loop is also interrupted when a monotonous degradation of the
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(approximate) objective value is observed over three consecutive
iterations. The same approach is applied at the level of X 2  when a
monotonous degradation of the objective value is observed over three
consecutive iterations. In this case, the objective value associated with
X 2  is the best solution found after iterating over Y 1  and Y 2 . Since the X 2
loop is at the second level within the nested structure, its interruption is
much more beneficial in terms of computation time than the
interruption at the level of Y 2 . The interruption at X 2  mostly occurs
when the segments to be swapped cover different time periods. In this
case, huge lateness is typically created on one route after the exchange.
Hence, it makes sense to discard such "incompatible" moves.

3.3.3   Approximation matrix

The overall computation time can be reduced by exploiting previous
calculations stored in a data structure known as the approximation
matrix. Each entry (i,j), i,j =1,...,m , i< j, in this upper triangular matrix is
associated with a pair of routes i and j. It contains information about the
best CROSS exchange (according to the approximation) for this pair of
routes, namely, the value of the new solution as well as the edges
introduced or removed from both routes to produce this solution. When
a particular exchange involving routes i' and j' is accepted, only the
information stored in row i' and column j' of the approximation matrix is
updated (since only these two routes are modified by the exchange).
That is, the information associated with any pair or routes that does not
include neither route i '  nor route j '  remains the same and is not
recalculated.

3.4  Intra-route exchanges

The CROSS exchanges of Section 3.2 swap customers between two
routes. However, intra-route optimization is equally important to find
good solutions. In order to optimize individual routes, the CROSS
neighborhood is enlarged by including exchanges that apply to a single
route. These exchanges are similar to those defined on a pair of routes.
Namely, two edges are removed from a given route, and the segment
between the two edges is moved at another location within the same
r o u t e . This approach generalizes the Or-opt exchanges [Or 76], by
allowing the relocation of segments of any arbitrary length.

4. The problem-solving methodology

The main ideas in this section, like the adaptive memory or the
decomposition/reconstruction procedure have already been proposed in
[Taillard 93, Rochat and Taillard 95]. The following presentation will
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thus omit many details which can be found in the above papers (but
without sacrificing completeness).

The tabu search heuristic presented in this section follows the
guidelines provided in [Glover 89, Glover 90]. It is embedded within the
following problem-solving methodology:

Construct p different solutions using a stochastic insertion heuristic.
Then, apply the tabu search heuristic to each solution and store the
resulting routes in the adaptive memory.

While the stopping criterion is not met do:

Construct an initial solution from the routes found in the adaptive
memory, and define this solution to be the current solution.

For I iterations do:

Decompose the current solution into C disjoint subsets of
routes.

Apply a tabu search on each subset of routes.

Reconstruct a complete solution by merging the new routes
found by the tabu search, and define this solution to be the
new current solution.

Store the routes of the current solution in the adaptive memory.

Apply a postoptimization procedure to each individual route of the
best solution.

This methodology includes many different components like an
initialization procedure, a decomposition/reconstruction cycle (which
will be referred to as D&R in the following), an adaptive memory, and
the tabu search as such. These components will now be described.

4.1   Initialization

In order to fill the adaptive memory with different types of routes,
a randomized insertion heuristic is used to construct P  different initial
solutions. First, the routes are initialized by randomly selecting m  seed
customers. Hence, each initial route only services a single customer. The
remaining unrouted customers are then inserted one by one (in a
random order) at the location that minimizes Solomon's insertion cost
over the current set of routes (see Section 4.4 and the description of
heuristic I1 in [Solomon 87]). This simple construction heuristic does not
produce high quality solutions. Accordingly, the tabu search heuristic
presented in Section 4.4 is applied to each solution before the resulting
routes are stored in the adaptive memory. This phase introduces a high
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level of diversity in the adaptive memory by storing routes extracted
from different types of solutions. This diversity is then exploited by the
tabu search.

4.2   Decomposition/reconstruction

In order to reduce the computation time and intensify the search in
specific regions of the search space, each initial solution is partitioned
into C  disjoint subsets of routes, each subset of routes or subproblem
being processed by a different tabu search [Taillard 93]. The best routes
found for every subproblem are simply merged together to form the
new solution for the next D&R. After I  D&Rs, the final routes are stored
in the adaptive memory if it is not filled yet (see Section 4.3). Otherwise,
the routes of the worst solution found in the adaptive memory are
discarded and replaced by the new routes (if the new solution is better
than the worst solution in memory).

The decomposition is based on the polar angle associated with the
center of gravity of each route. Using these polar angles, the domain is
partitioned into sectors that approximately contain the same number of
routes (see Figure 4).  Note that the decomposition changes from one
D&R to the next by choosing a different starting angle for creating
sectors, thus allowing the CROSS exchange heuristic to exploit new pairs
of routes.

