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Abstract

Recently extensive studies have been conducted on the sensitivity analysis for the
Wardropian equilibrium modeling of traffic networks. Here we present a method for
sensitivity analysis for network flows at stochastic user equilibrium. Our method is de-
veloped from a dual formulation of the stochastic user equilibrium analysis. By adopt-
ing Dial’s algorithm for stochastic traffic assignment, we are able to formulate a
computationally efficient link-based algorithm for the sensitivity analysis. Since the
Wardropian equilibrium in a traffic network is an extreme case of stochastic user equi-
librium with § —o, f being a dispersion parameter in the expected utility function
for stochastic route choice, the method presented here can also be used for the sensitiv-

ity analysis for the Wardropian equilibrium by taking 6 large enough.
Introduction

Sensitivity analysis for traffic network equilibrium problems is important for two rea-
sons. The first is that many parameters in functions (such as in link performance func-
tions) underlying a mathematical model for equilibrium analysis are likely incurring
some uncertainty, thus sensitivity analysis is important for validation of the mathe-
matical model. The second is that sensitivity analysis can be applied to a variety of op-
timal design and control problems in traffic networks. See, for example, the works of

Kim and Suh, (1990), Yang et al. (1994), Yang and Lam (1996), Yang (1997), Yang
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and Bell (1997), for such applications.

To our knowledge, the research works up to now concerning the method and applica-

tion of sensitivity analysis are all for the Wardropian equilibrium or user equilibrium,
at which the travel time on all used paths is equal for each origin destination (OD)
pair, and also less than or equal to the travel timé that would be experienced by a single
vehicle on any unused path (Sheffi, 1985).
A well known method for sensitivity analysis for traffic network user equilibrium was
developed by Tobin and Friesz (1988). Some method (e.g., Qiu and Magnanti, 1989) of
sensitivity analysis for general variational inequality can also be used for Wardropian
equilibrium model of traffic networks. Sensitivity analysis for some extension of the
Wardropian equilibrium model, for instance a model with elastic travel demand, has
also been developed and applied for solving congestion pricing and network design prob-
lems (Yang, 1997).

Since the stochastic user equilibrium (SUE), at which no motorist can improve his or
her stochastically "perceived” travel time by unilaterally changing routes, is a more
general and to some extent more realistic model for traffic network analysis (Sheffi,
1985), sensitivity analysis for the stochastic user equilibrium model is also an impor-
tant problem.

In this paper we present a method for sensitivity analysis for the stochastic user equi-
librium model of traffic networks. The main problem of sensitivity analysis here is the
computation of the derivatives of link costs and flows with respect to some uncer-
tainty parameters in link cost functions and in OD demands. Our method is developed
from a dual formulation of the stochastic user equilibrium analysis, which was first
presented by Daganzo (1982).

By adopting Dial’s élgorithm (Dial, 1971) for stochastic traffic assignment, we are
able to formulate a computationally efficient link-based algorithm for the
sensitivity analysis.

We note that a ‘‘path choice entropy decomposition’’ technique has been recently devel-
oped by Akamatsu (1997), which can be used for efficient computation of expected
minimum cost for a stochastic diver. Our work has been much stimulated by
Akamatsu’s result.

In this paper the stochastic user equilibrium will be formulated based on
multinominal logit-based model (Sheffi, 1985).

In the next section we briefly review this logit-based model and its dual mathematical

programming formulation. In Section 2 the sensitivity analysis method is formulated.
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A very simple procedure based on Dial’s algorithm will be provided for computing the
derivatives of link costs and flows with respect to some uncertainty parameters in link
cost functions and in OD demands. A reader is refered to Dial (1971), Sheffi (1985) or
Akamatsu (1997) for exposition of Dial’s algorithm.

Two numerical examples are provided in Section 3 for demonstrating the correctness
and implementability of our method. Section 4 gives a simple explanation regarding

the simplicity of our method.

