

Solving Lotsizing Problems on Parallel Identical
Machines Using Symmetry Breaking Constraints

Raf Jans

ERIM REPORT SERIES RESEARCH IN MANAGEMENT
ERIM Report Series reference number ERS-2006-051-LIS
Publication September 2006
Number of pages 20
Persistent paper URL
Email address corresponding author rjans@rsm.nl
Address Erasmus Research Institute of Management (ERIM)

RSM Erasmus University / Erasmus School of Economics
 Erasmus Universiteit Rotterdam
 P.O.Box 1738
 3000 DR Rotterdam, The Netherlands
Phone: + 31 10 408 1182
Fax: + 31 10 408 9640
Email: info@erim.eur.nl
Internet: www.erim.eur.nl

Bibliographic data and classifications of all the ERIM reports are also available on the ERIM website:

www.erim.eur.nl

http://www.erim.eur.nl/

ERASMUS RESEARCH INSTITUTE OF MANAGEMENT

REPORT SERIES
RESEARCH IN MANAGEMENT

ABSTRACT AND KEYWORDS
Abstract Production planning on multiple parallel machines is an interesting problem, both from a

theoretical and practical point of view. The parallel machine lotsizing problem consists of finding
the optimal timing and level of production and the best allocation of products to machines. In this
paper we look at how to incorporate parallel machines in a Mixed Integer Programming model
when using commercial optimization software. More specifically, we look at the issue of
symmetry. When multiple identical machines are available, many alternative optimal solutions
can be created by renumbering the machines. These alternative solutions lead to difficulties in
the branch-and-bound algorithm. We propose new constraints to break this symmetry. We tested
our approach on the parallel machine lotsizing problem with setup costs and times, using a
network reformulation for this problem. Computational tests indicate that several of the proposed
symmetry breaking constraints substantially improve the solution time, except when used for
solving the very easy problems. The results highlight the importance of creative modeling in
solving Mixed Integer Programming problems.

Free Keywords Mixed Integer Programming, Formulations, Symmetry, Lotsizing

Availability The ERIM Report Series is distributed through the following platforms:

Academic Repository at Erasmus University (DEAR), DEAR ERIM Series Portal

Social Science Research Network (SSRN), SSRN ERIM Series Webpage

Research Papers in Economics (REPEC), REPEC ERIM Series Webpage

Classifications The electronic versions of the papers in the ERIM report Series contain bibliographic metadata
by the following classification systems:

Library of Congress Classification, (LCC) LCC Webpage

Journal of Economic Literature, (JEL), JEL Webpage

ACM Computing Classification System CCS Webpage

Inspec Classification scheme (ICS), ICS Webpage

https://ep.eur.nl/handle/1765/1
http://www.ssrn.com/link/ERIM.html
http://ideas.repec.org/s/dgr/eureri.html
http://lcweb.loc.gov/catdir/cpso/lcco/lcco_h.pdf
http://www.aeaweb.org/journal/jel_class_system.html
http://www.acm.org/class/
http://www.iee.org/Publish/Support/Inspec/Document/Class/index.cfm

SOLVING LOTSIZING PROBLEMS ON PARALLEL IDENTICAL

MACHINES USING SYMMETRY BREAKING CONSTRAINTS

RAF JANS

RSM Erasmus University, PO Box 1738, 3000 DR Rotterdam, The Netherlands

Email: rjans@rsm.nl; Tel.: +31 10 408 2774

August 31, 2006

Abstract

Production planning on multiple parallel machines is an interesting problem, both from

a theoretical and practical point of view. The parallel machine lotsizing problem

consists of finding the optimal timing and level of production and the best allocation of

products to machines. In this paper we look at how to incorporate parallel machines in a

Mixed Integer Programming model when using commercial optimization software.

More specifically, we look at the issue of symmetry. When multiple identical machines

are available, many alternative optimal solutions can be created by renumbering the

machines. These alternative solutions lead to difficulties in the branch-and-bound

algorithm. We propose new constraints to break this symmetry. We tested our approach

on the parallel machine lotsizing problem with setup costs and times, using a network

reformulation for this problem. Computational tests indicate that several of the proposed

symmetry breaking constraints substantially improve the solution time, except when

used for solving the very easy problems. The results highlight the importance of creative

modeling in solving Mixed Integer Programming problems.

