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Modeling the Commute Activity-Travel
Pattern of Workers: Formulation and

Empirical Analysis

Chandra Bhat
Department of Civil Engineering, ECJ 6.810, University of Texas at Austin, Austin, Texas 78712

bhat@mail.utexas.edu

This paper proposes a methodological framework to analyze the activity and travel pat-
tern of workers during the evening commute. The framework uses a discrete-continuous

econometric system to model jointly the decision to participate in an activity during the
evening commute and the following attributes of the participation: activity type, activity
duration, and travel time deviation to the activity location relative to the direct travel time
from work to home. The model parameters are estimated using a sample of workers from
the 1991 Boston Household Activity Survey. The paper also presents mathematical expres-
sions to evaluate the effect of changes in sociodemographic variables and policy-relevant
exogenous variables on the temporal pattern of trips and cold starts attributable to commute
stops. The application of the model indicates that failure to accommodate the joint nature of
the activity decisions during the evening commute can lead to misdirected policy actions for
traffic congestion alleviation and for mobile-source emissions reduction.

1. Introduction
The analysis of commute trip patterns has always
been of considerable interest in travel demand litera-
ture, since the commute pattern has a decisive impact
on peak-period traffic congestion on roadways. Sev-
eral studies have examined commute patterns from
metropolitan areas in the United States in the past
decade. A consistent finding of these studies has been
that the commute pattern is becoming more complex
because of an increasing tendency to make nonwork
stops during the commute, especially in the evening.
For example, Lockwood and Demetsky (1994) noted
that almost 44% of workers in the Washington D.C.
metropolitan area make stops during the morning or
evening commutes and that individuals are almost
twice as likely to make stops in the evening as in the
morning. Bhat (1997a) found in another study, using
the 1991 Boston Household Travel Survey, that about
38% of individuals made stops during the commute
and that evening commute stop-making was about

twice as prevalent as morning commute stop-making.
Davidson (1991) found similar results from her analy-
sis of commute behavior in a suburban setting. Other
studies (such as those of Gordon et al. 1988, Purvis
1994) also provide empirical evidence of increased
stop-making during commute periods.
The discussion above highlights the importance of

studying stop-making behavior during the work com-
mute, especially during the evening commute. The
focus of this paper is on examining evening com-
mute stop-making behavior. The broad objective is to
model the entire activity-travel pattern of the worker
between the time s/he leaves work (the departure
time from work is assumed to be exogenously deter-
mined, based on the work schedule of the worker)
to the time he or she returns home at the end of
the evening commute. The attributes characterizing
the evening commute activity-travel pattern include:
(a) number of stops (including zero stops, which
implies that the worker heads home directly); (b)
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sequence of stops (when the number of stops is more
than one); (c) activity type of each stop; (d) activity
duration of each stop; (e) travel time deviation to each
stop from previous stop (or from work, when the stop
is the first one) relative to the direct travel time from
previous stop to home (we will refer to this simply
as the travel time deviation from previous stop); and
(e) location of each stop (the travel mode used to the
stop is almost always the same as the one used for the
journey to work, so this dimension of the nonwork
stop is not identified).
The dimensions of evening commute behavior

listed above determine the spatial and temporal dis-
tribution of vehicular demand on roadways. In addi-
tion, the activity duration dimension determines the
type of engine start for the trip subsequent to the stop.
This information constitutes an important input for
estimating mobile source emissions (an engine start is
classified as a “cold” start when the engine is “off”
for more than 60 minutes; a “cold” start leads to sub-
stantially higher mobile source emissions than a “hot”
start).
The author has been involved in the development

of a broader framework to model the entire daily
activity-travel pattern of workers, based on an empir-
ical investigation of travel behavior from several
metropolitan areas in the United States (see Bhat and
Singh, 1999). The investigation indicates that there is
little interaction in after-work dimensions of activity-
travel choices with activity behavior at earlier times of
the day. This is because of the nature of activities pur-
sued after work and at other times of the day. Most
activities after work tend to be social-recreational or
shopping-oriented, whereas activities at earlier times
serve more basic functions (for example, serve-child
activities during the before-work period and eating
during midday), or are personal business activities
(banking, post office trips, etc.) that are unavailable
for participation after work because of restricted open
times of facilities. Based on these and other obser-
vations, Bhat and Singh have developed a compre-
hensive daily activity-travel pattern framework that
includes a submodel for the after-work activity pat-
tern of workers. The current research contributes
toward estimating such a submodel within the scope
of a larger daily activity pattern model.

The daily activity pattern framework of Bhat and
Singh (1999) considers all attributes of an entire
daily activity-travel pattern and emphasizes tempo-
ral detail by considering activity-travel patterns in the
context of a continuous time domain. This is in con-
trast to earlier trip-chain and other activity-scheduling
models that focus on limited number of dimensions
of the activity schedule and/or do not model the
temporal dimension adequately. Bhat and Singh’s
framework is also able to accommodate space-time
interactions, because joint modeling of stop attributes
is undertaken. The framework, at the same time,
provides an overarching structure to allow interac-
tions across patterns/tours in the day when such
interactions are important. A potential downside to
Bhat and Singh’s framework is that the mathemati-
cal structures of the model components are not com-
monly used in travel demand modeling and are more
sophisticated than traditional discrete choice models.
However, they are still rather easily estimated.
Work-related choices such as work participation

and work schedule times (hours of work, departure
time of work, etc.) are relatively longer-term decisions
and are not modeled in the current paper. The view
is that decisions on whether to work, where to work,
and times of work are not determined on a day-to-
day basis. These dimensions may be modeled prior to
the analysis of daily activity-travel patterns, as done
by Bhat and Koppelman (1993).
The joint modeling of all the dimensions character-

izing the evening commute pattern is quite complex,
if not infeasible. However, the modeling framework
can be considerably simplified by noting that most
individuals either travel home directly after work or
make one stop. For example, a descriptive analysis
of the 1991 Boston Household Travel Survey indi-
cated that about 88.5% of individuals either traveled
home directly after work or made one stop in the
evening commute. The corresponding figure from a
1988 Washington D.C. household travel survey was
94.7%. A reasonable modeling strategy, then, is to
focus on the presence or absence of a first stop (along
with the various characteristics of this first stop), next
model the presence or absence of a second stop (and
the attributes of the second stop) conditional on the
presence and characteristics of the first stop, and so
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on. An important point to note is that the number and
sequence of stops is modeled implicitly in this pro-
posed framework.
An alternative strategy to modeling evening

commute nonwork stops might be to model the stop
with highest “priority” first (this is in contrast to our
proposed approach of stop modeling based on tempo-
ral sequence). Unfortunately, the concept of “priority”
is difficult to define. Even when a definition is devel-
oped, priority assignment can be very subjective and
may even change for the same person from one time
to another. For example, assume that activity type is
used to determine priority. Shopping activity may be
of higher priority than social-recreational activity for
some individuals, but the reverse may be true for oth-
ers. For the same person, shopping activity may be
of higher priority if it involves the purchase of an
essential item (e.g., milk) and if the corresponding
social-recreational activity is a self-imposed appoint-
ment to exercise. On the other hand, on a different
day, shopping activity may be of lower priority if it
involves the purchase of a noncritical item and if the
corresponding social-recreational activity involves an
appointment with a colleague to play racquetball. A
more fundamental problem with the use of activity
type to determine priority is that activity type is an
endogenous variable. It is part of the activity-travel
behavior decisions of individuals that we would like
to model. It cannot be used exogenously to inform the
modeling process. Similarly, although activity dura-
tion and/or travel time deviation may be used to
identify activity priority (for example, higher dura-
tion activities are assigned higher priority), this pro-
cedure would be flawed because activity duration
and travel time deviation are endogenous variables
of interest. To summarize, the alternative approach
of prioritizing activities is difficult to use, is ad hoc,
and is theoretically inappropriate. We prefer to use
the simple and more straightforward assumption of
temporal sequentiality. Besides, given that most indi-
viduals make one commute stop (if a stop is made),
the temporal sequencing structure is not likely to
lead to substantial errors in forecasting. Adopting this
assumption but modeling all the attributes of each
stop jointly is, in our opinion, a better approach than
purporting to capture interactions among stops but

