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The practice of sponsored search advertising—where advertisers pay a fee to appear alongside

particular Web search results—is now one of the largest and fastest growing source of revenue

for Web search engines. We model and compare several mechanisms for allocating sponsored

slots, including stylized versions of those used by Overture and Google, the two biggest

brokers of sponsored search. The performance of these mechanisms depends on the degree

of correlation between providers’ willingness to pay and their relevance to the search term.

Ranking providers based on the product of relevance and bid price performs well and is

robust across varying degrees of correlation. Ranking purely based on bid price fares nearly

as well when bids and relevance are positively correlated (the expected regime), and is further

enhanced by adding an editorial filter. Regardless of the allocation mechanism, sponsored

search revenues are lower when users’ attention decays quickly at lower ranks, emphasizing

the need to develop better user interfaces and control features. The search engine can address

initial inscience of relevance scores by modifying rank allocations over time as it observes

clickthroughs at each rank. We propose a rank-revision strategy that weights clicks on lower

ranked items more than clicks on higher ranked items. This method is shown to converge to

the optimal (maximum revenue) ordering faster and more consistently than other methods.
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1. Introduction

Internet search engines index billions of Web pages and employ information retrieval algo-

rithms to display, in response to a user’s query, links to Web pages deemed relevant to the

query. These pages might represent commercial firms selling goods or services, information

sites, government entities, etc. Lawrence and Giles (1999) estimated the publicly indexable

Web at 800 million pages, containing 6 terabytes of text data on 2.8 million servers; today, In-

ternet statistics indicate that the publicly indexable Web contains billions of pages, served by

over 40 million Web servers. Due to this vast amount of information, search engines act as an

information gateway to many search and decision-making tasks. More than 50% of Web users

visit a search engine every few days, the leading search engine (Google) gets over 250 million

search requests each day, over 13% of traffic to commercial sites was generated by search

engines, and over 40% of product searches on the Web were initiated via search engines. For

us, the term search engine encompasses various applications of these indexing-retrieval tech-

nologies, including pure Web search engines (e.g., Google), information portals with search

functionality (e.g., Yahoo!), metasearch engines (e.g., Metacrawler), niche search engines

(e.g., CiteSeer), and comparison shopping engines (e.g., mySimon, Shopping.com).

Figure 1: Sponsored and algorithmic search results in Google.

Due to the critical influence of search engines on Web users’ actions, many commercial
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firms have realized the importance of gaining a high position on the search results for specific

queries. Entire niche industries exist touting services to boost a Web page’s ranking on

the popular search engines, in part by reverse engineering the search engines’ information

retrieval algorithms. The expectation of increased traffic from good placement on a search

page has led to the creation of a market for sponsored search (or paid placement—we use

the terms interchangeably, as dictated by context) where search engines can charge a fee

for prominent positioning within a “sponsored” section in the results page. For example, a

digital camera retailer may pay a search engine to appear among the sponsored results when

users search for “digital cameras.” Usually, sponsored results are shown on top of, or to

the side of, the standard unpaid search results (also called algorithmic results). In general,

sponsored listings are explicitly marked as sponsored results or advertising, and the FTC

has advised search engines to disclose paid links appropriately, see Tantono et al. (2002).

Figure 1 displays a screen shot with sponsored and algorithmic search results in an Internet

search engine.

In recent years, sponsored search has become an important and fast-growing revenue

source for Internet search engines. Total industry revenue increased from approximately

US$0.9 billion in 2002 to about US$4.6 billion in the first half of 2004. Leading firms include

Google and Yahoo’s Overture division. Overture (formerly GoTo.com, recently acquired by

Yahoo!), is credited with pioneering paid placement advertising on the Internet, and acts as

a broker between advertisers and information gatekeepers like Yahoo! and MSN. Overture’s

success has prompted several other companies to adopt similar business models involving paid

placement, most prominently Google, the leading Internet search engine. Other sponsored

search providers include LookSmart, FindWhat, and eSpotting.

Section 2 presents an overview of management challenges related to sponsored search.

Section 3 presents four alternative mechanisms by which a search engine might award spon-

sored slots and ranks. In Section 4, we report results of computational simulations of the

equilibrium performance of these four mechanisms. Ranking by the product of bid price

times clickthrough weakly dominates other mechanisms in all tested regimes, though the

mechanism is statistically equal to ranking by bid price in the expected region of positive

correlation between willingness to pay and relevance. Editorial filtering helps the basic

rank-by-bid mechanism significantly. Section 5 studies two alternative approaches for the

dynamic ranking problem, where the search engine periodically revises the ranking of listings

within the paid slots based on its observations about user clickthroughs. Section 6 provides
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concluding remarks.

2. Problem Overview and Related Research

The study of sponsored search is crucial to understanding the future design, quality levels,

and market structure of Web search engines. We elaborate on the research focus of this

paper and summarize other management problems and research related to paid placement.

We begin by discussing essential characteristics of sponsored search.

