
This article was downloaded by: [128.173.125.76] On: 21 February 2014, At: 11:59
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Computing

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Enhancing Lagrangian Dual Optimization for Linear
Programs by Obviating Nondifferentiability
Hanif D. Sherali, Churlzu Lim,

To cite this article:
Hanif D. Sherali, Churlzu Lim,  (2007) Enhancing Lagrangian Dual Optimization for Linear Programs by Obviating
Nondifferentiability. INFORMS Journal on Computing 19(1):3-13. http://dx.doi.org/10.1287/ijoc.1050.0158

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2007, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
http://dx.doi.org/10.1287/ijoc.1050.0158
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org


INFORMS Journal on Computing
Vol. 19, No. 1, Winter 2007, pp. 3–13
issn 1091-9856 �eissn 1526-5528 �07 �1901 �0003

informs ®

doi 10.1287/ijoc.1050.0158
©2007 INFORMS

Enhancing Lagrangian Dual Optimization for Linear
Programs by Obviating Nondifferentiability

Hanif D. Sherali, Churlzu Lim
Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia 24061, USA {hanifs@vt.edu, clim2@uncc.edu}

We consider nondifferentiable optimization problems that arise when solving Lagrangian duals of large-
scale linear programs. Different from traditional subgradient-based approaches, we design two new meth-

ods that attempt to circumvent or obviate the nondifferentiability of the objective function, so that standard
differentiable optimization techniques could be used. These methods, called the perturbation technique and the
barrier-Lagrangian reformulation, are implemented as initialization procedures to provide a warm start to a the-
oretically convergent nondifferentiable optimization algorithm. Our computational study reveals that this two-
phase strategy produces much better solutions with less computation in comparison with both the stand-alone
nondifferentiable optimization procedure employed, and the popular Held-Wolfe-Crowder subgradient heuris-
tic. Furthermore, the best version of this composite algorithm is shown to consume only about 3.19% of the
CPU time required by the commercial linear programming solver CPLEX 8.1 (using the dual simplex option)
to produce the same quality solutions. We also demonstrate that this initialization technique greatly facilitates
quick convergence in the primal space when used as a warm start for ergodic-type primal recovery schemes.

Key words : nondifferentiable optimization; Lagrangian relaxation; Lagrangian dual; perturbation technique;
barrier-Lagrangian reformulation

History : Accepted by William J. Cook, Area Editor for Design and Analysis of Algorithms; received April
2004; revised April 2005; accepted July 2005.

1. Introduction
Consider the linear-programming problem

LP: Minimize cT x (1a)

subject to Ax= b (1b)

l≤ x≤ u� (1c)

where A is an m×n matrix, and l and u are vectors of
(finite) lower and upper bounds, respectively, on the
x variables. If LP is a large, ill-conditioned problem,
simplex or interior-point solvers can get prohibitively
expensive (Adams and Sherali 1993, Sherali and Tunc-
bilek 1997, for example). Instead, Lagrangian relax-
ation, or Lagrangian dual optimization, along with a
primal recovery scheme, could be more effective for
obtaining lower bounds and selecting branching vari-
ables (Fisher 1981, Sherali and Myers 1988, Sherali
and Choi 1996, Larsson et al. 1999, Barahona and
Anbil 2000). The Lagrangian dual of LP is

LD: Maximize��
�� (2)

where ��
�≡ bT 
 +min�cT x−
TAx� l≤ x≤ u�.
Although the Lagrangian dual optimization prob-

lem is a convex program, the nondifferentiability of �
obviates the use of conventional differentiable opti-
mization methods. Hence, various nondifferentiable

optimization (NDO) procedures are applied to solve
LD, such as subgradient and conjugate subgradi-
ent algorithms (Polyak 1967, 1969; Held et al. 1974;
Camerini et al. 1975; Sherali and Ulular 1989), bun-
dle methods (Mifflin 1977, Lemarechal 1977, Makela
2002), and space-dilation algorithms (Shor 1970a, b;
Sherali et al. 2001). Bundle algorithms require solv-
ing quadratic subproblems, and space-dilation pro-
cedures need to store matrices and perform matrix
operations, each of which can be prohibitive for large
problems. On the other hand, conjugate subgradient
methods can be effective approaches for solving large
problems due to their relatively milder computational
and memory requirements. However, this type of
approach usually requires a suitable estimate of the
optimal objective value to compute step lengths. For
example, Sherali et al. (2000) proposed a variable tar-
get value method (VTVM) that assures convergence
to an optimum when used with a conjugate subgradi-
ent direction strategy. Although the VTVM algorithm
has demonstrated good performance in solving sev-
eral standard test problems, we have observed that if
the initial target value is far from the optimal objec-
tive value, the algorithm might stall for a signifi-
cant number of iterations while the target value is
adjusted to an appropriate level, before a progression

3

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

17
3.

12
5.

76
] 

on
 2

1 
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
59

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

borrego
Typewritten Text
Copyright by INFORMS. Sherali, Hanif D.; Lim, Churlzu. Enhancing Lagrangian dual optimization for linear programs by obviating nondifferentiability. INFORMS Journal on Computing 2007 19:1, 3-13. doi: 10.1287/ijoc.1050.0158



Sherali and Lim: Enhancing Lagrangian Dual Optimization for Linear Programs by Obviating Nondifferentiability
4 INFORMS Journal on Computing 19(1), pp. 3–13, © 2007 INFORMS

of improvements results. In this vein, Lim and Sher-
ali (2006) recently proposed a modified VTVM that
employs a variable acceleration factor when updating
target values and adopts a projected quadratic-fit line-
search whenever an improvement is attained. Among
various direction-finding and step-length strategies
investigated in concert with the modified VTVM pro-
cedure in their extensive computational study, Lim
and Sherali prescribed a generalized Polyak-Kelley
cutting-plane (GPKC) technique as a highly effective
alternative. This approach simultaneously determines
a direction and a step length by projecting an iterate
onto the most recent pair of cuts, and then addition-
ally utilizing sequential projections onto several other
past cuts to obtain the next iterate.
Besides optimizing the Lagrangian dual, the recov-

ery of primal solutions is another important consid-
eration. A computationally simple idea for deriving
primal solutions in Lagrangian dual optimization is to
construct an ergodic sequence based on the solutions
to the corresponding Lagrangian subproblems during
the normal course of the dual search algorithm, in a
manner that would induce convergence to an opti-
mal pair of dual and primal solutions. Shor (1985)
proved the primal convergence of sequences of this
type when using specific weighting schemes in con-
cert with pure subgradient optimization. Sherali and
Choi (1996) proposed an extension of such weighting
strategies and established primal convergence when
employing both pure and deflected subgradient algo-
rithms. Larsson et al. (1999) further extended these
weighting schemes to yield primal convergence for
general convex programs.
In this paper, we develop two new approaches

for solving LD in (2), which attempt to circumvent
or obviate the nondifferentiability of � in provid-
ing a warm start for theoretically convergent NDO
procedures. One of these methods involves perturb-
ing iterates to create a differentiable trajectory of
solutions, while the second approach examines the
Lagrangian dual of a barrier reformulation of the
problem, which yields a continuously twice differen-
tiable dual function. In doing so, these approaches
admit the use of a rich array of effective existing solu-
tion technologies for differentiable optimization prob-
lems. Note that with the same motivation, Nesterov
(2005) has recently independently proposed a method
for constructing a smooth �-approximation having
a Lipschitz continuous gradient for a nondifferen-
tiable function, such that an �-optimal solution can be
derived using conventional differentiable optimiza-
tion procedures. In contrast, although the second of
our aforementioned two approaches can be run to
produce an �-optimal solution on its own, we utilize
these methods only to provide a good initial starting
solution.

