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We discuss the problem of estimating probabilities of rare events in static simulation models using the
recently proposed cross-entropy method, which is a type of importance-sampling technique in which the

new distributions are successively calculated by minimizing the cross-entropy with respect to the ideal (but
unattainable) zero-variance distribution. In our approach, by working on a functional space we are able to
provide an efficient procedure without assuming any specific family of distributions. We then describe an
implementable algorithm that incorporates the ideas described in the paper. Some convergence properties of
the proposed method are established, and numerical experiments are presented to illustrate the efficacy of the
algorithm.
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1. Introduction
A common problem in many areas of operations
research is that of evaluating the expected value of a
random quantity such as

� �= Ɛf �� �Z��	 (1)

where Z = �Z1	 
 
 
 	Zn� ∈ �n is a vector with joint
probability density function (pdf) f �z�, and � is an
arbitrary real-valued function in �n. Many techniques
have been developed over the years to provide esti-
mates of � that are “better” than basic Monte Carlo, in
the sense that the variance of the resulting estimates
is reduced. See, for instance, Fishman (1997) and Law
and Kelton (2000) for general discussions.
One method that has proven useful in many set-

tings is the so-called importance-sampling (IS) tech-
nique. This well-known technique consists of drawing
independent and identically distributed (i.i.d.) sam-
ples Z1	 
 
 
 	ZN from an appropriately chosen pdf g�·�,
and estimating � by

��N �g�=
1
N

N∑
j=1

� �Zj�
f �Zj�

g�Zj�

 (2)

The pdf g�·� must dominate � �·�f �·� in the absolutely
continuous sense. That is, supp�� �·�f �·��⊂ supp�g�·��,
where “supp” denotes the support of the correspond-
ing function, i.e., the set of points where the function
is not equal to zero. The choice of g (henceforth called
an IS distribution) is critical for the effectiveness of this

approach, and in fact much of the research on impor-
tance sampling focuses on determining appropriate IS
distributions. We remark that our assumption that the
underlying distributions have pdfs is made only to
simplify the exposition. The discussion in the paper
can be extended to more general distributions. For
example, for discrete distributions, the pdf should be
understood as a probability mass function rather than
a density in the strict sense. Of course, in that case
integrals should be interpreted as summations.
A common approach encountered in the literature

is to restrict the choice of IS distributions to some
parametric family, say, �g�·	 ��� � ∈ ��. Then, one
attempts to find the “best” (in some sense) param-
eter �∗. For example, �∗ can be the parameter that
minimizes the variance of the estimator ��N �g�·	 ���; see
Rubinstein and Shapiro (1993) for a discussion and
Vázquez-Abad and Dufresne (1998) for an applica-
tion. Another example is that of Oh and Berger (1992),
who assume a certain form for the “optimal” parame-
ter and develop an adaptive procedure to estimate it.
Recently, Rubinstein (2002) introduced a method

to calculate the parameter for the IS distribution
in the context of rare events, which he called the
cross-entropy (CE) method. The idea is to calculate
the parameter �∗ such that g�·	 �∗� minimizes the
Kullback-Leibler cross entropy with respect to the zero-
variance pdf g∗ (defined in Section 2). In general, the
calculation of �∗ requires solving a certain stochas-
tic optimization problem, but in certain cases an
explicit formula can be derived for �∗. One example
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is when the underlying random vector has indepen-
dent components and the family of distributions is
the so-called natural exponential family, parameter-
ized by the mean (de Boer et al. 2005, Homem-de-
Mello and Rubinstein 2002).
In this paper we propose a more general view of

the cross-entropy method. In our setting, we do not
restrict the choice of IS distributions to some para-
metric family; our only constraint is that g have a
product form. The rationale for this restriction is that
sampling from an arbitrary multivariate distribution
is known to be a difficult task, so by imposing a
product form on g we ensure that the components
of the vector Z can be sampled independently, which
then reduces the sampling problem to a unidimen-
sional one. The cross-entropy optimization problem
is solved on a functional space, and an explicit solu-
tion (henceforth called CE-optimal distribution) is pro-
vided. As we shall see later, the results obtained
with such an approach generalize ones found in the
literature.
We also study the relationship between the pdf

given by the cross-entropy problem and the product-
form pdf that minimizes the variance of the estimator
��N �g�. Our discussion suggests that the cross-entropy
problem can be viewed as a slight variation of
variance minimization, with the advantage that the
underlying optimization problem can be solved in
closed form. We then discuss an adaptive scheme to
estimate the CE-optimal distribution. A basic version
of the procedure—for parametric distributions—was
proposed by Rubinstein (1999); here, we propose an
algorithm that allows more general distributions and
incorporates automatic adjustment of the parame-
ters of the algorithm. A detailed comparison between
our approach and the standard CE method is pro-
vided in Section 3.2. Some aspects related to con-
vergence of the proposed algorithm are discussed in
Section 3.3, where we establish that the adaptive pro-
cedure finishes after finitely many iterations. The esti-
mate obtained can then be refined by increasing the
sample size if necessary.
Finally, we present some numerical results in Sec-

tion 4 for a flow-line production system, where the
goal is to estimate the probability that a certain
sequence of jobs finishes processing after a certain
time. This is a difficult problem for which no gen-
eral analytical solution is available. The results sug-
gest that the CE method works very well, providing
accurate estimates for probabilities as low as 10−56 in
reasonable time. These results are checked through
the derivation of lower and upper bounds, or even
exact values in some cases. We also provide a numer-
ical comparison with the hazard-rate twisting method
described in Huang and Shahabuddin (2004) and
Juneja and Shahabuddin (2002).

In summary, the main contributions of this paper
are the following. (i) We provide a general frame-
work for the cross-entropy method, which allows
for derivation of closed-form solutions to the CE-
optimization problem for arbitrary distributions. This
generalizes prior work and consequently opens the
way for use of the CE method with other types
of distributions. (ii) We propose and test a modi-
fied version of the CE algorithm that incorporates
the generalizations mentioned in (i) and provably fin-
ishes after finitely many iterations. We also illustrate
the numerical behavior of the method on a diffi-
cult 50-dimensional problem with large variability.
(iii) Along the way, we provide a new result on con-
vergence of quantile estimates when quantiles are not
unique.

1.1. Literature Review
The basic ideas of importance-sampling were out-
lined by Kahn and Marshall (1953). Glynn and
Iglehart (1989) extended these ideas to stochastic pro-
cesses. Since then, a considerable amount of research
has been devoted to the study of IS techniques in
simulation, in particular for rare-event simulation;
see Heidelberger (1995) and Shahabuddin (1995) for
reviews. Most of the work in this area, however,
deals with dynamic models, in the sense that � in (1)
is calculated either from some steady-state perfor-
mance measure or from some stopping time (e.g., the
probability that a buffer exceeds a certain capacity).
Among other techniques that have been proposed
for dynamic problems are the splitting and RESTART
methods—see, for instance, Glasserman et al. (1999)
and Villén-Altamirano and Villén-Altamirano (1999).
Applications of the CE method to dynamic systems
are discussed in de Boer (2000) and Kroese and
Rubinstein (2004).
In contrast, our model is essentially static, i.e., we

want to estimate (1) for a given deterministic func-
tion � of a random vector Z of known distribu-
tion. Such a problem is encountered more often in
the statistics literature, and in fact IS techniques have
been studied in that context as well; some close ref-
erences to our work are Oh and Berger (1992, 1993)
and Zhang (1996). Huang and Shahabuddin (2004)
discuss a general approach based on the hazard-rate
twisting method of Juneja and Shahabuddin (2002)
to estimate rare-event probabilities in static problems.
That method, which is also used by Juneja et al. (2007)
to estimate rare-event probabilities in stochastic PERT
networks, is discussed in more detail in Section 4.
Static problems have also gained importance in the
simulation community because of the applications
of these models in finance (see, e.g., Glasserman
2004). In addition, static rare-event problems have an
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interesting connection with combinatorial optimiza-
tion (de Boer et al. 2005). We must mention that large-
deviations techniques are often employed to estimate
rare-event probabilities (e.g., Bucklew 1990, Dembo
and Zeitouni 1998); however, these techniques are
usually more applicable when the underlying quanti-
ties involve a sum of random variables, which is not
necessarily the case of our setting as we deal with
general functions � .