Keywords: Mixed Integer Programming: Formulations; Symmetry; Lotsizing

 1

mailto:rjans@rsm.nl

1. Introduction

The aim of lotsizing is to determine the timing and level of production for several

products over a specified discrete time horizon. Future demand is known and must be

met at minimum cost. Machine capacity is a scarce resource in most manufacturing

environments. Usually lotsizing models assume that the products are made on one

single machine. However, in many cases a manufacturer has access to multiple

machines or production lines, which can be used in parallel.

In this paper, we consider the case of parallel identical machines in a single stage. As

the machines are identical, they all have the same capacity available. For each product,

the setup and production cost and time are also identical on each of the machines. The

machines are flexible as they can all produce the complete set of items. Parallel

machines complicate the problem as we not only have to determine the timing and level

of production, but we also have to assign production lots to machines. In the case of

identical parallel machines, the problem is further complicated due to symmetry, which

results in the existence of many alternative optimal solutions. Given a solution, i.e. a

proposal for the timing and level of production and an assignment of products to

machines, a different solution with the same total cost can be created by just

renumbering the machines. It is known that this symmetry will slow down the branch-

and-bound algorithm due to unnecessary duplication. To counter this problem,

symmetry breaking constraints can be added to the Mixed Integer Programming (MIP)

formulation.

The contribution of this paper is twofold. First, we extend the network formulation of

Eppen and Martin (1986) for lotsizing problems on a single machine to the case of

parallel machines. The network formulation has the advantage that it has a smaller IP

gap compared to the regular formulation. This allows us to solve large problems from a

standard test set in our computational experiments. This contribution adds to the

research on tighter formulations. Belvaux and Wolsey (2001) and Wolsey (2002)

indicate the importance of good formulations. They claim that many practical lotsizing

problems can be solved using general purpose MIP software if tight formulations are

used. Such formulations result from insights into polyhedral properties of the

formulation.

 2

Second, we explore the issue of symmetry. This is an issue that, to the best of our

knowledge, has not been discussed before in the lotsizing literature. We propose several

symmetry breaking constraints for the lotsizing problem with identical parallel

machines and evaluate them in a computational experiment. This research indicates that

explicitly considering this symmetry by imposing hierarchical constraints, results in

improved models and is an important factor in solving parallel machine lotsizing

problems using commercial branch-and-bound software. This is our main contribution

and it adds to previous research done on symmetry breaking by Sherali and Smith

(2001).

2. Literature Review

Many different versions and extensions of the basic lotsizing problem have been studied

extensively in the literature. For a general review on lotsizing models and algorithms,

we refer the reader to some recent review articles and books (Jans and Degraeve 2007a,b,

Pochet and Wolsey 2006). In this section, we focus on the single stage, parallel machine

problem. Note that the parallel machine lotsizing problem is different from the lotsizing

problem with multiple resources. In this latter model, a product consumes capacity from

many different resources simultaneously such as machine capacity, labor and tools and

a separate capacity constraint is imposed for each of the resource types (e.g. Stadtler

2003).

The practical relevance of parallel machine lotsizing is supported by examples of its

application in various industries such as pharmaceuticals (De Matta and Guignard

1995), tile manufacturing (De Matta and Guignard 1994a), the tire industry (Jans and

Degraeve 2004), injection molding (Dastidar and Nagi 2005), the alloy foundry industry

(Dos Santos-Meza et al. 2002) and multi-layer-ceramics (Dillenberger et al. 1994).

In lotsizing models, a distinction is usually made between big bucket and small bucket

models. This distinction also extends to the parallel machine case. In big bucket models,

a machine can produce several different product types in the same time period. This is

the Capacitated Lotsizing Problem (CLSP). In the small bucket models a single mode

constraint is imposed, indicating that at most one product type can be made on a specific

machine in one time period. In cases where the production quantities can be anywhere

 3

between zero and the capacity, this is called the Continuous Setup Lotsizing Problem

(CSLP). The parallel machine case is discussed in Ahmadi et al. (1992), De Matta and

Guignard (1995), and Dastidar and Nagi (2005). In the Discrete Lotsizing and

Scheduling Problem (DLSP), an all-or-nothing production policy is assumed: if you

decide to produce in a specific time period, it must be at full capacity. Formulations

with parallel machines are discussed in Salomon et al. (1991), De Matta and Guignard

(1994a, 1994b), Dumoulin and Vercellis (2000), Jans and Degraeve (2004). The

Proportional Lotsizing and Scheduling Problem (PLSP) allows that a maximum of two

different items can be produced in each time period. There is still at most one setup per

period, but the setup from the previous period can be carried over to the next period.