2.1. Characteristics of Sponsored Search

Advertising in traditional media (e.g., magazines and television) is typically sold on a per-

impression basis, or according to the number of people exposed to the ad. Banner ads on

the Web are also typically sold per impression. On the other hand, sponsored search is

typically sold on a per-click basis. Advertisers pay only when a user clicks on their ad; in

a sense they are paying for leads rather than exposure. Traditional advertising (and to a

large extent banner advertising on the Web) is typically priced via an informal process of

estimation and negotiation. The Internet, however, supports more efficient and mechanized

pricing via real-time auctions that can capture the advertisers’ true willingness to pay, and

track it over time. The sponsor-search industry typically runs separate auctions for different

search terms: for example, the search queries “plasma television” and “investment advice”

are associated with two distinct auctions. What’s being sold in each auction is the right to

appear alongside the results for that search query (actually what’s being sold is the right to

the users’ proceeding clicks if any). In practice, hundreds of thousands of advertisers compete

for positions alongside several million search queries every day. So, for example, travel

vendors like Expedia and Orbitz may compete in an auction for the right to appear alongside

the result of a user’s search on “Las Vegas travel.” Generally auctions are dynamic, meaning

that advertisers can change their bids at any time, and a new auction clears every time a

user enters the search query. In this way, advertisers can adapt to changing environments,

for example boosting their bids for “Harry Potter” around the release date of the latest book

in the series.
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2.2. Management Problems and Challenges

How should search engines award and charge for placement in the sponsored section of the

search results page? The industry standard of charging per click rather than per impression

makes the mechanism-design problem unusual. If the search engine instead auctioned off

impressions, with each specific part of the results page sold in a separate auction, then

lessons from traditional auction theory might apply. However, because the “commodity”

being auctioned is a click rather than an impression, the price signal coming from advertisers

leaves unanswered where on the page to display each impression.

We assume a specific portion of the results page is reserved for k sponsored results, and

that the mechanism must choose which k listings to show and in what order. Let Rpp(k)

represent the revenue from sponsored search when the search engine allocates k paid slots.

One approach is simplified to display the top k listings in descending order according to the

advertiser’s bid. Assuming an open-outcry format, this approach is transparent to adver-

tisers, who can easily see at any time how much they need to bid to appear in any given

position. Another approach is to factor in directly the likelihood of each ad being clicked (by

assessing its relevance, by measuring past clickthroughs, or both). Since Rpp(N) is the prod-

uct of click price and click volume, factoring in click volume may improve revenue, though

reduces transparency for bidders. Search engines also have incentives to refuse irrelevant or

offensive ads: such ads may cause users to defect to competing search engines, ultimately

reducing revenues. An important policy decision is how much to rely on automatic filtering,

and how many resources to allocate to human editorial review of sponsored listings.

Myopically maximizing current-period revenue is not a good strategy for a search engine.

All advertising revenues, including revenues from sponsored search, depend on the search

engine’s number of users (volume of traffic); moreover direct revenues from, for example,

subscriptions to premium services, depend on the number of users. Let Rusers denote revenue

obtained directly from user subscriptions, plus advertising sold on a per-impression basis

(e.g., typical banner ads). Then the search engine’s total revenue is R = Rpp + Rusers. The

search engine faces a tradeoff: increasing k may increase Rpp in the short term, but may

turn off users, thereby lowering total traffic and, in turn, lowering Rusers and lowering Rpp in

the longer term. Thus, besides the optimal ranking mechanism, the search engine must also

choose the number of paid slots by finding the optimal tradeoff between sponsorship and

user retention. Bhargava and Feng (2002) provide a theoretical model to explain and analyze
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this tradeoff. In this paper, although we verify the existence of an optimal k by explicitly

modeling user retention, we focus more on the related problem of determining, given some

fixed k, the relative revenue performance of alternative mechanisms for awarding slots.

Management of sponsored search is ultimately a game-theoretic balance among users,

advertisers, and the search engine. And when sponsored search is managed by a broker,

e.g., Overture’s relationship with MSN, Google’s relationship with AOL, and LookSmart’s

relationship with Lycos—the broker is a fourth party to consider in the balance. The search

engine’s (or broker’s) most direct goal is to maximize revenue. However, revenue is entirely

dependent on keeping both advertisers and users from defecting to other search engines. So,

the sponsored search mechanism design problem must simultaneously consider a number of

factors, including direct revenue, utility for users, utility for advertisers, and, in the case of

broker-affiliate relationships, utility for the affiliate.

Other management challenges include detecting and ignoring robot clicks and fraudulent

clicks by people with malicious intent—for example a competing advertiser who wants to

force costs onto their competitor, or an affiliate who actually benefits monetarily from addi-

tional clicks. Two sub-industries of sponsored search experiencing rapid growth are: (1) local

advertising, where advertisers can target users in specific geographic regions, and (2) contex-

tual advertising, where listings are placed beside news stories and other Web content, with

the intent of marrying content with the most relevant ads.

