UNIVERSITY OF LEEDS

This is a repository copy of A second order stochastic network equilibrium model. I:
theoretical foundation..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/84666/

Version: Accepted Version

Article:
Watling, DP (2002) A second order stochastic network equilibrium model. I: theoretical
foundation. Transportation Science, 36 (2). 149 - 166. ISSN 0041-1655

https://doi.org/10.1287/trsc.36.2.149.560

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

| university consortium eprints@whiterose.ac.uk
WA Universities of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/


mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A SECOND ORDER STOCHASTIC NETWORK EQUILIBRIUM MODEL
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Abstract — Existing models of stochastic network equilibriuouite choice in transport networks are able
to represent exogenouslyecified variations in drivers’ actual or perceived travel costs, but assume
throughout that flows are deterministic. In thip@a a new notion of equilibrium is presented based
stochastic flow variables, in which the impact @frigble flows on the variability in travel costs is
endogenously handled. Firstly, a very generabnatif equilibrium is deduced as a fixed point ctindi

on the joint probability distribution of networlofis. Then, an approximation to this condition igveel,
which operates by equilibrating moments of ordend below of the joint flow probability distributip
and is termed a Generalised Stochastic User Equitbof order n, being denoted GSUE(n). The
GSUE(1) model is seen to be a conventional Stachidser Equilibrium. The paper goes on to focus on
the second order model, GSUE(2). Conditions arsepted to guarantee the existence of GSUE(2)
solutions. Conditions are deduced to guaranteenijgueness of solutions in networks with a singtert
zonal movement, and (b) proximity of solutions etworks with multiple inter-zonal movements. Figall

a simple example is presented.

INTRODUCTION

The conventional stochastic network equilibriumbbeon is concerned with predicting link flows and

travel times/costs over a network, correspondirgyfieed point solution to a problem in which:

(a) actual link travel times/costs are dependerthetink flows, and

(b) drivers' route choices are made according tandom utility model, their perceptual differencées
evaluating cost (=utility) represented by a known probability distriion.

Daganzo & Sheffi (1977) appear to be the first &wehformally proposed the term Stochastic User

Equilibrium (SUE) to describe such a fixed point solution, the word ‘user’ intended to emphasise the non-

cooperative behaviour of individuals in their rowelection. The properties of this model have been

extensively investigated by Sheffi (1985)



An important point to note about the SUE approacithat the flow variableswhether link or route
flows—are assumed to be deterministic quantities. Prdwitie assumption is considered reasonable, then
this paper makes no dispute about the appropriggenfethe SUE model. In reality, however, it is lwel
known that the flows on roads may vary considerfioiyn dayto-day, and so it is not difficult to make a
case that flows are more appropriately represeagesiochastic variables. In such a setting, éasonable

to ask whether the SUE model still characterisesesaseful feature of long-term behaviour.

An apparently reasonable, intuitive argument inpsup of the SUE model runs thus. The choice
probabilities corresponding to the random utiliymponent of an SUE model (component (b) above)
describe the aggregate proportions of drivers ah @ster-zonal movement that will use the altexmati
routes available at given mean cost levels. Lefgpose that this description of deterministic regate-
level behaviour may be extended to characterisearticplar form of stochastic, disaggregate-level
behaviour, where individuals independently andasidom choose between the alternative routes with
common probabilities equal to the choice propogiohthe random utility model. Intuition suggedtatt

as, in the disaggregate model, individuals are sihgoat random with common probabilities, then the
aggregate stochastic behaviour of route flows ah @ater-zonal movement will be characterised by a
multinomial probability distribution. Therefore, lfmwing this reasoning, the link with the aggregate
deterministic behaviour of the SUE model is thas thtter is simply representing the mean aggregate

flows from such a multinomial distribution.

In the special case in which actual travel timeg&are independent of flow and deterministic &be
called Stochastic Network Loading Problem), thesoeang above is well-founded (Daganzo, 1977). ik th
case, the coincidence with multinomial mean flows eixact, and such mean route flewance
derived—may be used to compute higher order moments suclaréances and covariances, through

standard properties of the multinomial distribution

However, with a weakening of these assumptionsetonip actual costs that are flow-dependent, the
justification for assuming SUE to represent meawdl is no longer clear. Indeed, there are strong
theoretical arguments to suggest that it will teystematically biased estimator of mean conditians,
that this bias will produce different effects offatient parts of the network. In brief, there awe reasons

why this may occur.



Firstly, if flows are stochastic then actual cosi#f also be stochastic (through the link performan
functions), regardless of any additional perceptlif¢rences between drivers. Since it is reasenabl
assume drivers form their own estimates of actasi from experience, then these estimates will ladso
stochastic, and so therefore will the choice proiti@s. Thus, although there is a case for aggeeghoice
behaviour conditional upon experienced costs to ngtinomially distributed, the unconditional
probability distribution of choices/flows (which stusurely underlie any notion of equilibrium inghi

setting) will not in general be multinomial, sirtbe choice probabilities are not fixed.

Secondly, even if drivers’ experience of the network is sufficiently long that the mean of their experiences
approximates the long run expected costs-tHen networks with non-linear link cost-flow perfoamce
functions—the SUE flows and costs will not represent the @mste long-run expectations under the
model assumed (as noted previously by Cascettad).1%8nce, even if SUE link flows were the
appropriate mean flows, then the SUE costs (whiehoatained by substituting these flows in the -cost
flow relationships) would represent the costs aammidbows, which for non-linear cost-flow functioase
different from the mean costs. Conversely, if thprapriate mean costs were used in the SUE choice
model, the flows arising would not be the apprdprimean flows. The cost bias will not, in general,
balance out when taking route cost differencesif@sdoes in a random utility model), since the rniada

of the bias in estimating the mean costs by SUHsciss dependent on the form of the cost-flow

relationships, which varies across the network.

Therefore, the objective of this paper is to foratella generalised version of SUE, in which stoahast
variation in both flow and actual cost variablegdapresented, with the stochasticity endogenoubkeo
equilibration process. Although previous authorgehmcorporated the effect of stochastic actuatscos
(Mirchandani and Soroush, 1987), or of stochastic cagsdhnat affect the actual costs (Arnott et al, 1991;
Van Berkum & Van der Mede, 1993; and Emmerink £1895), these random elements were all assumed
to be exogenously specified, and no relationship made between the variability in actual coststhad
variability in flows (the latter being assumed detiistic). Bell (1991), in an unpublished noteydied
the use of independent Poisson distributions teesgmt the variability in link/route flows in a netrk
with two parallel routes, and used a second onol@roximation to approximate the effect of this ahbiiity

on mean costs. He did not, however, operationtiliseapproach for general networks; in particutatpes
not seem possible with this approach to addresssthe of covariances in flows between links that
logically arises because of links that are pathefsame route (positive correlation) or part tdrahtive

routes (negative correlation). Cascetta (1989) @antarella & Cascetta (1995) did indeed take proper



consistent account of flow and cost variability fmmeral networks, but at the expense of devidtomg
fixed point notions of static network equilibriuifhey formulated their model as a discrete timetststic
process, with the corresponding “equilibrium” behaviour now a rather more complex condition on the
dynamics of sequences of stochastic choices. Suap@moach must therefore be regarded as an diverna
to, rather than an extension of, SUE; in geneiitlg lis known of the relationship between stocicast

process and SUE approaches.

The paper is structured as follows. Following basitation and definitions (section 1), in section 2
equilibrium conditions (i.e. fixed point conditiof@r the joint probability distribution of networflows)

are deduced for a generalised version of SUE irclhwHows are stochastic. A generalised concept of
stochastic equilibrium, denoted GSUE(n), is subsetiy introduced in section 3, based on an
approximation to these conditions in which the omlend lower moments of the joint flow probability
distribution are equilibrated. The remainder of plager is devoted to studying a particular memb#hi®
family, GSUE(2), detailed attention being paid lie existence (section 4) and uniqueness (sectiof 5)

GSUE(2) solutions. Finally, a simple illustrativeaenple is given, and paths for further researchtified.