In §2, we present a technique that utilizes pertur-
bations at nondifferentiable points to create a differ-
entiable pathway so that conventional differentiable
optimization methods can be brought to bear for
solving LD. Next, we introduce a barrier-function
approach in §3 (see Bazaraa et al. 2006 for a general
discussion on barrier-function methods), which pro-
vides a continuously twice differentiable Lagrangian
dual function, thereby permitting application of stan-
dard differentiable optimization techniques to fur-
nish a warm start for both the dual optimization
and ergodic-primal-recovery schemes. Some differen-
tiable optimization strategies that we implement for
our numerical study are briefly described in §4. Sub-
sequently, in §5, we design algorithmic procedures
in which these proposed techniques are applied to
initialize the theoretically convergent variable target
value method that incorporates generalized Polyak-
Kelley cuts (VTVM-GPKC), as proposed by Lim and
Sherali (2006), in the hope of enhancing its numerical
performance. Computational test results are provided
in §6 to demonstrate the efficacy of the proposed
dual optimization and ergodic-primal-recovery strate-
gies. The results reveal that the best proposed option
improves the quality of solutions produced by the
stand-alone VTVM-GPKC algorithm by reducing the
optimality gap by 72.5% while being run for only
about half as many iterations, and consumes only
3.19% of the CPU effort required by the dual-simplex
option of the commercial software CPLEX 8.1 to
obtain the same quality near-optimal solutions.

2. Perturbation Technique
The method developed in this section for inducing
a differentiable trajectory is called the perturbation
technique (PT), and is motivated by the fact that the
Lagrangian dual function � is differentiable almost
everywhere. Notice that � is nondifferentiable only at

k such that there exists a j ∈ �1� � � � �n� for which the
reduced cost cj − �
k�T Aj = 0, where cj is the jth ele-
ment of c, and Aj is the jth column of A. Although
the probability that we randomly hit a nondifferen-
tiable point is theoretically zero, this occurs routinely
in practice because of the nature of the ascent pro-
cess over the piecewise-linear objective surface, and
due to the characterization of (optimal) basic feasi-
ble solutions whereby the basic variables have zero
reduced costs. However, as described below, we can
use a perturbation technique to evade nondifferen-
tiable points en route toward an optimum as possible,
and contend with nondifferentiability whenever this
is unavoidable, hopefully only in the vicinity of an
optimum.
To implement this idea, suppose that we encounter

a nondifferentiable point via the update 	
k = 
k−1 +

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

17
3.

12
5.

76
] 

on
 2

1 
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
59

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Sherali and Lim: Enhancing Lagrangian Dual Optimization for Linear Programs by Obviating Nondifferentiability
INFORMS Journal on Computing 19(1), pp. 3–13, © 2007 INFORMS 5

�k−1dk−1, where 
k−1, �k−1, and dk−1 are respectively
the previous iterate, step length, and search direc-
tion. From the condition of nondifferentiability, we
have a nonempty index set E = �j ∈ �1� � � � �n�� cj −
� 	
k�TAj = 0�. To find a suitable differentiable point 
k

in the neighborhood of 	
k, we want to perturb 	
k to

k = 	
k + �

 such that cj − �
k�T Aj = cj − � 	
k�TAj −
�

TAj �= 0, ∀ j = 1� � � � �n. We can pick � > 0 small
enough for this to occur so long as we have



TAj �= 0� ∀ j ∈ E� (3a)

and

0<�< �̄≡min��′ > 0� cj − � 	
k + �′ 

�TAj = 0

for some j ∈ EC�� (3b)

where EC denotes the complement of E with respect
to �1� � � � �n�.
Once we have 

 and � satisfying (3a) and (3b), we

uniquely obtain

xk = argmin��cT − � 	
k + �

�TA�x� l≤ x≤ u�� (4)

Letting �k = ��
k�, ∀k, and noting that xk given by (4)
also evaluates �� 	
k� by construction, we have that
�k − �� 	
k�= �gk�T �
k − 	
k�= ��gk�T 

, where gk ≡ b−
Axk is a subgradient at 
k (or also at 	
k�. Hence, we
will obtain an improvement �k > �k−1 in the objec-
tive function whenever �� 	
k� − �k−1 > �� 	
k� − �k =
−��gk�T 

. Thus, in case �gk�T 

 < 0, and given that
�� 	
k� > �k−1, we could further restrict � to satisfy

�<
�k−1− �� 	
k�

�gk�T 

 �

Consequently, given 

 satisfying (3a), and comput-
ing �̄ via (3b), we select � according to

�=



tmin��̄� ��k−1− �� 	
k��/�gk�T 

�

if �gk�T 

 < 0 and �� 	
k� > �k−1�

t�̄ otherwise�

(5)

where 0< t < 1 (we used t = 0�5�.
Toward designing such a perturbation scheme, we

commence with 

 ≡ 	
k. If (3a) holds true for 

 = 	
k,
we pick � according to (5), so that we then have a
new differentiable point of the form 
k = 	
k�1+ ��,
a simple extension of 	
k itself. Failing this, we could
select 

 = dk−1, the previous search direction, or 

 =
−d̂k−1, so that we would effectively test if slightly
overstepping, or understepping, in the previous itera-
tion would yield a nondifferentiable point. Otherwise,
a revised perturbation vector 

new that comes closer to
satisfying (3a) is obtained as follows, yielding a finite
iterative scheme for achieving (3a).

Given a current 

, consider a perturbation of the
form 

new = 

 + �0A

r for an arbitrary r ∈ E0 ≡ �j ∈ E �


TAj = 0�, where �0 > 0. Then, we have



T
newA

j = 

TAj + �0�A
r�T Aj� ∀ j ∈ E� (6)

where 

TAj �= 0, ∀ j ∈ E−E0, and



T
newA

r = �0�Ar�2 > 0� (7)

From (6) and (7), if we can ensure that



T
newA

j = 

TAj + �0�A
r�T Aj �= 0� ∀ j ∈ E−E0� (8)

then we can obtain a new index set Enew0 ≡ �j ∈ E �


T
newA

j = 0�, which is a proper subset of E0. Notice
that (8) can be zero for some j ∈ E − E0 only when


TAj and �Ar�T Aj are of opposite sign. Hence, let Z≡
�j ∈ E − E0� � 

TAj���Ar�T Aj� < 0�. If Z =�, �0 > 0 can
be arbitrarily chosen (e.g., we can take �0 = 1�. Else,
in order to make the condition (8) hold true, we select

�0 = t0 min�−

TAj/�Ar�T Aj � j ∈Z�� (9)

where 0 < t0 < 1 (we used t0 = 0�5�. Reiterating this
process until we have Enew0 =�, we would obtain a 


satisfying (3a). The resulting perturbation routine is
summarized below.