really capturing interactions only along a few dimen-
sions, adopting a very restrictive interaction structure,
modeling only a limited number of stop dimensions,
and ignoring the jointness in choice dimensions for
the same stop. Our proposed structure is based on
the empirical finding in earlier studies that there are
substantial interactions among choice dimensions for
a particular stop (see Hamed and Mannering 1993,
Bhat 1998) and on the empirical finding that few
individuals pursue multiple stops.
At each stop level of the framework, the dimensions

to be modeled include the presence or absence of a
stop, type of stop, activity duration of stop, travel
time deviation from previous stop (or from work
for the first stop), and location of stop. We further
simplify this structure by focusing initially on the
first four dimensions and proposing to model loca-
tion of the stop subsequently by formulating a travel
time-constrained destination choice model. Such an
approach accommodates the spatial-temporal interac-
tions in stop-making decisions. Thill and Horowitz
(1997a) have recently demonstrated the importance
of considering such interactions in determining the
consideration set in a destination choice model.
In the rest of this paper, we will confine our

attention to the modeling of the presence or absence
of a first stop in the evening commute and the follow-
ing attributes of the first stop: type of stop, activity
duration, and travel time deviation to stop relative to
the direct travel time from work to home. The loca-
tion of the first stop may be modeled subsequently,
using disaggregate spatial destination choice models
(the technical details of the formulation for such a
destination choice model are available in Bhat 1999).
The same framework may then be applied to analyze
additional evening commute stops.
There have been several earlier studies examining

different aspects of stop-making behavior during
the work commute. However, almost all of these
studies have focused on a limited number of dimen-
sions characterizing the commute activity-travel pat-
tern. For example, Oster (1979), Adiv (1983), Kondo
and Kitamura (1987), Nishii et al. (1988), Strathman
et al. (1994), and Bhat (1997b) focus only on whether
individuals make one or more stops during the
commute. These studies do not model the attributes
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characterizing the stops. Damm’s study (1980)
emphasizes the choice of stop-making (whether to
make no stops or at least one stop) and the duration
of time spent at the stop(s). Damm does not model
activity type of the stop and the travel time involved
in participating in the stop. The studies by Bhat
(1996a, b) and Niemeier and Morita (1996) are nar-
rowly focused on the duration of activity stops made
during the commute. Hamed and Mannering (1993)
and Murthy (1997) model all of the relevant dimen-
sions of a stop but use sequential estimation methods
(rather than a full-information maximum likelihood
technique) to model the various dimensions. Fur-
thermore, both of these studies (and another recent
study on post-home activity behavior by Bhat 1998)
focus only on model estimation; they do not develop
and implement procedures to examine changes in
trip-making patterns and cold starts attributable
to changes in policy-relevant or sociodemographic
variables.
The distinguishing characteristic of the current

study is that it jointly models the dimensions of
stop-making choice, activity type, activity duration
and travel time deviation, and it also develops and
applies appropriate techniques to examine the impact
of changes in exogenous variables on trip-making
patterns and cold starts.
The next section of the paper presents the

econometric structure of the joint model. Section 3 dis-
cusses the data source and sample used in the empir-
ical analysis. Section 4 presents empirical results. Sec-
tion 5 examines the impact of policy actions using the
model. The final section summarizes the important
findings from the research.

2. Methodology
The decision to make a first stop, activity-type choice
of the stop, activity duration of the stop, and travel
time deviation to the stop (relative to the direct
work-to-home path) are modeled using a discrete-
continuous econometric framework (see Bhat 1998).
The decision to participate in a first stop and the activ-
ity type choice together are represented as a discrete-
choice system, whereas activity duration and travel
time deviation are the continuous decisions.

The joint nature of the decisions regarding whether
to make a stop, the type of stop, the duration of
the stop, and the travel time deviation to the stop
arises because the choices are caused or determined
by certain common underlying observed and unob-
served factors (see Train 1986, p. 85). For example, a
high income may lead to (a) more stop-making dur-
ing the commute, (b) a higher propensity to partic-
ipate in a particular out-of-home activity type (e.g.,
recreation), (c) a longer activity duration, and (d) a
higher travel time deviation. Thus, there is a jointness
among the choices because of a common underlying
observed variable. Similarly, an individual’s intrinsic
(unobserved) preference to be involved in a particu-
lar out-of-home activity type may manifest itself in
the form of a high likelihood of participating in that
activity type, as well as a long activity duration of
participation in that activity type and a willingness to
travel farther to participate in that activity type. The
association among the activity decisions in this case
arises because of a common underlying unobserved
preference measure.
In the following presentation, we will use the index

i �i = 1�2� � � � � I� to represent both the participation
choice and activity-type choice (subject to participa-
tion) with the notational convention that i = 1 identi-
fies the choice of going directly home from work, and
higher values of i indicate participation in a stop of a
particular type. The index q �q = 1�2� � � � �Q� is used
to represent individuals. The equation system can be
written as:

u∗
qi = 
′

i zqi+ �qi

aqi = �′
i xqi+�qi for i = 2�3� � � � � I

tqi = � ′
i yqi+�qi for i = 2�3� � � � � I � (1)

u∗
qi is the indirect (latent) utility that the qth individual
derives from either going home (i= 1) or participating
in an out-of-home activity type (i = 2�3� � � � � I). aqi is
the logarithm of the activity duration of participation
in out-of-home activity type i for the qth individual,
and tqi is the logarithm of the travel time deviation
associated with participation in out-of-home activity
type i for the qth individual. zqi� xqi, and yqi are col-
umn vectors of exogenous variables, and 
i, �i, and
�i are corresponding column vectors of parameters to
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be estimated. We assume that the �qi’s are identically
distributed across alternatives i and individuals q and
that they are independently distributed across indi-
viduals. We also assume that each of them has a
location parameter equal to zero and that their joint
(cumulative) distribution function, H��q1, �q2, � � � � �qI �,
results in a nested logit structure with correlation
among the error terms of the out-of-home activity
types:

H��q1��q2�����qI � = exp
{
−exp�−�q1�

−
[ I∑

i=2
exp�−�qi/��

]�}
(2)

The � term is a dissimilarity parameter that intro-
duces correlation among the error terms of the out-
of-home activity types (i = 2�3� � � � � I). The �qi’s and
�qi’s are assumed to be distributed identically across
individuals. We specify a bivariate cumulative nor-
mal distribution function �2�0�0��2�i