2. Determining a Good IS
Distribution

2.1. The Cross-Entropy Approach
It is well known that if � �·�≥ 0 in (1) then the optimal
choice for the IS distribution is given by

g∗�z�= � �z�f �z�

�
� (3)

this yields a zero-variance estimator, i.e., Var� ��N �g
∗��=

0 in (2). Of course, we cannot use g∗ since it depends
on the quantity � we want to estimate. However,
even if we could somehow compute g∗, it would be
difficult to generate samples from it, since g∗ is a
joint pdf. One way to circumvent the latter issue is
to determine the distribution ḡ that minimizes the
Kullback-Leibler “distance” to g∗ among all densities
with a product form, i.e., g�z� = g1�z1�× · · · × gn�zn�.
The Kullback–Leibler cross-entropy (see Kullback and
Leibler 1951, Kapur and Kesavan 1992) defines a “dis-
tance” between two pdf’s f �·� and g�·� as

��f 	g�=
∫
�n
f �z� log

f �z�

g�z�
dz


Notice that � is not a distance in the formal sense,
since in general ��f 	g� �= ��g	 f �. Nevertheless, it
is possible to show (Kullback and Leibler 1951) that
��f 	g�≥ 0 and that ��f 	g�= 0 if and only if the cor-
responding cdfs are the same. The problem can then
be defined as

min���g∗	g�� g ∈��	 (4)

where � is the set of densities with product form
such that supp�� �·�f �·��⊂ supp�g�·��. For an arbitrary
g ∈� we have

��g∗	g� =
∫
T
g∗�z� log

[
g∗�z�
g�z�

]
dz

=
∫
T
g∗�z� log�g∗�z�� dz

− 1
�

∫
T
� �z�f �z� log�g�z�� dz	

where T ⊂�n denotes the support of � �·�f �·�. We will
use the convention that a log�0�=− if a > 0. It fol-
lows that the solution of (4) is the same as the solution
of the problem

min
g∈�

{
−
∫
T
� �z�f �z� log�g�z�� dz

}

=min
g∈�

{−Ɛf �� �Z� log�g�Z���
}

 (5)

Let fZi �·� denote the marginal distribution of Zi, and�Z denote the vector �Z1	 
 
 
 	Zi−1	Zi+1	 
 
 
 	Zn�. Define
the function

�i�zi� �= Ɛ�Z �Zi �� �Z� �Zi = zi� fZi �zi�	 (6)

where Ɛ�Z �Zi �·� denotes the expectation with respect to
the conditional density f�Z �Zi �·� of �Z given Zi. Notice
that we can write � = Ɛf �� �Z�� = ∫

T
� �z�f �z�dz =∫

Ti
�i�zi� dzi, where Ti ⊂� is the support of �i�·�. More-

over, since

Ɛ�log�gi�Zi��� �Z�� = Ɛ�Ɛ�log�gi�Zi��� �Z� �Zi��

= Ɛ�log�gi�Zi��Ɛ�� �Z� �Zi��	

we have that∫
T
log�gi�zi��� �z�f �z�dz=

∫
Ti

log�gi�zi���i�zi� dzi

and thus minimizing ��g∗	g� subject to g ∈ � is
equivalent to solving the functional problem

max
gi∈Q

∫
Ti
log�gi�zi���i�zi� dzi

s.t.
∫
Ti
gi�zi� dzi = 1


(7)

In (7), Q is the subset of L1 (integrable functions)
consisting of nonnegative functions whose support
is Ti. Notice that Q is a convex set. Moreover, Q is
nonempty since it contains �i�·�.
We now discuss ways to solve (7). Define the func-

tionals (in L1)

Fi�gi�=
∫
Ti

log�gi�zi���i�zi� dzi

Hi�gi�=
∫
Ti

gi�zi� dzi − 1

It is clear that Fi is concave on Q, whereas Hi is
affine on L1. Let us compute the derivatives of these
functionals, which we denote respectively by DFi�gi�
and DHi�gi�. These derivatives are operators in L1,
defined as

DFi�gi�h

= lim
t→0

Fi�gi + th�− Fi�g�

t

= lim
t→0

∫
Ti

log�gi�zi�+ th�zi��− log�gi�zi��
t

�i�zi� dzi
 (8)

Since log�·� is concave, the function "�t� �= �log�x +
td� − log�x��/t is monotone in t for any x > 0 and
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any d. It follows from the monotone convergence the-
orem that we can interchange the integral and the
limit in (8) and hence we obtain

DFi�gi�h=
∫
Ti

h�zi�

gi�zi�
�i�zi� dzi


Similarly, we have DHi�gi�h=
∫
Ti
h�zi� dzi.

Consider now the Lagrangian functional associated
with (7), which is defined on L1 × � as Li�gi	%� �=
Fi�gi� + %Hi�gi�. It is known (Bonnans and Shapiro
2000, Proposition 3.3) that if there exists a pair �ḡi	 %̄�
such that ḡi ∈Q, Hi�ḡi�= 0 and

ḡi ∈ argmax
gi∈Q

Li�gi	 %̄�	 (9)

then ḡi solves (7). The proposition below exhibits such
a pair:

Proposition 1. Consider the function �i�·� defined in
(6), and define the density function

ḡi�zi� �=
�i�zi�

�

 (10)

Then, the pair �ḡi	−�� satisfies (9) and therefore ḡi
solves (7).

Proof. It is immediate that ḡi ∈ Q and Hi�ḡi� = 0.
Thus, we just need to check (9). From the definition
of the Lagrangian function, we have that, for given gi
and %,

DLi�gi	%�h =
∫
Ti

h�zi�

gi�zi�
�i�zi� dzi +%

∫
Ti

h�zi� dzi

=
∫
Ti

[
�i�zi�

gi�zi�
+%

]
h�zi� dzi
 (11)

Consider now the function ḡi defined in (10). It is clear
that �i�zi�/gi�zi�− �= 0 for all zi and thus from (11)
we have that

DLi�ḡi	−��≡ 0
 (12)

Since the function Li�·	%� is concave on Q for any %,
(12) implies that ḡi maximizes Li�·	−��. This con-
cludes the proof. �

Corollary 1. Let b�·� be an arbitrary function. Then,
the expected value of a random variable Xi with the density
ḡi defined in (10) is

Ɛḡi �b�Xi��=
Ɛf �b�Zi�� �Z��

Ɛf �� �Z��

 (13)

In particular, by taking b�y�= yk we obtain an expression
for the kth moment of ḡi.

Proof. We have

Ɛḡi �b�Xi�� =
∫
Ti

b�xi�ḡi�xi� dxi

= 1
�

∫
Ti

b�xi�Ɛ�Z �Zi �� �Z� �Zi = xi�fZi �xi� dxi

= 1
�

∫
Ti

Ɛ�Z �Zi �b�Zi�� �Z� �Zi = xi� fZi �xi� dxi

= Ɛf �b�Zi�� �Z��

�

 � (14)

Proposition 1 and Corollary 1 generalize previ-
ous results. The exact form of the solution of the
cross-entropy problem (4) had been derived only for
particular cases—namely, parametric problems where
the family of distributions is the natural exponen-
tial family parameterized by the mean (de Boer et al.
2005, Homem-de-Mello and Rubinstein 2002). Propo-
sition 1 and Corollary 1, in turn, do not assume any
distribution.
Proposition 1 gives the desired product-form dis-

tribution. While that facilitates the task of generating
random samples from that distribution—since each
component can be generated independently—we still
must deal with the fact that ḡi depends on �, the
quantity we want to estimate. We address this in
Section 3.