Figure 4.  Decomposition of a solution into subsets of routes
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4.3   The adaptive memory [Rochat and Taillard 95]

The adaptive memory is a pool of routes taken from the best
solutions visited during the search. Its purpose is to provide new
starting solutions for the tabu search through selection and combination
of routes extracted from this memory (in a manner reminiscent of
crossover operators, which are found in genetic algorithms [Holland 75];
however, the number of parent solutions in our case is generally greater
than two).

First, the memory is partially filled with routes produced during the
initialization procedure (see Section 4.1). All routes of a given solution
are contiguously stored in memory and the solutions are sorted
according to their objective value. Hence, the routes associated with the
best solutions are found in the first positions of the memory. This pool is
then used to construct initial solutions for the tabu search. The selection
process for creating a new solution is stochastic and biased in favor of
the best routes. Namely, a selection probability is associated with each
route, and this probability is higher for routes associated with better
solutions [Rochat and Taillard 95].

Once the first route is selected, the routes in memory with one or
more customers in common with the selected route are discarded from
the selection procedure. Then, a second route is selected among the
remaining routes. This procedure is repeated until the set of selected
routes covers all customers or until there is no admissible route in
memory. In the latter case, Solomon's I1 insertion heuristic is invoked to
insert the remaining customers (see [Solomon 87] and Section 4.4). If
this insertion procedure cannot accommodate all customers, due to the
capacity constraints or the time window at the depot, the unserviced
customers are left aside. However, the insertion procedure is reinvoked
at the end of each D&R to try to insert these customers into the current
solution.

4.4   The tabu search

The tabu search presented in this section exploits the neighborhood
structure of Section 3. It is applied to a subset of routes or subproblem
through the decomposition/reconstruction procedure of Section 4.2. The
tabu search is quite standard, and can be summarized as follows:
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Set the current solution to some initial subset of routes.

While the stopping criterion is not met do:

Generate the neighborhood of the current solution by applying
CROSS exchanges.

Select the best (non tabu) solution in this neighborhood and
define this solution to be the new current solution.

If the current solution is better than the best overall solution
t h e n

reorder the customers within each route using Solomon's
I1 insertion heuristic and define this new solution to be
the new current solution and the best overall solution.

Update the tabu list.

Return the best overall solution

The main components of this algorithm are now briefly introduced.

(a) In i t ia l i za t ion . As mentioned previously, the initial solution is
produced by combining routes contained in the adaptive memory
(see Section 4.3). Then, this set of routes is partitioned into
subsets of routes, each subset being provided as input to a tabu
search heuristic.

(b) Stopping criterion. The tabu search stops after a certain number
of iterations. This number is calculated with the following
formula:

A × 1 + DR − 1

B
⎛
⎝

⎞
⎠

where A  and B  are parameters and DR  is the current D&R, DR=1,...,
I . Hence, the number of iterations increases with the number of
D&Rs. Given that the solution improves from one D&R to the next,
more iterations are required to significantly improve the
solutions provided to the last D&Rs.

(c) Tabu list. The tabu list has length T  and its positions are indexed
from 0 to T -1. Each solution is associated with a position in the
list. This position is the objective value of the solution modulo T
and the value stored at this place is the iteration number at
which the solution will loose its tabu status. When a neighboring
solution is produced through a CROSS exchange, its objective
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value modulo T  provides its position in the tabu list. If the value
found at this position is greater than the current iteration
number then the move is tabu, otherwise it is accepted. Clearly,
this approach can filter out legitimate solutions. For example, two
solutions will collide at the same position within the list if their
objective values differ by a multiple of T . However, T  is set to a
large value, so that such an occurrence is unlikely. The tabu
tenure is equal to the number of iterations divided by 2.

It is worth noting that the objective value is an integer because
real distances between customers are rounded up or down at the
third decimal place, and then transformed into integers by
multiplying them by 103.

(d) Diversif ication . Dynamic diversification is incorporated into the
tabu search by penalizing CROSS exchanges that are frequently
performed during the search. Let fre be such a frequency for a
given exchange e , let frm a x  be the maximal frequency observed
and let iter , n  and m  be the current iteration number, the number
of customers and the number of routes, respectively. If x  is a

random value uniformly chosen in the interval ]0.0, 0.5] and Δiter
max

is the maximal absolute difference observed between the
objective values of two consecutive solutions up to iteration iter,
then the exchange e  is penalized by:

pe = x × Δiter
max × fre

frmax
.

The frmax  value normalizes the frequencies since they tend to be

lower (higher) for larger (smaller) neighborhoods. The Δiter
max

component adjusts the penalty to the magnitude of the moves.