��2�i
� ��i�i

� for
�qi and �qi in each out-of-home activity type regime i.
�2�i
and �2�i

are the variances of the error terms �i and
�i, respectively, and ��i�i

is the correlation between
the two error terms.
We considered two alternative functional forms,

linear and logarithmic, for activity duration and travel
time deviation in Equation (1). These are the two
forms commonly used in the literature to model time
duration (for example, Allaman et al. (1981) use a lin-
ear functional form, whereas Hamed and Mannering
(1993) use a logarithmic form). We evaluated these
functional forms on the basis of statistical fit and
distribution of residuals. We found that the logarith-
mic form provided a superior statistical fit in both
the activity duration and travel time deviation equa-
tions. We also found that the linear form yielded
highly skewed distributions for the residuals in both
equations. Therefore, we chose the logarithmic func-
tional form for OH activity duration and home-stay
duration. An additional advantage of the logarithmic
functional form is that it guarantees the positivity of
activity and travel time durations in forecasting.
The continuous variables aqi and tqi in Equation (1)

are observed if and only if the ith out-of-home activ-
ity type (i = 2�3� � � � � I) is chosen. The alternative i

�i = 1�2� � � � � I� will be chosen by an individual if the
utility of that alternative is the maximum of the I
alternatives. Let Rqi be a dichotomous variable with
values 0 and 1; Rqi = 1 if the ith alternative is chosen
by the qth individual and Rqi = 0 otherwise. Defining

�qi =
{

max
j=1�2� ��� � I� j �=i

u∗
qj

}
− �qi� (3)

the utility maximizing condition for the choice of the
ith alternative may be written as:

Rqi = 1 if and only if 
′
i zqi > �qi� (4)

Thus, we now have the situation that aqi and tqi are
observed if and only if �qi < 
′ zqi �i= 2�3� � � � � I�. Let
Fi��qi� represent the marginal distribution function of
�qi implied by the assumed joint distribution function
H��q1� �q2� � � � � �qI � and the relationship in Equation
(3). The random variable �qi is nonnormal because of
the nested logit structure for the errors in the activ-
ity participation-type choice model. Following Lee
(1983), let us transform this nonnormal random vari-
able into a standard normal random variable:

�∗
qi = Ji��qi�=�−1�Fi��qi��� (5)

where ���� is the standard normal distribution
function. Then, Equation (4) can be written as

Rqi = 1 if and only if Ji�
′
izqi� > Ji��qi��

or equivalently,

Rqi = 1 if and only if Ji�
′
izqi� > �∗

qi� (6)

We can now write down the likelihood function for
our model system based on Equation (6) and the
fact that aqi and tqi are observed only if Rqi = 1 �i =
2�3� � � � � I�. Let the correlation between �∗

qi and �qi be
��i

and that between �∗
qi and �qi be ��i

. Combined
with the assumed marginal bivariate distribution for
�qi and �qi and the standard normal marginal distri-
bution of �∗

qi, this implies a trivariate normal distribu-
tion of ��∗

qi��qi��qi� for each out-of-home activity type
i with a mean vector of zero and variance-covariance
matrix:∑

i

�i = 2�3� � � � I�

=

 1 ��i

��i
��i

��i

��i
��i

�2�i
��i�i

��i
��i

��i
��i

��i�i
��i

��i
�2�i


 � (7)
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The parameters to be estimated in the model system
are the 
i parameters in the activity participa-
tion/type choice model and the following parameters
in the activity duration and travel time deviation
equations for each out-of-home activity regime (i =
2�3� � � � � I): �i��i���i

, ��i
���i

� ��i
, and ��i�i

. The like-
lihood function for estimating the parameters is
quite complicated (though straightforward to derive).
Define the following quantities for each out-of-home
activity type i �i = 2�3� � � � � I�:
gqi = ���i

�−1�tqi−� ′
iyqi��

lqi = ���i
�−1�aqi−�′

ixqi��

dqi =
(√
1−�2�i�i

)−1
�lqi−��i�i

gqi��

kqi = &���i
−��i�i

��i
�gqi+ ���i

−��i�i
��i

�lqi'/1−�2�i�i
�

(i =
√
1− &��2�i

−2��i
��i

��i�i
+�2�i

�/�1−�2�i�i
�'� and

bqi = &�−1*Fi�

′
izqi�+−kqi'/(i� (8)

The likelihood function to be maximized is:

� =
N∏
q=1

{[
F1�


′
1zq1�

]Rq1
I∏

i=2

[
1

��i
��i

√
1−��i�i

×-�gqi�-�dqi���bqi�

]Rqi
}
� (9)

where -��� is the standard normal density function,
and

F1�

′
1zq1�

= exp�
′
1zq1�

exp�
′
1zq1�+

[∑I
j=2 exp�


′
jzqj/��

]� .
Fi�


′
izqi�

= &
∑I

j=2 exp�

′
jzqj/��'

�

exp�
′
1zq1�+ &

∑I
j=2 exp�


′
jzqj/��'

�

· exp�
′
izqi/��∑I

j=2 exp�

′
jzqj/��

� i = 2�3� � � � � I � (10)

It is easy to see that when ��i
and ��i

are zero
for all out-of-home activity types i �i = 2�3� � � � � I�,
the likelihood function in Equation (9) partitions
into a component corresponding to the activity
participation-type discrete-choice model and another

component representing the likelihood function for
the seemingly unrelated regression model (see Greene
1990, p. 516) of the two continuous duration choices.
The GAUSS matrix programming language is used in
estimation. The standard error of parameters is com-
puted from the cross-product matrix of the gradients
evaluated at the estimated parameter values.

3. Data Source and Sample
The data source used in the present study is a
household activity survey conducted by the Central
Transportation Planning Staff (CTPS) in the Boston
metropolitan region. The survey was conducted in
April of 1991 and collected data on sociodemographic
characteristics of each household and each individ-
ual in the household (see Stopher 1992). The survey
also included a 1-day (midweek working day) activ-
ity diary to be filled out by all members of the house-
hold above 5 years of age. Each activity pursued by
an individual was described by: (a) start time, (b) stop
time, (c) location of activity participation, (d) travel
time from previous activity, (e) travel mode to activity
location, and (f) activity type.
The sample for the current analysis comprises 2,285

employed adult individuals who made a work-trip on
the diary day and were older than 16 years. (Com-
plete details of the screening and data cleaning pro-
cedures employed in arriving at this sample from
the overall activity diary data is provided in Murthy
1997). Some of the individuals made more than one
stop during the evening commute, but we focus in
this paper only on the presence or absence of a first
stop and the characteristics of the first stop (as dis-
cussed earlier). The activity type of the stop was
characterized by three categories: shopping, social-
recreational (including eating out), and personal
business (including banking).
The travel time from work to home (if an individual

chooses to proceed directly home after work) is
obtained from network level-of-service data provided
by the Central Transportation Planning Staff (CTPS).
The network level-of-service data includes travel time
information by mode for each traffic zonal pair in
the Boston metropolitan area. Because the mode used
by an individual to get to work and his or her
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home traffic zone and work traffic zone are known,
we appended the appropriate travel time from the
level-of-service data to each individual’s record. Sim-
ilarly, we obtained the travel time from work to activ-
ity location and from activity location to home for
those individuals who made a commute stop. From
the above information, we computed the travel time
deviation for individuals making commute stops.
The number of individuals not participating in any

activity during the evening commute in the sample is
1,610 (70.5%). The number participating in the three
out-of-home activity types is as follows: 242 (10.6%)
in shopping activity, 185 (8.1%) in social-recreational
activity, and 248 (10.9%) in personal business. The
average duration of out-of-home activity participation
(across all out-of-home activity types) is 47 minutes,
and the average travel time deviation is 14 minutes.
Among the different activity types, participation in
social-recreational activity is associated with a larger
activity duration (average of 96 minutes) and a larger
travel time deviation (18 minutes).
The percentage of individuals making stops during

their evening commute is about 30% in the sample.
This is a sizeable fraction, especially when viewed
from the perspective that about one in three com-
muters makes an evening commute stop. Given the
total number of commuters in metropolitan regions,
this would imply a sizeable number of evening com-
mute stops. Furthermore, the Boston data set used
here was collected in 1991. Descriptive studies (for
example, Purvis 1994 and Lockwood and Demetsky
1994) suggest an increasing trend to make evening
commute stops. Thus, it is important to focus on this
aspect of activity-travel behavior of commuters.