2.2. Relating Variance Minimization and
Cross Entropy

In Section 2.1 we showed how the optimization prob-
lem of minimizing the Kullback-Leibler “distance” to
the optimal distribution can be solved analytically.
While such a property is certainly appealing, it is nat-
ural to inquire what type of properties the resulting
pdf has.
We address this issue by comparing the cross-

entropy problem (4) with the problem of finding a
pdf that yields an estimate with minimum variance.
Suppose we want to find a pdf g� with product form
such that g� minimizes Var� ��N �g��. Notice that

Varg

[
� �Z�

f �Z�

g�Z�

]

= Ɛg

[(
� �Z�

f �Z�

g�Z�

)2]
−
(
Ɛg

[
� �Z�

f �Z�

g�Z�

])2

= Ɛf

[
� �Z�2

f �Z�

g�Z�

]
−�2	

so minimizing the variance is equivalent to solving
the problem

min
g∈�

Ɛf

[
� �Z�2

f �Z�

g�Z�

]

 (15)
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In turn, (5) has the same solution as

min
g∈�

Ɛf

[
� �Z� log

f �Z�

g�Z�

]

 (16)

Notice the similarity between (15) and (16).
Consider now the particular case where � is an

indicator function of the form I���Z�≥a�—which is the
setting of this paper from Section 3 on. Then, by
noticing that I 2 = I and conditioning on the event
���Z�≥ a�, we have that the solutions of (15) and (16)
are respectively the same as the solutions of

min
g∈�

Ɛf

[
f �Z�

g�Z�

∣∣∣∣��Z�≥ a

]
and

min
g∈�

Ɛf

[
log

f �Z�

g�Z�

∣∣∣∣��Z�≥ a

]



Since log is an increasing function, we see that the two
problems are indeed similar. Clearly, without the
constraint g ∈ � the solution of both problems is the
zero-variance pdf g∗.

3. Estimating Rare-Event Probabilities
We turn now to the issue of using the product-form
distribution ḡi derived in Proposition 1 to obtain esti-
mates of the value � defined in (1) when � is the
probability of a rare event. That is, the function � in (1)
is of the form � �Z�= I���Z�≥a� for some function � and
some a ∈ � such that ���Z�≥ a� is an event of small
probability. In what follows, we describe an imple-
mentable algorithm and discuss some issues related
to convergence.

3.1. The Algorithm
As remarked earlier, using ḡi directly is impossible
since it depends on �. To overcome this difficulty, we
describe now a multistage algorithm for estimating ḡ,
whose basic version was first proposed by Rubinstein
(1999). The improvements we propose here include
closed-form expressions (derived from the general-
ized approach of Section 2) and an automatic update
of the main parameters of the algorithm.
The idea of the algorithm is to generate an in-

creasing sequence of values � �+k�k=1	2	


 and a se-
quence of distributions �ĝk�k=1	2	


 such that ĝk is a
good importance-sampling distribution to estimate
Pf ���Z� ≥ �+k�. This is accomplished by solving the
cross-entropy problem (4) with the underlying func-
tion � �Z� set to I���Z�≥ �+k�. Notice however that the
solution to (4), which is given by (10), depends on the
quantity Pf ���Z� ≥ �+k�. The latter expression can be
written as

Pf ���Z�≥ �+k�= Ɛĝk−1

[
I���Z�≥ �+k�

f �Z�

ĝk−1�Z�

]
	 (17)

provided the condition f �z� > 0⇒ ĝk−1�z� > 0 holds
for all z such that ��z� ≥ �+k. By construction, ĝk−1

is a good distribution to estimate Pf ���Z� ≥ �+k−1�;
thus, if �+k is not much bigger than �+k−1—i.e., if the
event ���Z�≥ �+k� is not rare under ĝk−1—one expects
ĝk−1 to be a reasonably good distribution to estimate
Pf ���Z� ≥ �+k� as well. Once �+k reaches the thresh-
old value a, then the algorithm returns the current
density ĝk.
We provide now a formal description of the algo-

rithm. Let +�g	"� denote an arbitrary �1−"�-quantile
of ��Z� under g, i.e., +�g	"� satisfies

Pg���Z�≥ +�g	"��≥ "	 (18)

Pg���Z�≤ +�g	"��≥ 1−"
 (19)

Notice that, given an i.i.d. sample Z1	 
 
 
 	ZN from
g�·�, +�g	"� can be easily estimated by a �1−"�-sample
quantile of ��Z1�	 
 
 
 	��ZN �. The latter quantity is
denoted by �+N �Z	"�.
The algorithm requires the definition of constants

"0 (typically, 0
01 ≤ "0 ≤ 0
1), - > 1 and . > 0. Below,
an expression of the form ��Zj� � Zj

i = zi denotes
��Z

j
1	 
 
 
 	Z

j
i−1	 zi	Z

j
i+1	 
 
 
 	Z

j
n�.

Algorithm 1.
Step 1. Set k �= 1, N �= initial sample size, ĝ0 �= f .
Step 2. Generate i.i.d. samples Z1	 
 
 
 	ZN from the pdf

ĝk−1�·�.
Step 3. Let �+k �=min�a	 �+N �Z	"k−1��.
Step 4. Define

��k �= 1
N

N∑
j=1

I���Zj �≥ �+k�
f �Zj�

ĝk−1�Zj�



Step 5. Compute the unidimensional density ĝki �·� as

ĝki �zi� �=
�1/N�

∑N
j=1�I���Zj �≥ �+k�f �Zj�/ĝk−1�Zj� �Zj

i =zi�fZi �zi�

��k



Step 6. If �+k = a, STOP; let g̃ �= ĝk be the distribution
returned by the algorithm.

Step 7. Otherwise, let C�"� denote the condition

C�"�� the sample �1−"�-quantile of ��Z1�	 
 
 
 	��ZN �
is bigger than or equal to min�a	 �+k−1+ .�

(a) If C�"� is satisfied with "= "k−1, then set "k �=
"k−1, k �= k+ 1 and reiterate from Step 2;

(b) If C�"� is not satisfied with " = "k−1 but it is
satisfied with some "< "k−1, then set "k �= largest of such
" and go back to Step 3;

(c) If C�"� is not satisfied with any "≤ "k−1, then let
N �= -N and go back to Step 2.
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Note that when the original density f is not of
product form, extra care should be taken to use the
samples Z1	 
 
 
 	ZN the first time Step 5 is executed—
after all, by fixing Zj

i = zi the distribution of the other
Zk (k �= i) change. One way around this problem is
to generate new samples Z1	 
 
 
 	ZN for each value
of zi, using the same stream of random numbers for
all of them. From the second iteration on this is no
longer necessary, since by construction ĝk�z� (k ≥ 1)
has product form.
Usually we cannot compute the whole density

function in Step 5, as this would require infinitely
many calculations. One case in which this can be eas-
ily accomplished is when Z has a discrete distribu-
tion with a small support. For example, suppose that
the Zi’s are independent and each Zi takes on val-
ues �zi1	 
 
 
 	 zim�; then, fZi �·� is the probability mass
function fZi �zij �= P�Zi = zij �, so computation of ĝk is
achieved by doing the calculation in Step 5 for mn
values.
In the case of continuous distributions, two possi-

ble approaches are (i) to approximate the density by a
discrete distribution, and (ii) to fix a family for the IS
distributions and then compute some of its moments.
For example, suppose we fix the family of normal dis-
tributions; then it suffices to compute the first two
moments in order to specify ĝk. The gamma distribu-
tion also shares that property. In that case, Step 5 is
replaced by the following step, derived from (14):

Step 5′. Estimate the rth moment of ĝki by

�3k	r
i �= �1/N�

∑N
j=1�Z

j
i �
r I���Zj �≥ �+k�f �Zj�/ĝk−1�Zj�

��k

 (20)

Note that when Step 5′ is used no extra care is
required at the first iteration. In the numerical exper-
iments of Section 4 we adopt both approaches, using
Step 5 for discrete distributions and Step 5′ for gamma
distributions.