1. NOTATION

A network is considered as a directed graph congistf A links indexed a=1,2,...,A, and W internab
(origin-destination) movements indexeel R,...,.W. The N possible routes that pass through a link at mos
once, across all such inter-zonal movements, alexed by the set {1,2,...,N}, in such a way tha th

subset of Nroutes relating to inter-zonal movement k arexedeby the set
k-1
Re=1r+ X N;:r=212..,N, .
j=1

The demand rates for each of the W inter-zonal mewvis are held in the column vectpof dimension

W, with elements gk=1,2,...,W). Without loss of generality, we assutiroughout that altj, >0, since

any inter-zonal movement with zero demand couldeb®ved from the problem without effect. The units
of gk will be referred to as vehicles per hour, althougire generally they could be equivalent passenger
car units per hour. For notational purposes, iteviloccasion be convenient to express these deratesl

in an alternative form. This is obtained by definifi to be anN x W path-movement incidence matrix
with elements

1 if router , themovementk routeset
y ={ =R (r=1,2,...Nk=1,2,....W.

0 otherwise



Then diag@"q) is an N x N diagonal matrix such that each row relates to ger@nd the diagonal entry

for that row is the inter-zonal demand approptiatinat route.

The column vectof of dimensiornN denotes an assignment of flow to each of the plessontes, with the

convex set of demand-feasible non-negative roote fates denoted b2, = {f eRl T'f =q}, where
RN denotes N-dimensional non-negative real space Adndienotes the transpose of the ma&ixThe

convex set of demand feasible link flow rate€is = {v eRP:v=Af where f te} , WhereA is an

Ax N link-path incidence matrix with elements:

1 iflink ais part of router
Ay =

0 otherwise (a=,2,...A;r=1,2,....N.

The cost of travelling along link a at a given lifdw vectorv is denoted by,fv). These functions may

also themselves be arranged in a column ved{@), These link performance functions imply

corresponding route cost-flow performance functia(g) = A"t (Af).

Suppose further that for each moveme,nt{ B (u):re R(} is a route choice model describing the
fraction of drivers on inter-zonal movement k thatuld choose each of the alternative routeRjnwhen

the perceived route costs (averaged across ther gidpulation) are. Letp(u) denote the vector of these
functions across all movements, arranged in a aoluettor of dimension N. We may then state the
following well-known definition (Sheffi, 1985):
Definition The route flow vectof Q) is a stochastic user equilibrium (SUE) if and afly
f = diagCq).p(c(f)) (1.1)
Alternatively, the link flow vector €Q, is termed a SUE if and only if

v = AdiagTq) p(ATt (V). (1.2)

Typically, for each movement k, it is assumed tflla,t(u) ‘re &} is a random utility model. This is

achieved by modelling drivers' perceptual diffeesnim evaluating travel cost by a probability disttion

of perceived route costs, (r e R,), with
U =u +e (reR; k=12,...,W)
where E[U]=u,, and where e:{er reR; k= 1,2,...,V\/} follows some given joint probability

distribution. The choice fractions are then givgn b



p(u=Prlu+e<uy+e,vVE R, s (e B k12..., W (1.3)

For example, underlying the logit model is the agstion that the eare independent Gumbel random
variables. More plausibly, it is often assumed thatroute cost perceptual errors are formed fiokndost
perceptual errors (thereby implicitly taking accowh correlations between overlapping routes). For
example, if the link errors are independent Normaaldom variables, thea will follow a multivariate
Normal distribution, as underlies the probit chawwedel (Sheffi, 1985).

It will later prove useful to also define corresdmy absolute flow variables, rather than flow satgith

the inter-zonal demands denoted by the vedorwith elements in the discrete (integer) units of
“vehicles” or “drivers”. These demands relate to a particular period of the day, of duratianhours. That is

to say, q=1 'g. The demand-feasible absolute route and link fleave denoted respectively

Q= {f~ ezV T'f = a} andQ, = {V ez : T=AT where f €Q,}, wherez! is the N-dimensional
space of non-negative integers. Capitalised vesswoinv,f, Vandl?—namely V,F,V and F—uwill

denote vector random variables of the relevant/iost measuse

2. EQUILIBRIUM CONDITIONSUNDER STOCHASTIC FLOWS

The first step in the development of the proposed model is the generalisation of the SUE model to
permit random variation in the route and link flowhile taking account of the effect of flow vaurilétlp on
the variation in actual costs. The first question to answer is: what do we mean by “equilibrium” conditions

in this more general setting? In conventional (ueigstic flow) problems, the concept of an economi
equilibrium is used to define a “self-consistency” condition between demand (some behavioural rule
describing the demand for alternative routes deapgrah the travel costs) and supply (generalisazktr
costs of the alternatives as a function of the eggfe numbers using each alternative, represeptdteb
link performance functions). For example, undedythe SUE model (1.1), the hypothesis is that in
equilibrium if the route proportions given by tlwute choice modgb(-) at costsc(f) are consistent with
flows f.

Once we permit the flows instead to be stochaatitatural measure to equilibrate is then some &ind

flow probability distribution, for which there ag number of choices. We shall choose to consider th



absolute stochastic link flow vectdt, and its probability distributioPr(V = V) : ¥ €0, }. This has the

advantage of dimensionality over route-based faatrans, since in typical real-life networks, theme

many more possible routes than there are links.

Suppose first, then, that the underlying probabiistribution of V. were known. Suppose that drivers

base their choices on a finite collection of theeialdink costs experienced in their trips on diaythe past,

in such a way that the flowgl CRVICIRVAL, } on the m days concerned can be assumed to repesesent

sample of independent, identically distributedd(i)i random variables drawn from the distributidn\b,

with corresponding link cost{st(rflv(l)),t(r*1\7(3),...,t(1*1’\7( m)}_ Now introduce the vector random

m ~
variable Y = 2 >t(r VD) of dimension A to denote the driver populationrage estimate of actual
j=1

link costs based on this sample of days. gt denote the space of demand-feastle

3

\I’m={y cy=323t(r WD) and Vv €Q, (j =12,...,m)}. (2.1)
j=1

Then, by the i.i.d. property,

m - :
Pr(Y =y)= [1 Priv =v) ¥ e¥n) (2:2)
V@ gy cG,m j=1

1m }
such that= Y t(r W M)=y
Mi=1

On the other hand, suppose that we did not knowrtterlying distribution ¢ . Then,
Pr(V = V) = > Pr(F = f) VeQ,) (2.3)

f e, such than f=v
and then by standard laws of conditional probadslitve may write:

Pr(V = V) = > Y PF=f|Y=y) Pr(Y=y) VeQ,). (2.4)

feO, such than f=v ye¥,,

Now, define the following partitions by inter-zomabvement:

Fiy Py (W)

~ F u

F=| Y| and p(u)= p[z]:() . (2.5)
Fwg Powg (U)

Suppose that, conditionally oh =y, for each inter-zonal movementlk2,....W independently, each of

the g, drivers independently chooses between the availahltes with probabilitieg,,, (A'Yy), where



A'y is the vector of corresponding route costs. Hef@), is the route choice model given a special and
rather different interpretation to that in conventl SUE analyses, as a disaggregate probabittgrra

than an aggregate choice fraction (recall the d&sou in the introduction section). Then:

ﬁ[k] | Y =y ~ Multinomial (q,,p;,(A"y))  (independetlyfork =12,...W). (2.6)

That is to say, the conditional probabilities im2relating to the distribution df | Y , are known values

based on the model assumptions. (They are multaigonobabilities since, conditional of, the fixed

number of drivers are independently making chosmeording to fixed probabilities.) On the other ¢han

the unconditional distribution o may be related to the probability distribution ® by (2.2).
Substituting (2.2) into (2.4) therefore gives a sistency (equilibrium) condition for the probalyilit

distribution of V .

Therefore, (2.2)/(2.4) together give an equilibrieondition for any given value of m. We shall focus
specifically on what happens to these conditionsnas «. Letting the number of experiences become
large is intuitively consistent with the assumptioderlying conventional network equilibrium thegdttyat

the drivers represent a population of well-inforimexperienced travellers.