4. Empirical Analysis
This section discusses the model specification, overall
data fit of the model, and the estimation results.

4.1. Model Specification
A number of different variable specifications were
attempted in our study for the different compo-
nents of the joint model system. We considered

four sets of explanatory variables in the analysis:
individual sociodemographics, household sociode-
mographics, work-related characteristics, and home-
work location attributes. Table 1 provides a listing
of these explanatory variables and their associated
descriptive statistics in the sample.
In the model specifications, we tested the nested

logit structure for the activity participation-type sub-
component of the joint model (with correlation among
the utilities of the out-of-home activity type alterna-
tives) against a multinomial logit (MNL) structure. We
found that the dissimilarity parameter � in the nested
logit structure (see Equation 2) was not significantly
different from one in all the alternative variable spec-
ifications we attempted. A further test of the hypoth-
esis of the absence of the independence of irrelevant
alternatives (IIA) property of the MNL against the
alternative hypothesis of its presence, using the Small
and Hsiao test (see Ben-Akiva and Lerman 1985, p.
185) also did not reject the MNL structure. Thus, we
chose to model the activity participation-type choice
model, using the simple MNL formulation.
We constrained the correlation parameters between

the travel time deviation equation and the activ-
ity duration equation to be the same across differ-
ent out-of-home activity type regimes. The correlation
between unobserved factors affecting the propensity
to participate in an out-of-home activity type and the
activity duration in that activity type was not statis-
tically different across the three out-of-home activity
type regimes. Therefore, these three correlations were
constrained to be equal. A similar result was observed
for the correlation in unobserved factors between out-
of-home activity type choice and the travel time devi-
ation across the three activity type regimes, and so
these three correlations were also constrained to be
equal.

4.2. Overall Empirical Results
The log-likelihood at convergence of the joint model
system is −3675�79. The likelihood value when only
alternative specific constants are included in the activ-
ity type-participation model and when only constants
(differentiated by activity type) are introduced in the
activity duration and travel time deviation models
(with different variances allowed across the different
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Table 1 List of Exogenous Variables in the Model

Sample Stats

Variable Definition Mean SD

Individual Sociodemographics

Age Age of individual in years (×10−1) 4�11 1�22
Female 1 when individual is female 0�46 0�50

Household Sociodemographics

Income Annual household income in $0000’s of dollars 6�16 2�83
Presence of young children 1 when there are children less than or equal to 11 years in

individual’s household
0�15 0�36

Single individual household 1 when individual lives alone 0�11 0�31
Number of additional employed adults Number of additional employed adults in the individual’s

household
1�02 0�84

Number of additional unemployed adults Number of additional unemployed adults in the individual’s
household

0�33 0�58

Work-related Characteristics

Work duration Work duration (in 100’s of minutes) 5�00 1�21
Departure from work before 4 p.m. 1 when individual departs work in the evening before 4 p.m. 0�26 0�44
Departure from work after 6 p.m. 1 when individual departs work in the evening after 6 p.m. 0�14 0�35
Car mode 1 when individual uses the car mode to work 0�88 0�33

Home-Work Location Variables

Urban residence 1 when individual’s household is located in an urban area 0�40 0�49
Urban work location 1 when individual’s workplace is in an urban area 0�50 0�50

activity types in the activity duration and travel time
deviation equations but all correlation parameters set
to zero) is −3920�05. A log-likelihood ratio test clearly
rejects the hypothesis that all exogenous variable
parameters and error correlations are zero. A further
test of the joint model with an independent model (in
which all exogenous variables are included but the
correlation terms are set to zero) rejects the hypothesis
that activity participation and type, activity duration,
and travel time deviation are independently deter-
mined, the log-likelihood value of the independent
model is −3695�4; the likelihood ratio test value is
39�22, which is larger than the chi-squared statis-
tic with three degrees of freedom at any reasonable
significance level.
The next four sections of the paper present the

results of the multinomial activity participation-
type choice model, the activity duration model, the
travel time deviation model, and the error corre-
lation parameter estimates, respectively. The exoge-
nous variable parameters in the different submodels
and those of the error correlations are estimated

simultaneously. We discuss them separately for ease
in presentation (in the remainder of the paper, we
will refer to social-recreation activity as recreational
activity).

4.3. Activity Participation/Type Choice Model
Table 2 presents the results of the activity
participation-type choice model. Among the individ-
ual sociodemographic variables, age has a positive
effect on the choice of shopping and personal busi-
ness activities, although the marginal positive effect
decreases with age, as indicated by the negative sign
on the square of age (the age effect remains posi-
tive until 96 years, after which it turns negative; this
result should be interpreted cautiously, because the
maximum age in the estimation sample is 88 years).
The results also indicate that older individuals are less
likely to participate in recreational activity compared
to participating in other out-of-home activities or
going directly home. Women are more likely to par-
ticipate in shopping and personal business activities
compared to men. This is consistent with the finding
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Table 2 Activity-Type Choice Model Estimates

Variable Coefficient t-stat

Activity type constants (proceeding directly home is base)

Shopping −4�605 −6�50
Recreation −0�866 −1�69
Personal business −4�351 −6�29

Individual sociodemographics
Age (shopping-personal business) 1�125 3�87
Age (recreation) −0�213 −3�32
Square of age (shopping-personal business) −0�118 −3�64
Female (shopping) 0�766 4�93
Female (recreation) −0�030 −0�18
Female (personal business) 0�507 3�60

Household sociodemographics

Income (shopping) 0�075 3�05
Income (recreation) 0�108 3�94
Presence of young children (proceeding directly home) 0�674 4�43
Single individual household (proceeding directly home) −0�341 −1�99
Number of additional employed adults (proceeding directly home) 0�247 3�38
Number of additional unemployed adults (proceeding directly home) 0�282 2�89

Work-related characteristics

Work duration (shopping-personal business) −0�177 −3�40
Work duration (recreation) −0�266 −4�04
Departure from work before 4 p.m. (personal business) 0�887 6�02
Departure from work after 6 p.m. (shopping) −0�618 −2�35
Departure from work after 6 p.m. (recreation) −1�074 −3�08
Car mode to work (proceeding directly home) −0�645 −4�66

Home-Work location variables

Urban residence (proceeding directly home) 0�259 2�45

of many earlier studies (see, for example, Bianco and
Lawson 1996, Mensah 1995), possibly reflecting the
continuing trend of women to shoulder a major part
of household maintenance responsibilities.
Several variables associated with household socio-

demographics affect the decision to participate in
an activity and the activity type of participation. A
higher household income increases the propensity of
individuals to make shopping or recreational stops (a
result also found by Goulias and Kitamura 1989 and
Strathman et al. 1994). Individuals with small chil-
dren in their household are likely to return directly
home after work rather than make an evening com-
mute stop, whereas the reverse is true for individuals
who live alone. These effects may be associated with
familial responsibilities (or the lack thereof). The final

two variables are introduced to represent the effect of
the allocation of nonwork activities among adults in
a household. An interesting result is that this effect
appears to be independent of whether the additional
adult is employed or not.
The work-related characteristics affecting activity

participation and type choice include work sched-
ule characteristics and the travel mode to work. The
duration at work determines the time available for
postwork activities and, consequently, has a negative
effect on evening commute stop-making propensity.
The departure time variables from work are intro-
duced with the departure time between 4 p.m. and
6 p.m. being the base. The results indicate that indi-
viduals who leave work before 4 p.m. are more likely
to make personal business stops than to go home
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Table 3 Activity Duration Model and Travel Time Deviation Model Estimates

Activity Duration Model Travel Time Deviation Model

Variable Coefficient t-stat. Coefficient t-stat.