3.2. Discussion
We now discuss the extent to which Algorithm 1 dif-
fers from prior work on cross entropy (compiled in
de Boer et al. 2005). The major differences can be clas-
sified into two categories: (i) update of the IS distri-
butions, and (ii) update of the parameter " and of the
sample size N .
One of the contributions of this paper is a gen-

eralization of the framework for the cross-entropy
method, which allows for derivation of closed-form
solutions to the CE-optimization problem for arbi-
trary distributions. This leads to a different update
of the IS distributions, as reflected in Step 5 of Algo-
rithm 1. In the original CE method, the update of the
IS distribution requires (i) working with parametric
distributions, and (ii) solving a stochastic optimization

problem, a task that can be very time-consuming. As
discussed in de Boer et al. (2005) (see also Homem-
de-Mello and Rubinstein 2002), one case where this
can be avoided is when the underlying distributions
belong to the so-called natural exponential family,
parameterized by the mean. In that case a closed-
form solution to that stochastic optimization prob-
lem can be found—not surprisingly, the expression
for the optimal parameter (the mean) coincides with
(13) with b�Zi�=Zi. Such a class covers a good range
of distributions but leaves out a number of cases,
for example, discrete distributions or multi-parameter
distributions such as normal or gamma (with both
parameters allowed to vary). Algorithm 1 covers these
cases by means of Steps 5 or 5′, as illustrated numer-
ically in Section 4.
In theory, the density function given by ḡi in (10)

is the best one can have under the cross-entropy
philosophy, in the sense that any further constraints
imposed to (4)—such as restricting g to be of paramet-
ric form—will yield sub-optimal solutions. In practice,
of course, computing the whole CE-optimal density
may be impractical; we have already discussed that,
for continuous distributions, the approach of comput-
ing moments of the distribution (i.e., Step 5′) pro-
vides an alternative to computing the CE-optimal
density. A natural question that arises is how this
moment-matching approximation performs for para-
metric distributions.
Consider the class of parametric distributions for

which the parameters can be expressed as functions
of the first, say, k moments. That is, suppose the
original distribution f in (1) is of the form f �z� =
f1�z1	 �1�×· · ·×fn�zn	 �n�, where the �i are parameters
that can be written as functions of the first k moments.
We represent this by writing �i =Hi�m

1
i 	 
 
 
 	m

k
i �.

The original CE approach for such a problem will
calculate the CE-optimal values of �i, call them �̃i.
Clearly, this is equivalent to finding the correspond-
ing moments �m1

i 	 
 
 
 	 �mk
i . Now suppose one applies

the moment-matching approach described above.
Then, one obtains the moments �m1

i 	 
 
 
 	 �mk
i of the

CE-optimal density ḡi. How can we sample from a
distribution with these moments? One natural alter-
native is to calculate �̄i �= Hi��m1

i 	 
 
 
 	 �mk
i � and then

sample from fi�zi	 �̄i�; in that case, it is clear that the
quality of the �̄i cannot be better than that of the �̃i
obtained by optimizing directly the parameters, since
in general ḡi�·� is not of the form fi�·	 �i�. Although the
moment-matching approach will provide no better
solutions than the original (parametric) CE method in
this case, we remark that (i) the moments �m1

i 	 
 
 
 	 �mk
i

can be used with distributions other than fi, (ii) the
moment-matching approach does not require solving
a stochastic optimization problem, and (iii) in our
experience, the resulting values of the parameters �̄i
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and �̃i are in practice very similar. Indeed, it is rea-
sonable to expect that the CE-optimal density ḡi be
close to the family of the original distribution (say, a
gamma distribution); hence, the moments of ḡi should
be close to the moments of the distribution obtained
with the parametric approach. The results presented
in Section 4 confirm that intuition.
The other major difference between the algorithm

proposed in this paper and the original CE method
refers to the update of the parameter " and of the
sample size N in Step 7. This step is crucial not
only to establish that the algorithm terminates after
finitely many iterations but also to provide a safe-
guard for practical convergence. Indeed, as discussed
in Homem-de-Mello and Rubinstein (2002), one can-
not expect Algorithm 1 to terminate if the parame-
ter " is kept fixed throughout the algorithm. Roughly
speaking, if " is fixed, the values of �+k may start
converging to a value below the desired thresh-
old a. Reducing " forces �+k to increase. If the ran-
dom variable ��Z� satisfies certain conditions (e.g.,
if it has infinite tail), then one can guarantee that
�+k can always be increased by a minimum amount,
though in the process the sample size may have
to be increased. Rubinstein (2002) also proposes an
adaptive algorithm—where " is changed adaptively—
but the motivation for the adaptive rules and hence
the algorithm itself are different from the ones pro-
posed here.

3.3. Convergence Issues
We formalize now the convergence notions discussed
at the end of Section 3.2. We start with the following
assumption:

Assumption A. The IS distributions selected by the
algorithm belong to a class � such that Pg���Z�≥ a� > 0
for all g ∈�.

Assumption A simply ensures that the probabil-
ity being estimated—Pf ���Z� ≥ a�—does not vanish
when the original pdf f �·� is replaced by a another
distribution g�·�. The assumption is trivially satisfied
if the distribution of ��Z� has infinite tail when the
distribution of Z belongs to some family (e.g., expo-
nential, or gamma, etc.). For zero-tail distributions,
the assumption holds as long as either a is less than
the maximum value of the function ��Z�, or if there
is a positive probability that a is attained.
As before, let +�g	"� denote an arbitrary �1 − "�-

quantile of ��Z� under g�·�. It is clear that, under
Assumption A, by decreasing " sufficiently we can
force the quantiles + to grow past a. In particular, we
can force + to increase at least by some pre-specified
amount .> 0. Thus, it is clear that +�ĝk−1	"k−1�≥ a for
some k. However, the exact value of +�ĝk−1	"k−1� is
unknown; hence, we must ensure that such a property

is kept when +�ĝk−1	"k−1� is replaced by its estimate
�+N �Z	"k−1�.
Proposition 2 below does exactly that. In the propo-

sition, the term “with probability one” refers to the
probability space where Z lies, and when Z1	Z2	 
 
 

are viewed as random variables on that space. Before
stating the proposition, we show the lemma below,
which is an interesting result in its own right since
convergence results for quantiles found in the litera-
ture typically introduce an assumption to guarantee
uniqueness of the quantiles (see, e.g., Serfling 1980).
Lemma 1 shows that we still have convergence even
when the quantile is not unique, though in that case
one cannot guarantee convergence of sample quan-
tiles to a single value.

Lemma 1. Let Y 1	Y 2	 
 
 
 be i.i.d. random variables
with common cdf G�·�, and let 6 denote the set of �1−"�-
quantiles of G. Let 7̂N denote a �1 − "�-sample quantile
of Y 1	Y 2	 
 
 
 	Y N . Then, the distance d�7̂N 	6� between
7̂N and the set 6 goes to zero (as N goes to infinity)
with probability one. Moreover, given any 8 > 0, we have
P�d�7̂N 	6� > 8�→ 0 exponentially fast with N .

Proof. Notice initially that a �1− "�-quantile of a
random variable Y can be expressed as an optimal
solution of the problem min7 Ɛ9�Y 	7�, where

9�Y 	7�=


�1−"��Y − 7� if 7 ≤ Y

"�7−Y � if 7 ≥ Y 


To see this, notice that the subdifferential set
:7Ɛ9�Y 	7� can be expressed as :7Ɛ9�Y 	7� = �" −
P�Y ≥ 7�	−�1 − "� + P�Y ≤ 7��. It is easy to check
that 9�Y 	7� is convex in 7 for all Y . It follows
that Ɛ9�Y 	7� is convex in 7 and thus a necessary
and sufficient optimality condition for the problem
min7 Ɛ9�Y 	7� is 0 ∈ :Ɛ9�Y 	7� (see, e.g., Rockafellar
1970). This is true if and only if " − P�Y ≥ 7� ≤ 0
and −�1 − "� + P�Y ≤ 7� ≥ 0, i.e., if and only if 7 is
a �1 − "�-quantile of Y . A similar argument shows
that the sample �1−"�-quantile of a sample Y1	 
 
 
 	YN
(recall this is 7̂N ) is the solution to the sample average
approximation problem min7 N−1∑N

i=19�Yi	 7�. Since
the objective function Ɛ9�Y 	7� is convex in 7, it fol-
lows that the distance d�7̂N 	6� goes to zero as N goes
to infinity w.p. 1 (Rubinstein and Shapiro 1993). The
last statement follows from classical results on expo-
nential rates of convergence of solutions of stochastic
programs (Kaniovski et al. 1995). �

Proposition 2. Suppose Assumption A holds, and let
x ∈ �0	 a�. Let g ∈�, and let Z1	Z2	 
 
 
 be i.i.d. with com-
mon density g�·�. Then, there exists "x > 0 and a random
Nx > 0 such that, with probability one, �+N �Z	"� ≥ x for
all " ∈ �0	"x� and all N ≥ Nx. Moreover, the probability
that �+N �Z	"�≥ x for a given N goes to one exponentially
fast with N .