Lemmal Suppose that drivers form estimates of actual scasbom a random sample

{T(l),T(Z),...,T(”)} of the link costs from their previous travel expeces, where m is given,
TO =tz vD) (j=12,...m), and {\7(1),\7(2),...,\7(”7} is a sample of independent, identically

distributed, demand-feasible link flow vectors. goge further that the functiortg(r‘lV) (e=1,2,....A

~ m .
are bounded fov € Q, . Then asm— oo, var(;l1 ZTa(”] -0 (a=12,...A).
=1

Proof The result is a trivial consequence of assun{ﬁg(l),v(z),...,v(m} to be i.i.d., since then

{T(l),T(Z) ,...,T(m)} are too, and so (for eackia2,....A) are {Ta(l),Téz) ,...,T;m)} , being drawn from a

2

& (a=12,...,A). Since
m

o

m .
common marginal distribution with varianee,?, say. Henceyar| = ZTé”j =
j=1

0,2 = var(t,(x'V)), whereV follows the common distribution of the sampledafip thens 2 < oo by



virtue of V being a bounded random variable by the demanibfiitysconstraints, and t,() by

hypothesis being a bounded function. Lettmg> «, the required result follows.

The result means that for eackl,...,A, as m increases the probability distribution loé random

m ~ ~
variabley, =+ Zta(r‘lv“)) becomes increasingly centred E[ta(r‘1V)] (‘centred’ since Y, , being a
j=1

mean of i.i.d. variables, will clearly be asymptatly normally distributed). This result leads flgdo the

equilibrium conditions, following one further piecé additional notation. In particular, lgt denote the

column vector of probabilitie%Pr(V =V):V efzz}, with dimension equal to the cardinal)@z‘ of 522.

This distribution is related to the route flow pabldity distributiong (a column vector of probabilities
{PrF=F): f Q,} of dimensionQ2,]), by w =TIg , whereIT is a|Q,|x || matrix with elements

if the route flowf referred to by, "correspond"” to the link flowv

I, = 1 referredto byy; , in the sense that A f _ 2.7)
0 otherwise

That is to sayy =Ilg is a vector representation of (2.3).

Theorem (Asymptotic equilibrium condition) Suppose that the hypotheses of Lemma 1 are met, and
suppose that subsequently, conditionally on theedpopulation-average estimated actual link cpstsr

each inter-zonal movementk2,...,W independently, each of thg, drivers independently chooses
between the available routes with probabilites (A'y). Then asymptotically, asn— oo, the link flow
probability distributiony satisfies the equilibrium condition:

vy =TIg(v) (2.8)
whereg(y) is a vector of dimensioﬁll‘ with elements the probabilities

Pr(F=f ‘ Y = Eg[t(r V)] whereV ~y ) {eQ) (2.9)

whereV ~ vy denotes thaV/ has a given probability distributiog , and where the distribution & | Y
is given by (2.6) based on the patrtition (2.5).



Proof Now, PrF=f)= X Pr('lE =f|y= y)Pr(Y =y) (f eQ,). Lemma 1 tells us that a8 — oo,
ye¥n

an increasingly good approximation to the probghbdistribution ofY will be that distribution which puts
all the probability mass at its long-run expectallig, yielding:

PrE=f)~Pr(F=1 | Y = Ej[t(xV) whereV ~w]) . (2.10)
The equilibrium conditions are obtained by notingttthe left-hand side of this expression alsandsfihe

elements ofg , with this latter vector related ¢ by y =TIg .

A number of crucial statistical assumptions undettiis equilibrium condition, notably that the flow
{\7(1) AVACINVIL, } which generate drivers’ estimates of actual cost (a) are identically distributed; (b) are

statistically independent; and (c) represent aelaagmple (i.e. mis large). Systematic, seasomages in
travel demand (e.g. due to school semesters/vasatin activities specific to particular days o theek
(e.g. days of major shopping activity) may bringuasption (a) into question. Stochastic variatiothie
demandg may, however, be incorporated by an extensiormefproposed model, discussed elsewhere

(Watling, 1998). Assumption (b) might be questiofredh the viewpoint of internal model consistenicy,

the sense that the dependenc&obn{v(” ,\7(2),...,\7(“1} in the equilibrium definition might be said to

infe—assuming the sampled experiences are time-orderethat V) depends on
{\7‘1) ,\7(2),...,\7“‘3} for 1< j <m. This feature certainly distinguishes it from stechastic process

approach reviewed in section 1, where the equilibrilows are auto-correlated across time epochs.
Finally, assumption (c) is critical for the multmal distribution to be a valid approximation fdret

unconditional flows.

3. GENERALISED SUE OF ORDERn

In the previous section, equilibrium conditions ttve probability distribution of the network linkofi
vector were presented. However, solving conditi@8)/(2.9) for v is unlikely to be feasible for
networks of a size of practical interest. One paldir difficulty is the dimension of the problens a
determined by the number of possible (demand-feggiiiteger link flow states. In the present setti®
related family of fixed point conditions is deduce¢dhich essentially allows us to approximate the tr
equilibrium distribution “to an abitrary order”. For low order approximations, the dimension of the

approximate conditions is an extremely small faactf the dimension of the underlying problem.

10



For any positive integer k, define the followindysspace of A-dimensional non-negative integers:
A
M (k) :{m imezZ*,0<m, <k (@a=12..,A) and > m, = k} : (3.1)
a=1
Now consider the vector random variaBle of dimension A, which contains the network linkvil rates.
For given k(k=1,2,...), the order k moments oY are given by the expectations:

A
E{Hvama} for k=1

a=1

o(m, k) = (MmeM(K)) . (3.2)

E{ ﬁ v, —EM, )™ } for k=23,...

a=1

Furthermore, define the following as column vectdrthe appropriate dimension:
@(k) = {B(m,k):me M (k)} (k=123..). (3.3)
Thus, for example, the order 1 moments are theflowk means, contained in the vect®(l), and the

order 2 moments are the link flow variances ancudaxces, contained in the vec®(2) .

These moments will now be used to make an appréximtp the expected link cost vector that is durt

(2.9). This will be achieved by first making aif' order Taylor series approximation to the cost-flow

function for link g t,(v), in the neighbourhood o¥ = v’ (for some giverv’):

" 1 0"t [
t,(V)~t, (V)+ ! [T(v.—vi)™. 3.4
V)=t (v) kzi‘ meMz(k) m!m,l.m,! ov,"ov,™..ov,™ ( ) (34)

Substituting the vector random variabl¢ for v, the expectationE[V] for v’, and then taking

expectations throughout with respectMoyields:

ELVILEV)S Y L o, T, -evar |
v=E[V]

1 memao Mtmlom.! ov,™ov, ™. ov,™ acl
(3.5)
Since for anya=12,...,A E[Va — E[Va]] =0, the terms in the summation over k in (3.5) cqoesling
to k = 1 are zero, since exactly om, =1 for eachm corresponding to k = 1. Simplifying and using
notation (3.2)/(3.3), then (3.5) may be written

n 1 ot |
E, [t.(V)]~t.(©1))+ —
LWl=t () ;meMZ(k) m!m,l.m,! ov,"ov,™..ov,™

o(m, k) . (3.6)

v=0(1)

11



Hence, for a given positive integer n, expressib)(represents an approximation to the expectéd li
costs, as a function of the moments\6f of order n and below. It is noted in passing that general
technique for approximating the expectation of a-lmear function of a random variable (by the
expectation of that function’s Taylor series expansion about the variable’s mean) is sometimes called the
“method of statistical differentials” (e.g. Ben-Akiva and Lerman, 1985, pp 140-142). Such an
approximation has the following trivially-proven tbaignificant propertynamely, that by taking a

sufficiently large n, any vector polynomial costétion may be approximated to an arbitrary accuracy

Lemma2 Suppose that(v) is an order r vector polynomial:

t(v) = Zoc Hv a Wherleal <r (i=12..1) (3.7)

a=1 a=1

where the powers, (a=12,...,A;i=12,...,I) are given non-negative integers, and the coeffisie
o; (1=12,...] ) are given reakalued numbers. Then i>r, (3.6) gives the exact expectations (i.e. no

approximation is involved).