Constants

Shopping 1�187 2�60 2�049 8�63
Recreation 4�121 10�39 2�138 7�04
Personal business 2�099 5�36 2�022 7�72

Individual Sociodemographics

Age (shopping) 0�201 3�81 – –
Age (recreation) −0�119 −2�21 – –
Female (shopping) 0�555 4�20 – –

Household Sociodemographics

Income 0�019 1�35 0�017 1�56
Presence of young children – – −0�159 −1�48
Number of additional unemployed adults −0�131 −1�82 −0�141 −1�92

Work-related characteristics

Work duration −0�064 −1�66 – –
Departure from work before 4 p.m. 0�156 1�60 – –
Departure from work after 6 p.m. – – −0�482 −3�38
Car mode to work – – −0�647 −6�83

Home-work Location Variables

Urban residence −0�151 −1�62 −0�276 −3�58
Urban work location 0�127 1�44 0�356 4�59

Note. Variables that are not listed as specific to an out-of-home activity type are generic across all out-of-home
activity types.

directly or to make stops for other activities. On the
other hand, individuals who leave work after 6 p.m.
are unlikely to participate in shopping or recreational
activity. As one would expect, individuals who use
the car mode to work are less likely to proceed home
directly.
Finally, an individual whose home is located in an

urban area is more likely to return home directly after
work (i.e., is less likely to make a stop during the
evening commute).

4.4. Activity Duration Model
The activity duration model results represent the
effect of exogenous variables on the desired duration
of participation. The effect of individual sociodemo-
graphics (Table 3) indicate that older individuals and
women are more likely to need an extended duration
of shopping activity participation than younger indi-

viduals and men, respectively. Furthermore, with
increasing age, individuals are likely to engage in
recreational activity for shorter periods of time.
Among the household sociodemographics, income
has the expected positive effect on duration for all
out-of-home activity types, while presence of addi-
tional unemployed adults results in shorter activ-
ity durations. The effect of duration at work and
departure time from work reflect time constraints.
The location variables, in combination, suggest a
shorter desired duration of participation for individu-
als residing in urban areas and working in nonurban
areas.
An important issue that we would like to point

out is that the effects of work duration and departure
time were very insignificant (from a statistical stand-
point) in the independent model (which ignores the
joint nature of the choice of activity participation-type
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and activity duration). Additionally, the parameters
on the activity participation constants in the dura-
tion equation were much higher in magnitude and
significance in the independent model, compared to
those of the constants in the joint model. These dif-
ferences are associated with the different structures
of the independent and joint models. Let’s consider
the effect of work duration. The independent model
assumes that the activity participation-type choice
decision is made before the activity duration deci-
sion. Since the choice of participating in an activity
is generally associated with a lower work dura-
tion (Table 2), any negative effect of work duration
on activity duration (i.e., a higher activity duration
because of a lower work duration) is implicitly cap-
tured in the positive activity participation constants
in the duration equation. This leads to the (incor-
rect) exaggerated positive parameters on the activity
participation constants and an insignificant parameter
on work duration in the activity duration equation.
In contrast, the joint model recognizes the endoge-
nous nature of activity participation choice; that is, it
recognizes that the decision to participate in an out-
of-home activity and the duration of participation
constitute a joint “package” choice. Therefore, it cor-
rectly captures the negative effect of work duration on
activity duration. A similar explanation can be pro-
vided for the (incorrect) insignificant effect of an early
departure from work on activity duration estimated
by the independent model. More generally, when a
variable appears in both the activity participation-
type model and the duration equation, its effect on
duration tends to be underestimated in magnitude by
the independent model because the effect is partially
or completely absorbed in the activity participation
constants.

4.5. Travel Time Deviation Model
Table 3 also presents the results of the travel time
deviation model. None of the individual sociodemo-
graphic variables have a significant effect on travel
time deviation. Three variables associated with house-
hold sociodemographics have a marginally significant
impact, while departure from work after 6 p.m., car
mode to work, and the home-work location variables
have a highly significant effect.

The parameters on variables common to the activity
participation-type model and the travel time devia-
tion model are generally underestimated in the travel
time deviation equation by the independent model
(for the same reasons discussed in the earlier section).

4.6. Standard Error and Correlation Parameters
There are five distinct elements, ��i

���i
� ��i

� ��i
, and

��i�i
, in the error variance-covariance matrix for each

out-of-home activity type regime (see Equation 7).
As indicated earlier, we maintained the same correla-
tion parameters across the three out-of-home activity
regimes. There are two standard error parameters
(corresponding to the activity duration and travel
time deviation equations) in each regime (for a total
of six standard error parameters) and three correlation
parameters to be estimated.
The standard errors in the activity duration

equation are 0.9288 (12.55), 0.9638 (12.32), and 1.1374
(11.81) for shopping activity, recreational activity, and
personal business activity, respectively (values in
parenthesis are t-statistics). These values suggest a
larger dispersion in activity duration (among individ-
uals with “identical” observed exogenous characteris-
tics) for the personal business activity relative to the
shopping and recreational activities. This may be a
result of lesser homogeneity in the subtypes of activi-
ties characterizing personal business compared to that
of the other two activity types, or may be because the
variables in the specification are better at explaining
the variability in shopping-recreational activity than
the personal business activity (or a combination of the
two). The standard errors in the travel time deviation
equation are 0.7907 (13.56), 0.9589 (12.20), and 0.8988
(13.64) for the shopping, recreational, and personal
business activity, respectively.
The joint modeling of activity participation-type

choice, activity duration, and travel time deviation is
necessitated by the potential presence of correlation
in unobserved elements affecting the three decisions.
We obtained the following correlation parameter esti-
mates (t-statistics): �� =−0�4121 �−2�66�, �� =−0�4778
�−3�79�, and ��� = 0�3315 �4�716�. �� is the correlation
between �∗

qi and �qi, �� is the correlation between �∗
qi

and �qi, and ��� is the correlation between �qi and
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�qi (see Equation 7). The correlation estimates are sta-
tistically significant, emphasizing the need to model
the activity participation-type, activity duration, and
travel time deviation choices jointly. To interpret the
correlation terms, we write Equation (6) as a binary
probit model:

R∗
qi = Ji�


′zqi�−�∗
qi

Rqi = 1 if R∗
qi > 0

Rqi = 0 if R∗
qi ≤ 0 (11)

where R∗
qi is the latent unobserved propensity of

individual q to participate in activity i. The error
term �∗

qi enters with a negative sign in the propensity
equation. Therefore, our correlation estimates indi-
cate that unobserved factors (for example, intrinsic
preference for a particular activity type) that increase
the propensity of participating in any out-of-home
activity type also increase the desired duration of par-
ticipation in that activity type and the travel time
deviation to participate in that activity type. That is,
individuals who would like to participate in a particu-
lar out-of-home activity type for a long duration, and
individuals who are willing to invest time in travel to
participate in a particular activity type, are most likely
to participate in that activity type (all observed char-
acteristics being equal). The positive sign for ��� sug-
gests that individuals desirous of spending a period
of long duration in an activity are also more willing
to accept a larger travel time deviation to get to that
activity.