Homem-de-Mello: A Study on the Cross-Entropy Method for Rare-Event Probability Estimation
388 INFORMS Journal on Computing 19(3), pp. 381–394, © 2007 INFORMS

Proof. Let �Z1	 
 
 
 	ZN � be a set of i.i.d. sam-
ples from g�·�. Consider initially the case where
Pg���Z� > x� > 0. As discussed earlier we have
that +�g	"∗� > x for any "∗ ∈ �0	"+

x �, where "+
x =

Pg���Z� > x� > 0. It follows from Lemma 1 that
the distance between the sample �1 − "∗�-quantile
�+N �Z	"∗� of ��Z1�	 
 
 
 	��ZN � and the set of �1−"∗�-
quantiles of ��Z� goes to zero as N goes to infinity
w.p. 1. Since +�g	"∗� > x, it follows that �+N �Z	"∗� > x
w.p. 1 for N large enough. Moreover, the probability
that �+N �Z	"∗� > x for a given N goes to one exponen-
tially fast.
Consider now the case where Pg���Z� > x� = 0,

i.e., x is the maximum value achieved by ��Z�. By
Assumption A, this implies that "0x �= Pg���Z� = x�
> 0 and thus, for any "∗ ∈ �0	"0x� we must have
+�g	"∗� = x. It follows that +�g	"∗� = x is also
the unique �1−"∗�-quantile of the random variable
W �= xI���Z�=x�. It is clear that �+x

N �= xI� �+N �Z	"∗�=x� is
a sample �1 − "∗�-quantile of W 1	 
 
 
 	WN , where
Wj �= xI���Zj �=x�. Since the distribution of W has finite
support, it follows from the results in Shapiro and
Homem-de-Mello (2000) that �+x

N = +�g	"∗�= x w.p. 1
for N large enough, and, moreover, the probability
that �+x

N = +�g	"∗�= x for a given N goes to one expo-
nentially fast. Since �+x

N = x if and only if �+N �Z	"∗�= x,
the proof is complete. �

The above proposition shows not only that �+N �Z	"�
reaches any threshold x for sufficiently small " and
sufficiently large N (which ensures that the algorithm
terminates), but also that one expects N not to be
too large due to the exponential convergence, at least
for moderate values of " (of course, when " is very
small N needs to be large anyway). Notice that the
update of the sample size in Step 7(c) guarantees that
the sample size Nx in Proposition 2 is achieved and
hence either �+k increases by at least . or it hits the
value a. That is, at some iteration K we set �+K

�= a.
This ensures that Algorithm 1 finishes after a finite
number of iterations. At that point we can then use
the distribution g̃ returned by the algorithm to calcu-
late the estimate ��N �g̃� in (2), perhaps with a different
sample size. Of course, g̃ is only an estimate of the
CE-optimal distribution ḡ; thus, the more one allows
N to grow—which is controlled by the initial sam-
ple size as well as the update parameter -—the more
precise this estimate will be.

3.4. Practical Issues
Despite the above convergence results, one needs to
be aware that, ultimately, the quality of the distri-
butions generated by the algorithm will depend on
the particular sample sizes used. A “poor” distribu-
tion will yield poor estimates of the underlying rare-
event probabilities. Thus, it is important to ensure that
“large enough” sample sizes are being used. Although

in general such a calculation is problem-dependent—
and as such must be determined by experimenta-
tion—in some cases it is possible to derive some
guidelines.
For example, consider the case of estimating an

arbitrary function of each random variable. Using
(13), one can easily construct estimates using sam-
ple average counterparts. For example, the moments
of each random variable can be estimated by (20).
The ratio form of that expression suggests use of
a procedure to calculate confidence intervals origi-
nally developed for estimation of ratios (e.g., regen-
erative simulation). Following that approach, in order
to obtain a �1 − =�%-confidence interval for �i �=
Ɛḡi �b�Xi�� in (13) we can draw a set �Z1	 
 
 
 	ZN � of
i.i.d. samples from some g�·� (in case of Algorithm 1,
g = ĝk−1), calculate

�� �= 1
N

N∑
j=1

� �Zj�
f �Zj�

g�Zj�

�̂i �=
(
1
N

N∑
j=1

b�Z
j
i �� �Zj�

f �Zj�

g�Zj�

)
1
��

and then the interval is given by

�̂i ±
z1−=/2

√ �>2/N
�� 


In the above formulas, z1−=/2 is the standard nor-
mal �1 − =�-quantile and �>2 �= �>11 − 2�̂i �>12 + �̂2i �>22,
where the �>ij are the elements of the sample covari-
ance matrix ? that estimates the covariance between
b�Zi�� �Z��f �Z�/g�Z�� and � �Z��f �Z�/g�Z��. Having
confidence intervals for �i as a function of the sample
size allows us to control the error of the estimates by
computing the appropriate sample sizes. Such a pro-
cedure is standard in simulation; see Law and Kelton
(2000) for details.
Another issue related to practical implementation

of Algorithm 1 concerns the values for the constants
-, ., and "0. We suggest - ≤ 2. For ., one approach is
to take .= 0 until the sequence � �+k� gets “stalled,” at
which point a positive . is used again. This approach
yields the slowest progression of �+k, but in turn the
final estimate ĝk is more “reliable,” in the sense that
it is calculated from more precise estimates—recall
from Section 3 that we need the event ���Z� ≥ +k�
not to be rare under ĝk−1. This also explains why
it is desirable that "k does not become too small;
otherwise large sample sizes will be required to get
reliable estimates ĝk. Notice however that, even if
the CE-optimal ḡ could be obtained, some problems
might still require a very large sample size in (2).
Given the limitations of one’s computational budget,
Algorithm 1 can be used to detect such a situation—
the algorithm can be halted once "k in Step 7 gets too
small (or, equivalently, when N gets too large).
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4. Numerical Results
We present now numerical results obtained for a
manufacturing problem. The model is described
in the manufacturing setting only to simplify the
discussion—as we shall see below, the problem may
be cast in terms of longest paths in a certain directed
graph. General longest-path models are widely appli-
cable in many areas, for example PERT networks
(Adlakha and Kulkarni 1989). Since the proposed
algorithm does not exploit the structure of the graph
when computing the IS distributions, we believe the
behavior of the algorithm for a more general longest-
path problem would be similar to the one observed
here.
In all examples below, we used an implementa-

tion of Algorithm 1 described in Section 3.3. Recall
that the algorithm requires the definition of three con-
stants, "0, -, and .. We used "0 = 0
1 and - = 2. For
., we adopted the conservative approach . = 0. In
these examples such a . sufficed, i.e., the sequence
� �+k� never got stalled. We also implemented a control
of the sample sizes as a function of the error of the
estimates �̂i, as discussed in Section 3.4. More specifi-
cally, let @i be the ratio between the half-width of the
confidence interval for �i and the estimate �̂i. Our goal
was to keep the maximum (with respect to i) value of
@i constant at all iterations, although we allowed N
to grow by a factor of at most - per iteration.
Consider a single stage in a production system in

which there are S single-server stations and a set
of J jobs that must be processed sequentially by
all stations in a prescribed order. We assume that
the processing of job j on station s is a random
variable whose distribution is known, and that each
station processes its incoming jobs on a first-come-
first-serve basis, holding waiting jobs in a queue of
infinite capacity. All jobs are released at time zero
to be processed by the first station (this assumption
is made just for notational convenience and can eas-
ily be dropped). For a job j (j = 1	 
 