1 Stochastic User Equilibrium and the Dual

Mathematical Program Formulation
A list of notations used in this paper are as follows.

notations:

- N= {i,j,-} : set of nodes

- A= {3j,---} : set of links

- w= {rs,"} : set of OD pairs

- ¢5(7,s) : OD demand, rs € W, where 7, is an uncertainty parameter

+ = (gs)xew and 7= (75)se w denote the vectors of all OD demands and their
uncetainty parameters, respectively

- Rs={ k,p,--- | : set of paths connecting rs

- h§ : flow on path k with origin r and destination s

- PP : probability that a traveler from r to s chooses path k

- P¥ : probability that a traveler from r to s traces link ij

- X; : link flow, forij € A

-t (Xy, €;) : differentiable cost function of link ij with respect to flow X, and
parameter €;.
It is assumed that t; is strongly monotone with respect to X;.
For given ¢, the inverse of the cost function is denoted as X; (t;, €; ), which is
also strongly monotone in t;

(Xy)g - partial derivative of X; with respect to t;

- (Xy)y : partial derivative of X; with respect to €;

* X =(Xi)iea' t =( ts)ien and € =( €; )sea denote the vectors of all link flows,

link costs and uncertainty parameters, respectively
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{ 1 if ij is a link on path k; -
85 =
0 otherwise.
{1 if ij = gh€A;
fgh =
0 otherwise.

+ C¢ = Sjeat; 0 & the total cost of traveling on a path k € Rx
- @ : a dispersion parameter in SUE
- For simplicity, summation notations X eRw Z;cRs, eW will be abbreviated as

Sk 2 2, respectively.

In a multinominal logit-based stochastic user equilibrium (SUE), the "expected util-
ity” of traveling on path k € Rx is given by Uf = — 6 c ¥, where # is a unit scaling
parameter, see, e.g., Chapter 10 of Sheffi (1985). For a traveler on OD pair rs € W, the
probability PF at which the path k is chosen is given by

exp(— 0 ¢c)

PpP= — k € R.. (1)
S exp(— 6 ¢)

At stochastic user equilibrium, the path flows are

exp(— 0 cp)
hf = Q= , k € Ra. (2)
Sexp(— 6¢x)

@ can be understood as a dispersion parameter indicating how precisely a driver can
correctly choose the shortest routes; the higher the 6, the higher the probability that
a driver chooses shortest routes.
From (2) it can be derived that the Wardropian equilibrium is a special case of SUE
when we take § —o0.
The link flows are
Swexp(— 6CF) 6 05

Xj=S3hFdi=3 0w ,ij € A, (3)
%s k Ts s exp(— 6 C7)

As was shown by Daganzo (1982) (p. 346, the Extremal Equivalence Theorem), the
stochastic user equilibrium is achieved if and only if t=( t j)iea, is @ minimizing point
of the function Z,

Z(te) =X

i tij (0,61-]-)

273

z;(v,€;)dv— Eqrssrs(crs(t))’ 4)
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where
Se(C=(t)) =—(}llniexp (—8cp) (5)

1s the expected minimum cost perceived by a traveler from r to s.

In fact, the minimizing condition for this unconstrained program is as follows

o7

oty

_ 0S. OocF
—xﬁ(tﬁ’e"")_gsq“%ac? 3t
~ 98,

_Xﬁ(tiiyeij)_ESQrsE: Ser 0 &

Sexp(— 0ck) 8%
=Xfx(tﬁ,€ij — 204
rs S «exp(— 0 c)
=0, ij € A. (6)

It implies that

Swexp(— 0cf) O &
Sexp(— 6c)

=x5(ts€) — = qu 1] € A,
rs

which are the link flows in a stochastic user equilibrium state.