(e) Reordering of each route. The customers within each individual
route are reordered when an overall best solution is found. This
reordering is based on Solomon's I1 insertion heuristic [Solomon
87]. It works as follows for a given route. First, all customers on
this route are unrouted. Then, the farthest unrouted customer
from the depot is selected as a seed customer (i.e., the vehicle
starts from the depot, services the seed customer and comes back
to the depot). The remaining unrouted customers are then
inserted one by one into the new route. The next customer to be
inserted is the one that maximizes a generalized savings measure.
The classical savings [Clarke and Wright 64] can be obtained by
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setting the parameters of Solomon's heuristic to appropriate
values. The selected customer is then inserted at the location that
minimizes a weighted sum of detour in space and time. Solomon's
heuristic is applied R  times with different parameter settings,
and the best route is selected at the end. This strategy can be
seen as a form of intensification in the neighborhood of an elite
solution. Note that the original route is restored if the new route
does not service all customers (due to the time window at the
depot) or if the new route is worse than the original one.

4.5   Postprocessing of each individual route

We applied a specialized heuristic developed for the TSP with time
windows [Gendreau et al. 95] to each individual route in the final
solution produced by our algorithm. This method is an adaptation of the
GENIUS heuristic, originally devised for the TSP [Gendreau et al. 92].
This heuristic only slightly improved the total distance of 10 solutions in
Solomon's test set (the improvement was less than 1% in all cases, but
one), but it runs for only a few seconds and three additional best known
solutions were obtained (see Section 5.2).

5. Computational results

Although our method was designed for the VRPSTW, it has been
tested on Solomon's set of VRPHTWs [Solomon 87]. This choice comes
from a need to compare our method with competing approaches on
standardized test problems. In the following, these test problems are
first introduced. Then, the best solutions produced by our algorithm are
reported. Some figures about the improvement to solution quality with
increasing computation times are also provided. Finally, the impact of
the approximation techniques of Section 3 on solution quality and
computation time is examined.

5.1   Test problems

Our algorithm was tested on standard problems found in [Solomon
87]. In these 100-customer Euclidean problems, the travel times are
equivalent to the corresponding Euclidean distances. The customer
locations are distributed within a [0,100]2 square.  Six different sets of
problems are defined, namely C1, C2, R1, R2, RC1 and RC2. The
customers are uniformly distributed in the problems of type R and
clustered in groups in the problems of type C. These characteristics are
mixed in the problems of type RC. Furthermore, the time window is
narrow at the central depot for the problems of type 1, so that only a
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few customers can be serviced on each route. Conversely, this time
window is large for the problems of type 2, so that many customers can
be serviced on the same route. Finally, a fixed service time is found at
each customer location (c.f., time for unloading the goods). This service
time is set at 10 time units per customer for the problems of type R and
RC, and 90 time units per customer for the problems of type C.

5.2   Numerical results on Solomon's test set

The experiments reported in this section were performed on a Sun
Sparc 10 workstation (50 Mhz). The real Euclidean distances between
customers were rounded up or down at the third decimal place, and
then transformed into integers by multiplying them by 103. In this way,
precision problems were avoided during the calculations. However, the
feasibility of the best solutions produced by our algorithm was later
checked using real, double-precision distances. Our results were
obtained with the parameter settings presented in Table 1.

To reduce computation time, in particular on the problems of type
2, the length of the route segments to be swapped could not exceed a
threshold value L . Different values were tried during our experiments.
The best solutions reported in this section were obtained with L =5 or
L=7. Note also that no D&R took place on the problems of type 2, because
only a few routes are needed to service all customers. In this case, each
tabu search was applied to the entire set of routes.

The best solutions produced by our algorithm are reported in Tables
2 and 3 for all problems in Solomon's test set (based on real, double-
precision distances), using the format: number of routes/total distance.
The fleet size m  was set to the number of routes of the best solution
reported in the literature for each problem. A feasible solution to the
VRPHTW was produced in each case, with the exception of problem
R101 (where one additional route is needed). On problems RC102 and
RC106, the algorithm was able to save an additional route. In the tables,
our best solutions are compared with the best solutions previously
reported in the literature. A single asterisk * means a tie with the best
published solution and a double asterisk ** means that the best
published solution has been improved. Overall, our algorithm has
improved 17 and tied 20 best known solutions on the 56 test problems.
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objective function

lateness penalty coefficient: α= 100.

stopping criterion

3 identical best know solutions visited during the search or
100 calls to the adaptive memory.

initialization

number of initial solutions: P= 2 0

decomposition/reconstruction (D&R)

number of D&Rs: I=6.

cardinality of the decomposition: C=2 subsets of routes

adaptive memory

size: M=30  solutions.

tabu search

number of iterations: A =30 ,  B=3; thus 30, 40, 50, 60, 70
and 80 iterations for D R =1, 2, 3, 4, 5 and 6, respectively,
for a total of 330 iterations.

length of tabu list: T=100,000.

tabu tenure: number of iterations/2.