5. Application of the Model
The model formulated in this paper can be applied in
several ways. The model can be applied to obtain the
probability distribution of travel time deviation for
each individual. This information can be used as an
input to estimate a destination choice model for non-
work stops with probabilistic choice set generation
based on travel time deviation (see Bhat 1999). Our
proposed procedure is different from that of proba-
bilistic choice set generation approaches in the past
in which the parameters of the choice set generation
process are estimated jointly with those of the desti-
nation choice process (see Thill and Horowitz, 1997b).

In the proposed framework, the estimation process is
considerably simplified, as the distribution of travel
time is known a priori. In addition, because the travel
time deviation is determined jointly with the activity
participation-type and activity duration dimensions
of choice, the interrelationship among these choice
decisions and destination choice is implicitly captured
in the resulting spatial model.
The model can also be used to determine the change

in the number and temporal pattern of nonwork
trips during the evening commute due to changes in
sociodemographic characteristics over time or due to
policy actions that alter the work schedule of indi-
viduals. In combination with a subsequent destination
choice model, the model can determine the changes in
temporal and spatial patterns of trip-making. Finally,
the model can predict changes in the number of cold
engine starts associated with nonwork evening com-
mute stops due to sociodemographic changes or pol-
icy actions.
In this paper, we demonstrate the application of the

model by focusing on the effect of two work schedule-
related policy measures on the temporal pattern of
trips and cold starts (it will be understood that we
are referring to trips and cold starts associated with
evening commute stops). We will analyze the effect of
the policy measures on (a) the number of auto trips
generated in the evening peak (peak auto trips), (b)
the number of cold starts in the evening peak (peak
cold starts), and (c) the total number of cold starts.
The next section presents the mathematical

expressions for obtaining the number of peak auto
trips, peak cold starts, and total cold starts. Section 5.2
compares the effects (of the two work schedule pol-
icy measures) estimated by the joint model and an
independent model that ignores the jointness in the
choices.

5.1. Mathematical Expressions
We will assume that 4 to 7 p.m. represents the peak
evening period. To obtain the peak auto trip starts and
peak cold starts, we will need to obtain the travel time
Tws
qi for individual q from the work location to the stop
location, should he or she participate in out-of-home
activity type i. Let T sh

qi represent the travel time from
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the stop location to home should individual q par-
ticipate in out-of-home activity type i, and let Twh

q

represent the direct travel time from work to home
if individual q were to return home directly. In our
model, we use the logarithm of the travel time devia-
tion Tqi �= Tws

qi +T sh
qi −Twh

q � as the dependent variable.
(Such a deviation measure better captures the travel
time investment that would be entailed by participa-
tion in an out-of-home activity, compared to the travel
time to the stop; the deviation measure is also more
appropriate to capture the interaction of the travel
time investment with activity duration and the deci-
sion to participate in an activity.) Since the travel time
from work to home, Twh

q , is exogenous (the work loca-
tion and home location are considered to be predeter-
mined), the model provides an estimate of the sum
of the travel times from work to the stop and from
the stop to home (i.e., Tws

qi + T sh
qi ) for any individual

(should s/he participate in an activity). To obtain Tws
qi ,

we use a simple fractional submodel that apportions
the estimated value of (Tws

qi +T sh
qi ) into its components.

This submodel takes the form:

�q = �1+ e−�4′wq+5q��−1� (12)

where �q is the fraction of total time apportioned by
individual q to travel from work to the stop location
(we assume the same relationship across all out-of-
home activity types), wq is a vector of relevant exoge-
nous variables (including a constant), 4 is a parameter
vector, and 5q is a random error term assumed to
be normally distributed with zero mean and variance
62. 5q and wq are assumed to be independent. After
suitable transformations, we can write Equation (12)
in the following linear regression form:

ln*�q/�1−�q�+= 4′wq +5q� (13)

Estimating 4 and the error standard deviation 6 in
the above regression, using individuals in the sample
who actually make a commute stop, may be inappro-
priate if such individuals are systematically likely to
apportion a larger or smaller fraction of the total time,
Tws
qi +T sh

qi , to the leg from work to activity location. We
tested for the presence of such self-selection bias by
including a Heckman correction term (see Heckman
1976) to the right side of Equation (13). The parameter

on this correction term was statistically insignificant,
suggesting the absence of self-selection bias in appor-
tionment. So 4 and 6 may be consistently estimated
using the subset of individuals in the sample who
actually make a stop. The variables that significantly
affect the apportionment include work duration, age,
use of auto mode to get to work, urban work location,
and urban residential location. The detailed results of
this submodel are not presented here.
The expected value of �q can be obtained for any

individual q (should s/he decide to make a stop) from
the estimates of 4 and 6 :

E�q =
∫ +


m=−


(
1+ e�−4′wq+m6�

)−1
-�m�dm� (14)

The above integration can be achieved using numeri-
cal Gauss-Hermite quadrature.
The travel time from the work location to the

activity location (should individual q decide to partic-
ipate in out-of-home activity type i) is Tws

qi = �q�T
wh
q +

Tqi�. The main model of this paper provides the dis-
tribution of Tqi (since its logarithm is a dependent
variable). Twh

q is a fixed (exogenous) variable, and we
will ignore the stochasticity in the estimate of �q (the
minimum value of Tws

qi is �qT
wh
q ; this occurs when the

travel time deviation Tqi → 0.
Let 12:00 a.m. be the start of the day and define

a time scale that represents the number of minutes
past midnight. On this scale, 4 p.m. would be 960
minutes, and 7 p.m. would be 1140 minutes. Let 9q

be the departure time from work for individual q on
the above time scale. Define the following:

fq = �960−�qT
wh
q −9q� and

cq = �1140−�qT
wh
q −9q�� (15)

fq is defined only if the individual departs from
work before 960−�qT

wh
q , and cq is defined only when

the individual leaves work before 1140− �qT
wh
q . Let

-3�h�p� s� be the trivariate standard normal density
function computed as follows:

-3�h�p� s�

= 1
�∗

{
h

�∗ −
1
�∗

[
���−������p+ ���−������s

1−�2��

]}

·-�p�-�s∗�� (16)
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where

�∗ =
√
1− &��2�−2�������+�2��/�1−�2����

s∗ = �s−���p�/
√
1−�2���

5.1.1. Number of Peak Auto Trips. In this section,
we will consider only those individuals who use the
auto mode to work and depart from work before
1140− �qT

wh
q . Individuals who depart after 1140−

�qT
wh
q will not make a peak auto trip start (even if

they choose to make an evening stop), because the
minimum travel time to the stop would be �qT

wh
q . Let

us classify each individual q into one of two cate-
gories: those who depart work before (960− �qT

wh
q )

and those who depart work after (960−�qT
wh
q ).