Perturbation Routine
Step 1. Given a nondifferentiable point 	
k, define

the index set E ≡ �j ∈ �1� � � � �n�� cj − � 	
k�TAj = 0�. If
E =�, return 
k = 	
k. Otherwise, let 

 ≡ 	
k and E0 ≡
�j ∈ E� 

TAj = 0�, and proceed to Step 2.
Step 2. If E0 =�, return 
k = 	
k + �

, where � > 0

is determined by (5). Otherwise, proceed to Step 3.
Step 3. Pick any r ∈ E0. Let Z ≡ �j ∈ E − E0 �

� 

TAj���Ar�T Aj� < 0�. If Z=�, put �0 = 1. Otherwise,
select �0 according to (9). Let 

 ← 

+�0A

r and E0 ←
E0− �j ∈ E0� 

TAj �= 0�. Return to Step 2.
Remark 1. As mentioned earlier, instead of letting



 ≡ 	
k in Step 1, we can initialize 

 ≡ ±d̂k−1 to
test if overstepping or understepping in the previ-
ous iteration would yield a nondifferentiable point.
Alternatively, note that we could have applied the
foregoing procedure only once at the very beginning
of the overall algorithmic scheme to obtain a 

 such
that 

TAj �= 0, ∀ j = 1� � � � �n. Then, this same 

 could
be reused at each iteration of the perturbation rou-
tine since it would satisfy (3a). However, in practice,
because �E� tends to be small (often ≤2� and since the
perturbation routine is run only for a few (≤100� itera-
tions, while n can be quite large, it is computationally
preferable to compute a tailored 

 for each iteration.
Also, for the selection of r ∈ E0 in Step 3, we initially
prioritize Aj , j = 1� � � � �n, from the largest number of
nonzero elements to the least. Then, r ∈ E0 is chosen
according to this priority in the hope that Ar will yield

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

17
3.

12
5.

76
] 

on
 2

1 
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
59

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Sherali and Lim: Enhancing Lagrangian Dual Optimization for Linear Programs by Obviating Nondifferentiability
6 INFORMS Journal on Computing 19(1), pp. 3–13, © 2007 INFORMS

�Ar�T Aj �= 0 for many j ∈ E0, thereby potentially reduc-
ing �E0� faster (see Step 3 in the Perturbation Routine
above).
Now, whenever we encounter a nondifferentiable

update 	
k, i.e., a nonempty index set E, we obtain a
new iterate 
k via this perturbation routine at which
a solution of the Lagrangian subproblem in (4) is
uniquely determined, so the corresponding subdif-
ferential is a singleton. This subgradient is indeed
a steepest-ascent direction at 
k. Therefore, we can
utilize conventional differentiable optimization strate-
gies to obtain the next update 	
k+1, as further exem-
plified in §4 below.

3. Barrier-Lagrangian Dual
Reformulation

In this section, we propose to apply a Lagrangian
dual approach to a barrier-function-based reformula-
tion of LP, which we call the barrier-Lagrangian refor-
mulation (BLR) method. For # > 0 and sufficiently
small, consider the following barrier problem, based
on Frisch’s logarithmic barrier-function applied to the
bounding constraints in (1c) (see Bazaraa et al. 2006,
for example).

BP: Minimize cT x−#
n∑

j=1
�ln�xj − lj �+ ln�uj − xj��

subject to Ax= b� (10)

We know from barrier-function theory that as #→ 0+,
the trajectory of optimal solutions to (10) approaches
an optimum for LP.
Consider solving BP via a Lagrangian dual ap-

proach for a fixed, relatively small value of # > 0,
given our intent to derive a near-optimal solution
to LP. This yields the Lagrangian dual problem

LDBP: Maximize �̄�
�� (11a)

where

�̄�
�≡bT 
+min
x

{
�cT −
TA�x

−#
n∑

j=1
�ln�xj−lj �+ln�uj−xj��

}
� (11b)

Since the objective function of the Lagrangian sub-
problem (11b) is strictly convex, it has a unique opti-
mum, given that a critical point exists as verified
below. Differentiating and setting equal to zero to
compute this critical point, we obtain

c̄j −#

[
1

xj − lj
− 1

uj − xj

]
= 0� ∀ j�

where c̄j ≡ cj −
TAj , ∀ j , and where Aj is the jth col-
umn of A. Simplifying, we have,

c̄jx
2
j − xj�c̄j �lj +uj�+ 2#�+ c̄j ljuj +#�lj +uj�= 0� ∀ j�

(12)

If c̄j = 0, then (12) yields

xj =
lj +uj

2
≡ �xj� say�

Otherwise, solving the quadratic equation (12), we get

xj = �xj ≡
c̄j �lj +uj�+ 2#±

√
c̄2j �uj − lj �

2+ 4#2

2c̄j
� (13)

From (13), we obtain

�xj − lj =
c̄j �uj − lj �+ 2#±

√
c̄2j �uj − lj �

2+ 4#2

2c̄j
(14a)

and

uj − �xj =
c̄j �uj − lj �− 2#∓

√
c̄2j �uj − lj �

2+ 4#2

2c̄j
� (14b)

Because we must have lj < �xj < uj , ∀ j , at optimality
to (11b), observe from (14) that if c̄j > 0, then either
± is valid for (14a) but we must use the plus case in
(14b), which corresponds to the minus case in (13).
Likewise, if c̄j < 0, then we must use the minus case
in (14a), while either case is legitimate for (14b), again
implying the minus case for (13). This leads to the
following unique solution x= �x for (11b).

�xj =
c̄j �lj +uj�+ 2#−

√
c̄2j �uj − lj �

2+ 4#2

2c̄j
�

if c̄j �= 0 (15a)

�xj =
lj +uj

2
� if c̄j = 0� (15b)

Observe that �xj is a continuous function of c̄j in that,
using L’Hospital’s rule, the limiting value of (15a) as
c̄j → 0 equals the value in (15b). Moreover, by unique-
ness of the solution in (11b), �̄ is a differentiable func-
tion of 
, with

$�̄�
�= b−A�x� (16)

where �x is given by (15), with c̄j ≡ cj −
TAj , ∀ j . By
viewing �x as a function of 
 via (15a, b), or effectively,
viewing �xj as a function of c̄j , we can also verify that �̄
is continuously twice differentiable, since by applying
the definition of differentiation and using L’Hospital’s
rule, we obtain

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

17
3.

12
5.

76
] 

on
 2

1 
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
59

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Sherali and Lim: Enhancing Lagrangian Dual Optimization for Linear Programs by Obviating Nondifferentiability
INFORMS Journal on Computing 19(1), pp. 3–13, © 2007 INFORMS 7

Proposition 1.

d�xj�c̄j �

dc̄j

∣∣∣∣
c̄j=0

= −�uj − lj �
2

8#
= lim

c̄j→0

d�xj

dc̄j
�

Proof. See the Online Supplement to this paper on
the journal’s website.
Nonetheless, in keeping with our motivation to

maintain simplicity in implementation, we experi-
ment with several conjugate gradient strategies to
solve LDBP for a given # > 0, instead of using
Newton or quasi-Newton methods that would require
solving large linear systems at each iteration. Also,
note that by using # > 0 small enough along with
an optimal rounding scheme (see Bazaraa et al. 2005,
for example), we could, in theory, obtain optimal pri-
mal and dual solutions to LP via the optimization of
LDBP. However, we intend to perform only a few iter-
ations (say, 100, as used in our computational study)
of optimizing LDBP to provide a warm start to the
VTVM-GPKC procedure as mentioned above.