number of best approximate neighboring solutions: E= 1 5

number of reorderings of each route: R= 2 0

Table 1.  Parameter settings for the tabu search heuristic
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Problem Best published
solution

Reference Our best
solution

R101 1 8 / 1 6 0 7 . 7 Desrochers et al. 92 1 9 / 1 6 5 0 . 7 9
R102 1 7 / 1 4 3 4 . 0 Desrochers et al. 92 1 7 / 1 4 8 7 . 6 0
R103 1 3 / 1 2 0 7 Thangiah et al. 94 1 3 / 1 2 9 4 . 2 4
R104 1 0 / 9 8 2 . 0 1 Rochat and Taillard 95 1 0 / 9 8 2 . 7 2
R105 1 4 / 1 3 7 7 . 1 1 Rochat and Taillard 95 1 4 / 1 3 7 7 . 1 1 *
R106 1 2 / 1 2 5 2 . 0 3 Rochat and Taillard 95 1 2 / 1 2 5 9 . 7 1
R107 1 0 / 1 1 5 9 . 8 5 Rochat and Taillard 95 1 0 / 1 1 2 6 . 6 9 **
R108 0 9 / 9 8 0 . 9 5 Rochat and Taillard 95 0 9 / 9 6 8 . 5 9 **
R109 1 1 / 1 2 3 5 . 6 8 Rochat and Taillard 95 1 1 / 1 2 1 4 . 5 4 **
R110 1 1 / 1 0 8 0 . 3 6 Rochat and Taillard 95 1 1 / 1 0 8 0 . 3 6 *
R111 1 0 / 1 1 2 9 . 8 8 Rochat and Taillard 95 1 0 / 1 1 0 4 . 8 3 **
R112 1 0 / 9 5 3 . 6 3 Rochat and Taillard 95 1 0 / 9 6 4 . 0 1

Problem Best published
solution

Reference Our best
solution

C101 1 0 / 8 2 7 . 3 Desrochers et al. 92 1 0 / 8 2 8 . 9 4 *
C102 1 0 / 8 2 7 . 3 Desrochers et al. 92 1 0 / 8 2 8 . 9 4 *
C103 1 0 / 8 2 8 . 0 6 Rochat and Taillard 95 1 0 / 8 2 8 . 0 6 *
C104 1 0 / 8 2 4 . 7 8 Rochat and Taillard 95 1 0 / 8 2 4 . 7 8 *
C105 1 0 / 8 2 8 . 9 4 Potvin and Bengio 93 1 0 / 8 2 8 . 9 4 *
C106 1 0 / 8 2 7 . 3 Desrochers et al. 92 1 0 / 8 2 8 . 9 4 *
C107 1 0 / 8 2 7 . 3 Desrochers et al. 92 1 0 / 8 2 8 . 9 4 *
C108 1 0 / 8 2 7 . 3 Desrochers et al. 92 1 0 / 8 2 8 . 9 4 *
C109 1 0 / 8 2 8 . 9 4 Potvin and Bengio 93 1 0 / 8 2 8 . 9 4 *

Problem Best published
solution

Reference Our best
solution

RC101 1 4 / 1 6 6 9 Thangiah et al. 94 1 4 / 1 6 9 6 . 9 4
RC102 1 3 / 1 4 7 7 . 5 4 Rochat and Taillard 95 1 2 / 1 5 5 4 . 7 5 **
RC103 1 1 / 1 1 1 0 Thangiah et al. 94 1 1 / 1 2 6 4 . 2 7
RC104 1 0 / 1 1 3 5 . 8 3 Rochat and Taillard 95 1 0 / 1 1 3 5 . 8 3 *
RC105 1 3 / 1 7 3 3 . 5 6 Rochat and Taillard 95 1 3 / 1 6 4 3 . 3 8 **
RC106 1 2 / 1 3 8 4 . 9 2 Rochat and Taillard 95 1 1 / 1 4 4 8 . 2 6 **
RC107 1 1 / 1 2 3 0 . 9 5 Rochat and Taillard 95 1 1 / 1 2 3 0 . 5 4 **
RC108 1 0 / 1 1 7 0 . 7 0 Rochat and Taillard 95 1 0 / 1 1 3 9 . 8 2 **

Table 2.  Best results on problems of type 1
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Problem Best published
solution