Consider an individual q who departs work before
(960− �qT

wh
q ). If s/he makes a stop of activity type

i whose duration Aqi is less than fq , then the con-
ditions that need to be satisfied for the trip start
(subsequent to the stop) to begin in the evening
peak are: �Aqi +Tws

qi � > �fq +�qT
wh
qi � and �Aqi +Tws

qi � <

�cq +�qT
wh
q �. The first condition ensures that the trip

starts after 4 p.m. The second condition ensures that
the trip starts before 7 p.m. Using the relationship
Tws
qi = �q�T

wh
q + Tqi�, the first condition is equivalent

to Tqi > �fq −Aqi�/�q , and the second condition is
equivalent to Tqi < �cq −Aqi�/�q . The probability that
individual q participates in activity type i, Aqi <
fq , and the two conditions above on travel time
deviation are satisfied can be obtained using simple
(though cumbersome) transformations and algebraic
manipulations. The resulting probability is:

Gqi1 =
∫ h=?

h=−


∫ p=@

p=−


∫ s=A

s=B
-3�h�p� s�dhdp ds� (17)

where
? = �−1Fi�


′
izqi��

@ = ln fq −�′
ixqi

��i

�

B =
ln

[(
fq − e*�

′
ixqi+��ip

+
)
/�q

]
−� ′

iyqi

��i

�

and

A =
ln

[(
cq − e*�

′
ixqi+��i

p+
)
/�q

]
−� ′

iyqi

��i

�

Next, consider an individual q who departs work
before (960−�qT

wh
q ), but whose duration Aqi is greater

than fq , should he or she make a stop of activity
type i. Since the minimum possible value for Tws

qi is
�qT

wh
q , this person’s trip-start subsequent to the stop

will be beyond 4 p.m. If this trip-start is to begin
before 7 p.m., the condition that needs to be satis-
fied is �Aqi+Tws

qi � < �cq+�qT
wh
q �, i.e., Tqi < �cq−Aqi�/�q .

The probability that individual q participates in activ-
ity type i, A> fq and that the trip-start begins in the
evening peak can be computed as:

Gqi2 =
∫ h=?

h=−


∫ p=9

p=@

∫ s=A

s=−

-3�h�p� s�dhdp ds� (18)

where 9 = �ln cq −�′
ixqi�/��i

, and other limits of inte-
gration have been defined as Equation 17.
The overall probability that an individual who

departs work before 960−�qT
wh
q will have a peak trip-

start can be computed from Equations (17) and (18)
as Gq =

∑I
i=2�Gqi1+Gqi2�, where the sum is taken over

all out-of-home activity types.
The probability that an individual q who departs

work after �960−�qT
wh
q � will make a stop and a peak

period trip start can be obtained by a similar analy-
sis as:

Lq =
I∑

i=2

∫ h=?

h=−


∫ p=9

p=−


∫ s=A

s=−

-3�h�p� s�dhdp ds� (19)

The expected number of individuals who make peak
auto-trip starts can finally be obtained as

∑
q�Gq +Lq�.

The expressions in Equations (17) through (19)
need to be computed using numerical integration
methods.

5.1.2. Number of Peak Cold Engine Starts. An
engine start after a nonwork stop is classified as
“cold” if the duration of the stop exceeds 60 min-
utes. In this section, we will consider only those
individuals who use the auto mode to go to work
and depart from work before 1080− �qT

wh
q . Individ-

uals who depart after 1080−�qT
wh
q cannot contribute

toward peak period cold engine starts (even if they
choose to make an evening stop), because the sum of
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the minimum travel time to stop and an activity dura-
tion of 60 minutes would place the trip start beyond 7
p.m. Let us classify each individual q into one of two
categories: those departing work before (900−�qT

wh
q )

and those departing work after (900−�qT
wh
q ).

Consider an individual q who departs work before
(900− �qT

wh
q ). If s/he makes a stop of activity type

i whose duration Aqi is less than fq , the conditions
that need to be satisfied for the trip start (subse-
quent to the stop) to begin in the evening peak are:
�Aqi+Tws

qi � > �fq+�qT
wh
qi � and �Aqi+Tws

qi � < �cq+�qT
wh
q �.

However, the duration should also be greater than
60 minutes. This probability can be derived to be:

Qqi1 =
∫ h=?

h=−


∫ p=@

p=D

∫ s=A

s=B
-3�h�p� s�dhdp ds� (20)

Next, consider an individual q who departs work
before (900−�qT

wh
q ), but whose duration Aqi is greater

than fq should s/he makes a stop of activity type i. By
construction, this person’s duration is greater than 60
minutes, and the engine start subsequent to the stop
is a “cold” one occurring beyond 4 p.m. If this cold
engine start is to begin before 7 p.m., the condition
�Aqi + Tws

qi � < �cq + �qT
wh
q � needs to be satisfied. This

probability is:

Qqi2 =
∫ h=?

h=−


∫ p=9

p=@

∫ s=A

s=−

-3�h�p� s�dhdp ds� (21)

The overall probability that an individual who
departs work before 900− �qT

wh
q will make a peak

cold engine start is Qq =
∑I

i=2�Qqi1+Qqi2�, where the
sum is taken over all out-of-home activity types.
The probability that an individual q who departs

work after (900−�qT
wh
q ) will make a peak cold engine

start is:

Sq =
I∑

i=2

∫ h=?

h=−


∫ p=9

p=D

∫ s=A

s=−

-3�h�p� s�dhdp ds (22)

The expected number of individuals who make
peak cold engine starts can finally be obtained as∑

q�Qq +Sq�.

5.1.3. Total Cold Engine Starts (Both Peak and
Nonpeak). The probability that an individual q who
uses the auto mode to work will make a cold engine

start is given by:

Bq =
I∑

i=2

{
Fi�


′
izqi�−�2

[
�−1Fi�


′
izqi��

ln 60−�′
ixqi

��i

� ��

]}
� (23)

The expected total number of cold engine starts is
obtained by summing the above probability across all
individuals who use the auto mode to work.

5.2. Policy Analysis
We consider two work schedule-related transporta-
tion control measures (TCMs) and examine their
impact on peak auto trips, peak cold engine starts,
and total cold engine starts (due to nonwork stops in
the evening commute). The two TCMs are work stag-
gering and an increase in daily work duration due
to a compressed work week policy. In examining the
impact of these TCMs, it is critical to assess their effect
on peak period trips and cold starts because of non-
work stops. This is the focus of the current section.
The work-staggering policy is “implemented” by

randomly selecting 20% of individuals in the sample
who currently leave work between 4 p.m. and 6 p.m.
and subtracting 120 minutes from the departure time
of these individuals. The result is that the work depar-
ture time of all these individuals is staggered to before
4 p.m. The original departure time distribution from
work in the sample is as follows: 597 (26%) leave
before 4 p.m., 1365 (60%) leave between 4 p.m. and 6
p.m., and 323 (14%) leave after 6 p.m. After “imple-
menting” the work-staggering policy, the departure
time distribution is altered as follows: 870 (38%) leave
before 4 p.m., 1092 (48%) leave work between 4 and
6 p.m., and 323 (14%) leave work after 6 p.m.
The work week compression policy is realized by

increasing the daily work duration of a subset of indi-
viduals by 25% (this results in a 4-day work week
with the same number of total weekly work duration
as with the original 5-day work week). The subset
(for which the work duration is increased) comprises
individuals who depart work between 4 and 5 p.m.
and work for less than 8 hours. We assume that the
increase in work duration is equally split between an

Transportation Science/Vol. 35, No. 1, February 2001 75

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

83
.5

6.
94

] 
on

 1
1 

A
pr

il 
20

14
, a

t 1
1:

00
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



BHAT
Commute Activity-Travel Pattern of Workers

earlier arrival to work in the morning and a later
departure from work in the evening. Thus, after the
increase in work duration, the latest work departure
for individuals in the subset is still before 6 p.m.
The impact of the policy actions is evaluated by

modifying exogenous variables to reflect a change,
computing revised expected aggregate values for
number of peak auto trips, peak cold engine starts,
and total cold engine starts (using the formu-
lae presented in the previous section), and then
obtaining a percentage change from the baseline
estimates. Table 4 provides the results estimated
by the joint model of this paper and an indepen-
dent model that ignores the jointness in choices
among activity type-participation, activity duration,
and travel time deviation (i.e., a model that constrains
all unobserved correlations to zero). We discuss the
results in the subsequent two sections.