2.3. Academic Research

The growth of paid placement has attracted recent research on this topic. Hoffman and

Novak (2002) discuss the trend in Internet advertising towards per-click pricing rather than

the traditional per-impression model. Asdemir et al. (2002) study the pricing choice between

impressions and clicks, while Hu (2003) uses contract theory to show that performance-based

pricing models can give the publisher proper incentives to improve the effectiveness of ad-

vertising campaigns. Weber and Zheng (2003) study the implementation of paid placement

strategies, and find that the revenue-maximizing search engine design bases rankings on a

weighted average of relative quality performance and bid amount. Rolland and Patterson

(2003) propose a methodology using expert systems to improve the matching between ad-

vertisers and web users. Kumar et al. (2003) study the optimal advertising schedule to

maximize the Web site’s (search engine’s) revenue under a hybrid pricing model (based on

both the number of impressions of the ad and the number of clicks on the ad).
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3. Ranking Mechanisms for Sponsored Search

The positive correlation between top placement and increased traffic creates significant de-

mand among businesses for top placement on search engines, especially for popular and

commercially-relevant search terms. However, since Web users face negative utility if the

search engine becomes impartial, most search engines limit the number of paid placement

requests they accept. Thus, the sponsored slots are a scarce resource that need to be allo-

cated carefully. In this section, we describe the mechanics of sponsored search, develop a

model of the search engine’s placement revenues, and describe four alternative mechanisms

for choosing the allocation of paid slots to advertisers. The “v ranking” first-price auction

mechanism is inspired by Overture’s approach. In practice, Overture advertisers employ

bid proxy agents that automatically bid 1 cent above their nearest competitor up to their

maximum willingness to pay, effectively simulating a second price auction, but these two

formats should produce the same equilibrium outcomes under the setup of this paper. The

“v×α” mechanism is inspired by Google’s second-price auction that combines bid price with

the listing’s click history. The “posted price ranking” is a stylized version of how portals

and other content destinations sell banner ads (and more like how traditional media sell

advertising space). The “α ranking” focuses on relevance of a link, and so should be the

preferred format from the perspective of search-engine users. The v and v × α mechanisms

are stylized versions of those run by Overture and Google, respectively, that we believe

capture crucial aspects of the problem. However, several details are not fully addressed in

our model, including query-matching algorithms, human editorial intervention, non-search-

based advertising, new pricing models (e.g., pay per conversion), budgeting across time and

across auctions, geographic targeting, marketing efforts, brand awareness, user interfaces,

legal controls, strategic alliances, etc.

3.1. Revenue Model

Consider the search engine’s placement revenue for a single search term. Suppose that s

listing companies, interested in advertising for this term, compete for k paid slots on the

search engine’s results page. Let vj be advertiser j’s willingness to pay (WTP) per click for

preferential placement on this term. Let αj represent the “true” relevance score of listing j,

encoding how useful the link is to users. We assume 0 < vj, αj < 1. Let f(αj, vj) denote the

joint density function.

7



The expected revenue generated by an allocation is a function of the price of each slot

and the clickthroughs generated at each slot. The clickthroughs that a listing generates

depends on both its relevance and its rank within the sponsor-search section, because users

are inherently more likely to click on higher-ranked items. To compute the expected number

of clickthroughs for an item j at position i, our simulation employs an exponentially decaying

attention model with factor δ > 1. Formally, we compute the average clickthrough as αj/δ
i−1.

Exponential decay of attention is a fairly standard assumption, see Breese et al. (1998), that

is borne out in practice: actual clickthrough data obtained from Overture during 2003 for

the top five positions across all affiliates—including Yahoo!, MSN, and AltaVista—are fitted

extremely well (R2 = 0.997) by an exponential decay model with δ = 1.428.

Define r : I → J to be the search engine’s ranking function that allocates position i to

listing company j. The set J also contains a fictitious null provider, since the search engine

may not fill all slots. Let Pi represent the payment for position i. For the clickthrough-

based mechanisms, let pi represent the payment per clickthrough at position i, so that in

equilibrium Pi = pi
αj

δi−1 where j = r(i).

In our model, the total traffic that the search engine attracts is a function of its overall

quality, which is influenced by how the search engine allocates its sponsored slots. To be

precise, the overall quality of the sponsored portion is the average relevance score of all the

paid listings (
∑

i αr(i)/k). Search-engine users may have different sensitivities toward spon-

sored results under different search scenarios (for example, users generally treat commercial

information search differently from non-commercial information search). To model the sen-

sitivity, we introduce a market sensitivity factor λ (≥ 1, higher λ leads to a greater reduction

in demand). For a given λ, we write the aggregate user traffic attracted by the search engine

as (
∑

i αr(i)/k)λ.

Hence the search engine’s placement revenue is:(∑
i αr(i)

k

)λ

· E[(
k∑
i

Pi)] =
(∑

i αr(i)

k

)λ

·
k∑
i

∫ 1

0

∫ 1

0
Pif(αr(i), vr(i))dαr(i)dvr(i) (1)

where k is the number of paid listings that the search engine decides to display out of the s

total bidders.

3.2. Allocation Mechanisms

There are several different approaches for allocating and pricing sponsored slots. Yahoo’s

Overture division screens listings according to both automated and manual editorial policies
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to control for relevancy, then ranks all qualified advertisers according to how much they are

willing to pay per click. For any given query, paid slots are allocated to the top k bidders in

order of their bids. Listings may be shut down if they do not achieve sufficient clickthroughs.

Google’s AdWords Select sponsored search program relies largely on automated editorial

filtering. Google ranks qualified listings according to the product of the advertiser’s bid,

times the actual clickthrough of the listing. Since advertiser payments are per click, boosting

higher click-rate listings may help improve overall revenue. Some search engines post a

(reserve) price for paid slots and award the slots to the highest bidders.