Reference Our best
solution

R201 4 / 1 2 8 1 . 5 8 Rochat and Taillard 95 4 / 1 2 5 4 . 8 0 **
R202 3 / 1 5 3 0 . 4 9 Potvin and Bengio 93 3 / 1 2 1 4 . 2 8 **
R203 3 / 9 4 8 . 7 4 Rochat and Taillard 95 3 / 9 5 1 . 5 9
R204 2 / 8 6 9 . 2 9 Rochat and Taillard 95 2 / 9 4 1 . 7 6
R205 3 / 1 0 6 3 . 2 4 Rochat and Taillard 95 3 / 1 0 3 8 . 7 2 **
R206 3 / 8 3 3 Thangiah et al. 94 3 / 9 3 2 . 4 7
R207 3 / 8 1 4 . 7 8 Rochat and Taillard 95 3 / 8 3 7 . 2 0
R208 2 / 7 3 8 . 6 0 Rochat and Taillard 95 2 / 7 4 8 . 0 1
R209 3 / 8 5 5 Thangiah et al. 94 3 / 9 5 9 . 4 7
R210 3 / 9 6 7 . 5 0 Rochat and Taillard 95 3 / 9 8 0 . 9 0
R211 2 / 9 4 9 . 5 0 Rochat and Taillard 95 2 / 9 2 3 . 8 0 **

Problem Best published
solution

Reference Our best
solution

C201 3 / 5 9 1 . 5 6 Potvin and Bengio 93 3 / 5 9 1 . 5 6 *
C202 3 / 5 9 1 . 5 6 Potvin and Bengio 93 3 / 5 9 1 . 5 6 *
C203 3 / 5 9 1 . 1 7 Rochat and Taillard 95 3 / 5 9 1 . 1 7 *
C204 3 / 5 9 0 . 6 0 Potvin and Bengio 93 3 / 5 9 0 . 6 0 *
C205 3 / 5 8 8 . 8 8 Potvin and Bengio 93 3 / 5 8 8 . 8 8 *
C206 3 / 5 8 8 . 4 9 Potvin and Bengio 93 3 / 5 8 8 . 4 9 *
C207 3 / 5 8 8 . 2 9 Rochat and Taillard 95 3 / 5 8 8 . 2 9 *
C208 3 / 5 8 8 . 3 2 Rochat and Taillard 95 3 / 5 8 8 . 3 2 *

Problem Best published
solution

Reference Our best
solution

RC201 4 / 1 2 4 9 Thangiah et al. 94 4 / 1 4 1 3 . 7 9
RC202 4 / 1 1 6 5 . 5 7 Rochat and Taillard 95 4 / 1 1 6 4 . 2 5 **
RC203 3 / 1 0 7 9 . 5 7 Rochat and Taillard 95 3 / 1 1 1 2 . 5 5
RC204 3 / 8 0 6 . 7 5 Rochat and Taillard 95 3 / 8 3 1 . 6 9
RC205 4 / 1 3 3 3 . 7 1 Rochat and Taillard 95 4 / 1 3 2 8 . 2 1 **
RC206 3 / 1 2 1 2 . 6 4 Rochat and Taillard 95 3 / 1 1 5 8 . 8 1 **
RC207 3 / 1 0 8 5 . 6 1 Rochat and Taillard 95 3 / 1 0 8 2 . 3 2 **
RC208 3 / 8 3 3 . 9 7 Rochat and Taillard 95 3 / 8 4 7 . 9 0

Table 3.  Best results on problems of type 2
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Different transformations of the distance matrix and/or final
solutions were applied by the authors referred to in Tables 2 and 3. In
[Desrochers et al. 92], the distances were truncated at the first decimal
place; in [Thangiah et al. 94], the final solution value was rounded up or
down to the nearest integer; in [Rochat and Taillard 95, Potvin and
Bengio 96], real double-precision distances were used. One consequence
is that slightly different objective values can be associated with the
same solution (in particular, for the problems in class C1). Another
consequence is that solutions found on truncated or rounded distances
are not necessarily feasible when real distances are used (unless the
final solutions are checked for feasibility with real, double-precision
distances, as we did).

Table 4 compares the averages of the best solutions, as produced by
our method and by other methods reported in the literature, for each
set of problems. The headings in the Table should be interpreted as
follows: CR [Chiang and Russell 93], PB [Potvin and Bengio 96], RT [Rochat
and Taillard 95] and TH [Thangiah et al. 94]. The two numbers in each
entry are the average number of routes and average distance,
respectively. Note that the previous best averages were all produced by
RT and that five additional routes were saved by our method over RT on
the 56 test problems.

CR PB TH RT Our
method

R1 12.42
1289.95

12.58
1296.80

12.33
1 2 3 8

12.25
1208.50

12.17
1209.35

C1 10.00
885.86

10.00
838.01

10.00
8 3 2

10.00
828.38

10.00
828.38

RC1 12.38
1455.82

12.13
1446.20

12.00
1 2 8 4

11.88
1377.39

11.50
1389.22

R2 2.91
1135.14

3.00
1117.70

3.00
1 0 0 5

2.91
961.72

2.82
980.27

C2 3.00
658.88

3.00
589.93

3.00
6 5 0

3.00
589.86

3.00
589.86

RC2 3.38
1361.14

3.38
1360.57

3.38
1 2 2 9

3.38
1119.59

3.38
1117.44

Table 4.  Best averages for each problem type
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A hierarchical objective function is typically associated with the
VRPHTW. That is, the number of routes is first minimized and, for the
same number of routes, the total distance is minimized. An exception is
found in [Barnes and Carlton 95, Carlton 95] where the objective is
simply to minimize the total distance. Accordingly, the distances of the
best solutions reported in the work of Barnes and Carlton are typically
lower than the numbers presented in Table 4. On the other hand, the
number of routes is higher.