 
 	 J ) and a sta-
tion s (s = 1	 
 
 
 	 S), let Ysj denote the service time of
processing job j on station s, and let Csj denote the
time job j finishes its service at station s. Let Y �=
�Y11	 
 
 
 	YSJ � denote the vector of service times, which
is assumed to be random with a known distribution.
Note that CSj can be viewed as a total completion time
of job j and that each Csj is a function of Y , and
hence is random. The above model was studied in
Homem-de-Mello et al. (1999) in the context of opti-
mizing the performance system with respect to the
release times of the jobs, so no estimation of probabil-
ities was involved; we refer to that paper for details.
Our goal is to estimate the probability that all J jobs

will be completed by a certain time a; that is, with
��Y �= CSJ �Y �, we want to estimate �= P���Y �≥ a�.

Calculation of ��Y � for a particular realization of Y
can be done via the recursive formula

Csj = max�Cs−1	 j 	Cs	 j−1�+Ysj	

j = 1	 
 
 
 	 J 	 s = 1	 
 
 
 	 S	 (21)

with Cs0 =C0j = 0, s = 1	 
 
 
 	 S, j = 1	 
 
 
 	 J . Notice that
the above problem is static (which is the focus of the
present paper) since the number of jobs under con-
sideration is finite.
The structure of the problem allows for derivation

of lower and upper bounds for the probability of inter-
est. For that, we shall use the fact that CSJ is the length
of the longest path in a certain directed graph, which
is a “grid” of S + 1× J nodes except that the nodes
on the last row are not connected horizontally (see
Homem-de-Mello et al. 1999 for a detailed descrip-
tion). Let T denote the total number of feasible paths
and Lp the length of path p, p= 1	 
 
 
 	 T . Thus, CSJ =
maxp=1	


	T Lp.
It is easy to see that each feasible path has exactly

S + J − 1 arcs—more specifically, S vertical arcs and
J − 1 horizontal ones. Since each arc length corre-
sponds to a service time, it follows that each Lp is
the sum of S + J − 1 random variables. The proposi-
tion below gives a useful property if all jobs have the
same distribution on a given machine. Notice that it
deals with the concept of stochastic ordering (denoted
by ≥st); we refer to Asmussen (2003) for definitions
and properties. The proof of the proposition is pro-
vided in the Online Supplement to this paper on the
journal’s website.

Proposition 3. Suppose that, for each s = 1	 
 
 
 	 S,
the random variables �Ysj �j=1	


	J are identically distributed,
and that all random variables in the problem are inde-
pendent. Suppose also that one of the random variables
�Ys1�s=1	


	S dominates the others in the stochastic sense,
i.e., there exists smax ∈ �1	 
 
 
 	 S� such that Ysmax1 ≥st Ys1,
s = 1	 
 
 
 	 S. Then, there exists a path pmax such that Lp ≤st

Lpmax for all p= 1	 
 
 
 	 T . Moreover,

P�Lpmax≥x�≤P�CSJ ≥x�≤
(
S+J−2
J−1

)
P�Lpmax≥x�
 (22)

In particular, if the random variables �Ys1�s=1	


	S are
such that Ys1 ≥st Yl1 if and only if Ɛ�Ys1 ≥ Yl1� then pmax
denotes the index of the path with the largest expected
value.

4.1. Gamma Distributions
We consider the case where all service times have a
gamma distribution. In what follows, we denote by
gamma�F	=� the gamma distribution with mean F=
and variance F=2. Clearly, the parameters F and =
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can be recovered from the first two moments of the
distribution, since

F=2 =Var�Y � ⇔ Ɛ�Y �== Ɛ�Y 2�− �Ɛ�Y ��2

⇔ == Ɛ�Y 2�

Ɛ�Y �
− Ɛ�Y � (23)

F== Ɛ�Y � ⇔ F= Ɛ�Y �

=

 (24)

For simplicity, we assume that the service times of all
jobs are independent, and that the service times of all
jobs at a given machine have the same distribution.
Even with this simplifying assumption, exact com-
putation of � is impossible, except for special cases.
Thus, in our view the example provides a meaningful
and novel application of the proposed algorithm.
We adopted the following methodology. First, for

fixed J and S, we generated a problem randomly.
This was accomplished by generating parameters
F1	 
 
 
 	FS uniformly between 1 and 5 and =1	 
 
 
 	=S

uniformly between 1 and 10 (one pair �Fs	=s� for each
machine). We then estimated P�CSJ ≥ a� for three val-
ues of a, based on the value of the total mean ser-
vice time G = J

∑S
s=1 Fs=s . We took a= 0
8G , a= G , and

a = 2G . The rationale for these choices was that the
expected completion time would be G if a job started
its process at machine 1 only after the previous job
finished its process at the last machine. Thus, G is a
gross overestimate of the actual expected completion
time, hence P�CSJ ≥ G� should be small.
To estimate P�CSJ ≥ a�, we used Algorithm 1 to

estimate the first two moments of the CE-optimal
distribution, and then recovered the optimal param-
eters F∗ and =∗ using (23)–(24). The output of
the algorithm—two S× J -dimensional vectors—deter-
mined the parameters of the gamma importance-
sampling distribution used to estimate the probability.
For the sake of comparison, we also estimated

the same probability using the hazard-rate twisting
(HRT) method described in Juneja and Shahabuddin
(2002) and Huang and Shahabuddin (2004). The HRT
method consists of twisting the original distribu-
tions by an exponential quantity that depends on
the so-called asymptotic hazard function of the dis-
tribution. More specifically, let H�x�=− log�1− F �x��
denote the hazard function of a distribution F , and
let H̃�x� denote a function that is asymptotically sim-
ilar to H�x�. The HRT method computes the twisted
distribution

dF ∗�x�= e�aH̃�x�−J��a�dF �x�	 (25)

where �a is a carefully selected value that depends on
the threshold value a, and J��a� is the normalization
constant log

∫
e�aH̃�x� dF �x�.

In the present case of gamma distributions and for
the particular function ��Y �=CSJ �Y �, the calculations
are greatly simplified. Indeed, the asymptotic haz-
ard function of a gamma�F	=� distribution is H̃�x�=
�1/=�x. Moreover, the normalization function J��� is
given by −F log�1− ��. To simplify the notation, let
Y1	 
 
 
 	Yn denote the random variables in the prob-
lem (so n= S× J ), with Yi ∼ gamma�Fi	=i�. Following
Huang and Shahabuddin (2004), define the function
q�a� �= ca for some c > 0. This function satisfies Con-
dition 4.4 in Huang and Shahabuddin (2004), thus we
have that lima→ logP�CSJ > a�/q�a�=−Iopt, where

Iopt = inf
{ n∑
i=1

yi

/
=i� CSJ �y� > 1/c

}

 (26)

Since CSJ is defined by max and + operations, it fol-
lows that the optimization problem in (26) can be
easily solved. Let =max �=maxi=1	


	n =i and let imax be
an index such that =max = =imax

. Then, the solution to
the optimization problem in (26) is simply y∗

i = 1/c
if i = imax and y∗

i = 0 otherwise. It follows that Iopt =
1/�c=max� and hence

P�CSJ > a�= e−a/=max�1+o�1��
 (27)

