
INFORMS Journal on Computing
Vol. 18, No. 3, Summer 2006, pp. 321–338
issn 1091-9856 �eissn 1526-5528 �06 �1803 �0321

informs ®

doi 10.1287/ijoc.1050.0131
©2006 INFORMS

Recurrent Neural Networks for
Music Computation

Judy A. Franklin
Computer Science Department, Smith College, Northampton, Massachusetts 01063, USA,

jfranklin@scinix.smith.edu

Some researchers in the computational sciences have considered music computation, including music repro-
duction and generation, as a dynamic system, i.e., a feedback process. The key element is that the state of the

musical system depends on a history of past states. Recurrent (neural) networks have been deployed as models
for learning musical processes. We first present a tutorial discussion of recurrent networks, covering those that
have been used for music learning. Following this, we examine a thread of development of these recurrent
networks for music computation that shows how more intricate music has been learned as the state of the art
in recurrent networks improves. We present our findings that show that a long short-term memory recurrent
network, with new representations that include music knowledge, can learn musical tasks, and can learn to
reproduce long songs. Then, given a reharmonization of the chordal structure, it can generate an improvisation.

Key words : recurrent neural networks; computer music; music representation; LSTM
History : Accepted by Elaine Chew, Guest Editor of the Special Cluster on Music and Computation; received
January 2004; revised July 2004, December 2004; accepted December 2004.

1. Introduction
Recurrent neural networks have been developed both
by neural-network designers as well as process-
control engineers. The state of the art of recurrent
networks from their use as predictors and filters, to
architectures of multiple nets, to the equivalence of
recurrent network models with finite automata, push-
down automata, and Turing machines, to limitations,
evaluation, and stability, is described in Kolen and
Kremer (2001) and Mandic and Chambers (2001).
The use of recurrent networks in music learning

and composition parallels these efforts. We describe
several specific recurrent networks that have been
used for computer music. Our focus is on digital
music at the pitch and duration level, not at the
signal-processing level; i.e., we assume pitches and
durations of notes are available when learning. These
algorithms do not need to determine pitch from an
acoustic signal and do not perform any frequency
analysis. Rather, the focus is on whether recurrent net-
works can learn a long and cohesive composition and
remember earlier motifs and structured song forms,
as well as whether it can generate a new one. The
type of recurrent network used affects its ability to
learn music, but so does the representation of the
inputs and outputs of the network. The choice of rep-
resentation also depends on whether the network is
learning from musical scores or from human perfor-
mances. This is also a factor if the network is to be
used for interactive playing, either during training

or afterward. Finally, while the tempo can be varied
externally, most work in using recurrent networks for
music has assumed a fixed tempo, and the networks
do not explicitly adapt to varying beats and tempos.
There has been some focused work in using special-
ized networks to learn to recognize beat and tempo
variations, a process called entrainment (see Desain
et al. 1989, Large and Kolen 1994, and Allen and
Dannenberg 1990).
In the next section, we describe several types of

recurrent networks that have been used in music
learning and composition programs. We include
details of the algorithms, while also exploring possi-
ble limitations. This section may be read thoroughly,
or skimmed before reading §3, where we describe
how these networks have been used in past music
systems. It is within this section that we begin to
address issues of music representation. In §4 we
describe our own work with the LSTM network and
our music representations. We conclude in §5.

2. Neural Networks, Feedforward and
Recurrent

2.1. Feedforward Networks
We first briefly describe non-recurrent, feedforward
neural networks that consist of two or more layers of
small processing units that are connected to the next
layer by weighted connections. The output of each
layer is fed forward through these connections to the

321



Franklin: Recurrent Neural Networks for Music Computation
322 INFORMS Journal on Computing 18(3), pp. 321–338, © 2006 INFORMS

next layer, until the output layer is reached. This is
called the forward pass. An error is formed at the out-
put, and the error is passed back through the network
in a backward pass, and the weights on the connec-
tions are incrementally adjusted. Through an iterative
training procedure in which example inputs and the
target outputs are presented to the network repeat-
edly, the network can learn a nonlinear function of the
inputs and can also generalize and produce outputs
for examples it has not seen before. Such networks
are useful for pattern matching and classification and
have been explored within the computer-music com-
munity to classify chords (Laden and Keefe 1991), to
detect musical styles (Dannenberg et al. 1997), and to
accomplish other tasks such as sound synthesis, pitch
perception modeling, and learning to reproduce and
to create melodies (Todd and Loy 1991, Griffith and
Todd 1999).
As an example, suppose a network has three layers.

The first layer is a set of numerical inputs, xi, where
the examples are presented. The inputs are generally
multiplied by weights and are processed by the indi-
vidual, generally nonlinear, processing units in the
second layer. Each processing unit has its own set of
connection weights. The weights may be labeled wki,
denoting that input i is connected to unit k in the
second layer by weight wki. Notice that the order of
the subscripts is important. The output of unit k is
calculated as

yk�t�= f �netk�t�� (1)

where

netk�t�=
∑

i∈Inputs
wkixi�t� (2)

and often, the nonlinear sigmoid function

f �x�= 1
1+ e−x

(3)

is used as the nonlinear output. It is monotonically
increasing, with range from 0 to 1.
The outputs yk of these second layer units are multi-

plied by another set of weights vjk and the set of prod-
ucts 
vjkyk� becomes the set of inputs to processing
unit j of the third layer. The third layer in this exam-
ple network consists of one processing unit for every
output the network must provide. If the network
must output a pitch and a duration, it may be that
the third layer will consist of two units, one for the
pitch and one for the duration. There are many possi-
ble ways to represent values on the input and output
of a network that, especially in the music domain,
may reflect some domain structure, and these will be
examined on a system-by-system basis in later sec-
tions. The network is trained by incrementally adjust-
ing the weights on the connections so as to reduce

some function of the network’s output error E. This
is the backward pass. Typically,

�wki =−�
�E

�wki

(4)

and similarly

�vjk =−�
�E

�vjk

(5)

with scalar learning rate �. The commonly used gra-
dient-descent backpropagation algorithm (Rumelhart
et al. 1986) propagates the error gradient back through
the weights and nonlinear (but differentiable) func-
tions in the processing units, using the chain rule to
give general equations such as

�wki�t�= ��k�t�xi�t� (6)

and

�vjk�t�= ��j�t�yk�t� (7)

where �k�t� and �j�t� are each a function of gradients
multiplied by weights.

2.2. Feedback or Recurrent Networks
A recurrent network uses feedback from one or more
of its units as input in choosing the next output. This
means that values generated by units at time step
t − 1, say y�t − 1�, are part of the inputs x�t� used in
selecting the next set of values y�t�. A network may
be fully recurrent, i.e., all units are connected back to
each other and to themselves, or some part of the net-
work may be fed back in recurrent links. This section
includes descriptions of several kinds of recurrent net-
works that have been specifically used in musical sys-
tems, ordered chronologically. The topology of each
network is discussed, as is its forward pass to gen-
erate outputs, and its backward pass, to incremen-
tally update the weights, taking into consideration the
recurrence. The equations for the forward and back-
ward passes are given. However, the derivations are
left to the individual citations. In all cases, the deriva-
tions are instantiations of (sometimes-modified) gra-
dient descent.

2.2.1. Jordan Networks. Jordan recurrent net-
works (Jordan 1986) include two types of recurrent
links as shown in Figure 1. The first type is a link from
the output layer back into the input layer to a set of
input units, labeled context units. The network outputs
depend not only on the external inputs, as in a feed-
forward net, but also on the outputs at the previous
time step; i.e., in�t�= out�t−1�. The second type is the
self-recurrent context unit. The self recurrence is from
the input of the context unit back into the input, so
the true input to a context unit, unitin�t�, is calculated



Franklin: Recurrent Neural Networks for Music Computation
INFORMS Journal on Computing 18(3), pp. 321–338, © 2006 INFORMS 323

Output units

Hidden units

Input units
Self-recurrent on left
Non-recurrent on right

Figure 1 Jordan Recurrent Network Showing Input Context and Output
Recurrence

as a combination of its past value unitin�t − 1� and
of in�t�:

unitin�t�= �unitin�t− 1�+ �1−��in�t� (8)

with decay factor 0 < � < 1. The figure also shows
non-recurrent external inputs. The recurrence on the
context units provides a decaying history of the out-
put over the most recent time steps. As in feedfor-
ward networks, the output units can be either linear
or nonlinear functions of summed weighted inputs.
The hidden units are nonlinear (sigmoid or hyperbolic
tangent function).
Consider the problem of updating weights in a

recurrent network. At each time step before the
network is fully trained, the outputs are incorrect.
However, the outputs and their incorrect values are
being used as inputs to the network. How can the
weight update equations be adjusted for these incor-
rect inputs? Williams and Zipser (1988) suggested
teacher forcing, a method useable with Jordan net-
works. Since the target output is known during train-
ing, its value can be fed back to the input context
units, rather than the actual output. In other words,

in�t�= outtarget�t− 1�� (9)

This means that the weight-update equations can be
the feedforward network backpropagation equations,
with outtarget�t− 1� used as input to the context units.
There are two drawbacks to this method. First, it is
not useful for dealing with recurrence in hidden units,
where the target output is not available. Second, the
actual outputs may never be exactly equal to the tar-
gets. So when the network is used with new exam-
ples after learning, the actual output is fed back, and
will include variations not present during training.
Nonetheless, this is a useful method that has been
used to train Jordan networks by both Todd (1991)
and Franklin (2000) (see §§3.1 and 3.2).

x (t–1) y (t )

Fully recurrent network

External inputs

Figure 2 A Fully Recurrent Network, with External Inputs on Left
Notes. Network outputs are at right. The full set of inputs, including recur-
rent links, is shown as x�t − 1�, and the network outputs are shown as the
vector y �t�.