In order to compare our method with the reactive tabu search of
Barnes and Carlton, the fleet size m  was set to the numbers reported in
[Carlton 95, Appendix B] for each problem. The results are summarized
in Table 5. The first column is the average number of routes. The second
column Reactive Tabu (best) contains two numbers. The first one is the
average of the best distances reported in [Carlton 95, Appendix B] when
the parameter settings of the reactive tabu search are adjusted to each
problem. The second number is the average computation time of the
best runs on a IBM 6000 RISC workstation (in seconds). The third
column Adaptive Tabu (avg.) is the average distance produced by our
algorithm over five different runs, when each run is given the same
amount of computation time as the best run of the reactive tabu search.
Here, the processing power of their machine was assumed to be similar
to ours, which is true only for lower end IBM RISC 6000 workstations.
Finally, the last column Adaptive Tabu (best) is the average of the best
solutions produced by our algorithm in the course of multiple
experiments.

First, it should be pointed out that the comparison between
Adaptive Tabu (avg.) and Reactive Tabu (best) is quite unfair. Namely,
the computation time associated with the reactive tabu search should be
the sum of all runs leading to the best solution, not only the computation
time of the best run. In spite of this enormous handicap, the a v e r a g e
solutions produced by our algorithm are competitive with the b e s t
solutions produced by the reactive tabu search, for the "same" amount
of computation time. Furthermore, our best solutions are significantly
better than those reported in [Carlton 95, Appendix B]. The reactive tabu
search of Barnes and Carlton is thus able to produce good solutions in
relatively low computation times. However, due to its simple
neighborhood structure, it reaches its "peak" much earlier than our
method.

 Finally, our tabu search heuristic was applied on two larger
problem instances with 417 customers. These problems are known as
D417 and E417 and are reported in [Russell 95]. A feasible solution with
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55 vehicles was found in both cases, with a total distance of 3439.8 for
D417 and 3707.1 for E417. Note that [Rochat and Taillard 95] report
total distances of 3467.8 and 3693.2, respectively, for the same number
of vehicles. Hence, a better solution was found on problem D417. It is
worth noting that [Rochat and Taillard 95] also report solutions with 54
vehicles, but the total distance then increases to 6264.8 for D417 and to
7211.8 for E417. Our algorithm did not find feasible solutions with
m=54.

Avg.
Number of

routes

Reactive
Tabu
(best)

Adapt ive
Tabu
(avg.)

Adapt ive
Tabu
(best)

R1 13.91 1221.2
568.0

1228.3 1198.8

C1 10.00 831.9
273.5

850.8 828.4

RC1 13.25 1408.3
564.8

1401.6 1363.7

R2 3.09 1009.1
988.9

1040.7 976.3

C2 3.25 616.5
408.9

605.7 592.1

RC2 3.38 1303.3
750.5

1268.9 1187.2

Table 5.  Comparison with the reactive tabu search in [Carlton 95]

5.3   Solution quality versus computation time

The results reported in Tables 2 and 3 are the best solutions
produced by our algorithm during the course of multiple experiments.
Accordingly, no meaningful computation times can be provided.
However, Table 6 illustrates the improvement to solution quality with
increasing computation times, using L= 7 . These numbers were obtained
over five independent runs. For each problem set, we show the average
computation time in seconds after 20, 50 and 100 calls to the adaptive
memory, including all preprocessing that takes place before the search
actually starts, the average solution value of the best run (M i n i m u m ) ,
the average solution value of the worst run (M a x i m u m ) and the overall
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average (A v e r a g e ). The first number is the average number of routes
and the second number is the average distance.

In these experiments, the number of routes was set to m +1, where
m  is the minimum value reported in the literature for each problem. By
introducing an additional route, feasible solutions to the VRPHTW were
quickly produced by our algorithm, so that all numbers in Table 6 refer
to solutions that satisfy the time window constraint at each customer
location. Note that the number of routes can decrease during the search
if an empty route is created by a CROSS exchange. In the case of C1 and
C2, the growth of the route segments was not stopped when a
monotonous degradation of the objective value was observed over three
consecutive iterations (c.f., Section 3.3.2). On these well-structured
problems, the method quickly converges to good local optima and comes
back to these same optima in the remaining of the run, thus causing an
early stop (c.f., when the same best solution is found three times). By
allowing a more thorough exploration of the neighborhood of the current
solution, better solutions are found before the stopping criterion is met.