3.2.1. v Ranking: Highest Payers at the Top

This mechanism allocates slots based on the listing company’s willingness to pay. For a

certain keyword, each listing company j makes a bid Bj for payment per click. The listings

associated with the highest k bids are displayed, ranked according to their bids. We assume

that companies pay what they bid (first-price auction). Due to the per-click payment format

of paid placement, each listing firm’s bid is independent of which slot it might be allocated

(which influences its expected clickthroughs), hence we can use standard auction theory to

derive the equilibrium bidding strategy. Therefore Bj is the expected highest value among

the remaining n − 1 bidders given that this value is below vj. Hence, the firm with ith

highest value makes the ith highest bid. The highest k bidders win and are assigned positions

according to their bids, so under this mechanism r(i) is the firm with ith highest valuation.

The search engine realizes a price per click vri+1
for slot i.

This mechanism is meant as a stylized version of Overture’s approach. Note however

that our formulation ignores many factors present in the commercially deployed mechanism,

including editorial control, bid proxy agents, inexact query matching, budget constraints,

and less-than-perfect correspondence between relevance and clickthrough rate, among other

factors. To address this gap, Section 4.6 extends the analysis to account for the editorial

control observed in practice.

3.2.2. v × α Ranking: Relevance and Bid Price Jointly Determine Rank

Again, every listing company j bids Bj per click. We compute the product Bjαj (where αj

approximates the expected number of clickthroughs for the listing). The listings associated

with the highest k products are displayed, ranked according to this product. The actual

price paid by each winner is a variant of the standard second-price auction, and computed
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as follows. Let r(i) be the firm that wins slot i. Then, if Br(i) > Br(i+1) then firm r(i)

pays Br(i+1); otherwise, it pays the least amount B̂i such that B̂iαr(i) ≥ Br(i+1)αr(i+1). In

other words, the winning firm pays either the bid just below it, or an amount such that its

total predicted payment just exceeds that of firm r(i + 1). Even though this is no longer

a standard second-price auction, we make the simplification that the listing firms bid their

true value, which is reasonable since the firm does not pay its own winning bid. Therefore,

the price paid by the firm in slot i is either pi = vr(i+1) or pi =
vr(i+1)·αr(i+1)

αr(i)
.

3.2.3. α Ranking

This mechanism selects the highest k bids and ranks the bidders by their expected number

of clickthroughs. The sponsored slots are assigned according to this ranking, and all winners

pay the highest rejected bid. Consequently, every listing company bids its true willingness

to pay (per click) vj. Thus this is a generalized version of second price auction. Hence

pi = vr(k+1) is the (k + 1)th highest valuation.

3.2.4. Posted-Price Mechanism

In this mechanism, the search engine sets a reserve price for each of the positions it has for a

certain period. Each listing company submits its bid to be listed for that period. The highest

k bids are the potential winners, except that the search engine may fill fewer than k slots

if certain of the winners do not meet the reserve-price constraints, as explained below. For

each i if the ith highest bid is higher than the reserve price for the ith position, the listing

company who submits this bid is admitted for the ith position and pays the reserve price;

otherwise, it is compared to the (i+1)th reserve price. If it is higher than the (i+1)th reserve

price, it is admitted and pays the (i + 1)th reserve price, but this way the total number of

sponsored positions will also be reduced by 1, and so on.

In setting up the auction, the search engine determines the k reserve prices by computing

the expected revenue potential for each of the k positions. In our simulation, for every

sample correlation (from −1 to 1) we generate s pairs of α and v, calculate the average order

statistics for the product αv over 100 runs, and use this as the reserve price. Note that this

procedure imposes a quality control for the winner-determination rule: those listings with

higher relevance score are more likely to have a greater revenue potential (because they are

most likely to generate traffic), so they are the ones most able to pay the reserve price.
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Table 1: An Example of Ranking and Payment Schedule for the Four Mechanisms

First slot Second slot
winner payment winner payment

v ranking A 0.7 B 0.4
v × α ranking B 0.4 C 0.3

α ranking B 0.4 A 0.4

3.3. Example

Two sponsored slots are available for a certain keyword, and there are four advertisers

(A, B, C,D) interested in these slots. The amounts they’re willing to pay per click are vi =

(0.8, 0.7, 0.4, 0.2), while their true relevance scores are αi = (0.3, 0.7, 0.8, 0.2). Table 1 states

the winner and prices for each slot under each mechanism. The posted-price mechanism is

omitted here due to its simplicity.

4. Revenue Comparisons

Although the four mechanisms share the same functional form for the expected revenue

function, there are significant differences in detail. The mechanisms have different allocation

rules r : I → J , so r(i) is different for each mechanism even for the same i—consequently,

the variables αr(i) and vr(i) are different. The prices pi are endogenous, so pi differs across the

four mechanisms. Hence the revenue function is in fact quite different for each mechanism.

Moreover, the revenue function is stochastic (based on the joint density function f), so the

differences between the mechanisms make it hard to uncover meaningful results even for

expected revenues. Finally, our interest goes beyond a comparison of the static revenue

function. In Section 5, we extend our analysis to cover dynamic ranking, which considers

the case where the search engine revises its allocations by observing the actual number of

clickthroughs received by the firms occupying the paid slots. For these reasons, we adopt a

systematic computational simulation as the basis for our analysis, leading to more intuitive

and straightforward characterization of results.