2.2.2. BackpropagationThroughTime. Backprop-
agation through time (BPTT) is an algorithm that will
work with a fully recurrent network as shown in Fig-
ure 2. It does not rely on teacher forcing. Suppose
xi�t� is the set of all external inputs at time t (denoted
as Inputs) plus the set of current outputs of all units
(denoted as Units) in the network, yk�t� (Rumelhart
et al. 1986, Campolucci 1998). For each unit k in the
network, the output

yk�t�= fk�netk�t��� (10)

where fk is a nonlinear function such as the sigmoid
or hyperbolic tangent and, as we would expect from
a forward pass similar to the feedforward network,

netk�t�=
∑

i∈Units∪Inputs
wkixi�t− 1�� (11)

where the forward pass at time t depends on values
at the previous time step t−1. Notice that the concept
of network layers is eliminated by the full recurrence.
BPTT is a batch algorithm where the feedforward pass
is done over all examples in one sequence, and at each
step in the sequence all errors are saved, along with
all inputs to the units and all unit states.
Considering each unit k, the weight update for each

weight wki connecting either unit i or external input i
into unit k depends on summing terms over one
whole sequence of time (compare to the simpler (6)),

�wki = �
t1∑

�=t0

�k���xi�� − 1�� (12)



Franklin: Recurrent Neural Networks for Music Computation
324 INFORMS Journal on Computing 18(3), pp. 321–338, © 2006 INFORMS

where xi is the ith input to the unit, and �k��� is a
function of derivatives and of errors at time � and of
future �is. All �l�� + 1�, for each unit l, are used to
update each �k���. We calculate the �k starting at the
last time step � = t1, and move its calculation back
through time to step t0:

�k���=




f ′
k�netk����2ek��� � = t1

f ′
k�netk����

[
2ek���+

∑
l∈Units

�l�� + 1�wlk

]

t0 ≤ � < t1�

(13)

This is the means by which errors are propagated
back in time, from all units to each one unit. Con-
ceptually, the network is unfolded and considered as
a large many-layered feedforward network, with one
layer per time step. ek��� is the error between the
desired or target output yd��� and the unit k’s actual
output, yk���:

ek���= yd���− yk���� (14)

If the desired target is only presented at the end of
the epoch, at � = t1, ei��� may only be nonzero at the
end of the epoch. Also, ek is only nonzero for units
designated as output units for which targets are avail-
able. Any non-output, unit-weight updates are com-
pletely dependent on the time series of � corrections.
Once the �k are calculated for all � , the weight update
in (12) may be made.
In our early experiments with BPTT, we used only

fully recurrent units within BPTT and designated one
as the output unit that would be compared to the
desired output at each step. Another option is to
use the BPTT fully recurrent network as a nonlin-
ear recurrent preprocessor to a standard nonlinear
feedforward network. The feedforward network’s out-
puts are compared to the target values; errors are
formed and backpropagated through the feedforward
network; and the error gradients from the feedfor-
ward net are passed back into the BPTT network
as the errors {ek}. The feedforward network can be
implemented in batch mode, one batch per example
sequence to be learned. Our experiments were more
successful with this approach, and Mozer (1994) used
this configuration in his CONCERT system (§3.3). It
is possible to use truncated BPTT (Williams and Peng
1990) in an on-line manner, where only the most recent
h values are used in the equations to compute the
���� values. While this method has been used in the
control-engineering field, it has not been used for
music applications.

2.2.3. Long Short-Term Memory (LSTM). The
long short-term memory or LSTM network (Hochre-

Memory
block

Memory
block

Memory
block

External
inputs

Output
units

Figure 3 An LSTM Network with Recurrent Memory Blocks in the
Hidden Layer Between the Input Layer and the Output Layer

iter and Schmidhuber 1997, Gers et al. 2000) is a sig-
nificant departure from the other networks in that it
employs a hidden layer of memory blocks that can
be thought of as complex processing units, as shown
in Figure 3. We will describe this network in more
detail than the others, because it is more complex,
and because it is the network we found to be most
useful. The network uses a set of external inputs,
provides a set of standard outputs, and contains the
set of memory blocks. Rather than being one typical
unit that sums its weighted inputs and passes them
through a nonlinear sigmoid function, each memory
block contains several units. Figure 4 shows a more
detailed view of memory block j with n memory
cells. First, there are one or more self-recurrent linear
memory cells. Second, each unit contains three gat-
ing units that are typical sigmoid units, but are used
in the unusual way of controlling access to the mem-
ory cells. One gate learns to control when the cell’s
outputs are passed out of the block, one learns to con-
trol when inputs are allowed to pass in to the cell,
and a third one learns when it is appropriate to reset
the memory cells. The lines leading out of the top of
the block from the cells are the memory-block out-
puts that are fed into the output layer along with the
outputs of all other memory blocks. The outputs of
all blocks are also fed back recurrently to all of the
memory blocks and are used to form netout, net�, and
netin. The small black squares denote multiplication;
e.g., yinj �t� multiplies all of the g�netcvj �t��.
LSTM’s designers were driven by the desire to

design a network that could overcome the vanishing-
gradient problem (Hochreiter et al. 2001). Over
time, as gradient information is passed backward to
update weights whose values affect later outputs, the
error/gradient information is continually decreased
by weight-update scalar values that are typically less
than one. Because of this, the gradient vanishes. Yet,



Franklin: Recurrent Neural Networks for Music Computation
INFORMS Journal on Computing 18(3), pp. 321–338, © 2006 INFORMS 325

h(scj
1(t ))

g (netcj
1(t )) g (netcj

2(t )) g (netcj
n(t ))

scj
1

h(scj
2(t ))

scj
2

h(scj
n(t))

scj
n

Output
gate

Forget
gate

Input
gate

netout

Memory
cells

netφ

netin

youtj(t )

y inj(t )

yφj(t )

Memory block inputs

Designates multiplication

Blockj
Memory block outputs

n

h h
h

1 2

Figure 4 An LSTM Memory Block Showing n Memory Cells and Gates Learned by Nonlinear Units Receiving Either Inputs or Values from Recurrent
Connections with Other Memory Blocks

the presence of an input value way back in time may
be the best predictor of a value far forward in time.
LSTM offers a mechanism where linear units can latch
onto important data and store them without degra-
dation for long periods of time, in order to decrease
vanishing-gradient effects.
Referring again to Figure 4 and using the notation

of Gers et al. (2000), cv
j refers to the vth cell of mem-

ory block j . The memory-block inputs become inputs
to each cell. For cell cv

j , the inputs are multiplied by
weights wcvj m

. These products are then summed to
form netcvj �t�, which is then passed through sigmoid
function g, as shown at the bottom of Figure 4. The
output of memory cell cv

j is

scvj �t�= y�j �t�scvj �t− 1�+ yinj �t�g�netcvj �t��� (15)

where scvj �0�= 0. By its role as multiplier in (15), the
input gate output yinj �t� is gating the entrance of new
inputs, g�netcvj �t�� into the cell. With a sigmoid out-
put (see (3)), the value of yinj �t� can swing between 0
and 1, allowing no access or complete access. Further-
more, each block j’s forget-gate output y�j �t� is gating
the cell’s own access to itself through its multiplica-
tion of scvj �t − 1� in (15), effectively resetting the cell
when information it is storing is no longer needed.
The original LSTM network did not include forget
gates. Elimination of them is easily implemented by
just setting y�j �t� to be a constant 1. The cell’s output
scvj �t� is passed through a sigmoid function, h, with

range #−1�1$, and then it may be passed on as an
output of the memory block according to

ycvj �t�= youtj �t�h�scvj �t�� (16)

where again we see gating in action. The output
gate’s output youtj �t�, ranging between 0 and 1, may
allow h�scvj �t�� to pass out of the memory block, or it
may inhibit it, by multiplying by 0. youtj �t� is a sig-
moid function of a weighted sum of inputs netoutj �t�

�youtj �t� = f �netoutj �t��� that are received via recurrent
links from the memory blocks and from the external
inputs to the network. Similarly, y�j �t� = f �net�j

�t��

and yinj �t�= f �netinj
�t��.