In a compact vector expression, (6) is rewritten as
V.Z=0. (7)

It can be shown that the Hessian of Z

0%
ViZ= 8
(atﬁatgh)m ®)

is a positive definite matrix. This implies that Z is convex and the minimum point is

unique. In fact, it is trivial to show that the Hessian of the first term of Z

v ( 13 Tioen x5 (v,€5d v ) = diag ((x4)w)s (9)

is positive definite, since each diagonal entry is positive from the assumption that
X ; is strongly monotone in t ;. Where diag( ) denotes a diagonal matrix with corre-
sponding diagonal entries. It is well known (see, e.g., p. 278, Sheffi, 1985) that s
( ¢™) is concave with respect to ¢ ™. Asc ™is a vector with components which are linear
conbinations of t; it is thus shown that the function — 3. Q.S ( ¢c™ (t)) is convex
with respect to t ;or equivalently, its Hessian with respect to t ;is semi-positive defi-

nite. It then follows that the Hessian of Z
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Vi = diag((Xij)tij)ij+ Vi (_ %Sq“ S rs( C rs(t)) (10)

is a positive definite matrix.
2 Sensitivity Analysis of Stochastic User Equilibrium of Traffic Nerworks

The problem of sensitivity analysis treated here is the computation of the changes of
costs t;and flows x; caused by small perturbation of €; and 7 , or more precisely,
the corresponding partial derivatives, at an equilibrium state. For simplicitity of
description, we shall first consider in Section 2.1 the case ¥ ~ =0, and the problem is

. ot;; ot;; . .
thus the one for computing —* and -, with ¢,, being constants. A method for

P 7 Oey Oe; ’
computing E”— and E’L will be provided in Section 2.2.
s s ..
Note: In this paper we make a different use of the notations Oz and (z;), as fol-

lows. While (z;) denotes the derivative of z;; as an explifiz;;ghfunction in €; and
thus () = 01if 4 + gh (we refer to such derivative as an ”apparent” derivative
in the following); g—i‘:— denotes the "true” partial derivative which, by definition, is
the ratio of change of x; with respect to an infinitesimal change of €, in the manner

governed by the equilibrium conditions, therefore in general 0z *+ 0evenif i+ gh.

Oc;;
. . Ot .
The difference between the notations a—e”— and (t;) is similar.

i

ot,; or;
H 1 1
2.1 Computing _LGG,-,- and _Lae,-j

The start point of our approach is to take

GL_ 3. Semp(—6eto

. . .. . 0Z ..
as functions with arguments ¢; and €; i € A. The equations =0,57€ A (6)

oty

)
define ¢; as implicit functions in variables €

The derivatives of ¢; and z; with respect to €; are computed as follows. At the equi-
librium, from (7) we have
V<(V.Z)=0, or equivalently,
ot

(V%Z)Eﬂ—(th)x(x)e:o, 1)

ot _ (_@L)
Oe O€an /s o

is the matrix of partial derivatives of ¢; with respect to € ;

where
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—((9Z -
(v~ &z )"vh>ij,gh I

. . . CL. 0Z .
is the matrix of the apparent partial derivatives of B with respect to z, , where
if

z,, are explicit variables appearing in % ,which is actually a unit matrix; and
i

(x)e = ((Zy)egn)yn = diag (Ziden)y
1s the matrix of apparent partial derivatives of z;; as an explicit function with respect
to €4.1,9h € A.
From (11) it can be derived that

ot ot,;

()= (.___ij_)ij'gh =—(VIZ)Y VtZ)x(X)e
3 d€y, 5%z 12
=—( »

m)ij"h diag ((z;)e)y;

Now foreach ij € A, z; isa functionin a free variable €; and an intermediate vari-

able ¢; dependant on all €, gh € A, thus we have

ot _, ot; _ )
(E) = (E:h_)ij.ﬂl = ((xii)eijdii.9h+(xij)tiiai:;—)ij' o’ 13

The terms (z;)y,(z;)e; are directly computable from the explicit cost functions

t;(z;, €;).. For example, if

a function equivalent to the BPR (the US Berea of Public Roads, see, e.g., Sheffi, 1985)

link cost function with uncertainty parameter €; then

1
() = m, at €; =0,
and
“Lii gt €; =0,

4B ij

(xij)ﬁj =

The part in the computation that appears to be difficult is that for computing
0’z
0t 0t g,
Dial’s traffic assi§nment algorithm.