Problem
t y p e

CPU
t ime

Minimum Maximum Average

R1 2 2 9 6
6 8 8 7

1 3 7 7 4

12.58
12.25
12.25

1222.24
1231.89
1216.70

12.67
12.58
12.50

1248.28
1227.50
1219.71

12.64
12.39
12.33

1233.88
1230.48
1220.35

C1 2 9 2 6
7 3 1 5

1 4 6 3 0

10.00
10.00
10.00

829.22
828.50
828.45

10.00
10.00
10.00

834.10
828.77
828.45

10.00
10.00
10.00

830.41
828.59
828.45

RC1 1 8 7 7
5 6 3 2

1 1 2 6 4

11.88
11.88
11.88

1385.69
1373.11
1367.51

12.25
12.13
12.00

1424.28
1400.84
1402.12

12.08
12.00
11.90

1404.59
1387.01
1381.31

R2 3 3 7 2
1 0 1 1 6
2 0 2 3 2

3.00
3.00
3.00

1025.24
1011.04
995.38

3.00
3.00
3.00

1067.87
1048.25
1031.33

3.00
3.00
3.00

1046.56
1029.65
1013.35

C2 3 2 7 5
8 1 8 7

1 6 3 7 5

3.00
3.00
3.00

590.37
590.37
590.30

3.00
3.00
3.00

596.85
593.58
592.57

3.00
3.00
3.00

592.75
591.14
590.91

RC2 1 9 3 3
5 7 9 8

1 1 5 9 6

3.38
3.38
3.38

1204.17
1186.57
1165.62

3.38
3.38
3.38

1289.81
1263.12
1239.14

3.38
3.38
3.38

1248.34
1220.28
1198.63

Table 6.  Solution quality versus CPU time for our algorithm
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In Table 7, results found in [Rochat and Taillard 95] for a single run
of their method on a Silicon Graphics Indigo (100 Mhz) are shown. By
comparing the solution values reported in Table 5 under "Average" with
those found in Table 6 for similar computation times, we observe that
our method performs better on problem sets RC1, R2, and RC2. Namely,
an average of 12.08 routes is found on RC1 after 1877 seconds, as
compared to 12.38 routes after 2600 seconds with RT. Furthermore, RT
did not find the averages of 3.00 and 3.38 routes on problem sets R2
and RC2, after 9800 and 7800 seconds, respectively. On the other hand,
RT found 12.58 routes on set R1 after 2700 seconds, as compared to an
average of 12.64 routes after 2296 seconds with our method. A slight
improvement in regard to the distance traveled is also observed in favor
of RT on problem set C1 for similar computation times.

Problem
t y p e

CPU
t ime

RT

R1 4 5 0
1 3 0 0
2 7 0 0

12.83
12.58
12.58

1208.43
1202.31
1197.42

C1 5 4 0
1 6 0 0
3 2 0 0

10.00
10.00
10.00

832.59
829.01
828.45

RC1 4 3 0
1 3 0 0
2 6 0 0

12.75
12.50
12.38

1381.33
1368.03
1369.48

R2 1 6 0 0
4 9 0 0
9 8 0 0

3.18
3.09
3.09

999.63
969.29
954.36

C2 1 2 0 0
3 6 0 0
7 2 0 0

3.00
3.00
3.00

595.38
590.32
590.32

RC2 1 3 0 0
3 9 0 0
7 8 0 0

3.62
3.62
3.62

1207.37
1155.47
1139.79

Table 7. Solution quality versus CPU time for RT
[Rochat and Taillard 95]

5 . 4 CROSS exchanges versus 2-opt* and Or-opt

In order to evaluate the benefits associated with the CROSS
neighborhood, Table 8 shows results obtained on problem set RC1 when
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this neighborhood is replaced by the 2-opt* or the Or-opt neighborhood
within the tabu search heuristic. The format of this table is the same as
Table 6. It shows the average computation time in seconds after 20, 50
and 100 calls to the adaptive memory, the average solution value of the
best run (over five different runs), the average solution value of the
worst run and the overall average. In the last three columns, the first
number is the average number of routes and the second number is the
average distance.

As we can see, it is more computationally expensive to generate the
CROSS neighborhood than the 2-opt* and Or-opt neighborhoods.
However, by comparing results for similar computation times (e.g., the
third line of 2-opt* and Or-opt with the second line of CROSS), the CROSS
neighborhood clearly leads to better solutions. Note that the same trends
are observed on the other problem sets.