This problem can also be extended to parallel machines (Kimms and Drexl 1998).

Özdamar and Barbarosoğlu (1999) and Özdamar and Birbil (1998) consider a big

bucket, capacitated lotsizing problem with parallel machines. They refer to the

assignment of the items to machines as the loading problem. In their models, they

assume that the lots cannot be split among several machines. So in one specific period,

an item can be produced on one machine at most. We consider a more general model in

the sense that we allow an item to be produced on two or more machines

simultaneously. Our model is the same as the basic model for the multi-machine

problem as defined by Belvaux and Wolsey (2001). They consider reformulations and

cutting planes for a variety of lotsizing models, but they do not consider the issue of

symmetry.

Madan and Gilbert (1992) propose a lotsizing model with parallel machines. However,

there is only a general setup if a product is produced in a specific period, irrespective of

whether this is done on one or more machines. In our proposed model, we have a

separate setup cost for each machine if an item is produced on more than one machine

simultaneously. Kang et al. (1999) propose a column generation approach to solve the

CHES problems, which are complicated lotsizing problems with non-identical parallel

machines, sequence-dependent setup costs and sales. Also Clark and Clark (2000),

Clark (2003) and Meyr (2002) consider lotsizing with sequence dependencies on

parallel machines. Production planning problems with parallel machines but no setups

are considered by Leachman and Carmon (1992) and Hung and Cheng (2002). As no

setup costs or time are taken into account, the model can be formulated as a linear

 4

program. Their problem is complicated by the fact that an item has to go through several

process steps.

In this paper, we will look specifically at models with identical machines, as they

exhibit a lot of symmetry in the solution representation. We specifically consider big

bucket problems with setup costs and times. The reason for this focus is that small

bucket models do not suffer from the same symmetry problem in their solution

representation as big bucket models. Because of the single mode constraint, the setup

variables can be modeled as general integers to indicate how many machines are used to

produce one item type in a period. Also sequence-dependencies reduce the symmetry, as

the machines cannot be renumbered independently in each period anymore. When no

setups are present, the capacity of identical machines can be aggregated and the problem

of symmetry is avoided in this way.

3. Mathematical Programming Formulations

We consider the basic big bucket, single stage, parallel machine lotsizing model with

setup times and setup costs. The machines are identical, meaning that they have the

same capacity available and for a specific item, the variable production time and cost

and the setup time and cost are the same on each machine. We use the basic model

defined by Belvaux and Wolsey (2001), who consider the general case of non-identical

machines. We have the following sets, variables and parameters:

Sets:

 P Set of products, = {1, 2, …, n},

 T Set of periods, = {1, 2, …, m},

 M Set of parallel identical machines, = {1, 2, …, q},

Input Parameters:

 itd Demand for item i in period t,

 itlsd Sum of the demand for item i from period t until period l,

 isc Setup cost for item i,

 ivc Variable production cost for item i,

 5

 ihc Holding cost for item i,

 ivt Variable production time for item i,

 ist Setup time for item i,

 tcap Capacity available in period t on each machine,

 ifc Cost for one unit of initial inventory for item i,

Decision variables:

 iktx Production level for item i in period t on machine k,

 ikty = 1 if there is a setup for item i in period t on machine k; 0 otherwise,

 its Inventory for item i at the end of period t,

 0is Initial inventory for item i.