, which however can be efficiently computed by the following method based on

Let us expend
A
0t 0t ,,

ot ot °°
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—6%,exp(—606") 85 1 Onsc
2,exp(—6c™)

= (xij)tijaij.vh - erQrs[

_ —6%,exp(—0c7)67,) (Ziexp(—6c7) 65,0
- Zexp(—6cr))

Joa

By applying Dial’s algorithm, Akamatsu (1997) observed that
- S,exp(—66") = exp(—6S,)

can be computed without enumerating all the paths for an OD pair rs. Triggered by this

observation, we worked out that
(i) Texp(—0ch) 05
Texp(—0cv)

and

(i) Texp (—6c%) 8,50k
2,ezp(—6cF)

can also be computed in a very simple manner by using Dial’s algorithm. And therefore

icientl ted.
Bt can be efficiently compute

To compute the formula in (i), note that at a stochastic user equilibrium state the

fraction of the number of travelers from r to s who use link ij is
7 _ Texp(—0cy)of,

g,  Z.exp(—6cF) 09

75

Ty _ exp(—6Oc¥) an
Qs 2,exp(—6c?)

This can be trivially derived from the formulas d

x:
zp = 2,267, Hereafter we denote E”— by the symbol Py :
75

oo T8 _ Tezp(—0cW)p
B T LemC-an

Assuming that all the link costs are fixed, xz can be directly computed by running
Dial’s traffic assignment algorithm. In fact, for each link ij, in Dial’s algorithm,
z; are computed for all the OD pairs rs in a link-based manner and the link flow is ob-
tained as xj = X,z See, e.g., Dial (1971), Sheffi (1985) or Akamatsu (1997) for de-

tails. This implies that
Lexp(—6c)0f P
Zexp(—6cy Y

can be efficiently computed in a link-based manner by Dial’s algofithm. '
For computing the terms in (ii), let z;-, denote the number of travelers from r to

s who traces link ij prior to link gh later, and z;", denote the number of travelers
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from r to s who traces link gh prior to link ij. Note that either z;_g or"z;.,; iszero if
only efficient paths are accounted for in the Dial’s algorithm. By an efficient or rea-
sonable path is meant a path that does not backtack, see, e.g:, p. 89, Dial (1971).
Adopting the notation defined by (16), Pj, is the fraction of the number of travelers
from j to s who trace link gh. By viewing z3 as an OD demand from j to s, we have
N 202D (— 66" X0, -

rs = P =

.’L”,-j h Zkexj) ( - GCJS)

Suppose that I; is a unit OD demand from j to s, by running Dial’s algorithm, the mar-
ginal flow 1% caused by this demand on link gk is obtained, which is equal to Fj, . Thus
Pk, can be computed by Dial’s algorithm. Note that

T, o - z;”
uj—gh __ Pl' — ij—gh (1&
I rs g I rs
if i

thus an P need be calculated only if some zp+ 0, and it can be used for the assign-
ment of other non zero z,7on link gh. It is therefore concluded that z;;_, = z5Pj5 can
be computed efficiently by Dial’s algorithm. Similarly we can efficiently compute

Tog_i =R P}

Let z;4 = T,; denote the number of travelers who use both link i and link gh,

without concideration of prionity then we have

TGt X F gh,

Lijioh = Zghij = { .. 19
3 ij = gh
Now it is clear that
Zexp( _Gst)é‘@_ gk _ Lo ©0
Texp(—66"°) B P

Therefore the left term can be efficiently computed.
2

0°Z
ot .9ty
by using Dial’s traffic assignment algorithm. An outline of the computation procedure

To summarize, ,i7,gh € A , can be computed in an efficient link-based manner

is as follows.

Step 1.Compute the SUE by the method of successive average (MSA) which uses repeat-
edly Dial’s algorithm until the link flows converge, (see, e.g., Sheffi (1985), p.
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324), and as a result obtain the link flows z7 and the link costs ¢;.
Step 2. Compute z;, rs € W, ij € A, by running Dial’s algorithm once.
Step 3. For each node pair js, if there is some x3 #0, then compute P& for all links

gh; Pi. can be computed by running Dial’s algorithm for assigning a virtual unit

OD demand 1j; on link gh.