The expectations (3.6) represent the effect of a given stochastic flow distribution on the “supply-side” of
our network problem. We now turn attention to thecpss by which drivers choose routes conditional o

their perceived costs. The equilibrium conditio2s8)/(2.9) are based on a multinomial route flow
allocation for each inter-zonal movement, accordm¢?.5)/(2.6). Now, since the absolute link flows
are related to the link flow ratdsy V =<'V, it follows that the order n moments ofV are
CI() (= {r”e(m,n):me M(n)}). In turn, as the link flow V are a linear combination of the route

flows F , then the order n moments of are a linear combination of the order n moments ofince:

[ (V. - BV, )" } E{l(rzlAa, glAarFTD%]ZE{ (zAar( %F])) } (3.8)

and multiplying out the product over gives a linear combination af" order moments oF , where the
coefficients are a function of the path-link inaide matrixA . Now, according to (2.6), we shall suppose
that route flows on different inter-zonal movemeats statistically independent, and so we need not

consider such cross-moments. Therefore, based enpdéhntition (2.5), we suppose that for each

k=12,..W the n™ order moments ofﬁ[k] are collected (in a similar way to those ®f) in a vector

@ (N) of dimension(N, )", with these vectorss; () (k=12,... W) themselves being components

12



W
of a partition of the vectoes(n) of dimension> (N, )" . The linear relationship between moments of the
k=1

link flow ratest" ®(n), and moments of the absolute route flaw@) , is then denoted:

"OMn) =ANw(n) (n=12..) (3.9)
. W
where (for eacm=12,...) A(n) is an A" x >(N,)" constant matrix that is a known function of n and
k=1

the path-link incidence matrix .

Now, if we know the choice probabilitieg,,, (A'y) in (2.6), then for given n we can compute the
momentsw,, (j) (k=212...W;j=12,...n by known properties of the multinomial distributjcand
hence from (3.8) can compute the mome®(g) (j =12,...,n). Then the only unknown ip (Aty) is

y, which in equilibrium, by (2.9), is given by = Eg[t(x V)| = E,[t(V)], and in (3.6) we have shown

how this expectation may in turn be approximatedngymoment®(j) (j =212,...,n). This leads us to

the following definition.

Definition (Generalised SUE of order n) For a given positive integer n, consider avodt with n
times differentiable cost-flow functiorigv). The collection of link flow momenté@(l),®(2),...,®(n))
given by (3.3) is termed a Generalised Stochaster Equilibrium of order n (and denoted GSUE(n)) if
and only if®(j)=t" A(j)) w(j) (j =12,...n), whereA(j) is a coefficient matrix defined in (3.9),
and where-with @, (j) (k=12...W) representing the components of a partition of hetor

®(j) —the vectorm,, (j) contains thej ™ order moments of the multinomial route flow vecﬁgg] with

parametersqj (the inter-zonal demand) and probabilitigs,, (A'y), where y:EV[t(V)] and is
approximated by the momer(®(1),®(2),...,0(n)) according to (3.6).

Effectively, the only difference between the GSUE@ondition and the moments of an equilibrium
probability distribution satisfying (2.8)/(2.9), tisat the expected costs upon which choices are baseaal
the former case approximated using only the firshements of the distribution, rather than the full

distribution. The first point to note is that onember of the GSUE family is a familiar model.

Lemma3 The link flow vectorV is an SUE if and only i’ is a GSUE(1).

13



Proof  Suppose that is a GSUE(1). Then from (3.6) with n=E,,[t,(V)] ~ t,(9), the multinomial
probabilities of the GSUE model are thep, (A't(¥)), and the first order moments of the route flows fo
inter-zonal movement k (k=12,... W)are E[ﬁk]]zak Prig (A't(V)), a partition of E[ﬁ]. Now,
E[\7] = E[A If] =A E[IE] (that is to say, in terms of (3.9)(1) = A). With notation defined earlier (see
(11)(12), we may combine these results &V|=A diag(T'd)p(ATt(%)). But by (3.9),
V=HV]= r‘lE[\7], and we obtain the SUE condition (1.2) of by noting that

diag'g) = t * diadI'G) . The “only if” part of the proof arises by reversing this logical argument.

A corollary to Lemmas 2 and 3 is that () is linear inv, then for anyn>1 the mean GSUE(n) flows
®@) will be SUE flows (see also Cascetta, 1989); acpce, however(v) will invariably be non-linear.

It is notable that Lemma 3 makes no reference ¢ontagnitude of the demand flows, and so is not a
limiting, large population relationship (in contragth Davis & Nihan, 1993). A limiting relationghidoes,

however, exist for general GSUE(n) models, as ksitedol in the results below.

Lemma4 Suppose the m-vector random variakléllows a multinomial distribution with parameters

(the fixed sum of the elements X) andp (the probabilities of the m alternatives). Then dy non-

e Fi(x, - Elx ] | N

i=1

negative integers; (i =1,2,...,m) with Zn =n>2, lim

n

i=1 q—x© q
Pr oof Expanding, E[]r‘m[(xi —u )”i} > E[]r‘n[ Xiri}ﬁ(— w, )" . Then, with u, =np,
i=1 (rhyeeafm) i=1 i=1

such thatO<r <n

n= Zn andr—Zr, , We obtain E[]r‘n[(xi—ui)”i}: > E[ﬁx“}( 1)”rq”r1‘[pI " But
= = = suh Pt e

q
from the multinomial moment generating functid(t) =(pl + § p; expt; )] (see, e.g., Stuart & Ord,
j=2

1987), it is straightforward to show thEEﬁ Xi“} q' H p." +0(q"), whereo(q") in general denotes

i=1 i=1

an arbitrary function for whichim —— o(@) =0. Hence:

q—o© q

14



E|:_1_[1(Xi — )" } = ( > | {(_1)n—rqn1—[1 p." +0(q”)}
such hab <n

and the lemma is proven by noting that the summatie@r the first term is a summation o\&l terms

which are identical except that half have a negativd half a positive sign, and so cancel.

Theorem (Large Sample Approximation Theorem) For fixed, non-zero demand ratgsconsidered
over a period of duratiort, in the limit ast — oo, if (®(1),®(2),...,®(n)) iIs a GSUE(n), then all
components o®(j) (j = 23,...,n) approach zero, an@(l) is a SUE.

Proof Denote the components of the movement k route flmmnent vectorm,, (j) (defined above
(3.9)) by @y, (j) - Then by Lemma 4, for eage 2, (Gk)*jmi[k](j) — 0 as g, — © whereq, = Q.1
(the absolute demand). Hence fpe 2, since allg, >0 by hypothesis, then for fixed, , replacingq,
by qct, then r*jmi[k] () >0 as t—>o. Hence, for j>2 all the components of

0(j)=t"! A(j) w(j) tend to zero as— . In that case (in the limit), from (3.6E,[t(V)]=©().

The same logic used in the proof of Lemma 3 mayy beeapplied to establish th@i(l) is a SUE.

The Theorem above constitutes a “large sample” result, since as T — oo for fixed g, the absolute number
of travellers on each inter-zonal movement wilbadgproach infinity. It is therefore the absolugendnd
that is critical here-it is not sufficient that the demand rates“large”, if the time interval is short. It is
interesting to note that the predominant methodcédglevelopment in equilibrium approaches over the
last ten years has been the attempt to model sinedtisly a number of shorter time periods. The nwve
such “dynamic equilibrium” approaches therefore weakens the justification for SUE as an approximation to

mean flows.

4. EXISTENCE OF SOLUTIONSAND THE SECOND ORDER MODEL, GSUE(2)

In the remainder of the paper, the focus will beona particular member of the GSUE(n) family, ngmel
the GSUE(2) model. This gives a major advantageeims of allowing more transparent notation, as
introduced in the Lemma below. Moreover, it wowddsonably be expected that in most practical cases,

local quadratic approximation to the link cost-flimctions would be satisfactory.