The weight updates for each block of the LSTM net-
work are complex because of the use of the n mem-
ory cells and the three gates that control these n cells
within each block. Furthermore, each output unit of
the whole network has a set of weights used to multi-
ply the values coming from the memory blocks. Each
gate has a set of weights that it uses to multiply its
inputs (recurrent inputs from all the memory blocks
and also external inputs) and then pass through a sig-
moid. Each cell has its own set of weights wcvj m

used
to calculate netcvj �t�. We go through the steps of this
calculation here.
Starting with the network-output units, the net-

work’s outputs yk�t� are the weighted sums netk�t�,
as in (2), passed through a sigmoid function f . The



Franklin: Recurrent Neural Networks for Music Computation
326 INFORMS Journal on Computing 18(3), pp. 321–338, © 2006 INFORMS

output errors are passed back through the derivative
of the sigmoid function f to obtain the error gradient

ek�t�= f ′
k�netk�t���t

k�t�− yk�t��� (17)

where yk�t� is the output of output unit k and tk�t� is
its target (e.g., tk�t� may be the current target pitch).
The weights connecting memory-block outputs to net-
work outputs are updated using the errors

�wkm�t�= �ek�t�hm�t�y
outj �t�� (18)

where hm�t� = h�scvj �t�� for some block j and some
cell cv

j in that block and where youtj �t� is the output
gate output for the same block j . Compare this to (6),
where now the input to the output unit is hm�t�y

outj �t�.
Inside memory block j , the output of each output

gate, youtj �t�= foutj �netoutj �t��, multiplies every h�scvj �t��

in that jth block and, therefore, the weight update for
each output gate weight follows (6) as well but reflects
those n products and their effects on the output gate’s
weight updates:

�woutjm �t� = �f ′
outj

�netoutj �t��
∑

k∈output units
ek�t�

·
n∑

v=1
wkcvj

h�scvj �t��xm�t�� (19)

where xm�t� is the mth input to the output gate. This
is the means by which the value youtj �t� is learned.
In other words, the network output errors are prop-
agated back into the jth output gate, from each out-
put unit through the weights connecting all of the cell
outputs for block j to the output units.
The errors ek�t� are backpropagated further to

obtain errors at the memory-cell level, according to

escvj
�t�= youtj �t�h′�scvj �t��

∑
k∈output units

wkcvj
ek�t�� (20)

The output gate’s output youtj �t� is simply a multiplier
in this equation. Whereas its role in the computing
of the outputs of the network in the forward pass is
to determine if information from the cell is allowed
out to the output units, its analogous role here in the
backward pass is to allow or inhibit error information
from flowing back through to the cell. If the cell con-
tributed to the network output, it should also receive
its share of the resulting error.
In order to update the weights wcvj m

on the inputs
to the cells and the weights w�jm

on the forget gate, as
well as the weights winjm on the inputs to the input
gate, these errors, escvj

, must lastly be backpropagated

through the memory cells. The cell weights wcvj m
are

updated according to how much they contributed to
the error. The input and forget gates’ weights, winj

and w�j
respectively, are updated depending on the

sum of the errors of all the n cells (in their block j)
that they gate. In other words,

�wcvj m
= �escvj

�scvj �t�

�wcvj m

� (21)

�w�jm
= �

n∑
v=1

escvj

�scvj �t�

�w�jm

� (22)

and

�winjm�t�= �
n∑

v=1
escvj

�scvj �t�

�winjm
� (23)

where n is the number of cells in block j . Recall-
ing from (15) that the memory cells are self-recurrent,
these three partials are calculated using (15) as

�scvj �t�

�wcvj m

=
�scvj �t− 1�

�wcvj m

y�j �t�+ g′�netcvj �y
inj �t�xm�t�� (24)

�scvj �t�

�w�jm

=
�scvj �t− 1�

�w�jm

y�j �t�+ scvj �t− 1�f ′
�j
�net�j

�t��xm�t��

(25)

and
�scvj �t�

�winjm
=

�scvj �t− 1�
�winjm

y�j �t�

+ g�netcvj �t��f
′
inj
�netinj �t��xm�t�� (26)

Notice they all have the form

�scvj �t�

�wlm

=
�scvj �t− 1�

�wlm

y�j �t�+ �l�t�xm�t�� (27)

The only recursive weight-update equations are those
involving the cell outputs scvj . The weight updates are
actually estimates similar to the truncated backprop-
agation through time with h= 1 (as mentioned at the
end of §2.2.2). The crucial element that leads to this
network’s success is the ability of the memory cell to
“cache” error/gradient information for later use, as
can be seen in (15) and (24–26).
In the configuration shown here, a single layer of

nonlinear output units is attached to the output of the
network. This could be a feedforward network with
more than one hidden layer; equations are given in
Hochreiter and Schmidhuber (1997). Also, a recurrent
link may be added from the output layer to the inputs
of the network, as is done in the simpler Jordan net-
work. Eck and Schmidhuber (2002) take this approach
in using this network for learning blues melodies, as
we describe in §3.4.

3. Recurrent Networks for Music
Here we present several implementations of music
systems that use the recurrent networks described
in §2.2.



Franklin: Recurrent Neural Networks for Music Computation
INFORMS Journal on Computing 18(3), pp. 321–338, © 2006 INFORMS 327

3.1. Using Jordan Networks—Melody Learning
and Composition

Todd (1991) used a Jordan recurrent network (§2.2.1)
in a system that can learn to reproduce songs. With
the output of the network fed back to the input layer,
and with a recurrent link on each input unit, the
actual input is a decaying average of the most recent
output values, providing a decaying memory of the
melody.
How is this network used to reproduce a song?

Todd’s idea is to split time into 16th note fractions.
Each iteration of the network produces the next 16th
note fraction. During training, a song is given as a
sequence of pitches, split into 16ths, to the network.
The network must produce the next pitch on its out-
put. One of the output units is called a Note Begin
unit and is trained to output 1 if a new note is begin-
ning. To output an eighth note of pitch E4, E4 is out-
put for two iterations (two 16ths) and the note-begin
is 1 for the first iteration and 0 for the second.
Todd uses one input for each pitch and one out-

put for each pitch, in a “localist” representation of
pitches, using 14 pitches in the key of C major, from
D4 to C6. D4 is represented as 10000000000000, E4 as
01000000000000, F4 as 00100000000000, and so on. For
example, to output D4 as an eighth note starting at
time step t:

Step Pitch Outputs Note Begin Output
t 10000000000000 1
t+ 1 10000000000000 0

There are also several non-recurrent inputs called
plan inputs. The Jordan network was originally de-
signed to learn several plans, in the artificial-intelli-
gence realm of planning, each one step by step. Here,
the network learns several songs, pitch by pitch. The
plan inputs indicate which song is being learned. The
plan/song representation is similar to the pitch repre-
sentation, with one input per plan/song. Thus if the
network is being trained to learn song 1 of 3, the song
inputs are 100, and they are 010 while learning song
2 of 3, and 001 for song 3.
In order to output a rest, all output units must

be off, or below a threshold. Todd was able to train
this network to learn melodies of up to 20 notes and
rests that contain eighth, quarter, or dotted quarter
notes, and to use one network to learn three melodies.
New songs can be generated by the trained network
either by varying and mixing the plan input values, or
by introducing a new “seed” melody on the context
inputs and recording the subsequent output.

3.2. Using Jordan Networks—CHIME
We use Todd’s design (§3.1) as a basis for a two-
phase learning system called CHIME (Franklin 2000)

that, in phase 1, learns three 12-bar jazz melodies.
The Jordan network is used with context and plan
inputs. A range of two chromatic octaves is possible,
leading to 24 context inputs and 24 outputs, where
pitches are represented in the same type of localized
representation (one bit or unit dedicated to each pos-
sible pitch). We too use a note-begin output unit but
also add an explicit output unit for a rest because
of the long rests in the learned melodies. An addi-
tional set of 12 inputs provides information about
the underlying chords of the song. The 12 bits corre-
spond to 12 chromatic pitches, four of which are 1,
and eight of which are 0. The four “on” pitches are
the chord tones. Chords are inverted to fit within the
12 inputs (i.e., no octaves are represented). For exam-
ple, C7 is represented as 100010010010 (C, E, G, B-flat),
and F7 is 100101000100 (F, A, C, E-flat inverted to C,
E-flat, F, A).
Chords provide the harmonic structure of a song.

Each individual chord provides a local context and
chords change at perhaps a tenth or twentieth the rate
at which notes change. The output units are trained
with backpropagation, and the recurrence is man-
aged by teacher forcing (Williams and Zipser 1988,
Todd 1991).
In the second phase (Franklin 2002), more units are

added to the Jordan network, and the output units are
further trained via reinforcement learning to be able
to improvise jazz. A scalar reinforcement value that
indicates, numerically, how good or bad the output is,
replaces the explicit error information on the output
unit weight updates. The reinforcement value is gen-
erated by a set of rules for local in-time improvisation.
This network learned to increase the reinforcement
value over time, and an analysis of its improvisation
shows that it not only generally heeds the improvi-
sation rules but also employs parts of the original
melodies learned in the first phase.
After both phases, the network could be used

to “trade fours” with a human player. The human
would improvise over four bars, and then the net-
work would take the sequence of human notes and
use it as its inputs to generate its responding four-bar
improvisation.
Because there were several jazz-improvisation

rules, we became concerned with the system’s abil-
ity to learn the individual phenomena. It was diffi-
cult to discern this when analyzing its improvisations.
Also, in the part of phase 1 in which the network
learns to reproduce three songs, the songs’ pitches
and durations were never learned exactly. This was
partly because of the limitations of rhythm created
by restricting the timing to be one-sixteenth note
per network iteration but also because of the limi-
tations of the network itself. These concerns led us
to our current study, as we will explain more in this
paper.