Huang and Shahabuddin (2004) suggest then taking
�a = 1 − b/q�a� = 1 − b/�ca� for some b > 0. By sub-
stituting this value into (25) we see that the twisted
distribution F ∗

i for variable Yi is given by

F ∗
i = gamma

(
Fi	

=ica

b

)
	 (28)

whose meaning should be clear despite the abuse of
notation. Unfortunately, despite the asymptotic opti-
mality of the distribution in (28), the performance
of this distribution for finite values of a seems to
depend very much on the choice of the constants c
and b—indeed, in our examples this distribution often
performed very poorly and yielded estimates equal
to zero in several cases. A possible explanation is
that the HRT procedure hinges on H̃�x� being a good
approximation for H�x�. While this is true asymptot-
ically, the approximation may be poor even for large
values of x, particularly if the number of random vari-
ables is relatively large.
Nevertheless, the idea of hazard-rate twisting is

very appealing, so in order to use that method we
chose values for c and b in an empirical way. Our
rationale was the following: from (28) we have that
the mean of Yi under the twisted distribution is
Fi=ica/b. We would like the paths defining the com-
pletion times CSJ to have total mean equal to a. More-
over, we know from (27) that the maximum value
among =1	 
 
 
 	=n is what defines the asymptotic
probability. Thus, we chose b so that the completion
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time calculated with weights Fi=maxca/b on the arcs is
equal to a. This corresponds to taking

b= ∑
i∈p0

Fi=maxc	 (29)

where p0 is the path corresponding to that comple-
tion time. Note that the above value is similar to the
one proposed by Juneja et al. (2007), which can be
shown to be equal to

∑n
i=1 Fi=maxc (though the latter

did not perform well in our experiments). In either
case, when b is substituted into (28) the constant c
disappears from the expression.
To provide a fair comparison, we provided the

same computational budget for both methods. That is,
we used a larger sample size for HRT, since Algo-
rithm 1 requires extra computational time to calcu-
late the optimal parameters. We increased the sample
size sequentially until the total CPU time used by the
HRT method was the same as the time used for Algo-
rithm 1. Based on these samples, we computed the
estimates for mean and variance. As an extra verifi-
cation, the above procedure was replicated ten times,
and we built 95% confidence intervals using the aver-
ages of individual estimates of mean and variance.
We also compared our algorithm with the para-

metric CE method, in which the parameters are opti-
mized directly. As discussed in Section 3.2, optimizing
the parameters usually requires solving a difficult
stochastic optimization problem; in the particular case
of gamma distributions, however, the calculations are
simplified. Indeed, in that case the CE problem to be
solved is

max
Fi	=i≥0

∫
log�fi�zi	Fi	=i���i�zi� dzi	 (30)

where fi�zi	Fi	=i�= G�Fi�
−1=−Fi

i z
Fi−1
i e−zi/=i is the den-

sity of the gamma distribution and �i�zi� is defined
in (6). After some algebra, one can easily re-write the
objective function of the above problem as

Ni�Fi	=i� �= �

[
log

=
−Fi
i

G �Fi�
+ �Fi − 1�

Ɛf �log�Zi�I���Z�≥a��

�

− 1
=

Ɛf �ZiI���Z�≥a��

�

]

 (31)

Note that the right-most term is exactly the same as
expression (14) for the first moment of the CE-optimal

Table 1 Estimated Probabilities and Exact Bounds for the Case J = 10� S= 5� �s ∼ U�1�5�� 	s ∼ U�1�10�

HRT CE

a �� N �� N NCE Lower bound Upper bound

1,072 48 �68�× 10−8 127K 90 �01�× 10−8 100K 13K 25× 10−10 38× 10−2

1,340 29 �27�× 10−18 158K 47 �01�× 10−14 100K 26K 28× 10−17 32× 10−7

2,680 23 �39�× 10−98 322K 86 �01�× 10−56 100K 80K 78× 10−61 79× 10−45

density ḡi. Thus, we can estimate this value using the
same multistage procedure given by Algorithm 1—
and a slight modification of the algorithm also allows
for estimation of Ɛf �log�Zi�I���Z�≥a��/�. Note also that
we can divide the objective function by � since we
are interested only in the optimal solution of (30).
It follows that, once the expectations in (31) are
estimated, (30) becomes a simple deterministic two-
dimensional problem, which can be solved using
standard optimization methods. We used Matlab’s
fminsearch function, which in turn implements the
Nelder-Mead algorithm.
Confirming the intuitive argument laid out in Sec-

tion 3.2, the values of Fi and =i obtained with the
parametric procedure described above were very sim-
ilar to the values obtained with the moment-matching
approach (see Table 4 for one example). We empha-
size, however, that the latter method does not require
the extra optimization step—which, even though it
takes negligible time in this particular case, may be
difficult for other distributions. The estimated proba-
bilities with both methods were in most cases statis-
tically equal; for that reason, we do not display the
results obtained with the parametric approach.
Another possible way to bypass the optimization

procedure is to allow only one of the parameters
(say, =i) to vary; in that case, the procedure becomes
closer to the versions of the CE method proposed in
the literature for distributions in the natural expo-
nential family, where the optimal mean can be esti-
mated directly. Clearly, such a procedure can only
provide sub-optimal solutions with respect to the
approach where both Fi and =i are optimized; for
example, for the system whose results are displayed
in Table 4, the variance of the one-parameter esti-
mate was about three times as large as the variance of
the two-parameter estimate. Thus, we do not report
results for the one-parameter approach.
Table 1 displays the results for J = 10 jobs and S = 5

machines, which corresponds to 50 random variables.
The values of the parameters Fi and =i for this data
set are respectively 2, 4, 5, 5, 3 and 10, 8, 1, 10, 9
for each machine. Although these results correspond
to a particular instance of data, similar results were
observed for other problems we generated (for the
same J and S and the same rule for generation of
F and =). Therefore, we report only one representa-
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Table 2 Estimated Probabilities and Exact Bounds for the Case J = 10� S= 5� �s = 1� 	s = 25

HRT CE

a �� N �� N NCE Lower bound Upper bound

1,000 12 �04�× 10−5 117K 59 �03�× 10−5 100K 10K 67× 10−7 48× 10−4

1,250 28 �47�× 10−8 160K 37 �09�× 10−8 100K 32K 51× 10−10 36× 10−7

2,500 37 �72�× 10−32 348K 95 �59�× 10−28 100K 80K 69× 10−28 49× 10−25

tive of the group. In the table, �� is the estimate for
P�CSJ ≥ a�, with the number in parentheses denoting
the half-width of a 95% confidence interval, in the
same order of magnitude. N is the sample size used to
compute the estimate once the importance-sampling
distribution is determined. Notice that, since the sam-
ple size used with the HRT method was variable, the
N column under “HRT” displays a rounded aver-
age. The column labelled “NCE” reports the (rounded)
average sample size used in Algorithm 1 to calcu-
late the CE-optimal parameters (recall that we used
an adaptive scheme for automatic update of sample
sizes, as described earlier). The initial sample size
used in the procedure was always set to 5,000.
To compute the bounds given by (22), we need to

estimate P�Lpmax ≥ a�. For the underlying problem, one
can easily check from the construction in the proof of
Proposition 3 that

Lpmax
d=
[ 10∑
i=1
gamma�5	10�

]
+gamma�2	10�

+gamma�4	8�+gamma�5	1�+gamma�3	9�
(note that gamma�5	10� stochastically dominates the
other distributions). We thus obtain the bounds

P�gamma�50	10�≥ a�

≤ P�Lpmax ≥ a�≤ P�gamma�70	10�≥ a�
 (32)

Table 1 lists the exact lower and upper bounds given
by (22) and (32). Notice that T = (13

9

) = 715 in that
case. Exact solutions for such a problem are not avail-
able, so the purpose of the bounds is just to pro-
vide a rough check on the order of magnitude of the
obtained results. Note that HRT underestimates the
probability when a= 1	340 and a= 2	680.
We also studied the case where all service times

have the same gamma distribution with parameters
F = 1 and = = 25. In that case, the bounds in (22)