15



Lemma5 Consider a network with twice-differentiable linkst-flow functions(v), choice probability

modelp(u) and demandg. Then the mean A-vectqr and Ax A covariance matribx , as a paifp,X),
is a GSUE(2) if and only if:
p=A. diaglq).p(A T (1, Z)) (4.1a)

2= 1t AP pATT(, X)) . AT (4.1Db)
wheret (u,X) is an A-vector with elements
LRI =t.w+3H.wWZ| (@=12..A (4.2)

whereH , (v) is the Ax A Hessian matrix of, (v) , where the scalar product of twox n matrices is
m n
X Y[=Z2XY (X, Y eR"xR") (4.3)
i=1j=1

and where¥(q,p) is a function whose result is & x N block diagonal matrix, with blocks (based on

the partition (2.5) op) the matrices of dimensioN, x N,:

¥ (qk’p[k])=qk(diag(p[k])_p[k] p[k]T) (k=12...W). (4.4)

Proof With (n,X) replacing(®(@),®(2)) in (3.3), and (4.2) corresponding to (3.6), theamef the
absolute route flows (from (3.7)) is w(l) = diag(T'q) p(A"t (u,=)) , noting the use ofj, notq. The
second order moments of ea'lén] (represented in (3.7) as a vectwy,; (2) ) are contained in the matrix
p % (ﬁk,p[k] (A"t (1, X)) where W4 () is given by (4.4)-again noting the use di, rather thang,.
Similarly, in (3.7),A(1) =A , and A(2)w(2) corresponds t&aWA' in the new notation. The conditions

(4.1) are finally obtained by replacirtg by qr .

The existence of GSUE(2) solutions may then bebksited, using techniques that mirror those used fo

conventional deterministic user equilibrium (SmitB79) and SUE (Cantarella & Cascetta, 1995).

Existence Theorem Consider a network with demand ragesver time periode, with cost functions$(v)

that for all v eQ, are continuous, twice differentiable, and havesaltond derivatives continuous.

Suppose further that the route choice funcfin) is continuous for allu e R, this being a choice
probability function in the sense that

%pr(u):l p(u)>0 (reR) (k=12...,W; atallu eR)). (4.5)
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Then at least one GSUE(2) exists.

Proof Since we assume without loss of generality thagath O (see section 2), then the inverse matrix

(diag(Fq))_lexists. Now consider the mappi@gf) of the N-vectof given by

G(f) =diag(Tq).p(ATT(Af, 1A ¥(q, (diagTq)) *)AT))  (f Q) (4.6)
where the elements df(-,) are given by (4.2), an¥(-,) is given by (4.4). By construction, under (4.5),
diag@Cg).p(u) maps to the feasible route flow rate spa@e for any u eR!. That is to say,

G:Q;, > Q,. As noted previously by Smith (1979), is a closed, bounded, convex subseRof.

Now under the hypotheses (), the modified cost function§(u,X) given by (4.2) are continuous in
(un,X). Since¥ given by (4.4) is clearly continuous, ap¢l) is continuous by hypothesis, it follows that
G(:) given by (4.6) is continuous, being a continuoomgosition of continuous functions. Henda(")
satisfies althe conditions of Brouwer’s fixed point theorem (e.g. Baiocchi and Capelo, 1984), establishing

that there exists at least ohe € Q, such thaf " = G(f").

For one such fixed poirft of G, let:

po=Af > =t 'AW¥(q,(diagq)) ) AL . (4.7)
Now,

" =G(f") =diagTq) p(ATT (A f", 1A ¥(q, (diagT'q)) *f)A")) (4.8)
and substituting for the argumentsidgf;) in (4.8) from (4.7), we obtain

f* = diag(Cq) p(ATE(u",Z")). (4.9)
Substituting then foff ~ in (4.7) from (4.9), we obtain the GSUE(2) coruti (4.1). That is to say, we

have shown that a pajn ,=") exists that satisfies the GSUE(2) conditions.

In fact, the result above may be extended to tise cd the general GSUE(n) modgl > 2), where

existence of solutions is guaranteed under comyimdip, t and all derivatives of the n times differentiable
functiont of order n and belowi’he proof is again based on applying Brouwer’s fixed point theorem to a

function of the mean route flow ratef the form
G(f) :diag(Fq)p(ATf(Af, {r“ﬁ(“H“’ (@, (diag(T'q)) *f): j = 2,3,...,n})) (4.10)
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where H)(§,B) is a vector of j™ order moments (of the absolute route flows) of Atkependent

Multinomial (G ,B,;) variables, and the coefficient matricdd’ (j =2,3...n) are given by (3.7).

5. UNIQUENESS OF GSUE(2) SOLUTIONS

An important question for any forecasting modeVigether it will produce a single unique outputdoren
fixed input data. A special case of the GSUE(2) ehaxlconsidered here, as defined below.

Corallary 1 Consider a network with twice-differentiable cosfg , choice probability modgb(:) , and
demandsy, and suppose additionally that the Jacobiat{wfis diagonal for all demand-feasime= Q2,
(that is to say;t,(v) = f,(v,) for some functionf,(), for a=12,...,A). Then the active GSUE(2)
conditions are those gm and the diagonal elements Bf (denoted by the A-vector of link flow variances

¢ ). These active conditions may be written:

n=p(.é)d (5.1a)

0a=7 (o Z0u )2 0) (@124 (5.1b)

where p(u,¢) is an AxW matrix that depends ofu,¢) (with elementsp,, (1,¢) representing the

proportion of the demand flow on movement k thatesuslink a), given by

p(u.¢)=A diag(p(A"t (1, diag@)))T . (5.2)

Proof As the Jacobian dfv) is diagonal, we may repladéu,X) in (4.1)/(4.2) witht(u,diagé)) .
Then, (5.1a) is established by noting that (dropping arguments)
p = A dadl'g)p = A diafp) I'qg = p g . Decomposing the diagonal terms (variances).@bjdnto

a sum of terms over the different inter-zonal mossts:

W w
¢a = T_lkzlqk[rg'?kAar B _risi(AarAaspr gj = T_lglq(r%Aar p(l_ SEZéAas Qj : (53)

Since ifp=Ap, thenp,, = > A, p, and the result is proven by writing expressioB)(&s:
reRy

v Ll v 4 w 2
Ga =T 20 AP A-pa) =T XA A=pax) ZALP =T XA @-pa)Pak =T | Ha — ZOkPak
k=L  reR, k=1 reR, k=1 k=1
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Note that having solved (5.1), the GSUE(2) off-diag terms (covariances) iZ are given by:
Z=1"A.¥Y(Q,p(ATt(u diag@)).AT . (5.4)
In corollary 1, we replacé(n,X) with t(p,diag($)) since on the supply-side (i.e. link performance side)

of our traffic assignment problem, the cross-litdwf covariances have no effect. However, this isthe
same as assuming that these covariances are ndrmdeed from the demand-side (i.e. from the @wic
of drivers between alternative routes) there wijeneral be link flow correlations between différnks

through (5.4), due to the fact that link flows fmamed from route flows.

The conditions (5.1) are rather attractive in their simplicity, and their form motivates us to consider a
problem related to the GSUE(2) problem. In particular, we shall consider a fixed point problem cast in

the form of anAxW matrix of disaggregated link flowg, with elements3,, denoting the flow on

inter-zonal movement k that uses link &(2,....A; k=1,2,...,W):

B=A diaglp(A"E(B)))T diag(q) (B €Qs) (5.5)
where the convex set of demand-feasible disaggregated link flgws R* x RV is given by
Q;={B:Bx= 2 A, @=12...,A;k=12,..W )wheref €Q, } (5.6)
reR¢

and wheret (B) is given by

t(B) = t(g(B), diagh(B))) (5.7)
where t(n,X) is given by (4.2), and the elementsggB) andh(B) are (recalling that alt, > 0):

w -1 W Bak2
ga(B) = ZBak ha(B) =71 Z Bak - (a=1,2,...,A). (58)
k=1 k=1 Ak

This problem will be of particular interest due to the relationships established in the two Lemmas
below between fixed points of (5.5) and those of the GSUE(2) problem (5.1).