Franklin: Recurrent Neural Networks for Music Computation
328 INFORMS Journal on Computing 18(3), pp. 321–338, © 2006 INFORMS

3.3. Using BPTT—CONCERT
Mozer (1994) developed a system called CONCERT
that is a recurrent network that can predict note-by-
note and can also learn a somewhat coarser musi-
cal structure, at the phrase level with several notes
per phrase. It uses a novel representation of pitch,
duration, and chord that has a psychological, musical
basis. Mozer’s careful analysis of the behavior of the
network for each task presented includes comparisons
showing that the network is more general and concise
than second and third-order probabilistic transition-
table approaches.
CONCERT uses the backpropagation through time

(BPTT) algorithm described in §2.2.2. The network is
fully connected; each recurrent unit receives, in addi-
tion to the set of external inputs xj�n�, the output of
all of the recurrent units, including itself, at the last
step n− 1. Unlike Todd’s architecture, n is not a time
increment but rather a note increment. At each itera-
tion of the network, the pitch, duration, and chord (if
used) are outputs. Inputs are also pitch, duration, and
current chord (if used), in a representation denoted
PHCCCF described below.
The output layer in the network is non-recurrent;

i.e., it is a feedforward layer attached to the outputs of
all units in the recurrent network. This set of units is
divided into three groups, providing the same pitch,
duration, and chord configuration as is used in the
PHCCCF input representation described below. The
outputs of the final layer are treated as probabilities.
A final layer that enables a probabilistic interpretation
of the network outputs is useful for generating new
compositions. A log-likelihood function involving the
L2 norm of the actual vs. target outputs is minimized
with BPTT training of the recurrent units.

3.3.1. PHCCCF Representation of Notes. Mozer
uses a psychologically based representation of musi-
cal notes derived from Shepard (1987). In his first set
of experiments, chords are not used. There are two
sets of outputs (and two sets of inputs), one set for
pitch and the other for duration. One pass through
the network corresponds to a note.
Figure 5 shows the chromatic circle (CC) and the

circle of fifths (CF), used with a linear octave value
called pitch height (PH) for CONCERT’s pitch repre-
sentation. Six digits represent the angular position of
a pitch on the CC and six more its angular position
on the CF. C is represented as 000000 000000, C# as
000001 111110, D as 000011 111111, and so on. Mozer
uses −1, 1 rather than 0, 1 because of implementa-
tion details. PH is represented as a single scalar input
that maps the 48 pitch values between C1 and C5 to
values between 1 and 20.
For chords, CONCERT uses a modified overlap-

ping subharmonics representation of Laden and Keefe
(1991). Each chord tone starts in Todd’s 12-bit binary

F#

B

E

A

D

G

C

F

A#

D#

G#

C#
F#

B

E

A

D

G
C

F

A#

D#

G#

C#

C5
B4

A#4
G#4

. . .

C4
B3

A#3

. . .

F1
E1

D#1
C#1
C1

Figure 5 PHCCCF: Pitch Height, Chromatic Circle, Circle of Fifths Rep-
resentation of Shepard and Mozer

Notes. Pitch position on the PH scale and on each circle CC and CF deter-
mines its representation.

representation, but five harmonics (integer multiples
of the chord tone frequency) are added. The pitch C3
becomes C3, C4, G4, C5, E5. Both Laden and Keefe
and subsequently Mozer use three-tone chords or tri-
ads only, because the harmonics of the 7th of the
chord do not overlap with the triad harmonics. The
C major triad chord: C3, E3, G3, with added harmon-
ics, becomes C3, C4, G4, C5, E5, E3, E4, B4, E5, G#5,
G3, G4, D4, G5, B5. The triad pitches and harmonics
give an overlapping representation, where each over-
lapping pitch adds one to its corresponding input.
Using the localized chord representation on a range of
C3 through C7 requires 49 inputs. The C major triad
is represented as

1000100100001001002000110102001100100000000000�

A 2 appears in the G4 and E5 positions, tones
in which the C major triad harmonics overlap. In
Mozer’s implementation, the octave information is
dropped, bringing the number of inputs back to 12
and introducing more overlap. Also, each overlapping
pitch is weighted according to its harmonic number
in the chord tone. C3 and its harmonics C3, C4, G4,
C5, E5 contribute 1, 0.5, 0.25, 0.125, 0.0625 to their
respective pitch inputs. In other words, 1+0�5+0�125
is added to the input for C, 0.25 to the G input,
and 0.0625 to the E input. An additional 13th chord
input value is “on” if the chord is a tonic, subdomi-
nant, or dominant chord. This has its basis in human-
perceived chord similarity but is also needed because
only triads of chords are used. Furthermore, this
assumes the song is written in one key throughout.

3.3.2. CONCERT’s Duration Representation. Fig-
ure 6 shows the duration representation used in
CONCERT. Analogously to PHCCCF, durations are
represented as positions on three scales, where a quar-
ter note is divided into 12 subdivisions. The angu-
lar positions on each of the mod 4/12 circle and the



Franklin: Recurrent Neural Networks for Music Computation
INFORMS Journal on Computing 18(3), pp. 321–338, © 2006 INFORMS 329

0/12

1/122/12

0/12

1/122/12

3/12

96/12

48/12

24/12

12/12

0

Figure 6 Duration Representation of Mozer: Duration Height, Mod
4/12 Circle, and Mod 3/12 Circle

mod 3/12 circles is determined by the remainder after
first dividing by 12, then by dividing by 4 or 3,
respectively. The duration height is the amount of the
duration divided by 12. This duration scheme is more
flexible than that of Todd’s sixteenth notes (1/4th of
a quarter note). Here, the smallest duration is 1/12th
of a quarter note and, e.g., quarter and eighth note
triplets can be represented.

3.3.3. CONCERT Results. In the first sets of ex-
periments with CONCERT, only pitch and durations
are learned. CONCERT was able to learn to repro-
duce diatonic scales and to predict the next note in the
diatonic scale in a not-before-seen test set. Its perfor-
mance was superior with the PHCCCF representation
vs. the localized representation. One of the difficult
tasks was a 21 note melody with an AABA phrase
structure. The trouble was in predicting the first note
of the melody in the third A. Mozer later combines
the Jordan context units (8) with the fully recurrent
units of BPTT to obtain an increase in performance.
Further experiments in composition are carried

out first by training the network on Bach melodies
and generating new Bach-like melodies. Secondly,
harmonic structure is incorporated through chords
inputs/outputs, and the network is trained on waltzes
and then composes new waltzes, with their new cor-
responding chord structure.

3.4. LSTM for Blues Music
Eck and Schmidhuber (2002) describe research in
using the LSTM recurrent learning network (§2.2.3) to
learn and compose blues music. Their model of blues
music is a standard 12-bar blues chord sequence over
which music is composed/improvised. They success-
fully trained an LSTM network to learn a sequence
of blues chords. Similarly to Todd, they split time
into eighth-note increments, with one network itera-
tion per eighth-note time slice. The network must be
able to output a chord value for as many as eight time
increments (for a whole-note chord) and then out-
put the next chord in the sequence. Each chord has a
duration of either eight or four time steps (whole-note

or half-note durations). As with the Jordan network
(§3.2), chords are represented as sets of three or four
(triads or triads plus the seventh) simultaneous note
values of 1 in a 12-note input representation, with
non-chord note inputs set to 0. Chords are inverted to
fit within one octave.
The network contains four cell blocks, each con-

taining two cells. The cell blocks are fully connected
to each other. The output layer that determines the
next chord value is fully connected as well, to the
cells blocks and to the input layer. This is a modified
configuration of the one presented in §2.2.3. In addi-
tion to the forget gates, the whole network is reset if
a large error occurs. During a reset, the weight val-
ues are retained, but all other values such as partial
derivatives, activations (outputs), and cell states are
set to 0. This enables the network to recover sooner
and learn faster.
Biases were preset for the four memory blocks,

at −0�5, −1�0, −1�5, and −2�0, enabling the blocks
to enter into the initial computations one by one.
The learning rate is small at 0.000001. They also use
momentum, set at 0.9. This is sometimes used in feed-
forward networks as well and provides a decaying
filter on the weight updates:

�w�t�= 0�9w�t− 1�+ 0�1 �E�t�

�w�t�
(28)

The outputs are considered probabilities of whether
the corresponding note is on or off. The goal is to
obtain an output of more that 0.5 for each note that
is supposed to be on in a particular chord. All other
outputs should be below 0.5. The outputs are treated
as independent; the error function used for each is the
cross-entropy objective function

Ek =−tk ln�yk�− �1− tk� ln�1− yk� (29)

where yk is the value of output unit k. �Ek/�yk takes
the place of the error ek in (14). This network is able
to learn a 12-bar blues sequence of chords that is a
total of 96 network (8th note) increments long.
A second experiment includes both learning mel-

ody and chords with two subnetworks containing,
again, four cell blocks each. The output of the chord
network is connected to the input of the melody net-
work (but not vice versa). The authors themselves
composed melodies over each of the 12 possible bars.
Each melody is composed of eighth notes only, one
note per iteration. Rests and other durations are not
included. The network is trained on songs that are
concatenations of these 1-bar melodies over the 12-bar
blues chord sequence. The melody network is trained
until the chords network has learned according to the
criterion. In music-generation mode, the network can
generate new melodies using this training.