This section describes our simulation experiments to compare the steady-state perfor-

mance of alternative mechanisms. Section 4.1 motivates the design of the experiments, and

the rest of the section provides the results. Section A in the Online Supplement to this paper

on the journal’s website summarizes the design of the simulation code, including flowcharts
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of the simulation process (Figures 1 and 2 in the Supplement).

4.1. Experiment Design

Intuitively, because of the pay-per-click format of sponsor-search pricing, the comparative

revenue performance of the different mechanisms is influenced by the extent of correlation

between the listing firms’ willingness to pay for slots, and their ability to attract traffic (which

presumably is reflective of their relevance to the search term). The extent of correlation is

unobservable to the search engine. However, its impact on revenue performance varies across

the mechanisms, so the choice of mechanism requires a good understanding of the relationship

between correlation and relative performance. Our computational analysis accounts for this

requirement by treating v and α as joint random variables, and by systematically varying the

degree of correlation ρ between these variables over multiple simulation runs. We normalize

the variables to lie in [0, 1]. We model f(αj, vj) as a truncated bivariate normal distribution

between 0 and 1. The means are 0.5 and the covariance can vary between −0.167 and 0.167,

making the correlation between these two factors vary from −1 to 1. We expect the region of

positive correlation to be the most realistic, because advertisers generally have an incentive

to request relevant placement in order to attract traffic from genuinely interested users.

Moreover, we expect that, in the long run, advertisers themselves will withdraw irrelevant or

ineffective advertisements, retaining only those that genuinely attract interested consumers

and are cost effective.

Another factor that affects the performance of each mechanism is the intensity of com-

petition for sponsored slots. Is this effect identical across all mechanisms? Intuitively, we

believe the effect should be different, because of the differences in how each mechanism con-

siders the anticipated clickthroughs for the bidding firms. We also note that the intensity

of competition is affected by two variables, the number of interested advertisers (not con-

trollable by the search engine) and the number of slots made available for paid placement

(which is set by the search engine). Hence our analysis covers variations in both the num-

ber of available slots k and the number of firms bidding for paid placement s. Finally, we

expect the performance of different mechanisms to be affected differentially by the extent of

attention decay over the sponsored slots, so we vary δ across our simulations.
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4.2. Impact of Correlation between WTP and Relevance

First we compute the relative sensitivity of each mechanism to the correlation between an

advertiser’s WTP and relevance. The following result is derived with k = 5 available slots,

s = 15 advertisers who desire paid placement, and an attention decay factor δ = 2. For each

sample value of correlation in [−1, 1], we compute the average revenue over 200 runs. Each

run consists of a random draw from f(αj, vj) for each of the s content provider’s WTP and

relevance.

Figure 2: Average Revenue vs. Correlation for the Four Tested Ranking Strategies

Finding 1 For every mechanism, the revenue earned is increasing in the correlation be-

tween the content provider’s relevance score and its willingness to pay. The effect is most

pronounced for the v ranking mechanism.

Finding 1 is intuitive, since a greater correlation results in picking more relevant links,

as indicated in Figure 2. The v ranking mechanim, because it ignores relevance, benefits the

most from an increase in the correlation. This underscores the need for stronger editorial

control for relevance. Interestingly, this is consistent with industry practice: Overture,

which ranks by v, does generally expend more resources on human editorial control than

Google, which employs a form of v × α ranking.
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Finding 2 v × α ranking weakly dominates the other three mechanisms, and strongly dom-

inates in the region of negative correlation. The posted-price mechanism performs better

than v ranking under negative correlation, but worse under positive correlation. α ranking

is always dominated by the other mechanisms.

Figure 2 illustrates the robustness and dominance of the v × α ranking. The v ranking

mechanism performs well when v and α are positively correlated, but quite poorly when ρ

is negative (in this case the posted-price mechanism does nearly as well as v × α ranking).

The poor performance of v ranking in the region of negative correlation occurs because

the mechanism systemically picks the providers who will achieve lower clickthroughs, hence

earns lower revenues. The posted price mechanism performs well under negative correlation

because the search engine moves the risk of enrolling some less relevant listings to the listing

companies. These results are summarized in Finding 2. Table 1 in the Online Supplement

shows the two-sample t test assuming unequal variances for the revenues generated by the v

ranking and v×α ranking mechanisms when the correlation is negative, showing a significant

difference. Table 2 (Supplement) shows the same t-test for the case where the correlation is

positive, showing no significant difference.

Even though v×α ranking performs well across all values of ρ, the search engine’s choice

of mechanism is not straightforward. This is because use of the v × α mechanism requires

knowledge of relevance scores. In the absence of good estimates of relevance scores, the v×α

curve in Figure 2 merely represents an upper bound on revenue, corresponding to perfect

estimation of α. In this case, knowledge of ρ can guide the choice of mechanism. When

management is confident that v and α are highly correlated, then it may be best to award

slots by bid (v ranking, which performs close to the upper bound on revenue). Conversely,

when v and α are negatively correlated or independent, then the posted-price mechanism

comes close to the revenue upper bound. Finally, estimates of relevance scores can be

improved over time, indicating that search engines should employ a dynamic mechanism

that embeds learning of relevance scores into the allocation of slots. We explore this issue in

Section 5.