Step 4.
Tpg = T3P0, Ty = THPy
and .
) . (ZTi-g T T t] * 9h,
Zijon = Zghij = { .. 19
3 iy =gh

Step 5. Compute
Texp(—6cT)o7, _ z7

had > N

Texp(—6c%) Qs

and

Zkexp( - Bczs ) 6,'}_’;.:5!'5 k — .Z‘,-l-"zﬂ
Yexp(—6c%) a

Step 6. Compute{l4).

2.2 Computing%i— and%ﬁi

The same ideas and methods as exposited in Sectoin 2.1 can be used for computing

Oy and 0Zy . What to be modified is that the variables 7, , along with ¢;, will be

anS rs
taken as arguments of the functions
6Z \ Zkexp( - 96:5)52,7.,:

)

where €; are now fixed constants. At the equilibrium, from (7) we have
V,(V.Z)=0, or equivalently
(Vi2) g0+ (V.2).(a).=0. 2

As it is clear from (21) that
(VZ),

- ( Zkexp( —06'3)551&)
L,exp(—6ch) /i
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we have
(%) - (%:)M = — (VZ)(VZ)(q),
- ( aZ;Zt - ),.j' M(R&j.n diag ((Gr)ps)rs» @3
and

(3) = G, = (@), e

Since( V#Z) and (-P,-f)__ can be computed by the algorithm developed in Section 2.1, as-
1,78

suming that (g,),; can be computed directly from given functions ¢,(7,) (for in-

stance, if ¢,,(7,s) =q%+ ¥ =q% being a constant, then (g,),, =1), (%) and (%)

can be efficiently computed.

3 Numerical Examples
[ Example 1 ] At first a network with 5 nodes and 6 links, as shown in Figure 1, is used
for illustrating our method. This network is equivalent to the one used in Friesz and
Tobin (1988), where nodes 4 and 5 do not exist. The reason for our modification is that
in our algorithm a link should be uniquely characterized by a head and a tail node. This
is also a basic requirement for implementing Dial’s algorithm. See, Dial (1971) or
Sheffi (1985). The link cost functions are of the form
t; = (a;+ep)+(B;tepxy 25
where €; and €; are distinct uncertainty parameters in the cost functions. Though in
Section 2 we only considered explicitly one uncertainty variable ( €; ) in a cost func-
tion, that formulation does not lose generality because when we compute the deriva-
tive with respect to one uncertainty variable, the rest are fixed to be 0. The values of
the parameters of the functions are
ae=4, au=ae2=10, az=1, az= a==15;

Br=1, Bu=Be=2.5, =30, Bx=pF==0.5.
The single traffic demand is

as=10+7 .
With dispersion parameter & = 0.001, the link flows at the stochastic equilibrium are
xp=5.8442, x4=x.=4.1558, x5=3.1598, x=6.8402.

The Hessian matrix is
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0.0037 —0.0024 0.0000 0.0000 —0.0024  0.0000 ]
—0.0024 0.0038 0.0000 0.0000 0.0024 0.0000
2 0.0000 0.0000 0.0024 —0.0022 0.0000 —0.0022

0.0000 0.0000 —0.0022 0.0037 0.0000 0.0022 |-
—0.0024 0.0024 0.0000 0.0000 0.0038 0.0000

0.0000  0.0000 —0.0022 0.0022 0.0000 0.0037

The derivatives of the first four distinct link flows Xis,Xu,X=,%s with respect to %,

e@and 7 ;s are

[ Oz Oz 0z »
g'eﬁ g? s —0.0004 —0.4409 0.6335
o0 5B oy | _ | 00004 0.4409 0.3665
ox oz oz :
ot o m 0. 0 0.258
g_z&% gxz g_xz§ 0 0 0.742

[ O€; €12 ms |

Table I shows comparisons of estimated perturbed flows using a linear approximation
based on the derivatives with the actual solutions re-computed by the method of succes-
sive average (MSA).