Franklin: Recurrent Neural Networks for Music Computation
330 INFORMS Journal on Computing 18(3), pp. 321–338, © 2006 INFORMS

4. LSTM for Jazz-Related Tasks, Long
Melodies, and Human/MIDI
Rhythms

Our work as described in §3.2 initially used the
Jordan network with the localized binary pitch rep-
resentation and time-sliced network iteration scheme
for duration. We became interested in LSTM networks
because of our desire for networks that have (1) bet-
ter ability to learn a song exactly, (2) better ability to
learn long songs/sequences, and (3) better ability to
learn cause and effect over long time spans. Also in
our previous work on reinforcement learning, we con-
structed a reinforcement function that rewarded sev-
eral types of phenomena. We decided to study specific
jazz-related tasks, to try to determine how difficult
they are. To give this effort more depth, we consid-
ered how the network might generalize across differ-
ent keys, and also what it might generate if given new
inputs.
Furthermore, we more deeply examined note repre-

sentations, driven by the desire to include more music
knowledge in input and output representations and to
give the networks more flexibility in rhythm so swing
style can be incorporated.
In this section we first describe our work in devel-

oping a new pitch representation based on major and
minor thirds. We have also devised an explicit dura-
tion representation that takes Mozer’s modular rep-
resentation further and allows even more flexibility.
We describe results in comparing these new represen-
tations with localized and PHCCCF representations,
using LSTM networks on short musical tasks. And we
consider generalization issues. Finally, we show that
an LSTM network can exactly learn a long song with
an intricate rhythm, using these representations.

4.1. Circles-of-Thirds Representation
The circles-of-thirds representation is inspired by both
the localized binary and CCCF representations, and
Laden and Keefe’s (1991) and Mozer’s (1994) chord
representations. It is also a recognition that the basic
chord tones are created by the major and minor third
intervals. It includes a pitch as well as a chord repre-
sentation, and results in a seven-digit value for a pitch
or a chord. Figure 7 shows the four circles of major
thirds, a major third being four half steps between
pitches, and the three circles of minor thirds, a minor
third being three half steps. In the figure and in this
discussion, we assume enharmonic equivalence. The
top row is the set of circles of major thirds, each read
counter-clockwise. E is a major third above C, G# is a
major third above E, and C is a major third above G#.
Similarly, on the second row, E-flat (assumed to be
equivalent to D#) is a minor third above C, F# is a
minor third above D# and so on.

G# E

C

A F

C#

A# F#

D

G#
F

D
BE

C#

A#
G

C

A
F#

D#

B G

D#

Figure 7 Circles-of-Thirds Pitch Representation
Notes. At top, circles of major thirds, at bottom, circles of minor thirds.
A pitch is uniquely represented via these circles, assuming octave and enhar-
monic equivalence.

In our seven-bit representation of pitch, the first
four bits indicate the circle of major thirds in which
the pitch lies, and the second three bits, the circle
of minor thirds. The index number of the circle the
pitch lies in is encoded, unlike PHCCCF, in which it
is the angular position on the circle. C’s representa-
tion is 1000100, indicating major circle 1 and minor
circle 1, and D’s is 0010001, indicating major circle 3,
and minor circle 3. D# is 0001100. Also unlike PHC-
CCF, pitches that are a half step apart (the minimum)
do not have similar representations. A half step error
in music can often sound out of place. In this repre-
sentation, a pitch that has one bit out of place will
still have either a common major or minor interval
with the one intended. This may also make discov-
eries easier when this representation is used in rein-
forcement learning. In terms of neural computation
itself, this is a concise representation that makes it
easier to distinguish two different notes. That said,
the PHCCCF does contain contrasting inputs, espe-
cially in its chromatic versus circle-of-fifths represen-
tations. It could very well be that a combination of
PHCCCF and circles-of-thirds would be the best for
very complex music computations. While the circles-
of-thirds representation is not directly motivated by
the work of Longuet-Higgins in characterizing musi-
cal intervals (Steedman 1994), this work may provide
future guidance, especially if circles-of-thirds is com-
bined with the PHCCCF representation.
The argument to have octave information as a sep-

arate input is a good one. The network is given the
same pitch information independently of the octave,
so it will not treat C3 as a completely different note
than C4. Mozer stresses such similarities in his repre-
sentation development. It also leads to a much more
concise representation. Rather than using a single
scalar pitch height as did Mozer, we currently include
two single-bit inputs for octaves, one to indicate if the
octave is C2 through B2 and the other to indicate if
the octave is C4 through B4. If both bits are zero, the



Franklin: Recurrent Neural Networks for Music Computation
INFORMS Journal on Computing 18(3), pp. 321–338, © 2006 INFORMS 331

default octave is C3 through B3. This octave informa-
tion is needed for learning the long song, Afro Blue
(§4.4), but not for the shorter musical tasks.
Chord progressions in jazz tunes include chords

that differ in the seventh tone. Because the 7th chord
tone is so important to jazz, our chords are the triad
plus 7th (recall that Laden and Keefe ignore the 7th,
as described in §3.3.1). We also include other chord
tones in some experiments. Assuming the chord tones
are the first, third, fifth, and seventh, using circles-
of-thirds and no harmonics, we could represent the
four chord tones as four separate pitches, each with
a seven-bit representation for a total of 28 bits. How-
ever, it would be left up to the network to learn the
relationship between chord tones. We borrowed from
Laden and Keefe (1991) on overlapping chord tones
as well as Mozer’s (1994) more concise representa-
tion. The result is a representation for each chord that
consists of seven values. No harmonics are included.
Each value is the sum of the number of “on” bits from
the circles-of-thirds representation for each note in the
chord. For example, a C7 chord in a 28 bit circles-of-
thirds representation is

1000100 1000010 0001010 0010010
C E G B-flat

The overlapping representation is:

1000100 (C)
1000010 (E)
0001010 (G)

+0010010 (B-flat)

2011130 (C7 chord)

We in fact scale these values to lie between 0 and 1
since we have in our experience found networks to be
more successful if their inputs are in the same range.
The seven inputs for C7 are actually 0.6, 0, 0.3, 0.3,
0.3, 0.9, 0.
In other experiments, we use the C-major chord:

C, E, G, B, represented as

1000100 1000010 0001010 0001001
C E G B

The overlapping representation is:

1000100 (C)
1000010 (E)
0001010 (G)
0001001 (B)

2002121 (C major chord)

This we would scale to 1, 0, 0, 1, 0.5, 1, 0.5. We further
discuss the chord representation later in the paper on
an experiment by experiment basis. It is possible to
represent embellished chords, such as altered chords
(Berg 1990) with this representation. We anticipate a
deeper study of this in the future.

4.2. Modular-Duration Representation
The vanishing-gradient problem is further exacer-
bated in configurations in which one iteration of
the network corresponds to the minimal duration.
A trade-off develops in which small note dura-
tions are desired; yet, the smaller the refinement of
durations, the more network iterations are required to
represent one duration. We focus on enabling the net-
work to output the duration explicitly as does Mozer
(1994), and we also extend Mozer’s use of a modular
representation. We are interested in moving beyond
score-based durations and into learning human-like
variations in duration that especially occur, and are
encouraged, in jazz. Mozer refined a quarter note to
12 subdivisions, especially useful because 12 is divis-
ible by 4 (to achieve 16th-note-level durations) and
is divisible by 3 (to achieve quarter and eighth note
triplets). We take this further by dividing quarter
notes into 96 subdivisions, a standard called “ticks”
in the Musical Instrument Digital Interface (MIDI)
standard digital protocol (Messick 1988) and “clicks”
in a music software package we use called Keykit
(Thompson 2003). In a MIDI file the number of clock
ticks per beat is specified at the beginning of the file.
MIDI events are time stamped, relative to the previ-
ous MIDI event, in number of ticks.
Then a whole note, dotted half, half, quarter,

dotted eighth, eighth, eighth triplet, sixteenth, six-
teenth triplet, thirty-second, thirty-second triplet,
sixty-fourth are 384, 288, 192, 96, 64, 48, 32, 24, 16,
12, 8, and 6 clicks, respectively (we also include 4,
3, 2, and 1). It has also been our experience that net-
works with a large number of inputs are less able to
learn. We derived a modular duration representation
of 16 bits. The 16th bit is 1 if the note duration divided
by 384 is greater than or equal to 1, where 384= 96×4,
is the duration of a whole note. The 15th bit is 1 if
the remainder after the duration is divided by 384
and then further divided by 288 is ≥1. The 14th bit
is 1 if after dividing by 384, then 288, then 192 is ≥1,
etc. Note that a dotted quarter can be represented as
96+ 48.
As non-score examples, 55 is 48 + 6 + 1, repre-

sented as 0000010000100001, and 289 is 288+ 1, rep-
resented as 0100000000000001. Importantly, 289 is a
dotted half note plus one click, an approximation to
a dotted half note that could easily be played by
a human performer and captured on MIDI input.
With this representation we can represent any of the
above standard score-notated durations, but we can
also represent human-performed approximations or
improvised durations. Also, in the future when we
employ reinforcement learning, as mentioned with
the circles-of-thirds pitch representation, it may pro-
vide an easy vehicle for exploration. However, one
drawback of this method is that close numbers of ticks



Franklin: Recurrent Neural Networks for Music Computation
332 INFORMS Journal on Computing 18(3), pp. 321–338, © 2006 INFORMS

may have radically different representations. This is a
trade-off with the conciseness of the representation.