4.3. Impact of Attention-Decay Factor

Now we examine how the performance of the different mechanisms is influenced by δ, the

difference in the attention that a certain listing item can get in different positions. From (1),
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(a) negative correlation (b) positive correlation

Figure 3: Revenue vs. Attention Decay Parameter δ, under Negative and Positive Correlation
Between Relevance and Willingness to Pay.

we see that revenue decreases as attention decay increases, since Pi = piαj

δj−1 . Figures 3a and

3b show the performance of each mechanism with respect to δ, when the correlation between

paid listing firm’s relevance and WTP is strongly negative (left subfigure) and strongly

positive (right subfigure), respectively.

Finding 3 The revenue generated from sponsored search decreases as δ increases.

This result is intuitive. As δ increases, the lower rank positions become less attractive

so will generate lower revenues. We note that the search engine can exert some control over

the decay factor, e.g., by designing a better user interface that maintains attention over a

larger subset of paid listings. Still, as the limits of improved user interfaces are reached, a

fundamental limitation on human attention is unavoidable. Figure 3 also indicates that the

posted-price mechanism converges to the performance of the v × α mechanism when there

is significant attention decay.

4.4. Impact of Demand for Sponsored Search

The search engine’s potential for placement revenues depends on the overall demand for

sponsored search. Intuitively, when more providers compete for these slots, this will increase

the market clearing price and the search engine’s revenues. Our analysis extends this intuition

by revealing that this relationship is also affected by the correlation between the paid listings’

relevance score and willingness to pay. Figure 4 demonstrates that placement revenues

increase with the level of demand when WTP and relevance are positively correlated, but
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that an increase in demand does not yield greater revenues (except in the case of v × α

ranking, where revenue increases modestly with demand) when the correlation is negative.

(a) negative correlation (b) positive correlation

Figure 4: Revenue vs. the Demand for Paid Listings s, under Negative and Positive Corre-
lation Between Relevance and Willingness to Pay.

Finding 4 When the correlation between the paid listings’ relevance and WTP is highly

positive (cov = 0.15, correlation=0.9 in this case), the increase in the demand for sponsored

search increases the search engine’s revenue. When the advertisers’ relevance and WTP are

very negatively correlated (correlation = −0.9 in this case), there is no obvious increasing

trend with increasing the demand.

It might appear counter-intuitive that an increase in demand for sponsored slots fails

to increase revenues. However, when relevance and WTP are negatively correlated, the

v ranking and posted-price mechanisms systematically favor those advertisers with lower

relevance since these are the advertisers with the k highest bids. An increase in the number

of advertisers competing for the k slots amplifies this effect. The v × α-ranking mechanism,

on the other hand, cancels out the negative correlation to some extent since it incorporates

relevance into the selection of advertisers.

4.5. Impact of Supply of Paid Listings

The search engine controls the number of paid slots it makes available. Intuitively, the more

paid listings a search engine has, the more revenue it can generate from advertisers. However

this expanded enrollment will most likely cause the search engine to enroll some listings with
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less relevance, thus negatively affecting the overall quality of the search engine as perceived

by users. This in turn will reduce the total traffic at the search engine and the clickthrough

rates, thereby lowering revenue from sponsored search. Hence, our intuition would indicate

that increasing the number of paid slots will benefit the search engine up to a point, but

that further increase in slots will cause reduction in overall placement revenue.

To verify this intuition, we extend our experiment, varying the amount of paid links

(k) the search engine decides to enroll. In this round, we assume there are 20 potential

advertisers who are interested in purchasing paid slots, and the search engine varies the

number of paid slots from 1 to 19. Again we present the expected revenue over 200 runs for

each value of k. Results are shown in Figure 5.

Figure 5: Revenue vs. Number of Paid Positions Available (k), under Positive Correlation
Between Relevance and Willingness to Pay.

Finding 5 When WTP and relevance have a high positive correlation, the search engine’s

expected revenue is approximately concave in the number of paid links it enrolled.

Interestingly, the optimum values displayed in Figure 5 roughly correspond to typical

industry practice of displaying up to five sponsored listings alongside search results.
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4.6. The Effect of Editorial Control on the Quality of Paid Listings

Our analysis indicates that when relevance and bid prices are negatively correlated, the v

ranking mechanism tends to award sponsored slots to advertisers who have low relevance,

thus yielding lower revenue overall. However, in practice, paid placement companies exert

some editorial control to maintain relevance. Overture in particular expends considerable

resources in human editorial screening to filter out irrelevant or objectionable listings. Along

these lines, we implement a modified v ranking mechanism that removes listings below a

certain threshold relevance. The filtering step helps in two ways: (1) it tends to select the

better-performing advertisers when the correlation is negative, and (2) it controls the overall

quality of the paid links, yielding higher traffic.

We ran a parallel set of simulations to test the performance of modified v ranking. In

implementing the mechanism, we assume that the editorial control policy is perfectly able to

identify and eliminate listings below a specified threshold level. Our implementation works

as follows. Advertisers below the specified threshold are discarded, and then the highest k

(or fewer) bids are selected from the remaining advertisers. Again every data point presented

in the simulation represents an average of 200 runs. Figure 6 shows the performance of the

modified v ranking in comparison to the v × α ranking mechanism, with different choice of

threshold levels.