Lemma6 Suppose the hypotheses of Corollary 1 are met, and that the vectpr pfid satisfies the

active GSUE(2) conditions (5.1). Th@n given by

B"=p(u ¢ ) diagq) (5.9)
wherep(u,$) is given by (5.2), is a solution to the fixed point problem (5.5).

Proof Conside3” given by (5.9), then in view of (5.8) (and, for the last equality, (5.1a)):
9(B’) =B Ly =pu ,¢ )diag@) Ly =p(n ¢ )a=p . (5.10)
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Similarly, since by (5.9)B. =pa(n .9 )0 (a=12,...,A’k=12,...W then (5.8) implies:

£ N2
ha(B*) = r‘lél(ﬁgk _%j = T_lé(pak(u* 1(|)* )k — (Pak(H* a(l; ))2 qk) (5.11)

k

and by the GSUE(2) conditions (5.1) we obtain
W
h,(8") = r‘l(u; - Z(pa(W' ¢ ))2qk) =ba - (5.12)
k=1
Hence,t(B") = t(g(B"),diagh( ))) = t(n ,¢ ). But then this” is a solution of (5.5), since:

Adiag(p(A"t(B"))I'diag(a) = Adiag(p(A"t(u", diag(¢"))))I'diag(a)
= p(n’,¢ ) diag@) =B .

Lemma7 Suppose the hypotheses of Corollary 1 hold, and(jhath ) = (n®,$®)are two solutions
to the active GSUE(2) conditions (5.1). Suppose fhaandB® denote the corresponding solutions to

(5.5), constructed (by Lemma 6) through (5.9). TBént BE.

Proof From (5.10) and (5.12) in the proof of Lemma 6, it follows thé¢ )=p , h( )=¢ ,

gB®)=pn®, hE®)=9®. Hence,

t(g(B").diagh(B))) = t(u , diad$ )). (5.13)
Now, let us suppose conversely tfiat= ®, and aim for a contradiction. Then,
t(g(B").diagh(B"))) = t(9(B?), diagh(B®))) = t(n®, diagh®)). (5.14)

Then, (5.13) and (5.14) together imply théfu",diag¢ )) = t(n®, diadp®)). Hence, by (5.2),
p(n",0 )=pn®,0®). Hence, by substitution forp in the right hand sides of (5.1),

(n,¢ )= (u?,0?), contradicting the original hypothesis, and thus establishing the lemma.

The fixed point problem (5.5) effectively works by embedding part of the probabilistic choice
mechanism (i.e. multinomial route split conditional on predicted costs) within a modified kind of
expected link cost function (5.7)/(5.8). Turning attention, then, to the ghimcess, we introduce some

additional terminology, motivated by that of Caetlar and Cascetta (1995). The route demand map is a
function ®(u) (@: RN - Q, < RY) relating a vector of route flows to given routstso:
®(u) =diagI’q) p(u) (5.15)

and the link demand maf: R — Q, < R” relates a vector of link flow&(y) to given link costy:
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C(y) = AdiagTa)p(A"y). (5.16)
Denoting (for positive integems and r) R (n) = {X eRT xR X=x1! andXGSRT}, wherel, is an
n-vector of 1’s, we define finally the disaggregated link demand mapR* (W) — Q. as the relationship

between the matrix of disaggregated link flows &mel matrix of disaggregated link costs the latter

formed from W identical copies of an A-vector ofiamon link costy (i.e. Y =y 1;,):

MY)=MyL,) =Adiagp(A'y)) T diag@) (Y e RIW)). (5.17)
In addition, adopting notation (4.3), a real-valuegttor mappingy(.) (v: X —>Y) will be termed
monotonically increasing oveX if and only if

||\|!(X') —y(x"), x’ —x”|| >0 VX', xX"eX (X' #X")
and monotonically non-increasing if the > is repthby <. By a slight abuse, the same notation will be

used both whex',x" andy : X — Y are matrices X,Y e R™ xR"), and vector{X,Y e R™).

Lemma 8 Suppose the route demand n&pin (5.15) is monotonically non-increasing ovgf' . Then

the disaggregated link demand napn (5.17) is monotonically non-increasing o%h(W) .

Proof Now under (5.17), folY =y 1, e R*(W),
AMY) 1y =My L) 1y =Adiag(p(A"y))I'diag(a) 1
=Adiag(p(A'y))l'q  (since diag@) 1y =q)
=AdiagT'q)p(A"y) (for n-vectorsaandb, diag(@)b = diagb)a)
=¢(y) (given by (5.16)) . (5.18)

=33 (V) = A (YN, V)

a=1 k=1

Then,  [AM(Y)=A(Y"),Y'—Y"

W
K=
A W W

(Ve - y!)(zkak(Y') —Zkak(Y”)j
a=1 k=1 k=1

=6y -y .y -y"

by (5.18). Hence, if the link demand m&g) is monotonically non-increasing ovét”, thenA.(.) will be

(5.19)

monotonically non-increasing oveéR”(W). But by hypothesis, the route demand map is moizitly
nonincreasing overR" and—as proven in Cantarella & Cascetta (1995, p.-314js is a sufficient

condition for the link demand map to be monotoijaabn-increasing oveR * .
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The relevance of Lemma 8 derives from the factithatsatisfied by common forms of choice probapil
model p(u) used in practice. Following Daganzo (1979), wéndep(u) to be a regular random utility
model if it is of the form (1.3) and the probability distribatof perceptual differencesis independent of
measured utility/cost. The logit model satisfieis tondition, as does the probit provided the danae

matrix is constant. Ifp(u) is a regular random utility model, then the rodtmand map (5.15) is

monotonically non-increasing ovét" (Cantarella & Casetta, 1995, p 315).

Having dealt with the choice-side assumptionsunfgsoblem, we turn attention to the modified expdc
cost functions (5.7), and introduce a corresponamanotonicity-like condition. In particular, for wn

B € Q3, the monotone complementdfis defined as the séll; < Q5 given by:

My = B ey [i@)-T6). Bl B L[ >0f B0y, (520
Note that (5.20) is not in fact a monotonicity citiod over some subset &5, sincepl,, appears rather
than the functional argumefit. The intepretation oMy shall be explored shortly, below. Before that,

however, a general condition is established on the “proximity”” of GSUE(2) solutions.

Theorem (Proximity Theorem) Consider a problem satisfying the hypotheses oblaoy 1, with a

route demand map (5.15) that is monotonically mameiasing ove?" . Suppose that GSUE(2) solutions
exist, and thafu ,¢") is one such solution, inducing a correspondingthrough (5.9). Then no other

GSUE(2) solution exists that has an indufeth the monotone complemeMBx of B°.

Proof Suppose the hypotheses of the theorem hold, yetecsely there exists a second GSUE(2)
solution—denoted (u®,$®) and inducingB® through (5.9)-such thap® €My . By Lemma 7,

B” =B?. Now by (5.17) we can write the fixed point problem (5.5) as:

B=A(E(B) 1) =Mw(B)) where y(B)=t(B) 1, . (5.21)
Denotingy” =w(B ) andy® =y (B®), then asp™ andB® are fixed points of (5.21), we have also
that " =A(y") andB® =A(y®). Then, on the one hand,

B =B —v®| =) -Aw )y —y? <0 (5.22)
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by virtue of the fact that under the hypothesetheftheorema (.) is monotonically non-increasing (using
Lemma 8). On the other hand,

B % —v?| - ﬁ:ﬁ(ﬁ;k BEIW o~ W)

=3 Y (Bh—BE) E(B) ~E.(B%)

a=1 k=1

DYAGRACIP VNS VEY
=[t®")-t@°). B 1y -B°L,| >0 (5.23)
where the last line holds singg® e MB*’ by definition (5.20). Expressions (5.22) and (b.Btken

together give a contradiction, thus establishimgthieorem.