4.3. Results for Short Musical Tasks
We first experimented with the circles-of-thirds repre-
sentation with three musical tasks and with an LSTM
network (Franklin 2004a). The tasks are: (1) chord
tones—given a dominant 7th chord as input, output in
sequence the four chord tones; (2) chromatic lead-in—
given each of 14 pairs of five-pitch sequences, out-
put 1 at the end if the second, third, and fourth notes
in the sequence are ordered chromatically and other-
wise output 0; and (3) AABA melody—learn to repro-
duce one specific 32 note melody of the form AABA,
given only the first note as input. This a memorization
task. These are all pitch-sequence tasks and do not
include durations. We found that the LSTM network
can accurately learn the three short-sequence tasks. In
our configuration, outputs are not fed back as inputs.
The only recurrence is within the memory-block layer.
We also tried several other kinds of recurrent net-
works with some limited success, but none were as
successful as LSTM. Recurrent networks are nonlin-
ear dynamic systems, many of which produce highly
oscillatory, often unstable behavior. The clinching fac-
tor in our choice of LSTM is its consistent stability.
We discuss these tasks further now, along with some
follow-up generalization experiments.
Ignoring octaves, recall that both CCCF and the

localized binary representations require 12 external
inputs, and 12 output units if pitches are the outputs.
The circles-of-thirds representation requires seven.
There is a bias term used in LSTM that enables the
blocks (specifically, the blocks’ gates) to be “activated”
one by one over time as it is learning. While we
found −0�5 in the LSTM literature, we found −0�1
to work better for these tasks. The bias value of
block 1 is 0, block 2 is −0�1, block 3 is −0�2, etc.
In all experiments, we obtained better results with a
lower learning rate on the output units than on the
memory blocks. Also, including a direct link from
input units to output units produced a much bet-
ter rate of success. The number of iterations range
from 10,000 to 15,000. We required precise outputs
to be within 0�1 of the targets (which are always 0
or 1). When we first ran these experiments we were
seeking a network that could exactly learn the spec-
ified output. We found that Jordan networks were
unable to do this. However, when using recurrent net-
works for reinforcement learning and improvisation,
we would like a component network that can pro-
vide exact riffs from known songs. Recall in our work
with CHIME (§3.2) that a Jordan network first learned
Sonny Rollins melodies in phase 1, and was further
trained to improvise using reinforcement learning.
We want the phase 1 network to learn these phase-1

melodies exactly. Secondly, most reinforcement learn-
ing techniques use some kind of predictive compo-
nent that learns to attribute future rewards to current
actions (or current rewards to past actions). Again, we
are seeking precision here as we are developing tech-
niques to combine these components with recurrent
networks.

4.3.1. Chord Tones. Chord tones are pillars and
cornerstones of jazz improvisation. If a chord is given
as input, as part of a larger harmonic structure, say,
an improvisor must be able to generate chord tones
from that chord, to contribute to its larger improvi-
sation. Dominant 7 chords are especially prevalent in
jazz, and we needed to find out if the network could
produce chord tones from the overlapping circles-of-
thirds chord representation. In the chords task, each
of the twelve dominant 7 chords, C7, C#7, etc. is pre-
sented, one at a time, as input for four increments.
The network must first output the tonic, the third, the
fifth, and then the (flat) seventh of the chord as output
(e.g., input chord C7 for four increments, and output
C, E, G, and B-flat). The chord-tones task is easy for
an LSTM network containing ten memory blocks with
one cell per memory block to generate the chord tones
with 100% success. The learning rate for the seven
output units is 0.2 and the memory block learning
rate is 0.5. Note that, with just requiring the exact out-
puts in this way, these learning rates are much higher
than reported by Eck and Schmidhuber (2002). In our
generalization experiments, as Eck and Schmidhuber
found, the learning rates had to be lower.
To see how well LSTM might generalize, we trained

the LSTM network to generate chord tones for eight
of the chords: C7, C#7, D7, D#7, E7, A7, A#7, and
B7. The tonics for these eight chords are distributed
evenly over the major and minor circles in Figure 7.
After the network was trained to generate the four
tones for these four chords, it was presented with
the remaining four chords, F, F#, G, and G# in a test
phase, with no training. With learning rates of 0.15
and 0.05 for the blocks and output units, respectively,
with 15 blocks of two cells each, and after 12,000
epochs on the training set, Table 1 shows the target
tone, and actual tone pairs. On the F chord, the output
sequence is perfect, on F# all tones are correct except
that it plays the tonic instead of the third (F# instead
of A#). The G chord is also correct for three tones, but
the tonic is missed; C# is output instead of the G. In
the sequence of tones with G# as root, D is played
instead of the tonic (D and G# share the same minor
third circle), and then it settles onto the third, C. Con-
sidering the very small size of the training set, these
are successful results.

4.3.2. Chromatic Lead In. Besides using chord
tones in creating a melody, one effective technique of



Franklin: Recurrent Neural Networks for Music Computation
INFORMS Journal on Computing 18(3), pp. 321–338, © 2006 INFORMS 333

Table 1 Target Tones and Actual Tones for Each
Chord Tone Example

Chord Tones

F F, A, C, D#
F, A, C, D#

F# F#, A#, C#, E
F#, F#, C#, E

G G, B, D, F
C#, B, D, F

G# G#, B#, D#, F#
D, B#, B#, B#

improvisation (Berg 1990) is to lead in to a chord tone
with chromatic pitches just below or just above the
chord tone. In this experiment, the network is given
a set of seven pairs of sequences that it must classify.
This is the kind of sub-evaluation that may need to
occur in reinforcement learning. Each sequence con-
tains five pitches. In the first sequence, the third note
is a chromatic tie between the second note and the
fourth note. Both the fourth and fifth notes are chord
tones. The network should output a 0 at each time
step, except the last, when the target is 1 if there is
a chromatic lead in, and 0 otherwise. The positive
sequences are from Berg (1990), and all occur over
the Cma7 chord (with the 6th and 9th included as
chord tones). There is no chord input to the network,
however. The seven pairs of sequences, each sequence
labeled with its correct final target, are:

c, d, d-, c, c 1 c, d, d, c, c 0
c, d, e-, e, e 1 c, d, d, e, e 0
g, g-, f, e, e 1 g, f, f, e, e 0
e, g, a-, a, a 1 e, g, g, a, a 0
a, b, b-, a, a 1 a, b, b, a, a 0
a, a, b-, b, b 1 a, a, a, b, b 0
d, e, e-, d, d 1 d, e, e, d, d 0

The chromatic lead in task turned out to be quite
difficult. LSTM with circles-of-thirds learned this task
with one cell each in ten memory blocks, using learn-
ing rates of 0.2 and 0.5. These learning rates are based
on empirical studies over sets of experiments and
reflect the best results for exact classification of all
examples. This task is studied more in another paper
(Franklin 2004b) that focuses on predicting the clas-
sification at the third iteration, rather than waiting
until the end (a precursor to work in reinforcement
learning).

4.3.3. AABA Melody. We start with the task of
the network learning to reproduce exactly a melody
that has an AABA form. The A form is an eight-pitch
arpeggio over the Cma9 chord: C, D, E, G, G, E, D, C.
The B form is an 8-pitch improvisation over the same
chord, containing auxiliary pitches (Berg 1990): C, F,

D#, E, F#, A, G#, F#. This produces a 32-note melody,
presented as one example with 32 time steps to the
network:

C, D, E, G, G, E, D, C
C, D, E, G, G, E, D, C
C, F, D#, E, F#, A, G#, F#
C, D, E, G, G, E, D, C

Recall that there is no feedback from the output
pitches to input. The only external input is the repre-
sentation for the C pitch, held constant for each of the
32 increments. Even a single AABA melody is a more
difficult task than the chord tones task, requiring two
cells in each of 15 blocks. The learning rates to learn
one melody exactly are a rate of 0.05 on the output
units and 0.15 on the blocks. This was an important
experiment, needed to gain insight on how the net-
work might work on much longer melodies.
We tried two new experiments with the AABA

melody. First, we added two extra inputs that are bits
0, 1 when pitches from an A part are present on the
input and that are 1, 0 when the B inputs are present.
Thus the network receives “01” on these inputs for
16 increments, the “10” for eight increments, and then
“01” for the remaining eight increments in the epoch.
This dramatically decreased the number of epochs
needed for learning to generate our chosen AABA
melody; 8,000 epochs suffice, for 2 cells per block of
the 15 blocks. Learning rates are 0.15 for the blocks
and 0.05 for the output units. We also intentionally
decreased the number of epochs used to train, in
order to decrease the risk of overfitting.
We can also see what happens when the network

is given a different input. For example, without any
further training, the single note input C (the root of
the underlying chord C major 7) may be replaced
with E, the third of the underlying chord. The result-
ing melody is:

C, D, E, G, E, D, C, C
D, E, G, D, E, D, C, C
F, C, F#, A, F#, F#, F#, F#
C, D, E, G, G, E, D, C

This actually gives us a simple and direct way to
cause the network to generate a rudimentary improvi-
sation, and perhaps in the future to be one of several
networks that can make a potential contribution to an
overall improvisation. It produces a new melody, with
variations on the original A, with repetition, and it
replicates the final A of the form. The B part is distinct
and has obvious substitutions of the original melody.
When the fifth, G, is substituted for the original C

on input, without weight updates, the result is also a
new melody. In these experiments, if the maximum of
the outputs corresponding to the major circles is taken



Franklin: Recurrent Neural Networks for Music Computation
334 INFORMS Journal on Computing 18(3), pp. 321–338, © 2006 INFORMS

as the index and the max of the three minor circles
is taken as the minor circle index. We are careful to
point this out here, since when the network learns the
task exactly, the output representation is always clear,
with one of the majors and one of the minors standing
out, usually above 0.9 (on a scale from 0 to 1). When
G was substituted, in one case the pitch could not be
disambiguated. The two choices were F# or D, and F#
was chosen (as one of the F# in the B part):

C, D, E, G, D, F#, C, C,
D, E, G, E, D, C, C, D,
F#, G, F#, F#, F, D, F#, D
C, D, D, E, G, A#, F#, C

Finally, the melody below results from B, the 7th of
the C major chord, as input, and is quite similar to
the one generated by the fifth:

C, D, E, G, D, F#, C, C
D, E, G, E, D, C, C, D,
D#, G, F#, F#, D, D, F#, D
C, D, D, E, G, A#, A#, C

We were also interested in discovering if the net-
work could learn to generate transpositions of this
melody. First, a single network was able to learn all 12
transposed melodies, given only the one underlying
chord as input, for each 32-note melody. It was more
successful when the major chord was given as input,
rather than just the tonic, using the major-chord rep-
resentation given at the end of §4.1.
Next, the single network was trained on eight of

the twelve melodies and then tested on the remain-
ing four, using the same tonics as for the chord tone
train and test experiment in §4.3.1. This experiment
was very hard. The network can learn to produce
all of the eight transposed melodies on which it is
trained, perfectly. Yet, on the test set, the best result
was only a match of 9 of 32 of the notes. In order to
achieve this, we had to make the learning rate much
lower, and increase the number of epochs to 200,000.
Also, we found that including other chord tones in
the input chord, namely the second and the fourth,
helped the network marginally in generalizing to the
other four unseen transpositions. We note again that
the training set is very small. In the future we will
experiment with a larger set. Furthermore, in most
jazz improvisation, the human or machine is given a
harmonic structure that changes over the course of
the song, and this rich context was not available to
the network. We have used the underlying chord pro-
gressions as input in our previous work in CHIME
and expect more capability with LSTM in the future.
We do address this somewhat as well in the following
section on learning a long melody.

4.4. Learning the Melody Afro Blue
We chose a jazz standard called Afro Blue composed
by Mongo Santamaria and used both the circles-
of-thirds and modular-duration representations with
LSTM networks to learn this song. It is our experience
that a very complex network with scores of inputs
will not be able to learn a long intricate melody. So,
inspired by Eck and Schmidhuber’s (2002) use of sep-
arate networks to learn chords and melody, and also
by Mozer’s (1994) work in explicit learning of dura-
tions, we use two separate networks, one for melody
and one for duration. We tested the network on two
renditions of the song. One is a transcript of the
“pure” score. The second is a MIDI-captured human
performance. We first describe results for the human-
played rendition. We used the same learning rates
for all experiments: 0.05 for output units and 0.15
for blocks, values obtained from experiments on the
short melody tasks of §4.3. Also, all networks have a
direct link from inputs to outputs (as well as the links
through the hidden layer of memory blocks), since all
but one successful experiment on the short melody
tasks required this link.
The human played melody has 101 notes (101

pitches, and 101 durations) while the original score
contains 106 notes (including rests). Figure 8 shows
an approximation to the musician’s rendition of Afro
Blue with the original underlying harmonic structure
shown via the chord labels, as generated by Band
in the Box music software (PG Music). It should
be noted that software to generate a score from a
MIDI file must necessarily make approximations that
will “smooth” the intricate nuances of the actual
note durations played. The song has a fairly complex
coarse phrase structure. In the first experiments the
network had only one single input. It is set to one
whenever the current note is on the first beat of a bar.
Otherwise, it is zero. The 101 pitches and 101 dura-
tions were learned exactly by a pitch and a duration
network. The pitch network contains 15 blocks, with
four cells each. When a rest appears, the seven target
outputs are set to zero. The duration network contains
17 blocks, four cells each. Figure 9 shows LSTM’s ver-
sion, which is almost indistinguishable from Figure 8.
We also ran experiments where the current chord

of the harmonic chord structure is presented as well
as the one input indicating the first beat. The chord
structure is AABB, repeated three times. The AABB
form for the chords is:

— F-7 — G-7 — Abmaj7 G-7 — F-7 —
— F-7 — G-7 — Abmaj7 G-7 — F-7 —
— Eb — Eb — Db Eb — F-7 —
— Eb — Eb — Db Eb — F-7 —

The chords are represented in the overlapping cir-
cles-of-thirds representation. We compared this with



Franklin: Recurrent Neural Networks for Music Computation
INFORMS Journal on Computing 18(3), pp. 321–338, © 2006 INFORMS 335

Figure 8 Musician’s Rendition of Afro Blue

networks only receiving the one-bit beat input. In
these comparisons, we ran networks for 15,000 epochs
(presentations of the whole song), with a bias factor
of −0�1, all with 18 memory blocks, each containing
four memory cells. As can be seen in Table 2, both the
pitch network and duration networks learn slightly
more accurate outputs when given chord information
in addition to beat information.
These are representative runs. The results do not

vary significantly from one run to another, for a suc-
cessful network configuration. From this we know
that including chord information, and then using it
for composing, is possible and will not diminish the
networks’ learning abilities.
It is not necessary to run the network for this

many epochs to achieve useable results. For example,
the maximum error during one run of the pitch
network with beat input was 0.15 after 5,000 epochs.

Figure 9 LSTM’s Version of the Human Rendition

By comparing the outputs to a threshold of below
0.2 or above 0.8, the network outputs are correctly
interpreted. We could even lower this to 0.4 and
0.6, respectively, and reduce the number of epochs
required.
The LSTM network is able to learn the score-

based form as well, although it was a more difficult
task for the duration network. This initially sur-
prised us, until we considered the redundancies in
the score that could lead to temporal confusion for

Table 2 Afro Blue from Human Rendition

Type of network Max output error

Duration: beat input 0.06
Duration: chords and beat inputs 0.03
Pitch: beat input 0.06
Pitch: chords and beat inputs 0.03



Franklin: Recurrent Neural Networks for Music Computation
336 INFORMS Journal on Computing 18(3), pp. 321–338, © 2006 INFORMS

the network. The song’s melody form is AABBAAB-
BCCBB, with a slight variation at the end of the
first A and at the end of the first C. The chord-
changes form is AABBAABBAABB. However, the
song’s duration form is ABACDCDCACACDCDE-
FGHFGEFGHFGCDCDC. Consider the last four sub-
phrases, DCDC. D is the duration sequence 96, 96, 96,
288, 144, 144, and C is the sequence of just 288. The
equivalent in the human-performed durations are, for
the same sub-phrase DCDC, 98, 129, 62, 291, 162, 132
then 282, and 96, 124, 65, 288, 161, 124, and then
289. These are quite different sequences, and also do
not contain any exact repetition within them, as do
the score’s “pure” duration sub-phrases. We summa-
rize the behavior of the two networks in Table 3,
again with and without chord input. In these experi-
ments, we started with 4,000 epochs and kept increas-
ing by 1,000 until we found a number of epochs
that produced all correct outputs. The pitch network
is able to learn within the initial 4,000 epochs and
results are the same whether chords are inputs or
not. The duration network requires 6 cells per block
(of 18 blocks). The chord information is very useful
for the duration network, enabling it to learn to pro-
duce all correct outputs (with maximum error of 0.38)
within 8,000 epochs. However, 8,000 epochs are not
enough for it to learn without the chord informa-
tion. At 15,000 epochs, the number used above in the
human-rendition experiments, the duration network
is able to learn to produce all correct outputs with just
the one-bit beat input.
Now that the LSTM network can exactly learn the

song Afro Blue, with the original chords as input,
we can use some common reharmonizations, oth-
erwise known as chord substitutions, to generate a
new song. As can be seen in Figure 10, we have
replaced the G-minor chord in the 2nd, 6th, 18th,
22nd, 34th, and 46th bars with the G half-diminished
chord (G minor 7 flat 5); meaning where the network
previously received the circles-of-thirds chord repre-
sentation for G, Bb, D, and F, it now receives G, Bb,
Db, and F. We have also replaced the F minor chord
in the 4th, 8th, 20th, 24th, 36th, and 40th bars with
the F half-diminished chord. Finally, we have replaced
the E-flat major chord in bars 9, 13, 25, 29, 41, and
45 with the B-flat dominant seventh chord. The dura-
tions were not modified in this experiment. These are