The regular formulation is then as follows:

 () ∑∑∑∑∑∑
∈∈ ∈∈ ∈ ∈

+++
Pi

ii
Pi Tt

iti
Mk Pi Tt

iktiikti sfcshcxvcyscMin 0 (1)

s.t. itit
Mk

iktti sdxs +=+ ∑
∈

−1,

∀ i ∈ P, ∀ t ∈ T (2)

 iktitmikt ysdx ≤ ∀ i ∈ P, ∀ t ∈ T, ∀ k ∈ M (3)

 () t
Pi

iktiikti capxvtyst ≤+∑
∈

∀ t ∈ T, ∀ k ∈ M (4)

 { }1,0;0, ∈≥ iktitikt ysx ∀ i ∈ P, ∀ t ∈ T, ∀ k ∈ M (5)

The objective (1) is to minimize the total cost of setups, production and inventory. For

each item, the production on the parallel machines in each period is summed and this

amount is available to satisfy demand (2). If an item is produced on a specific machine,

a setup is incurred (3). If an item is simultaneously made on several machines, a setup is

necessary for each of these machines. The available capacity on each machine is

limited. Variable production time and setup times are both taken into account in order to

calculate the actual capacity utilization (4). In order to deal with infeasible problems, we

allow that initial inventory is available from an external source at a high cost

(Vanderbeck 1998). Note that aggregating the capacity over the machines will not

provide an equivalent formulation. The aggregate capacity constraint cannot properly

account for multiple setups in cases where the production of one item is done on more

0is ifc

 6

than one machine.

It is well known that the regular formulation (1)-(5) in the x and y variables provides a

poor lower bound. Several approaches have been proposed to strengthen the

formulation. Eppen and Martin (1986) reformulate the lotsizing problem as a network

problem and show that the LP relaxation of this formulation has an integer solution for

the uncapacitated single item problem. This reformulation is actually the network

formulation of the Dynamic Programming algorithm of Wagner and Whitin (1958),

which uses the property that there is an optimal solution where production is done for an

integer number of periods. The variable is a binary variable which takes the value

of 1 if production in period t covers the full demand for period t up to period l (Figure

1). Eppen and Martin further prove that network formulation is also a valid

reformulation for the capacitated multi-item case and can be used to obtain tighter lower

bounds. The variables are no longer defined as binary. We extend the network

reformulation to the parallel machine case. The arcs are duplicated for each machine

available, adding an extra index to the variable. Figure 2 shows a network with 2

machines.

itlzv

itlzv

0 3 1

Figure 1. Network representat

1

Figure 2. Network representati

The mathematical formulation i

ion for one item i,

2

on for one item i,

s as follows:

7

2

 3 periods and 1 m

3 periods and 2 ma
13izv
12izv
zv 23i
11izv
22izv
 33izv
achine
213izv
112izv
zv 212i
123izv

223izv
111izv

211izv
122izv
222izv

izv 133
233izv

0
 3
113izv
chines

 ∑∑∑∑ ∑∑∑∑∑
∈ ∈∈ ∈ ∈ ∈ ∈ =∈

++
Pi Tt

itit
Pi Tt Pi Mk Tt

m

tl
iktlitl

Mk
ikti wcizvcvyscMin (6)

s.t. ∑∑∑
== ∈

+=
m

l
il

m

l Mk
lik wzv

11
,1,1 ,Pi∈∀ (7)

 ∑ ∑∑∑
−

= = ∈∈
−− =+

1

1
1,1,

t

s

m

tl Mk
iktl

Mk
tiksti zvzvw

Pi∈∀ , ,1}T\{t ∈∀ (8)

 ∑∑
= ∈

=
m

t Mk
iktmzv

1
1

Pi∈∀ , (9)

 ∑
=

≤
m

tl
iktiktl yzv

Pi∈∀ , Mk ∈∀ , Tt∈∀ , (10)

 ∑ ∑∑
∈ ∈ =

≤+
Pi Pi

t

m

tl
iktlitliikti capzvsdvtyst

Mk ∈∀ , Tt∈∀ , (11)

 { }1,0;0 ∈≥ iktiktl yzv Pi∈∀ , Mk ∈∀ , tlTlt ≥∈∀ ,, (12)

The variable indicates the fraction produced of product i on machine k according

to the production plan where production in period t satisfies demand from period t up to

l (Eppen and Martin 1989). Likewise, the variable indicates the fraction of the initial

inventory plan for product i where demand is satisfied for the first t periods (Jans and

Degraeve 2004). Note that we left out the variables in Figures 1 and 2 in order to

simplify the network graphs. The link with the variables of the regular formulation is as

follows:

iktlzv

itw

itw

∑
=

=
m

tl
iktlitlikt zvsdx

∑
=

=
m

l
illii wsds

1
,1,0

On every arc, a cost is defined as the total cost for producing in period t the

demands for period t until k and the according inventory holding cost:

itlcv

 ∑∑
+=

−

=

+=
l

ts

s

tu
isuitliitl dhcsdvccv

1

1

Constraints (7)-(9) are the conservation of flow equalities for the shortest path network.