Figure 6: The Performance of the Modified v Ranking with Different Cut-Off Values.
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Finding 6 The modified v ranking can improve the performance of the original v ranking

mechanism. With a good choice of the threshold value, the modified v ranking mechanism

performs better than v × α ranking in regions of both positive and negative correlation.

In our simulation, modified v ranking, with a threshold value of 0.5, performed slightly

better than v × α ranking when the correlation ρ is negative or positive but small, and

performed equivalently when the correlation is positive and large; Tables 3 and 4 (in the

Online Supplement) give the t-test results. This result is explained as follows: with the

added control over quality, the modified v ranking picks up more relevant paid links and

improves the search engine’s quality perception, thereby generating greater traffic to the

search engine; the v × α ranking, on the other hand, can on occasion award slots to links

with low relevance.

The simulation also demonstrates that the threshold value must be chosen carefully. If

it’s set to be too low (e.g., 0.25 in this case), the modified mechanism has limited ability

to eliminate the less relevant listings; however if it’s too high (e.g., 0.75), few listings will

survive the screening so the search engine will be forced to leave more slots unfilled and will

generate lower revenue. In reality, any editorial control policy will be less than perfect, but

the degree of accuracy in filtering low relevance links can be improved by making further

investment in the editorial process. The search-engine firm can therefore choose a suitable

level of investment by trading the costs with the improvement in revenue.

5. Ranking Dynamics

The previous section analyzed the steady-state performance of various ranking mechanisms,

which requires knowledge of the listing’s relevance. Since the search engine does not have

this information, it approximates the relevance by observing the clickthrough rate for each

listing. This approximation improves over time as the search engine gathers more data,

hence the ranking produced by each mechanism needs to be revised over time until the

steady-state solution is obtained. This section studies the ranking dynamics and compares

different approaches for dynamic ranking. Accounting for measurement error in clickthrough

rates makes sense only for the mechanisms that depend on clickthrough rate, namely v × α

ranking and α ranking. We focus our analysis on the v×α-ranking mechanism, because the

α ranking is dominated by all other methods.
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Since v × α ranking orders listings based on the product of bid price and number of

clickthroughs, the ranking will change over time as the observed clickthrough history itself

evolves. Items that receive more clicks get promoted in the list. We implement dynamic

ranking by dynamically computing each listing’s clickscore, and then ranking the listings

by the product of bid price and clickscore. We compare two different approaches for score

revision. First, in the basic v × α ranking, each click increases the listing’s clickscore by

1, regardless of whether the click was earned at a high rank or a low rank. In this case,

each click has an equal impact on the likelihood of promotion. We call this the unweighted

revision mechanism. Second, we propose a new rule where clicks on low-ranked items have

greater impact on promotion. We implement this rule by revising the listing’s clickscore as

follows: each click received by the listing increases the listing’s click-score by δi, where i is the

listing’s position when it generated the click. Intuitively, a lower-ranked item is more likely

to move up in the list under this weighted revision mechanism than under the unweighted

revision mechanism.

We performed computational simulations to examine the dynamics of each revision mech-

anism, with the following settings. There are five sponsored slots available and there are five

content providers. In each simulation run, each provider’s relevance score and willingness

to pay are i.i.d. random variables that follow a truncated normal distribution in [0, 1]. The

decay factor δ is 2. In each period of a simulation, a provider’s probability q of getting a

clickthrough is αj

δi , a function of its true relevance score α and its position i in the result page.

Since there is no information about clickthrough rates in the beginning, each simulation run

consists of a trial period where every item is given a chance to be on the top as well as every

other position: the clickthrough they earned is recorded, and the weighted and unweighed

products (scores) are calculated. At the end of the trial period, the items are presented and

ranked according to their scores. In the remaining periods, the ranks are revised according

to the weighted and unweighted revision rules. Once a lower-ranked item achieves a larger

score, it can be promoted to a higher position. We executed 200 runs for each mechanism.

For each run, we record the number of periods to converge to the optimal allocation, and

terminate it after 1000 periods if there is no convergence. In each period, the average dis-

tance between the optimal allocation and the current allocation is also calculated as the the

sum of the absolute value of the difference between the current rank and equilibrium rank

of each listing. More specifically, let R0 be the vector of ri’s in the optimal case (where

r : I → J is the ranking function allocating position i to listing company j), and Rt be the

20



Table 2: Number of Runs That Converged within 1000 Periods

trial period 1 3 5 7 9 11 13 20
weighted 88 96 112 116 125 125 133 130

unweighted 42 73 73 78 92 92 96 99

Table 3: Number of Periods at which the Mechanism Converges

trial period 1 3 5 7 9 11 13 20
weighted 595.87 558.71 476.83 470.89 417.12 423.06 382.62 380.32

unweighted 804.87 650.25 643.76 616.17 560.69 558.59 533.80 519.01

vector showing the ranking in period t. Then the distance between the current ranking and

the optimal ranking is
∑m=k

m=1 |r0(m)− rt(m)|.