4. Differentiable Optimization
Strategies

We consider several conjugate gradient methods for
solving LD via the perturbation technique and for
solving LDBP. For both problems, let 
k, gk, and dk

denote the iterate, gradient, and search direction,
respectively, at iteration k. Then, commencing with
some iterate 
1, we adopt the initial search direction
d1 = g1. At any iteration k ≥ 2, we derive a search
direction via the conjugate gradient strategy

dk = gk +%kd
k−1�

where %k is a suitable deflection multiplier. The next
iterate is then computed as


k+1 =
k +�k

dk

�dk��

where a step-size �k > 0 is obtained via a line search
along the direction dk. We employ an inexact line
search here via a single quadratic fit (Bazaraa et al.
2006). Note that this resulting solution is perturbed,
as necessary, when using the perturbation technique.
Four choices of the deflection multiplier %k are

explored in our experiments in the next section.
Specifically, based on a quadratic approximation of
the objective function, Hestenes and Stiefel (1952)
derived

%HS
k =− �gk�T qk

�dk−1�T qk
�

where qk ≡ gk − gk−1. Assuming exact line searches,
this reduces to Polak and Ribiere’s (1969) deflection
parameter

%PR
k = �gk�T qk

�gk−1�2 �

Furthermore, under the assumption of quadraticity,
this simplifies to Fletcher and Reeves’ (1964) formula
%FR

k =�gk�2/�gk−1�2. Based on a scaled quasi-Newton
method, Sherali and Ulular (1990) alternatively pre-
scribed the deflection parameter %SU

k =−�gk�T �qk+
dk−1�/��qk�T dk−1�. Finally, Sherali and Ulular (1989)
proposed the conjugate (sub)gradient average direc-
tion strategy (ADS) %ADS

k =�gk�/�dk−1�, and demon-
strated promising performance for solving the nondif-
ferentiable Lagrangian dual of LP itself. In addition to
these five conjugate gradient strategies, we consider
the memoryless BFGS method of Shanno (1978) in our
experiments, for which a search direction is prescribed
as

dk = − �pk�T qk

�qk�T qk
gk −

(
2
�pk�T gk

�pk�T qk
− �qk�T gk

�qk�T qk

)
pk

+ �pk�T gk

�qk�T qk
qk�

where pk ≡ 
k − 
k−1. Note that, for the perturba-
tion technique, if qk = 0 (or practically �qk� < � for
some tolerance �> 0�, we use the gradient as the next
search direction, i.e., dk = gk. Also, we implement the
restarting criteria of Powell (1977) for all the foregoing
conjugate gradient direction and memoryless quasi-
Newton strategies.

5. Overall Algorithmic Procedure
There are two sequential phases. In the first phase,
the foregoing schemes that circumvent or obviate the
nondifferentiability of � are utilized for deriving a rel-
atively good starting solution. Then, in the second
phase, we switch to a theoretically convergent NDO
algorithm, which is a composition of a modified vari-
able target value method (VTVM) of Sherali et al.
(2000) and a generalized Polyak-Kelley cutting-plane
strategy (GPKC) as proposed by Lim and Sherali
(2006). In the computational study of Lim and Sherali,
this combination (VTVM-GPKC) revealed the most
promising performance when extensively tested on a
variety of problems.
At the end of the first phase, after some K iter-

ations, say, we estimate the optimal objective value
for LD using a quadratic approximation for the orig-
inal Lagrangian dual function � in (2). This estimate
is used as the initial target value w1 for the second
phase. Suppose that �̂ is a quadratic approximation
for �, given by

�̂�
�= h0+hT 
 + 1
2


TH
� (17)

where H is a negative definite diagonal matrix. Max-
imizing �̂ gives an optimal solution and the optimal
objective value as

	
 =−H−1h and ŵ= �̂� 	
�= h0− 1
2h

TH−1h� (18)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

17
3.

12
5.

76
] 

on
 2

1 
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
59

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Sherali and Lim: Enhancing Lagrangian Dual Optimization for Linear Programs by Obviating Nondifferentiability
8 INFORMS Journal on Computing 19(1), pp. 3–13, © 2007 INFORMS

respectively. Now, suppose that we evaluate ��
i� and
gi ∈ 3��
i� for i= 1 and K, where 3��
� is the subdif-
ferential of � at 
. Using (17), we equate

gK − g1 = $�̂�
K�−$�̂�
1�=H�
K −
1�� (19)

to estimate the assumed diagonal Hessian H . To
maintain strict concavity of �̂, if any diagonal element
of H is nonnegative or indeterminable from (19), we
take it as −1. This gives us the desired estimate for
the diagonal negative definite matrix H . Furthermore,
we estimate h0 and h by equating �K and gK to �̂�
K�
and $�̂�
K�, respectively, according to

�̂�
K�= h0+hT 
K + 1
2 �


K�TH
K = �K and

$�̂�
K�= h+H
K = gK�
(20)

Substituting h0, h, and H as obtained from (19) and
(20) into (18), we compute an initial target value w1 ≡
ŵ for the VTVM-GPKC phase. Note from (20) that
since $�̂�
K�= gK �= 0 while $�̂� 	
�= 0 by definition,
we have that ŵ = �̂� 	
� > �̂�
K� = �K , i.e., ŵ > �K as
desired.
We also experimented with an initial target value

given by w1 ≡ �K + p��K − �1�, where p > 0, based on
a simple further projected estimated improvement of
p× 100% in the objective value.
Denote these two foregoing initial-target-value-

determination methods by QUAD and PROJ, respec-
tively. For the sake of completeness, we describe
the overall two-phase algorithmic procedure below,
including the options of the perturbation technique
(PT) or the barrier-Lagrangian reformulation (BLR) in
Phase I, and the VTVM-GPKC method of Lim and
Sherali (2006) used in Phase II.

Phase I (PT Method)
Step 1. Select an initial iterate 
1 at which � is dif-

ferentiable (use the perturbation routine in §2 if nec-
essary). Pick a termination tolerance �tol = 10−6 for the
norm of the (sub)gradient, and a maximum number
of iterations K �=100, say). Compute x1 and g1. Set
the iteration counter k = 1 and the restart indicator
RESET= 0.
Step 2. If �gk� ≤ �tol or k = K, then proceed to

Phase II with the initial solution 
1 ≡
k and the ini-
tial target value w1 as obtained above via the QUAD
or PROJ methods.
Step 3. If RESET= 0, put dk = gk. Otherwise, com-

pute a search direction based on the employed
(deflected gradient) direction-finding strategy.
Step 4. If k≥ 2, RESET≥ 1, and any of the following

two restarting criteria is violated (see Bazaraa et al.
2006):

(i) ��gk�T gk−1� ≤ 0�2�gk�2
(ii) 0�8�gk�2 ≤ �dk�T gk ≤ 1�2�gk�2�

then put RESET= 04 and return to Step 3. Else, per-
form a single quadratic-fit line search along dk to
find a new iterate 
k+1. If � is nondifferentiable at

k+1, then apply the perturbation routine to revise

k+1. Increment k← k+1 and RESET←RESET+1. If
RESET= n, put RESET= 0.
Step 5. Compute xk and gk, and return to Step 2.

Phase I (BLR Method)
Step 1. Select an initial iterate 
1, a termination

tolerance �tol = 10−6 for the norm of the gradient, a
barrier parameter # > 0, and a maximum number
of iterations K �=100, say). Compute �x1 and $�̄�
1�
according to (15) and (16), respectively. Set the itera-
tion counter k= 1 and the restart indicator RESET= 0.
Step 2. If �$�̄�
k�� ≤ �tol or k = K, then proceed to

Phase II with the initial solution 
1 ≡
k and the ini-
tial target value w1 as obtained above via the QUAD
or PROJ methods.
Step 3. If RESET = 0, put dk = $�̄�
k�. Otherwise,

compute a search direction based on the employed
(deflected gradient) direction-finding strategy.
Step 4. If k≥ 2, RESET≥ 1, and any of the following

two restarting criteria is violated (see Bazaraa et al.
2006):

(i) ��$�̄�
k��T $�̄�
k−1�� ≤ 0�2�$�̄�
k��2
(ii) 0�8�$�̄�
k��2 ≤ �dk�T $�̄�
k�≤ 1�2�$�̄�
k��2�

then put RESET = 0 and return to Step 3. Else, per-
form a single quadratic-fit line search along dk to find
a new iterate 
k+1. Increment k← k+1 and RESET←
RESET+ 1. If RESET= n, put RESET= 0.
Step 5. Compute �xk and $�̄�
k� via (15) and (16),

and return to Step 2.