5.2.1. Work Staggering Policy. Both the inde-
pendent and joint models indicate a decrease in
peak auto trips and an increase in peak and
total cold starts due to the work-staggering policy.
The decrease in peak auto trips is a result of the dis-
tribution of travel time to the stop, and activity dura-
tion is such that the time difference between leaving
work and the trip-start subsequent to a commute stop
is rather small. Thus, although the total number of
commute stops increases because of the policy (note
that departure before 4 p.m. increases the probability
of making personal business stops; see Table 2), many
individuals who earlier were contributing to a peak
trip-start (subsequent to a commute stop) now have a
trip start before 4 p.m. The joint model predicts, how-

Table 4 Effect of Work Schedule Policy Measures

Percentage Change in

Peak Trip Peak Cold Total Cold

Policy Model Starts Starts Starts

Work Independent −15�77 11�79 1�14
staggering Joint −12�57 15�36 3�49

Work week Independent −5�01 −9�17 −1�39
compression Joint −3�29 −8�60 −2�03

ever, a smaller reduction in peak auto trip starts than
the independent model. This is because of the positive
correlation in unobserved factors affecting the activ-
ity participation decision in an out-of-home activity
and the corresponding duration and travel time devi-
ation associated with such a participation. The joint
model predicts a larger activity duration and travel
time deviation associated with the additional com-
mute stops than does the independent model. This
extends the time difference between departure time
from work and the trip-start after a commute stop and
places more trip-starts in the peak period.
The increase in peak cold starts and total cold

starts is a result of more stop-making attributable to
work staggering. The joint model predicts substan-
tially more peak and total cold starts than does the
independent model because it associates larger activ-
ity durations with the increased propensity to make
stops.
In summary, the independent model overestimates

the percentage reduction in peak auto trips by more
than 25% compared to the joint model. It also under-
estimates the percentage increase in peak cold starts
(total cold starts) by 23% (67%). Overall, the indepen-
dent model projects an overly optimistic view of the
impact of a work-staggering policy.
It is interesting to note that although a work-

staggering policy reduces peak trip-starts due to com-
mute stops, it also increases cold starts. There is a con-
flict between reducing peak period traffic congestion
and increasing air pollution. The model formulated in
this paper allows policy makers to evaluate the pos-
itive benefits of traffic congestion reduction against
the detrimental impact on air pollution and make an
informed policy decision.

5.2.2. Work Week Compression Policy. The work
week compression policy results in a larger daily-
work duration. Table 4 shows that both the indepen-
dent and joint models predict a reduction in peak auto
trips, peak cold starts, and total cold starts due to the
work week compression policy.
The reduction in peak auto trips is a result of two

reinforcing effects. First, a longer work duration has
a negative effect on commute stop-making (Table 2),
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reducing total auto trips (the percentage reduction in
total auto trips was about 1.27% in both the joint and
independent models). Second, the longer work dura-
tion results in a later departure from work, leading
to a shift in the trip-start distribution (subsequent to
a commute stop) beyond the peak evening period.
Between the joint and independent models, the joint
model predicts a lower percentage reduction in peak
auto trips. The joint model estimates smaller activity
durations and travel time deviations associated with
the lower likelihood of participation in an activity
(because of unobserved correlation effects). The net
result is that there is less of a shift in the trip-start dis-
tribution beyond the peak period in the joint model
relative to the independent model.
The decrease in peak and cold starts in the inde-

pendent and joint models is due to a reduction in
stop-making because of an expanded work duration.
The joint model estimates a greater percentage reduc-
tion in total cold starts, because it associates lower
activity durations with a lower likelihood of mak-
ing a stop. Increasingly, however, the lower activity
duration predictions from the joint model also keep
a larger fraction of the cold starts within the peak
period, resulting in a lower reduction in peak cold
starts.
In summary, the independent model overestimates

the percentage reduction in peak auto trips and peak
cold starts by 52% and 7%, respectively. It also under-
estimates the percentage reduction in total cold starts
by about 32%.
The work week compression policy leads to a

reduction in peak auto trips, peak cold starts, and
total cold starts (unlike the work-staggering policy).
However, it appears to be substantially less effective
than a work-staggering policy in terms of alleviating
peak period traffic congestion.
An important point to note here. A work week

compression policy will probably lead to increased
stop-making and longer activity durations on the
additional day the individual does not work. Thus,
some of the traffic congestion and air pollution
impacts may be shifted to the additional nonwork
day. The current model does not account for this,
because it focuses only on the workday. A more
comprehensive analysis of traffic congestion and air

pollution impacts will use an entire week as the
unit of analysis, so it can address substitution effects
in stop-making among days of the week (including
workdays and nonworkdays). Of course, doing so
makes the modeling framework more complex.

6. Conclusions
This paper develops a methodological framework to
analyze the activity-travel pattern of individuals dur-
ing the evening commute. The framework involves
modeling the presence or absence and attributes of
the first commute stop, followed by the presence or
absence and attributes of the second commute stop
conditional on the presence and characteristics of the
first stop, and so on. The focus of the current paper
is on modeling the presence or absence of a first stop
and the following attributes associated with the stop:
activity type, activity duration, and travel time devi-
ation to stop relative to the direct travel time from
work.
The paper uses a joint discrete-continuous choice

system in estimation. The discrete choices include
the participation and activity-type decisions, and the
continuous choices include the activity duration and
travel time deviation decisions. The joint model sys-
tem is estimated using a full-information maximum
likelihood (FIML) procedure.
The empirical analysis uses a data set from

the Boston metropolitan area. The results indi-
cate the strong effects of individual and household
sociodemographics, work schedule characteristics,
and residential-workplace location characteristics on
the activity participation decision and associated
dimensions of the activity participation. The analysis
also shows strong correlations in unobserved compo-
nents among activity participation-type choice, activ-
ity duration, and travel time deviation to the stop.
Ignoring these correlations leads to inappropriate esti-
mates of the effect of work schedule characteristics
and other variables on activity duration and travel
time deviation. The joint model that accommodates
the correlation among the activity and travel dimen-
sions outperforms (in terms of data fit) an inde-
pendent model that ignores the jointness among the
choices.
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The paper derives the necessary expressions for
application of the model to determine the change in
number and temporal pattern of trip-making and cold
starts due to changes in policy-relevant exogenous
variables or sociodemographic variables. Using these
expressions, the paper applies the model to evalu-
ate the effect of a work-staggering policy and a work
week compression policy. The author is not aware of
any other study that develops and applies such for-
mulae in the context of a continuous-discrete choice
system.
The application of the model indicates that failure

to accommodate the joint nature of the activity par-
ticipation, activity type, activity duration, and travel
time deviation decisions leads to incorrect conclusions
regarding the effects of the work-staggering and work
week compression policies. Such misinformed results
can lead to misdirected policy actions for traffic con-
gestion alleviation and for mobile-source emissions
reduction.
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