Table 3 Estimated and Exact Probabilities for the Case J = 10� S= 1� �= 5� 	= 5

HRT CE

a �� N �� N NCE Exact

500 1176 �0008�× 10−8 123K 1178 �0007�× 10−8 100K 5K 1179× 10−8

750 7401 �0055�× 10−22 161K 7390 �0072�× 10−22 100K 26K 7412× 10−22

1,000 1704 �0013�× 10−37 225K 1696 �0020�× 10−37 100K 44K 1693× 10−37

can be computed more precisely since Lpmax is the
sum of S + J − 1 gamma�1	25� independent random
variables and thus has a gamma�14	25� distribution.
Table 2 displays the estimation results, together with
the bounds given by (22). Note that HRT underesti-
mates the probability when a= 2	500.
Finally, we studied the case where S = 1. In this

case, the completion time is simply a sum of J i.i.d.
gamma�F	=� and therefore has a gamma�JF	=� dis-
tribution, so the probabilities can be computed analyt-
ically. In this case we took a= 2G , a= 3G , and a= 4G ,
where G = JF=. Table 3 displays the results for J = 10,
F = 5, and = = 5. The column labeled “Exact” con-
tains the true values. We can see that the estimates
obtained with both methods are very close to the real
values, and indeed the confidence intervals cover the
exact values. This suggests that the heuristics we used
to determine the parameters of the HRT method is
efficacious, at least when the number of variables is
small.
To illustrate the behavior of the algorithm, we

considered another problem with J = 5 jobs, S = 2
machines, and all service times having the same
gamma�5	5� distribution. The value of a chosen was
a = 350, for which the algorithm yielded the esti-
mate probability 1
006 �0
049�× 10−7 with sample size
100,000 (the lower and upper bounds for this case are
respectively 2
433×10−8 and 1
216×10−7). Table 4 dis-
plays, for each iteration k, the value of �+k (computed
in Step 2 of Algorithm 1), the corresponding sample
size used, and the new parameters F and = of each ser-
vice time Ysj , obtained from the moments calculated
in Step 5′ of the algorithm. Notice that �+k reaches a=
350 after 4 iterations. The last line displays the val-
ues obtained by solving the parametric problem (30)
with the objective function re-written as in (31), which
yielded the estimate 1
014 �0
060�×10−7. For the same
problem (and same computational budget), the HRT
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Table 4 Progression of the Algorithm for the Case J = 5� S= 2� �= 5� 	= 5

k ��k N �̂k 	̂k

0 5K 5.00 5.00 5.00 5.00 5.00 500 500 500 500 500
5.00 5.00 5.00 5.00 5.00 500 500 500 500 500

1 200.8 5K 6.02 5.32 4.67 4.14 4.25 561 621 649 697 691
4.36 4.17 4.28 4.68 6.00 647 704 709 688 539

2 255.6 5K 5.92 4.34 4.03 4.10 3.59 736 893 874 806 843
3.59 3.08 4.48 4.34 6.25 864 1080 808 888 676

3 310.3 10K 6.19 4.44 3.48 2.63 3.61 872 1026 1194 1430 807
2.84 2.66 2.95 4.00 6.78 1082 1338 1363 1153 811

4 350.0 20K 5.56 4.28 3.36 2.43 3.38 1039 1290 1339 1664 884
2.61 2.53 2.94 4.13 5.95 1220 1553 1569 1287 980

Parametric CE 5.15 3.69 3.23 2.61 3.68 1123 1500 1393 1550 812
3.19 2.82 3.00 3.62 5.71 1000 1393 1536 1466 1021

method yielded the estimate 1.335 �0
522�×10−7, with
the IS distribution being a gamma�5	11
67�.

4.2. Discrete Distributions
We now consider the case where all service times have
discrete distributions with finite support. As before,
we assume that the service times of all jobs are inde-
pendent, and that the service times of all jobs at a
given machine have the same distribution.
For fixed J , S, and m we generated, for each of

the S machines, m values for service times between
10 and 40 and m corresponding probabilities at ran-
dom. Notice that, because the random variables take
on a finite number of values, the maximum possi-
ble completion time J can be found by setting each
random variable to its maximum value and solving
a longest-path problem. However, such a procedure
does not determine the probability of the maximum
value, unless there is a single path corresponding
to it. We then estimated P�CSJ ≥ a� for two values
of a, based on the value of the maximum comple-
tion time J . We took a= 0
9J and a=J (obviously,
P�CSJ >J�= 0).
To estimate P�CSJ ≥ a�, we again used Algorithm 1.

In this case we can determine the whole IS distribu-
tion, which reduces to the probabilities of each value
of each service time—an S × J ×m-dimensional vec-
tor. In order to check the obtained probabilities, we
also estimated the same values using standard Monte
Carlo, providing the same computational budget for
both methods. The above procedure was replicated 50
times, and the average and 95% confidence intervals

Table 5 Values Taken on by the Service Times and Corresponding
Probabilities, for the Data Set with Discrete Distributions

s ys1 ps1 ys2 ps2 ys3 ps3 ys4 ps4

1 12 0.309 16 0.091 28 0.270 39 0.330
2 11 0.035 25 0.418 32 0.155 40 0.392
3 16 0.137 17 0.353 28 0.044 38 0.466
4 17 0.635 20 0.037 21 0.108 29 0.220
5 18 0.679 20 0.072 23 0.052 35 0.197

were built from those 50 independent estimates, both
for Monte Carlo and CE.
We first consider a problem with J = 10 jobs, S = 5

machines, and m= 4 possible outcomes for each ran-
dom variable. This corresponds to 50 random vari-
ables and a 200-dimensional parameter vector. The
values ysl taken on by each service time and the
respective probabilities psl are listed in Table 5. In this
particular case the exact probability for a = J = 541
can be computed, since there is a single path cor-
responding to the maximum completion time. That
value is �0
330��0
392�10�0
466��0
220��0
197�= 5
710×
10−7. The estimated probabilities are displayed in
Table 6, using notation similar to Tables 1–3. We can
see that the estimate obtained with the CE method is
fairly close to the real value.
To illustrate the behavior of the algorithm for the

discrete-distribution case, we consider a smaller prob-
lem with J = 4 jobs and S = 3 machines; the distri-
bution of the service times is the same as in the first
three rows of Table 5. The maximum value achieved
by CSJ in this case is a= 237, for which the algorithm
yielded the estimate probability 0
0035 (±0.0002) with
20 replications of sample size 200 each (the exact
value can be calculated as 0.0036). Table A–1 in the
Online Supplement displays, for each iteration k, the
value of �+k (computed in Step 3 of Algorithm 1) and
the updated probability of each value taken on by Ysj ,
as calculated in Step 5 of the algorithm (denoted by
p̂ksj	m). Notice that �+k reaches a after three iterations.
Notice also the presence of a “degenerate” effect; the
�s	 j� with 1.0 in the respective row correspond to the
edges of the longest path in the related graph. Inci-
dentally, this example illustrates the application of the

Table 6 Estimated Probabilities for Discrete-Distribution Case,
J = 10� S= 5� m= 4, Random Data

MC CE

a �� N �� N NCE Exact

486 230 �018�× 10−2 635 222 �021�× 10−2 100 100
541 0.000 (0.00) 10�200 495 �326�× 10−7 700 700 571× 10−7
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CE method to combinatorial optimization problems
(in this case, longest path). We refer to de Boer et al.
(2005) and Rubinstein (1999, 2002) for details.

5. Concluding Remarks
We have studied some aspects of the cross-entropy
method, which is an algorithm for estimation of rare-
event probabilities that has been proposed in the lit-
erature and that has been gaining some popularity.
More specifically, we have proposed a general form
of the method—applicable to any distribution—that
encompasses and extends existing work. We have
also proposed an implementable version of the algo-
rithm and illustrated its behavior through numerical
examples. The obtained results are encouraging and
suggest that the proposed algorithm is fairly robust,
requiring little tuning of its parameters.
Some issues for further research remain. For exam-

ple, it would be important to find conditions under
which the solutions of the cross-entropy and variance-
minimization problems coincide, at least asymptot-
ically. Also, the derivation of performance bounds
for the estimates obtained with the proposed method
(derived with finite sample size) would be desirable.
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