By taking # = 1, the link flows at the equilibrium are -
x2=9.9998, x1=x2=4.002, x5=3.0002, xx=x5=6.9998.

And the derivatives are

[ Oz Oz Oz19 ‘
o o o —0.0005 —0.6041 0.5975
oxs 3 5| | 00005 0.6044 0.4032
Ty o g 0  0.0001 02977
brg omg 2z | | O 0.0003 0.7031
| 8l 8l 9ms ]

This matrix agrees with that computed by Tobin and Friesz for Wardropian equilib-
rium up to a maximum error 0.001 in the entries in the last column, see formula (69)
in Tobin and Friesz (1988).

[ Example 2 ] For verifying the correctness of our method in complicated networks, a
network with 20 nodes and 35 links, as shown in Figure 2, is considered. The link cost

functions are of the form

I
ty = (aytey (l+(/3ij+€39(?1_)) ;

i
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Table I: Perturbed flows corresponding to therr distinct parameter uncertainties, respe
ctively, in Exmaple 1; 8 =0.001

link unperturbed perturbed with eglz) =5

- (ij) flows actual estimated -
(1-2) 5.8442 5.8423  5.8423
(1-4) 4.1558 4.1577 4.1577
(2-3) 3.1597 3.1597 3.1597
(2-5) 6.8403 6.8403  6.8403
link unperturbed perturbed with €} = 0.4
(i-j) flows actual estimated
(1-2) 5.8442 5.6887 5.6678
(1-4) 4.1558 4.3113 4.3322
(2-3) 3.1597 3.1597 3.1597
(2-5) 6.8403 6.8403  6.8403
link unperturbed perturbed with ;3 =0.4
(i-j) flows actual - estimated
(1-2) 5.8442  6.0969  6.0976
(1-4) 4.1558 4.3031 4.3024
(2-3) 3.1597 3.264 3.2629

{2-5) 6.8403 7.136 7.1371

where c¢; is the ”practical capacity” of link ij, see p. 358, Sheffi (1985). The
unperturbed parameters are assumed as in Table II. Multiple OD demands are supposed
to be as in Table III. The dispersion parameter is set as 8 = 0.5. Suppose the network
incurs simultaneously the following perturbation of parameters
€ =1, €fe=1 € s =1
epes = —0.03, ep,, = —0.03, €, = —0.04;
7120 = 30, 75, =30,

(with the rest perturbation parameters being zero), a comparison of the linearly ap-
proximated perturbed flows estimated based on derivatives and the actual solutions re-
' computed by the MSA algorithm is shown in Table IV. The "actual change” term in the

table equals the actual perturbed flow minus the unpertubed one, the “estimation
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error” equals the the actual perturbed flow minus the estimated one. The estimation er-

rors are small relative to the flow changes.

Note that in this example the parameter perturbations are considered simultaneously.

Good estimation results could also be obtained for flows perturbed by ‘separate pa-

rameter uncertainty, which are not presented here for save of space.

Table II : Network parameters, in Exmaple 2.

link (i—j) Q;j Ci; ﬂ,‘j
1-2 20 1000 0.15
1-5 18 1500 0.15
2-3 23 500 0.15
2-6 19 500 0.15
3-4 17 500 0.15
3-7 16 500 0.15
4-8 22 500 0.15
5-6 14 1000 0.15
5-9 24 800 0.15
6-2 15 650 0.15
6-7 17 1000 0.15
6-10 20 500 0.15
7-3 18 750 0.15
7-8 13 1000 0.15
7-11 26 500 0.15
8-12 19 1000 0.15
9-10 7 80 0.15
9-13 20 800 0.15
10-6 16 700 0.15
10-11 18 800 0.15
10-14 14 700 0.15
11-7 15 600 0.15
11-12 17 800 0.15
11-15 30 1000 0.15
12-16 38 2000 0.15
13-14 15 500 0.15
13-17 14 600 0.15
1415 20 700 0.15
14-18 30 1800 0.15
15-16 25 900 0.15
15-19 27 1700 0.15
16-20 10 500 0.15
17-18 9 500 0.15
1819 20 950 0.15
1920 16 1000 0.15

Table I: OD demands, in Exmaple 2.