Table 3 Afro Blue from Score Rendition

Experiment Max output error NumEpochs Net config

Duration: beat inputs 0.09 15�000 6 cells, 18 blocks
Duration: chords and 0.38 8�000 6 cells, 18 blocks

beat inputs
Pitch: beat input 0.08 4�000 4 cells, 18 blocks
Pitch: chords and beat 0.08 4�000 4 cells, 18 blocks

inputs

Figure 10 LSTM’s Improvisation Over Reharmonization of Afro Blue

common chord substitutions in jazz (Sabatella 1996,
Berg 1990) and are numerous enough that they should
affect the melody quite a bit. In fact, if we examine
Figure 10, and compare it to Figure 9, we can see that
the melody is very similar to the original with some
changes. This is a common improvisation technique.
In bars 9 and 25, over the first B-flat dominant 7 of
those used instead of the E-flat major, the melody is
changed to Eb, Eb, and Eb in both places. In the ini-
tial AABBAABB part of the form, the substitution of
G half-diminished for G-minor does not change the
melody. However, the melody does change over the
CC part. A flat 9 (the G-flat note) is even “thrown in”
over the F-minor chord starting the second C. And it
is changed to a natural G in the next bar, over the
Gm7b5 (i.e., the substituted H half-diminished). In the
final AA part of the form, the first bar has been mod-



Franklin: Recurrent Neural Networks for Music Computation
INFORMS Journal on Computing 18(3), pp. 321–338, © 2006 INFORMS 337

ified, but then the melody changes back to and stays
as the original melody for the rest of the song.
While we are not pretending that the LSTM is sud-

denly understanding improvisation at a deep level
here, it is able to produce something passable and
interesting, just by knowing one song exactly, and by
coping with several chord substitutions. We plan to
develop this improvisational skill further, e.g., train-
ing the network by evaluating what it does with such
chord substitutions, and adjusting its response. This
will lead us to return to our work in reinforcement
learning.

5. Conclusions
We presented several short musical tasks to LSTM
networks and compared representations. Using our
circles-of-thirds and modular-durations representa-
tions and the learning rates and configuration we
found to be the most successful from these exper-
iments, we trained dual pitch/duration LSTM net-
works to reproduce two versions of the song Afro
Blue. One was human-rendered and one was the orig-
inal score. While we have found a task that chal-
lenges a single LSTM network, we do not believe that
any other recurrent networks we have used would be
able to learn these songs. Having a dedicated network
with one output iteration corresponding to the dura-
tion of an event makes it easier for the network to
produce accurate sequences of event times. We con-
trast this with a network that produces one time unit’s
worth of output per iteration, and so must produce
the same output over possibly many iterations to pro-
duce the duration of a single event. Another reason
for the success of the network is its ability to learn
relationships over long time spans. We have found the
LSTM network to be a stable way to learn melodies in
two ways; once it has learned, it retains that knowl-
edge, and secondly, its learning process exhibits a low
amount of oscillatory behavior, unlike the behavior of
other recurrent neural networks.
We are looking forward to experimenting with a

hierarchy or network of LSTM networks, that could
learn the sub-phrase structures of a song. Our long-
term goal is to return to experimentation with rein-
forcement learning for jazz improvisation with the
improved representations and more able recurrent
networks. One of our ideas is to use LSTM-based
networks to learn to improvise in particular ways
or over particular sets of chord sequences, and then
use another network as a scheduler for these more
local improvisors. Another idea is to have a rein-
forcement learning algorithm learn which networks
to pass chords to and, perhaps, how to modify chords
or learn to make chord substitutions to obtain desired
effects.

Acknowledgments
This material is based on work supported by the National
Science Foundation under Grants CDA-9720508 and IIS-
0222541 and by Smith College. Any opinions, findings, and
conclusions or recommendations expressed in this mate-
rial are those of the author and do not necessarily reflect
the views of the National Science Foundation. The author
acknowledges the excellence of the John Payne Music Cen-
ter, Brookline, MA for human jazz learning.

References
Allen, P., R. Dannenberg. 1990. Tracking musical beats in real time.

Internat. Comput. Music Conf., International Computer Music
Association, San Francisco, CA, 140–143.

Berg, S. 1990. Jazz Improvisation: The Goal-Note Method, 2nd ed.
Kendor Music, Inc., Delevan, NY.

Campolucci, P. 1998. A circuit theory approach to recurrent neu-
ral network architectures and learning methods. Ph.D. thesis,
Dipartimento di Ingegneria Elettrica, Universitá Degli Studi di
Bologna, Bologna, Italy.

Dannenberg, R., B. Thom, D. Watson. 1997. A machine learning
approach to musical style recognition. Proc. Internat. Comput.
Music Conf. ICMA, San Francisco, CA, 344–347.

Desain, P., H. Honing, K. de Rijk. 1989. A connectionist quantizer.
Proc. 1989 Internat. Comput. Music Conf. ICMA, San Francisco,
CA, 80–85.

Eck, D., J. Schmidhuber. 2002. Learning the long-term structure of
the blues. Proc. 2002 Internat. Conf. Artificial Neural Networks
�ICANN�, 284–289.

Franklin, J. A. 2000. Multi-phase learning for jazz improvisation
and interaction. Proc. Eighth Biennial Connecticut College Sympos.
Arts and Tech. Connecticut College, New London, CT, 51–60.

Franklin, J. A. 2002. Learning and improvisation. T. G. Dietterich,
S. Becker, Z. Ghahramani, eds. Neural Information Processing
Systems 14. MIT Press, Cambridge, MA, 1377–1384.

Franklin, J. A. 2004a. Recurrent neural networks and pitch repre-
sentations for music tasks. Proc. 2004 Florida AI Research Sym-
pos. �FLAIRS04� Special Track on AI and Music. AAAI Press,
Cambridge, MA, 33–37.

Franklin, J. A. 2004b. Predicting reinforcement of pitch sequences
via LSTM and TD. Proc. 2004 Internat. Comput. Music Conf.
ICMA, San Francisco, CA, 130–136.

Gers, F. A., J. Schmidhuber, F. Cummins. 2000. Learning to for-
get: Continual prediction with LSTM. Neural Comput. 12(10)
2451–2471.

Griffith, N., P. Todd. 1999. Musical Networks: Parallel Distributed Per-
ception and Performance. MIT Press, Cambridge, MA.

Hochreiter, S., Y. Bengio, P. Frasconi, J. Schmidhuber. 2001. Gradi-
ent flow in recurrent nets: The difficulty of learning long-term
dependencies. A Field Guide to Dynamical Recurrent Networks.
IEEE Press, New York.

Hochreiter, S., J. Schmidhuber. 1997. Long short-term memory.
Neural Comput. 9(8) 1735–1780.

Jordan, M. 1986. Attractor dynamics and parallelism in a connec-
tionist sequential machine. Proc. Eighth Annual Conf. Cognitive
Sci. Soc., Amherst, MA, 531–546.

Kolen, J. F., S. C. Kremer. 2001. A Field Guide to Dynamical Recurrent
Networks. IEEE Press, New York.

Laden, B., D. H. Keefe. 1991. The representation of pitch in a neural
net model of chord classification. P. M. Todd, E. D. Loy, eds.
Music and Connectionism. MIT Press, Cambridge, MA.

Large, E. W., J. F. Kolen. 1994. Resonance and the perception of
musical meter. Connection Sci. 6(2 & 3) 177–208.



Franklin: Recurrent Neural Networks for Music Computation
338 INFORMS Journal on Computing 18(3), pp. 321–338, © 2006 INFORMS

Mandic, D. P., J. A. Chambers. 2001. Recurrent Neural Networks for
Prediction. Wiley, West Sussex, UK.

Messick, P. 1988. Maximum MIDI. Manning Publications, Green-
wich, CT.

Mozer, M. C. 1994. Neural network music composition by predic-
tion: Exploring the benefits of psychophysical constraints and
multiscale processing. Connection Sci. 6 247–280.

PG Music. Band-in-a-Box. http://www.pgmusic.com/bandbox.htm.
Rumelhart, D., G. Hinton, R. Williams. 1986. Learning inter-

nal representations by error propagation. D. E. Rumelhart,
J. L. McClelland, eds. Parallel Distributed Processing 1. MIT
Press, Cambridge, MA, 318–362.

Sabatella, M. 1996. A Whole Approach to Jazz Improvisation. ADG Pro-
ductions, Lawndale, CA.

Shepard, R. N. 1987. Toward a universal law of generalization for
psychological science. Science 237 1317–1323.

Steedman, M. 1994. The well-tempered computer. Philos. Trans. Roy.
Soc. Ser. A 149 115–131.

Thompson, T. 2003. Keykit programming language and graphical
environment for MIDI. http://nosuch.com/tjt/.

Todd, P. M. 1991. A connectionist approach to algorithmic compo-
sition. P. M. Todd, E. D. Loy, eds.Music and Connectionism. MIT
Press, Cambridge, MA.

Todd, P. M., E. D. Loy. 1991. Music and Connectionism. MIT Press,
Cambridge, MA.

Williams, R. J., J. Peng. 1990. An efficient gradient-based algorithm
for on-line training of recurrent network trajectories. Neural
Comput. 2(4) 490–501.

Williams, R. J., D. Zipser. 1988. A learning algorithm for continu-
ally running fully recurrent networks. Technical Report ICS-
8805, Institute for Cognitive Science, University of California,
San Diego, CA.