Phase II (VTVM-GPKC Method)
Initialization Step. Select �tol = 10−6, �̃ > 0, kmax, 4 ∈

�0�1�, 5 ∈ �0�1/3�, r , r̄ , �6 , �7, and 8 ∈ �0�1�. (Rec-
ommended values for these parameters are �̃ = 0�1,
kmax = 1�000, 4 = 0�8, 5 = 0�15, r = 0�1, r̄ = 1�1, �6 =
75, �7 = 20, and 8 = 0�75.) Determine �1 ≡ ��
1� and
g1. Set the incumbent vectors �
 = 
1, ḡ = g1, and
the incumbent objective value z1 = �1. If �g1� ≤ �tol,
terminate the algorithm. Initialize l = 1, k = 1, 6 = 0,
7 = 0, : = 0, and the reset indicator RESET = 1. Set
�1 = 5�w1− �1�.
Step 1. Call Subroutine GPKC (described below) to

obtain the next iterate 
k+1. Increment 6 ← 6 + 1 and
k← k+1. Compute �k ≡ ��
k� and gk. Put RESET= 0.
Step 2. If �k > zk−1, set :←:+�k−zk−1, zk = �k, �
 =


k, ḡ = gk, 7 = 0, and proceed to Step 3. Otherwise,
put zk = zk−1, increment 7 ← 7+ 1, and go to Step 4.
Step 3. If k > kmax or �gk� ≤ �tol, terminate the algo-

rithm. If zk ≥wl−�l, go to Step 5. If 6 ≥ �6 , go to Step 6.
Else, return to Step 1.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

17
3.

12
5.

76
] 

on
 2

1 
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
59

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Sherali and Lim: Enhancing Lagrangian Dual Optimization for Linear Programs by Obviating Nondifferentiability
INFORMS Journal on Computing 19(1), pp. 3–13, © 2007 INFORMS 9

Step 4. If k > kmax, terminate the algorithm. If 7 ≥ �7
or 6 ≥ �6 , go to Step 6. Else, return to Step 1.
Step 5. Compute wl+1 = zk + max��l +8:� r �zk��,

and �l+1 = max��wl+1− zk�5� �̃�. If k ≤ 500, update
8 ← 28; otherwise, set 8 = 0�75. If r �zk� > �l + 8:,
update r ← r/r̄ . Put 6 = 0, := 0, and increment l ←
l+ 1. Return to Step 1.
Step 6. Compute wl+1 = �zk + �l + wl�/2, and

�l+1 = max��wl+1− zk�5� �̃�. If k ≤ 500, update 8 ←
max�8/2�0�75�; otherwise, set 8= 0�75. If 7 ≥ �7, then
set �7 ← min� �7+ 10�50�. If wl − wl+1 ≤ 0�1, then set
4←max�4/2�10−6�. Put 7 = 0, 6 = 0, := 0, and l←
l+1. Reset 
k = �
, �k = zk, gk = ḡ, and put RESET= 1.
Return to Step 1.

Subroutine GPKC
Step i. Let ; = k − k̄, where k̄ is the most recent

iteration at which the variable target value algorithm
was reset (i.e. RESET = 1�, and accordingly, let ;′′ =
min�;�4�. Compute �̂∗ = �k +4�wl − �k�.
Step ii. Set <1 = ��̂∗ − �k�/�gk�2, <2 = 0, and 
k+1 =


k + <1g
k. If RESET = 1, put k̄ = k and exit the sub-

routine.
Step iii. Compute =1 = �̂∗ − �k + �
k�T gk and =2 =

�̂∗ − �k−1 + �
k−1�T gk−1. If =2 ≤ �
k+1�T gk−1, go to
Step vi.
Step iv. Put <2 = �=2 − �
k�T gk−1�/�gk−1�2, and let


k+1 =
k +<2g
k−1. If <2 > 0 and �
k+1�T gk ≥ =1, go to

Step vi.
Step v. Compute <0 = �gk�2�gk−1�2− ��gk−1�T gk�2. If

<0 < 10−6, put 
k+1 = 
k + <1g
k and exit the subrou-

tine. Otherwise, compute

<1 = ��gk−1�2�=1− �
k�T gk�− ��gk−1�T gk�

· �=2− �
k�T gk−1��/<0� and

<2 = ��gk�2�=2− �
k�T gk−1�− ��gk−1�T gk�

· �=1− �
k�T gk��/<0�

Put 
k+1 =
k +<1g
k +<2g

k−1 and proceed to Step vi.
Step vi. If ;′′ = 1, exit the subroutine. Otherwise,

put i= 2 and proceed to Step vii.
Step vii. Compute =3 = �̂∗ − �k−i + �
k−i�T gk−i and

let <3 = =3 − �
k+1�T gk−i. If <3 ≤ 0, go to Step ix. Oth-
erwise, proceed to Step viii.
Step viii. Put �
k� i = 
k+1 + �<3/�gk−i�2�gk−i. If

��
k� i�T gk ≥ =1 and ��
k� i�T gk−1 ≥ =2, put 
k+1 = �
k� i.
Step ix. If i = ;′′, exit the subroutine. Otherwise,

increment i← i+ 1 and return to Step vii.
Remark 2. Often, in the context of solving LP,

a (near-) optimal primal solution is also desirable
besides obtaining an optimal dual solution along with
the optimal objective value. Commencing with �xK as
obtained after performing some K iterations using the
BLR option in Phase I, we could employ an ergodic-
primal-recovery strategy while executing the VTVM-
GPKC algorithm in Phase II to derive such a primal

solution for LP. (See Shor 1985, Sherali and Choi
1996, and Larsson et al. 1999, for several ergodic-
primal-recovery strategies.) We could also adopt a
similar primal-recovery scheme in concert with the PT
option in Phase I. However, unlike the BLR approach,
because the PT option lacks any theoretical conver-
gence properties, we confine our attention to the BLR
option for this particular investigation. If a more accu-
rate primal solution is desired at the end of this
overall two-phase process, the current primal solution
can be used as a warm start for an interior-point or
simplex-based algorithm (after applying a purification
scheme to obtain a vertex solution in the latter case as
described in Bazaraa et al. 2005, for example). In the
next section, we provide some computational results
pertaining to such a primal-recovery process in com-
bination with the proposed two-phase dual optimiza-
tion scheme that employs the BLR option in Phase I.

6. Computational Results
The proposed algorithmic procedures were coded in
C++ and implemented for solving two types of test
problems: general linear programs and transportation
problems. Our choice of the latter class was motivated
by the fact that, as shown by Shor (1985), these prob-
lems are particularly challenging for nondifferentiable
optimization methods. As described in Lim (2004), 20
general linear-programming problems, LP1–LP20, for-
mulated as LP in (1) using l = 0 and u = e, and 20
transportation problems, TR1–TR20, were generated,
having a variety of sizes and degrees of degeneracy.
We did not exploit the structure of the constraints
in the transportation problem when formulating the
corresponding Lagrangian dual problem, i.e., we sim-
ply dualized both the demand and supply balance
constraints in order to test the proposed procedures.
Particular specifications for these test problems are
summarized in Table 1, where the two percentage
values given in parentheses respectively indicate the
degrees of primal and dual degeneracy induced at
optimality. We also display the CPU times consumed
by the commercial linear-programming solver, CPLEX
8.1, to solve this test bed of problems using the
dual simplex option. (This option was used to pro-
vide a more suitable comparison against our dual-
based procedure, as also when both methods were
terminated with the same near-optimality tolerance
as described in the sequel.) All runs were made on a
PentiumIII/667 MHz computer and 
 = 0 was used
as the initial solution for each algorithm and problem
combination. Also, based on our preliminary tests,
we used p = 0�6 for the target-value-initialization
method PROJ. To compare the quality of solutions
produced by the different methods, we report a per-
centage optimality ratio (POR) that measures the rel-
ative optimality gap of the final solution produced

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

17
3.