I—Ss drs

1—12 1000 +71 12
1—+13 800 4+ 13
1—20 1500 +v1 20
2—19 3500 +72 19
3—12 450 +7v3 19
4—16 400 474 16
9—3 300 45 3
6—16 400 4+ 16
934 800 +v9 4

10—20 500 +v15 12
13—19 400 473 19
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Table IV: Flows perturbed simultaneously by a set of parameter uncertainties,

en Exmaple 2; 6 =0.5.

link unperturbed perturbed flows actual estimation
(i) flows ~ “actual estimated change error
(1-2) 7664 755.6 7560  -10.80 -0.41
(1-5)  2533.6 2574.4 2574.0 40.80 041
(2-3) 7314 738.9 738.5 746  0.39
(2-6) 8379 838.0 838.5 0.04 -0.50
(3-4)  835.2 851.6 851.1 16.39  0.41
(3-7)  843.3 846.1 8464 277  -0.31
(4-8) 435.2 421.6 421.1 -13.61 0.41
(5-6) 13413 1389.3  1387.2  48.00 2.07
(5-9)  1492.4 1485.2 14868  -7.20 -1.67
(6-2) 303.0 321.3 321.0 18.30  0.29
(6-7) 1580.3 1600.8 1599.5 20.55 1.28
(6-10) 942.2 941.1 941.7 -1.14  -0.64
(7-3)  797.0 808.7 809.0 11.70  -0.29
(7-8)  1369.1 1377.1 1379.6 8.06 -241
(7-11) 811.2 855.1 850.8 43.88 4.31
(8-12) 1804.2 1798.7 1800.7 -5.564 -2.01
(9-10) 1126.7 1143.6 1144.8 16.90 -1.28
(9-13) 1165.7 1171.6 1172.0 5.90 -0.38
(10-6) 246.2 235.9 2365  -10.32 -0.63
(10-11) 1138.3 1160.1 1161.2 21.77 -1.10
(10-14) 1184.3 1188.6 1188.8 4.31 -0.19
(11-7) 553.8 594.1 593.5 4032  0.63
(11-12) 691.7 697.4 696.1 5.65 1.30
(11-15) 704.0 723.7 722.4 19.68 1.28
(12-16) 1046.0 10461 10468 011  -0.71
(13-14) 15.3 16.8 16.8 143  -0.04
(13-17) 7504 754.8 755.2 4.47 -0.34
(14-15) 862.6 844.7 8445  -17.92 0.24
(14-18) 337.0 360.7 361.2  23.65 -0.47
(15-16) 601.7 609.5 608.6 7.72 0.83
(15-19) 964.9 958.9 958.2 -5.96  0.69
(16-20) 847.7 855.5 855.4 783  0.12
(17-18) 750.4 754.8 755.2 447 034
(18-19) 1087.4 1115.5 1116.3 28.13 -0.81
(19-20) 1152.3 11745 11746 2217 -0.12
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4 Discussion

One difficulty in the sensitivity analysis for Wardropian equilibriiim 1s that path flows
at the equilibrium are not unique, which can be overcome by taking some represerita-
tive path flows at extreme points in the constraint sets, see Tobin and Friesz (1988'). In
the stochastic case, the sensitivity analysis formulation is relatively simple. The rea-
son for this is that in the dual mathematical programming formulation for the sto-
chastic model the flow constraints are not bounding, therefore no boundary conditions
need to be considered. Since the Wardropian equilibrium in a traffic network is an ex-
treme case of stochastic user equilibrium with dispersion parameter § —oo, the method
presented here could alsb be used for the sensitivity analysis for the Wardropian equi-
librium by taking 8 large enough, as"vs‘zas illustréted by an example (Example 1) in
Section 3. Some algorithmic details for implementing our method can be found in Ying
and Migagi (2000) |
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Figure 1 : Network pf Examplel.

Figure2: Network pf Example 2.
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