The value of the Proximity Theorem therefore rests on the usefulness of the monotone complement
concept. This is demonstrated in the two corollaries below, the first addressing the case of networks

with a single inter-zonal movement, the second addressing the general case of multiple movements.

Corollary 2 Consider a problem satisfying the hypotheses oPtlogimity Theorem, with a single inter-

zonal movement with demang| . Supposé(v) is three times continuously differentiable fonakQ.,,

o, o°t, 0%
with the Jacobian of(v) diagonal for allv eQ,. Denoting the derivatives—=, —5%, —5%
OV, OV,° 0OV

a

as a

function ofv by respectivelyt, (v), tZ(v), andt’/(v), suppose further that

t2(v)>0 VveQ, where, >0 (a=12...,A) (5.24)
and that for each link=1.2,...,A, either

t/(v)=0 VveQ, (5.25)
or the following three conditions hold:

t/(v)>0 VveQ, wherev, >0 (5.26)

t’/(v)20 VveQ, (5.27)

MS%I vveQ, . (5.28)

ta(v)

Then if a GSUE(2) solution exists, it is unique.
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Proof In the single inter-zonal movement caBeandv are synonymous. Now, since the Jacobian of

t(v) is diagonal,

t(v) =t (v)+3t(v)t™ [va — \:; ] ) (5.29)

Since by hypothesis, (v) depends only ow,, then so doeg, (v), and we therefore aim to show that
is an increasing function of,. On a link for which (5.24) and (5.25) hold, tieen be seen to be true by
inspection of (5.29). Turning attention, then, 1ok on which (5.26)-(5.28) hold, sindg(-) is three times

differentiable, we obtain from (5.29):

g 2
s =t (V) +it;(v) 1- s +it§'(v) Vv, — Va
v, 2t 4 ) 2 G
" 2
_ (t;(v) —M] L+ it;’(v)(va _ Ve ] . (5.30)
ot 2t 2t o}

The first bracketed term in (5.30) is non-negativeler (5.28), the second term is positive by (5.26)

provided v, >0, and the third term is non-negative by (5.27)demand-feasibles, sinceO<v, <q.

Therefore the overall derivative is the sum of twam-negative and one positive term, and so isipedr

v, >0. Since thereforé, is increasing in, and depends only wp~f ., it follows that for any € Q,,
the monotone complement is maximal: iMg = Q, —{B}. Hence, by the Proximity Theorem, only one

GSUE(2) solution can exist.

The relevance of conditions (5.24)28) may be illustrated by considering the common “power-law”

family of cost-flow relationships:
t,(V)=a, +7,Va: (0,207,>0a=12...,A) (5.31)
in which case some simple analysis shows (5.228)5t0 be satisfied provided that for each link

a=12,...,A eithern, =1 or 2<n, <1+ qr . Thatis to say, the conditions are satisfiedviled that

the absolute number of travellegst is not too small (in practice, we would certaieipectn, <10).

Turning attention to multiple inter-zonal movemprablems, we first establish the following bound.
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Lemma 9  Supposet(v) is twice differentiable with a diagonal Jacobiand suppose further that

t’(v)>0atallveQ,. Then:

i) < 6B) < M+ 215 |60 (@=12..A p=ply; BeQy).
YooXa

Proof The lower bound ori, (B) is clear by inspection of (4.2)/(5.7), sintg-) > 0 by hypothesis, and
we turn attention to the upper bound. By (5.7)X%#h p=p1,,,
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o k

g 1 w Bak2 "
ta(B) :ta(u) +—| Ha— z_ ta(u) . (532)
Sincet](-) > 0 by hypothesis, then (5.32) is clearly maximisedth(wespect top) for fixed p by the

solution to minimisation problem (5.33):

2
minimise %Ba—" subject toVZV)Bak =pn, and0<B,, <q, (k=12,..W). (5.33)
k=1

k=1 Oy
- - - - - W_l - - - - 0
Removing the equality constraint by substitutiorBgf, =1, — > B« In the objective function yields a
k=1

modified objective function g. Now, neglecting timequality constraints, the unique unconstrained

minimum of g occurs when simultaneously:

Z(Ma _Wz_alﬁa )
0=-99 _Zam_ S (me12.. WD) (5.34)
aBam qm q\N

and since the second term is a common constaht\id al of these conditions, they together imply:

%:% (k=12,.W-1 m=12,..W-1) . (5.35)
k m

With B, substituted in (5.34) from (5.35), we obtain afieme rearrangement the minimum point:

Bam= o H, (M=12..W). (5.36)

W

2.0,
k1

By inspection, the unconstrained minimum (5.36) aigtisfies the constraints of the constrainedlpnob
(5.33), and so minimises (5.33) too. The upper barfrthe Lemma is obtained by substitution of (%.36

into (5.32), and we are finished.

The bounds in Lemma 9 then make it possible tdoksitethe following result.
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Corollary 3 Suppose the hypotheses of the Proximity Theoredh hald that (v) is differentiable with a
diagonal Jacobian that has positive entries atall,, and that all derivatives of order 2 and abovstexi
and are non-negative at alleQ,. Then for any GSUE(2) solution inducin§, the monotone

complementM, is contained withinv s given by:

My ={B eQy:p =B 1, and p, —p, > su @=12...A)}. (5.37)

veQ, té (V)2’C Vzvq
k=1
Proof Now, as noted in (5.23),
{6 -E6). B 1y -B 1| =2 (B -T.B") (gﬁ;k —Zﬁfk] (5.38)

and so to ensure the left-hand-side is positivemag impose the stronger condition that all termthe

summation over a in the right-hand-side are pa@silivis this stronger condition that we will shéav the
monotone complement. Now, from Lemma 9, using dest bound forfa(B®) and the upper bound for

t,(B), and definingu® =p®1, andp =1, , we have:

2
W sp, = t“aaa@)—t;as)>ta<u@)—ta<u)—%t;(u>+ Pa__t7(w) . (5.39)
T
2r|§1qk

If t. (n) =0 then we are finished, since by hypothesig) is dependent only on, and is increasingui,
So let us suppose instead thgfu) > O(since by hypothesis it is non-negative). By a ®ayeries

expansion in the neighbourhoodof :

® i
(1) =t () + 6 0) (uf —,)+ St oy Lo ite)
Since by hypothesis®’ (") =% is everywhere non-negative for= 34,..., and strictly positive for

a

i =212, thent,(u®) >t (u)+t.(u) (U —p,) whenu? >p, . Hence, by (5.39),

WO, = LE®)-LE) >t (uf—ua)—%tgmw Pa_ t7(w) (5.40)
1 21k2=‘,1qk

and the right hand side may be seen to be pofiinany p = p1,, whenp e IWB@ given by (5.37).
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The value of this result is again most easily itlted by reference to the power law family (5.34)that

Vatg(v) 1— Va < Vatg(v) _ r]a_:l'
tl(v)2t qu S th(v)2t 21

k=1

case,

for any peQ, . Thus, for example, iin, <5and

©> 05, then for a given GSUE(2) solutidp,$) there cannot be a second GSUE(2) solutjof, $®) at
a distance greater thart —p, > 4. Since typically mean flow rates will be in theder of hundreds or

thousands of vehicles per hour, the result estadighat if multiple solutions do exist, they Wil relative
terms) have very similar mean flow rates. At smallistances, the possibility cannot be ruled oat th
some of the terms in the summation over a in (5:88)e negative, yet even in such instances thgite
still be many cases where the overall summatipossive, and the proximity theorem would againlapp

(That is to say, the condition in Corollary 3 ithex more stringent than is necessary).

6. EXAMPLE
As an illustration of the GSUE(n) model, a simplamaple is presented, consisting of two parallel

4
links/routes with cost-flow performance functiohgv) :(I—Bj and t,(v) =10, serving a single inter-

zonal movement with demangl= 20vehicles/hour. Suppose further that the choice ghitity function

has the logit formp, (u) = L+ exp (05(u, —u,))) *. Now, sincet(v) has a diagonal Jacobian, all cross-
link moments in the GSUE(n) fixed point conditionsl be inactive, since they will not appear ingg.