12
5.

76
] 

on
 2

1 
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
59

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Sherali and Lim: Enhancing Lagrangian Dual Optimization for Linear Programs by Obviating Nondifferentiability
10 INFORMS Journal on Computing 19(1), pp. 3–13, © 2007 INFORMS

Table 1 Summary of Test Problems

CPLEX solutionProblem type
(% primal, dual
degeneracy) Prob Row/column Optimal value CPU time (sec)

Linear program LP1 500/1,000 −1�703�83 44�89
(5%, 5%) LP2 1,000/3,000 −4�724�01 1�226�86

LP3 1,000/5,000 −1�222�18 1�479�31
LP4 2,000/3,000 3�078�64 9�466�68
LP5 2,000/5,000 3�105�01 12�986�7

Linear program LP6 500/1,000 −623�999 48�75
(5%, 25%) LP7 1,000/3,000 −2�748�89 1�154�44

LP8 1,000/5,000 −5�306�73 1�708�88
LP9 2,000/3,000 −4�899�56 10�375�8
LP10 2,000/5,000 −2�492�58 23�079�6

Linear program LP11 500/1,000 −1�672�58 43�78
(25%, 5%) LP12 1,000/3,000 −271�81 966�13

LP13 1,000/5,000 1�375�16 1�343�07
LP14 2,000/3,000 −2�107�96 9�015�16
LP15 2,000/5,000 −3�456�14 14�872�2

Linear program LP16 500/1,000 −338�54 45�62
(25%, 25%) LP17 1,000/3,000 1�099�29 1�173�57

LP18 1,000/5,000 −11�369�5 1�553�11
LP19 2,000/3,000 1�121�03 6�378�62
LP20 2,000/5,000 −5�871�56 43�708�8

Transportation TR1 800/160,000 2�215�08 128�56
(5%, 5%) TR2 1,000/250,000 1�499�65 272�27

TR3 1,200/360,000 −895�093 567�47
TR4 1,400/490,000 305�108 881�82
TR5 1,600/640,000 −204�755 1�335�25

Transportation TR6 800/160,000 681�531 125�04
(5%, 25%) TR7 1,000/250,000 −571�108 221�71

TR8 1,200/360,000 −1�779�95 547�84
TR9 1,400/490,000 −1�278�88 627�79
TR10 1,600/640,000 1�614�92 1�126�82

Transportation TR11 800/160,000 −601�262 79�58
(25%, 5%) TR12 1,000/250,000 43�413 168�35

TR13 1,200/360,000 −2�308�51 349�38
TR14 1,400/490,000 1�440�23 573�34
TR15 1,600/640,000 −1�163�07 986�80

Transportation TR16 800/160,000 553�837 85�84
(25%, 25%) TR17 1,000/250,000 −1�361�69 221�17

TR18 1,200/360,000 354�879 296�13
TR19 1,400/490,000 −2�139 402�69
TR20 1,600/640,000 2�144�66 600�79

by each employed algorithm, defined as {[optimal
objective value − best objective value produced by
the employed algorithm]÷ [optimal objective value−
initial objective value]}× 100%.
Table 2 presents the average POR values obtained

after executing Phase I for the PT and BLR proce-

Table 2 Average POR Values After Phase I (%)

Barrier-Lagrangian dual
Perturbation technique (PT) reformulation (BLR)

Prob HS PR FR SU ADS BFGS HS PR FR SU ADS BFGS

LP 1.19 2.65 1.85 1.15 2.62 4.10 1.19 2.55 1.79 1.17 2.50 4.11
TR 0.35 0.36 0.38 0.32 0.29 0.61 0.32 0.35 0.39 0.29 0.29 0.60

Overall 0.77 1.50 1.12 0.74 1.45 2.36 0.76 1.45 1.09 0.73 1.40 2.35

dures in conjunction with the six deflection strategies
described in §4, using an iteration limit of K = 100
(see Lim 2004 for detailed results). For both PT and
BLR, the rank-order of the overall performance was
SU, HS, FR, ADS, PR, and BFGS from best to worst.
The PT and BLR techniques respectively yielded over-
all average POR values of 0.74% and 0.73% when
implemented in concert with the SU strategy. More-
over, the BLR technique revealed the best respective
POR values of 1.17% and 0.29% when used in con-
junction with SU for both the classes of LP and TR
problems. Also, SU displayed the best POR value of
1.15% for LP problems when implemented with PT.
However, with the PT procedure, the ADS strategy
yielded the least POR value of 0.29% for TR problems,
while SU was second best, producing a 0.03% greater
POR value than ADS. Considering all the test cases
together, the BLR technique slightly, but consistently,
outperformed PT in terms of the overall average POR
values.
Table 3 displays the average POR values produced

by the implemented procedures at the end of Phase
II for the two target-value-initialization methods,
denoted by QUAD and PROJ as discussed in §5, as
well as by using the VTVM-GPKC procedure by itself
(likewise initialized at 
 = 0), for each class of test
problems. Note that the Phase II runs of VTVM-GPKC
were executed with an iteration limit kmax = 1�000 (fol-
lowing the K = 100 iterations of Phase I), while for
the stand-alone VTVM-GPKC runs, we used a larger
iteration limit kmax = 2�000. Despite this, the proposed
two-phase procedures always revealed smaller overall
average POR values. Among the implemented pro-
cedures, the PT-BFGS-PROJ combination for Phase I
yielded the best overall average POR value of 0.028%
at the end of Phase II, which is 12.5% of that pro-
duced by the stand-alone VTVM-GPKC method. The
combination BLR-BFGS was the second best, with an
overall average POR value of 0.03%.
Although SU was the best strategy for the Phase I

runs, it consistently revealed the worst overall per-
formance over the two-phase runs. On the other
hand, although BFGS and PR displayed relatively
worse performances in Phase I, they yielded the best
and the second-best overall POR values among all
combinations of Phase I techniques and target-value-
initialization methods over the two-phase runs. This

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

17
3.

12
5.