CPU
t ime

Minimum Maximum Average

CROSS 2 2 9 6
6 8 8 7

1 3 7 7 4

12.58
12.25
12.25

1222.24
1231.89
1216.70

12.67
12.58
12.50

1248.28
1227.50
1219.71

12.64
12.39
12.33

1233.88
1230.48
1220.35

2-opt* 1 2 5 9
3 1 4 7
6 2 9 4

12.67
12.58
12.58

1272.81
1268.75
1268.75

13.17
13.00
12.75

1340.13
1320.97
1309.82

12.88
12.73
12.58

1304.03
1293.97
1288.92

Or-opt 1 8 5 7
4 6 4 3
9 2 8 6

12.67
12.58
12.58

1274.63
1261.30
1243.60

13.08
12.83
12.67

1326.80
1315.61
1303.40

12.85
12.72
12.62

1301.14
1288.93
1275.36

Table 8.  Comparison between CROSS, 2-opt* and Or-opt
 neighborhoods on problem set RC1

5 . 5  Benefits of approximations

This section evaluates the usefulness of the techniques proposed in
Section 3 for approximating the objective value. Table 9 shows the
average solution value (number or routes, distance, computation time in
seconds, in this order) at the first local minimum for a typical run on
each problem type, using either an exact or approximate evaluation.
Different values of parameter L  were also tested. That is, the
neighborhood of the current solution was progressively reduced by
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decreasing L  from ∞  to 5. Note that when L = ∞ , the restriction on the
monotonous degradation of the objective value over three consecutive
iterations was removed. Hence, the entire neighborhood of the current
solution was examined. Approx uses the approximation to evaluate each
new solution, while Exact  evaluates each new solution exactly. The row
"Initial" in Table 9 refers to the value of the starting solution.

R1 C1 RC1 R2 C2 RC2
Initial 13 .67

1523.51
10.00

1609.56
16.50

1903.89
4.27

1347.01
3.00

813.09
3.38

1648.19

Approx
L=5

13.08
1343.15

7.8

10.00
1106.43

10.89

13.75
1530.31

8.25

3.36
1169.84

50.8

3.00
669.47

9.38

3.38
1513.69

34.00
Approx

L=7
13.00

1317.41
12.4

10.00
1080.29

19.2

13.63
1486.89

16.1

3.36
1175.22

61.36

 3.00
669.21
11.25

3.38
1490.28

41.63
Approx

L=10
13.00

1295.02
18.42

10.00
971.77
32.56

13.63
1494.32

20.38

3.36
1170.76

75.90

3.00
686.82
15.63

3.38
1422.11

77.38
Approx

L=20
13.00

1290.9
20.0

10.00
961.30
36.67

13.38
1488.58

20.50

3.36
1157.52
185.73

3.00
694.30
37.63

3.38
1395.66
169.25

Approx
L=∞

13.00
1285.13

34.4

10.00
924.55
55.44

13.38
1444.16

36.13

3.36
1046.79
1201.64

3.00
620.33
283.63

3.38
1360.77
758.00

Exact
L=7

13.08
1294.30

99.83

10.00
1019.10
102.67

13.50
1468.67

90.25

3.36
1106.50
424.909

3.00
632.72
74.63

3.38
1333.20
224.88

Exact
L=∞

13.00
1280.18
223.25

10.00
959.11
248.89

13.13
1436.74
200.88

3.36
1024.79
4118.55

3.00
600.31

1002.00

3.38
1275.73
3306.62

Table 9. Approximate versus exact solution at the first local minimum

A comparison between Approx , L=∞   and Exact , L=∞  shows that the
approximation generates solutions that are competitive with those
obtained through the exact evaluation in a fraction of the computation
time. The performance of the approximation degrades a little bit on the
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large routes found in the problems of type 2 (in particular RC2). By
comparing E x a c t  and A p p r o x  with L = ∞  and L =7, we also note that
solution quality does not degrade as much when the exact evaluation is
used. However, E x a c t  with L = 7  is still much more computationally
expensive than Approx  with L=7 .

6.  Conclusion

This paper has introduced a new neighborhood structure, based on
CROSS exchanges, which is exploited within a tabu search heuristic. As
the search progresses, good routes are stored in an adaptive memory
and new starting solutions are produced by selecting and combining
routes found in this memory. That is, new solutions are created from
routes associated with different solutions visited during the search (in a
manner reminiscent of the recombination or crossover operator of
genetic algorithms). This problem-solving methodology has produced
many best known solutions on Solomon's test set [Solomon 87] and
seems to be fairly robust along the different classes of problems found
in this test set.

The CROSS exchanges are a useful generalization of the 2-opt*
[Potvin and Rousseau 1995] and Or-opt [Or 76] exchanges and may be
applied to other types of vehicle routing problems as well. Note also that
our problem-solving methodology is readily amenable to parallelization.
For example, many different starting solutions can be constructed from
the adaptive memory and assigned to different tabu search processes
that run in parallel. Furthermore, each tabu search process can be
parallelized through the decomposition/reconstruction procedure that
partitions a problem into smaller subproblems. With this parallelization,
it is possible to envision the application of our methodology in a
dynamic setting where each service request is dispatched soon after it is
received.
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