Indeed, sincé,(.) is constant, and derivatives@f.) of higher order than 4 are zero, only momentg, of
of order 4 and below will be active. Now, sinkg = Flzr‘llzl, we require (on the choice side)

expressions for the first four momentsI:qf~ Binomial(q, p,) , given by (Stuart & Ord, 1987, p. 76):

(=0 Q=T A-p); 5.3 =52 1-2p); 5@ =5, £1+ {1— %le (2)]-

Using an initial fine grid search, and then a figad search on areas near to a solution, solutioiise
GSUE(n) fixed point conditions were determined naocadly, to three decimal place accuracy, for eaich

n= 1234, and for a number of given values of In this simple example, this may be achieved by a

univariate grid search omp, for 0< p, <1. For each value ot and n tested, exactly one GSUE(n
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solution was found to exist. The resulting GSUE{®an flow rates are plotted Kigure 1. Now, by

Lemma 2, as the, (v) are polynomials of ordeg 4, the GSUE(n) mean flow for any n>4 coincides with

that for n=4. Moreover, Lemma 2 implies that foe 4 the approximation error in (3.6) is zero: the
GSUE(4) solution gives the exact first four momenfsthe equilibrium distributiony given by
(2.8)/(2.9). Thus, the GSUE(4) mean flow illustrated may be regarded as the ‘target’ (true mean flows

corresponding to (2.8)/(2.9)), and the other cuagapproximations to it.

The GSUE(1) (i.e. SUE) solution, which is invaridgatt, is at a link 1 flow of approximately 16.29
vehicles/hour. It can be seen that GSUHfm> 2) mean flows and SUE flows differ, indicating thia¢ t
GSUE(n) is indeed a model in its own right. Funthere, consistent with the Large Sample Approxinmatio
Theorem (see section 3), the difference betweerivibedecays as — «. Considering the GSUE(2)
prediction, as well as being different from the S&f#ution, in this example the GSUE(2) mean flow is
closer than SUE to the true mean flow of (2.8)XZi®. the GSUE(4) solution). In fact the GSUE(2)
model slightly overcompensates, and the GSUE(3)emookrects the mean flow back in the opposite
direction. The fact that the GSUE(3) mean flowrsager than the GSUE(2) one is to be expecteddy th
nature of the example: Since in all cases the ibquin choice probabilityp, > 0.5, then the binomial
link/route flow distribution for link 1 is negatilyeskewed. Since the third derivative gf(.) is positive,
then at the GSUE(2) flows, the GSUE(3) model wauiddict a lower link 1 expected cost than the
GSUE(2) model, thus (in the GSUE(3) equilibrationgess) attracting an increased link 1 mean flow. A
similar argument can be made for the comparisoh thit GSUE(4) solution, based on the nature of the

fourth moment as a measure of kurtosis.

17 1

= 16 4 a
o g—a—0—2—
3 154 Q%qu’ — GSUE()
ry 7 —x— GSUE(2)
= 141 c
S —o— GSUE@3)
2 187 —o— GSUE(4)
c
s 12 4
= X

11

0 0.1 0.2 0.3 0.4 0.5

Time period (hours)

Figure 1: GSUE(n) mean flow rate on route 1 (n=1,2,3,4) as a function of time period duration
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7. CONCLUSON

A new class of equilibrium models has been predertgable of characterising long-run behaviourrwhe
network flow and cost variables are stochastich@lgh these models may be applied as part of a
conventional network assessment, their primaryiegipn is envisaged as being in cases that arenbey
conventional SUE and UE models. These cases aeraligrnwhere variability is an issue, either in the
input data, in the output ta(model predictions), in the representation of a ‘responsive’ policy, or in the
assumed behavioural response. Potential applisatictude: the modelling of dap-day variability in the
inter-zonal trip demand matrix (Watling, 1998); #imation of network reliability measures, inchgd

the impact of variable link capacities (Watling999, and the impact of unreliability on travel beioar,

such as the risk of late arrival relative to somesi@d arrival time.

A key practical requirement for such models is éRistence of an efficient solution algorithm forge
networks. This aspect is explored in a compani@epé/Natling, 2001), in which results are also regub
of applications to realistic networks. On the techiside, promising areas for extension of theeulythg
models are: (i) elastic demand, including departume choice, where the greater variance in flowsro
the inelastic case might be expected to inducesatgr discrepancy with conventional determinidtievf
models; and (ii) within-day dynamics, wherdue to the potentially small absolute number ofeifars
per inter-zonal movement per departure time perithek large sample justification, often quoted inpsup

of SUE as an approximation to mean stochastic floias much less credibility.

29



ACKNOWLEDGEMENTS
The support of an Advanced Fellowship from the UkgiBeering and Physical Sciences Research Cowsngiiatefully
acknowledged, as are the critical insights of Matazelton, and the constructive criticism of vasi@arlier drafts by Mike

Maher, Mike Bell, Dirck Van Vliet and three anonyansareferees.

REFERENCES

R Armott, A de Palma & R Lindsey R, “Does providing information to drivers reduce traffic congestion?”, Transportation
Research 25A(5), 309-318 (1991).

C Baiocchi & A Capelo, Variational and Quasivaatl Inequalities, John Wiley &Sons, ChichesteBa)9

MGH Bell, “Expected equilibrium assignment under stochastic demand”, unpublished paper presented at 23rd University
Transport Studies Group annual conference, NotinghJ.K., January 2nd-4th 1991.

M Ben-Akiva & SR Lerman, Discrete Choice Analy8iT Press, Cambridge, Mass. (1985).

GE Cantarella & E Cascetta, “Dynamic Processes and Equilibrium in Transportation Networks: Towards a Unifying
Theory”, Transportation Science 29(4), 305-329 (1995).

E Cascetta, “A stochastic process approach to the analysis of temporal dynamics in transportation networks”,
Transportation Research 23B(1), 1-17 (1989).

CF Daganzo, “Some statistical problems in connection with traffic assignment”, Transpn Research 11(6), 385-389 (1977)

CF Daganzo & Y Sheffi, “On Stochastic Models of Traffic Assignment”, Transportation Science 11(3), 253-274 (1977).

CF Daganzo, Multinomial Probit, Academic PressyN@rk. (1979).

GA Davis & NL Nihan, “Large population approximations of a general stochastic traffic assignment model”, Operations
Research 41 (1), 169-178 (1993).

RHM Emmerink, P Nijkamp & P Rietveld, “Perception and Uncertainty in Stochastic Network Equilibrium Models”, paper
TI 95-159, Tinbergen Institute , Free University Amssard Netherlands, 1995.

P Mirchandani & H Soroush, “Generalized Traffic Equilibrium with Probabilistic Travel Times and Perceptions”,
Transportation Science 21(3), 133-152 (1987).

Y Sheffi, Urban transportation networks, Prentitadl, New Jersey (1985).

M1J Smith, “Existence, uniqueness and stability of traffic equilibrium”, Transportation Research 13B, 245-50 (1979).

A Stuart & JK OrdKendall’s Advanced Theory of Statistics: Volume 1, Charles Griffin Ltd., London (1987).

E Van Berkum & P Van der Mede, The Impact of Teaffiformation: Dynamics in Route and Departure Tiotice
CIP-Gegevens Koninklijke Bibiotheek, Den Haag, Netaals (1993).

Watling DP, “Stochastic Network Equilibrium under Stochastic Demand”, presented at 6 Meeting of EURO Working
Group on Transportation, Gothenburg, Sweden, SepterfikEr91998.

Watling DP, “Traffic Assignment with Stochastic Flows and the Estimation of Travel Time Reliability”, presented at
Second International Workshop on Network Reliapiliewcastle , UK, July 271999.

Watling DP. “A Second Order Stochastic Network Equilibrium Model. II: Solution Method and Numerical Experiments”,

Transportation Science, 2001. (details to be adtipdof).

30