76
] 

on
 2

1 
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
59

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Sherali and Lim: Enhancing Lagrangian Dual Optimization for Linear Programs by Obviating Nondifferentiability
INFORMS Journal on Computing 19(1), pp. 3–13, © 2007 INFORMS 11

Table 3 Average POR Values After Phase II (%)

Strategy in Phase I
Target value Stand-alone

Average for Phase I initialization method HS PR FR SU ADS BFGS VTVM-GPKC

LP PT QUAD 0.100 0.066 0.075 0.131 0.070 0.059
PROJ 0.100 0.063 0.075 0.128 0.065 0.053

BLR QUAD 0.110 0.067 0.076 0.114 0.074 0.055
PROJ 0.110 0.068 0.068 0.131 0.070 0.056

0.155

TR PT QUAD 0.010 0.006 0.005 0.005 0.008 0.005
PROJ 0.010 0.006 0.005 0.006 0.006 0.002

BLR QUAD 0.010 0.005 0.005 0.007 0.008 0.004
PROJ 0.010 0.005 0.004 0.006 0.008 0.004

0.048

Overall PT QUAD 0.050 0.036 0.040 0.068 0.039 0.032
PROJ 0.060 0.035 0.040 0.067 0.035 0.028

BLR QUAD 0.060 0.036 0.040 0.060 0.041 0.030
PROJ 0.060 0.036 0.036 0.069 0.039 0.030

0.102

can be explained by the computational characteristic
of the Phase II procedure in response to the qual-
ity and nondifferentiability of the warm-start solution
it receives from Phase I. One might generally pre-
sume that the performance of VTVM-GPKC can be
improved by providing a better initial solution and
initial target value via Phase I, but if the initial solu-
tion is close to nondifferentiability, the Phase II proce-
dure experiences difficulties in attaining ascents and
in properly adjusting the target values. To verify this,
define a degree of nondifferentiability (R) at 
K as

R≡
∑n

j=1 �cj − �
K�TAj �
n

�

Recall that if �cj − �
K�TAj � = 0 (or is small) for any
j = 1� � � � �n, � is (near-) nondifferentiable at 
K . The
average R values computed for each combination of
strategy and problem type are in Table 4. The over-
all average R when SU was employed are relatively
small (5.10 and 5.08 for PT and BLR, respectively), as
compared with the R values for the other strategies,
particularly for the more competitive methods PR and
BFGS. Therefore, we conjecture that the performance
of Phase II was affected by the degree of nondifferen-
tiability as well as by the quality of the initial solution.
Next, to compare CPU times meaningfully, we mea-

sured run times until the implemented procedures

Table 4 Average Degrees of Nondifferentiability �R� at �K

Strategy in Phase I

Average for Phase I HS PR FR SU ADS BFGS

LP PT 5.91 8.95 7.34 6.16 8.80 9.93
BLR 5.84 8.76 7.13 6.21 8.58 9.93

TR PT 4.13 4.13 4.20 4.04 3.98 4.77
BLR 4.10 4.10 4.24 3.95 3.98 4.75

Overall PT 5.02 6.54 5.77 5.10 6.39 7.35
BLR 4.97 6.43 5.68 5.08 6.28 7.34

(including CPLEX) produced objective values, called
near-optimal values, corresponding to a POR value of
1% or less. (All procedures attained near-optimal val-
ues within the prescribed number of iterations.) The
resulting average RCP (relative CPU time percentage)
values, defined as {[CPU time of the implemented
procedure to attain a near-optimal value]÷ [CPU time
of CPLEX 8.1 to attain a near-optimal value using the
dual simplex option]}×100%, are in Table 5. The com-
position of Phase I via PT-ADS and Phase II initialized
by the QUAD method yielded the best overall aver-
age RCP value of 3.19%. This combination actually
attained near-optimal values by the end of Phase I
itself for 26 instances (6 out of 20 for LP and 20 out
of 20 for TR). This procedure also yielded the small-
est average RCP value (2.85%) for the class of TR
problems. Furthermore, note that we attained near-
optimal values for all TR instances during Phase I
itself via PT. (This is the reason that, for the class of
TR problems, the average RCP values for QUAD and
PROJ in concert with PT were the same.) The best
average RCP value of 3.13% for LP was obtained with
PT-FR-QUAD.
The stand-alone VTVM-GPKC procedure yielded

no advantage over CPLEX 8.1 when solving our test
bed of transportation problems, as evident from the
average RCP value of 132.34%. Hence, the proposed
two-phase procedures can effectively provide near-
optimal values with a significant reduction in effort.
We conclude that the PT-BFGS-PROJ combination

yielded the best POR value (0.028%), while the com-
position of PT-ADS-QUAD produced the best RCP
value (3.19%) among the implemented procedures.
For benchmarking, we also compared the POR and
the RCP values obtained for the PT-BFGS-PROJ com-
bination with those produced by the heuristic subgra-
dient method of Held et al. (1974), which is popular.
In our runs for the Held et al. procedure, we exper-
imented with two upper bounds on �∗, namely, �∗ +

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

17
3.

12
5.

76
] 

on
 2

1 
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
59

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Sherali and Lim: Enhancing Lagrangian Dual Optimization for Linear Programs by Obviating Nondifferentiability
12 INFORMS Journal on Computing 19(1), pp. 3–13, © 2007 INFORMS

Table 5 Average RCP Values (%)

Strategy in Phase I
Target value Stand-alone

Average for Phase I initialization method HS PR FR SU ADS BFGS VTVM-GPKC

LP PT QUAD 3�28 3�48 3�13 3�14 3�53 4�32
PROJ 3�89 4�13 3�71 3�53 3�95 4�72

BLR QUAD 3�91 3�65 3�79 3�39 3�85 4�55
PROJ 4�43 4�26 4�12 3�94 4�43 5�13

5�54

TR PT QUAD 3�46 3�58 3�83 4�05 2�85 6�40
PROJ 3�46 3�58 3�83 4�05 2�85 6�40

BLR QUAD 10�66 10�36 13�42 10�93 7�85 13�03
PROJ 10�90 10�36 13�42 10�93 7�85 13�03

132�34

Overall PT QUAD 3�37 3�53 3�48 3�60 3�19 5�36
PROJ 3�68 3�86 3�77 3�79 3�40 5�56

BLR QUAD 7�29 7�01 8�60 7�16 5�85 8�79
PROJ 7�67 7�32 8�79 7�45 6�27 9�56

68�94

��∗ − �1� × 10%, and �∗ + ��∗ − �1� × 20%, which are
denoted by HWC10 and HWC20, respectively. Fol-
lowing a typical strategy, the step-length parameter
for HWC10 and HWC20 was initialized as 2, and
was halved at iterations 800, 1,200, 1,400, 1,500, and
1,550. Then, it was halved for every 25 iterations until
kmax = 2�000. Table 6 displays the average POR and
RCP values for these algorithms along with the PT-
BFGS-PROJ composition that yielded the best solu-
tion quality over the two-phase runs. Note that both
HWC10 and HWC20 could not attain near-optimal
values for most TR problems (18 and 20 instances,
respectively) and for four LP instances (LP4, 9, 14,
and 19). To penalize these cases, we ascribed a corre-
sponding RCP value of 100%. Despite assuming prior
knowledge of a tight upper bound based on the opti-
mal value, HWC10 yielded a 11,436% larger overall
average POR value than the PT-BFGS-PROJ combi-
nation, while its RCP value was 1,167% larger than
that of PT-BFGS-PROJ. HWC20 displayed far worse
performance. Thus, it appears that the two-phase pro-
cedure PT-BFGS-PROJ offers a much more effective
methodology than the popular Held et al. scheme.
Finally, as commented in Remark 2 of §3, we exper-

imented with the primal recovery schemes of Shor
(1985) and Larsson et al. (1999) for the pure subgra-
dient strategy and Sherali and Choi (1996) for the
deflected subgradient strategy. (Denote these methods
by SHOR, LPS, and SC, respectively.) For the sake of

Table 6 Benchmarking with HWC

Procedure LP TR Overall

POR values PT-BFGS-PROJ 0�053 0�002 0�028
HWC10 4�575 1�784 3�179
HWC20 9�234 3�016 6�125