5.1. Impact of Trial Period

Due to the interdependence between the number of clickthroughs and placement rank, each

simulation begins with a trial period that measures the clickthroughs over several trials.

Each trial consists of five allocations, chosen such that every listing appears once in every

position, offering each listing a fair chance to be tested for its true relevance. The next

two findings state the performance of the two revision rules in terms of how frequently each

converges to the optimal ranking, and how quickly it gets there. Table 2 shows the number

of runs that converged to the equilibrium when the paid listings’ relevance and WTP were

independent (correlation equals zero). Table 3 shows the speed of convergence for each of

the two mechanisms.

Finding 7 An increase in the length of the trial period increases the speed of convergence,

but at a decreasing rate.

Finding 8 The weighted mechanism exhibits better convergence to the optimal state than

the unweighted mechanism, both in terms of the number of runs that converge, and the speed

of convergence.

Convergence to the optimal ranking is important because any deviation leads to lower

revenue. Speed of convergence is important because demand for sponsored slots—for specific

terms—is highly variable, thus if a mechanism takes too long to converge it will implement
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the optimal policy for only a very short period. The number of trials has a significant

effect on the performance of each mechanism, since trials are costly (they involve allocations

that generate poor revenues) but generate useful information for approximating relevance.

Thus a longer trial period produces a better approximation of relevance (thereby resulting in

greater revenues in future periods) at the expense of lower revenues during the trial periods, a

typical exploration-exploitation tradeoff. The weighted mechanism performs better because

it is better able to recognize errors in ranking—it promotes more quickly those listings that

receive clicks at lower ranks.

5.2. Impact of Correlation

Now we examine the impact of correlation between WTP and relevance on the convergence

properties of the two mechanisms. Figure 7 shows the average distance between the current

run and the equilibrium state in each period. The results are displayed for the two cases

of large negative correlation (ρ = −0.9, or covariance equals −0.15) in Figure 7a and large

positive correlation (ρ = −0.9) in figure 7b. The trial period in each simulation consisted of

five trials.

(a) negative correlation (b) positive correlation

Figure 7: Distance to Equilibrium vs. Time for the Weighted and Unweighted Ranking
Mechanisms, under Negative (left) and Positive (right) Correlation Between Relevance and
Willingness to Pay

Finding 9 Both mechanisms converge more closely to the equilibrium as the correlation

between WTP and relevance increases. The weighted mechanism always converges faster
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than the unweighted mechanism. The difference between the two mechanisms increases with

increase in correlation.

The reason that performance improves over time is that the search engine develops a

better approximation of the true relevance by observing the actual clickthroughs. The intu-

ition behind the better performance of the weighted ranking mechanism is that lower-ranked

items are less likely, ceteris paribus, to be selected by a user (due to attention decay at lower

positions). Hence if some link generates more clicks despite this handicap, this signals a

greater error in its current position. The weighted ranking rule accounts for this fact, while

the unweighted rule ignores the rank at which clicks were received. The difference between

the two mechanims’ performance is statistically significant at the 0.05 level. Tables 5 and 6

in the Online Supplement display the t-test statistics for ρ = −0.9 and ρ = 0.9, respectively.

6. Conclusions

This paper analyzed the implementation of sponsored search strategies for Web search en-

gines. Via computational simulations, we compare four alternative mechanisms for allocating

sponsored slots, including two stylized versions of mechanisms employed by the two leading

services: Yahoo/Overture’s v ranking mechanism and Google’s v × α ranking mechanism.

We find that v × α ranking performs equally or better than other mechanisms in almost

all cases, while v ranking works comparably in the expected case of positive correlation be-

tween v and α. Editorial filtering can improve the performance of v ranking significantly.

Placement revenues decrease when users’ attention is significantly lower for lower-ranked

listings, emphasizing the need to develop better user interfaces and control features. The

search engine must carefully choose the total number of paid slots to make available, due to

the tradeoff between direct revenue increases and indirect revenue losses due to consumer

defection. While the v × α ranking dominates in the computations, it is of little use unless

good estimates of relevance scores are available. Search engines can improve these estimates

by observing clickthroughs, at different ranks, so the accuracy of learning is critical to perfor-

mance. We examined the dynamic behavior of the v×α-ranking mechanism, which promotes

(or demotes) a provider’s rank based on the number of clicks it receives, and proposed an

alternative mechanism where the reward for a click is larger when it is received at a lower

rank. We found that this weighted mechanism converges faster and is more stable than the
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unweighted mechanism for rank revision. Based on personal communication, we believe that

Google may employ a similar weighting procedure in practice.

Sponsored search in search engines is a thriving and growing industry. The average

price paid per click on Overture’s network in 2003 was roughly US$0.40. Total industry

revenue was approximately US$0.9 billion in 2002 and US$2.5 billion in 2003. This practice

is widely credited for the revitalization of the search-engine business. This paper has taken

early steps in studying the implementation of sponsored search in search engines. Much more

work remains to be done, with respect to understanding user attitudes toward different forms

of paid placement, the impact of various user interfaces on users’ willingness to accept and

browse sponsored slots, and on the design of optimal mechanisms for allocating these slots.

For example, laboratory experiments can be done to determine how advertisers’ bidding

strategies are affected by the various mechanisms in practice.
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