RCP values PT-BFGS-PROJ 4�718 6�402 5�560
HWC10 30�297 99�465 64�881
HWC20 33�694 100 66�847

simplicity, we used optimal values instead of target
values when computing step lengths for SHOR and
SC. Moreover, the parameter values for LPS were set
as in their numerical experiments, and the deflection
parameter for SC was set to 1. Each procedure was
run for 2,000 iterations with and without the BLR
phase, to see the effect of providing a good starting
point for the tested ergodic-primal-recovery schemes.
Table 7 displays the average degree of primal infeasibil-
ity (?) attained at the final resulting point �x (which
effectively measures the near-optimality of this solu-
tion), defined as ? ≡ ∑m

i=1 �Ai �x − bi�/m, where Ai is
the ith row of A. For the class of LP problems, SC
in conjunction with BLR yielded the smallest average
? value of 0.47, while SHOR revealed the best aver-
age value of 0.83 for the TR problems. Overall, SHOR,
implemented along with the BLR phase, produced
the smallest average ? value of 0.68. Note that LPS,
SHOR, and SC in conjunction with the BLR phase
yielded overall average ? values of 2.18, 0.68, and
0.90, respectively, which are only 20.7%, 20.5%, and
5.8% of the corresponding values produced by the
same methods when not employing the BLR phase.
Hence, we conclude that the BLR phase also signifi-
cantly facilitates more rapid convergence of ergodic-
primal-recovery schemes.
In conclusion, the proposed techniques can be

highly useful in the context of Lagrangian relaxation

Table 7 Average Degree of Primal Infeasibility

Recovery scheme BLR LP TR Overall

LPS Without BLR 12�43 8�61 10�52
With BLR 0�77 3�58 2�18

SHOR Without BLR 4�30 2�34 3�32
With BLR 0�53 0�83 0�68

SC Without BLR 2�75 28�40 15�58
With BLR 0�47 1�33 0�90

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

17
3.

12
5.

76
] 

on
 2

1 
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
59

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Sherali and Lim: Enhancing Lagrangian Dual Optimization for Linear Programs by Obviating Nondifferentiability
INFORMS Journal on Computing 19(1), pp. 3–13, © 2007 INFORMS 13

approaches. As such, it might be potentially ben-
eficial to employ them in LP-based branch-and-cut
algorithms for discrete problems by using suitable
Lagrangian dual formulations for deriving bounds
and generating cuts, in lieu of solving the underlying
LPs via simplex or interior-point algorithms. Further-
more, VTVM-GPKC performs well when provided
with a good initial point, so might be suitable for
re-optimization in branch-and-cut methods or sensi-
tivity analyses. We propose these investigations for
future research.

Acknowledgments
This research has been supported by the National Science
Foundation under Grant DMI-0094462.

References
Adams, W. P., H. D. Sherali. 1993. Mixed-integer bilinear-program-

ming problems. Math. Programming 59 279–305.
Barahona, F., R. Anbil. 2000. The volume algorithm: Producing pri-

mal solutions with a subgradient method. Math. Programming
87 385–399.

Bazaraa, M. S., J. J. Jarvis, H. D. Sherali. 2005. Linear Programming
and Network Flows, 3rd ed. Wiley, New York.

Bazaraa, M. S., H. D. Sherali, C. M. Shetty. 2006. Nonlinear Program-
ming: Theory and Algorithms, 3rd ed. Wiley, New York.

Camerini, P. M., L. Fratta, F. Maffioli. 1975. On improving relaxation
methods by modified gradient techniques. Math. Programming
Stud. 3 26–34.

Fisher, M. L. 1981. The Lagrangian relaxation method for solving
integer programming problems. Management Sci. 27 1–18.

Fletcher, R., C. M. Reeves. 1964. Function minimization by conju-
gate gradients. Comput. J. 7 149–154.

Held, M., P. Wolfe, H. Crowder. 1974. Validation of subgradient
optimization. Math. Programming 6 62–88.

Hestenes, M. R., E. Stiefel. 1952. Methods of conjugate gradients for
solving linear systems. J. Res. National Bureau Standards, Section
B 48 409–436.

Larsson, T., M. Patriksson, A. B. Stromberg. 1999. Ergodic, primal
convergence in dual subgradient schemes for convex program-
ming. Math. Programming 86 283–312.

Lemarechal, C. 1977. Bundle methods in nonsmooth optimization.
C. Lemarechal, R. Mifflin, eds. Proc. IIASA Workshop, Laxenburg,
Austria, Vol 3, 79–109.

Lim, C. 2004. Nondifferentiable optimization of Lagrangian dual
formulations for linear programs with recovery of primal solu-
tions. Ph.D. dissertation, Grado Department of Industrial and

Systems Engineering, Virginia Polytechnic Institute and State
University, Blacksburg, VA.

Lim, C., H. D. Sherali. 2006. Convergence and computational anal-
yses for some variable target value and subgradient deflection
methods. Comput. Optim. Appl. 34 409–428.

Makela, M. M. 2002. Survey of bundle methods for nonsmooth
optimization. Optim. Methods Software 17 1–29.

Mifflin, R. 1977. An algorithm for constrained optimization with
semismooth functions. Math. Oper. Res. 2 191–207.

Nesterov, Y. 2005. Smooth minimization of non-smooth functions.
Math. Programming 103 127–152.

Polak, E., G. Ribiere. 1969. Note on the convergence of methods
of conjugate directions. Rev. Française d’Informatique Recherche
Operationelle 3 35–43.

Polyak, B. T. 1967. A general method of solving extremum prob-
lems. Soviet Math. 8 593–597.

Polyak, B. T. 1969. Minimization of unsmooth functionals. USSR
Comput. Math. Math. Phys. 9 14–29.

Powell, M. J. D. 1977. Restart procedures for the conjugate gradient
method. Math. Programming 12 241–254.

Shanno, D. F. 1978. Conjugate gradient methods with inexact
searches. Math. Oper. Res. 3 244–256.

Sherali, H. D., G. Choi. 1996. Recovery of primal solutions when
using subgradient optimization methods to solve Lagrangian
duals of linear programs. Oper. Res. Lett. 19 105–113.

Sherali, H. D., D. C. Myers. 1988. Dual formulations and subgradi-
ent optimization strategies for linear programming relaxations
of mixed-integer programs. Discrete Appl. Math. 20 51–68.

Sherali, H. D., C. H. Tuncbilek. 1997. New reformulation lineariza-
tion/convexification relaxations for univariate and multivari-
ate polynomial programming problems. Oper. Res. Lett. 21 1–9.

Sherali, H. D., O. Ulular. 1989. A primal-dual conjugate subgradient
algorithm for specially structured linear and convex program-
ming problems. Appl. Math. Optim. 20 193–221.

Sherali, H. D., O. Ulular. 1990. Conjugate gradient methods using
quasi-Newton updates with inexact line searches. J. Math. Anal.
Appl. 150 359–377.

Sherali, H. D., G. Choi, Z. Ansari. 2001. Limited memory space dila-
tion and reduction algorithms. Comput. Optim. Appl. 19 55–77.

Sherali, H. D., G. Choi, C. H. Tuncbilek. 2000. A variable tar-
get value method for nondifferentiable optimization. Oper. Res.
Lett. 26 1–8.

Shor, N. Z. 1970a. Utilization of the operation of space dilatation in
the minimization of convex functions. Kibernetika 6 6–12.

Shor, N. Z. 1970b. Convergence rate of the gradient descent method
with dilatation of the space. Kibernetika 6 80–85.

Shor, N. Z. 1985. Minimization Methods for Non-Differentiable Func-
tions. Springer-Verlag, New York.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

17
3.

12
5.

76
] 

on
 2

1 
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
59

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 