Sending a unit flow through the network is equivalent to imposing that demand must be

met without backorders. We further have the setup forcing constraint (10) and capacity

constraint (11). We use the network reformulation with initial inventory (Jans and

 8

Degraeve 2004b). This formulation has two advantages. First, as explained earlier,

problems are always feasible since initial inventory can be purchased at a high cost.

Second, the regular network formulation, without initial inventory, does not correctly

model the problem if the demand in the first period is zero. The reason is that in this

case , the arc to produce in period 1 the demand for period 1, should be set to one in

order to have a feasible flow. However, this will trigger a setup through constraint (10),

even if nothing is produced. This problem is solved by introducing initial inventory. If

demand in the first period is zero, the arc to use initial inventory to cover demand for

period 1 will be activated. The cost of this arc is zero as there is no demand. Further,

there is no setup associated with such an initial inventory arc, and hence there is also no

setup cost. Note that the network reformulation can easily be extended to include non-

identical machines by introducing machine specific capacities, setup times and costs and

variable production times and costs.

11ikz

4. Symmetry breaking constraints

The existence of identical parallel machines results in the existence of many alternative

solutions. In the formulation (1)-(5) and (6)-(12), there is a production and setup

variable for each product-machine-period combination. Given a specific feasible

solution, an alternative solution can be constructed by renumbering the machines. This

leads to a different assignment of items to individual machines. However, as all

machines are identical, this represents globally the same solution. This is illustrated in

Figure 3 for a lotsizing problem with 3 machines, 4 products and 2 periods. The two

plans are globally the same and differ only by the numbering of the identical machines.

 Plan 1 Plan 2
 Period 1 Period 2 Period 1 Period 2

M1 M1

M2

4

M3

2

Figure 3: A

 1

lternative solu
 1

3

tions for
 2

 M2 1

3
 3

 M3
4
 4

 the lotsizing problem

9

 1

 with identical mach
3

2
 3

ine
 2
3
 4
 1

s

We further investigate the number of alternative solutions, given a specific solution.

Suppose that we have k identical machines and m time periods. In a period, we can

renumber the machines, giving k! alternative solutions. As there is no interdependency

on one machine between two periods, we can do this for each period independently,

giving (k!)m alternative optimal solutions in total. This no longer holds if the periods are

not independent, e.g. when sequence dependencies or setup carry-overs are present.

Symmetry is also not a problem for unrelated machines, as we cannot renumber the

machines to obtain alternative solutions.

A few papers have been published that explore the issues of symmetry in MIP models

which are solved by standard branch-and-bound methods. The large number of

alternative solutions will lead to problems in the branch-and-bound algorithm (Sherali

and Smith, 2001). A path in the branch-and-bound tree leading to one of the alternative

optimal solutions cannot be pruned as the lower bound will indicate that this is a valid

path to investigate. Sherali and Smith (2001) assert that considering symmetry is an

important modeling concept that is, however, not used very often. They illustrate the use

of various symmetry breaking constraints on 3 different problems. Degraeve et al.

(2002) explore symmetry in the IP formulation of a fixed charge cutting stock and

layout problem in the fashion industry.

Symmetry breaking constraints aim to exclude alternative solutions. The first type of

symmetry breaking constraints that we investigate for the lotsizing problem are

lexicographic ordering constraints (Sherali and Smith 2001, Degraeve et al. 2002). We

impose the constraint that if item 1 is produced in period t, it must be on the first

machine(s). This is achieved by the following constraints:

...131211 ≥≥≥ ttt yyy

After imposing these constraints, we have a subset of machines on which item 1 is

produced and a subset on which item 1 is not produced. If this does not result in a

complete ordering, we impose a further hierarchical condition. In cases where there is a

tie for item 1 (i.e. and have the same value), we impose a further ordering on

the production of item 2:

kty1 tky ,1,1 +

...222 231322122111 ≥+≥+≥+ tttttt yyyyyy

 10

In cases where there is still no complete ordering, the tie will be broken by looking at

product 3:

 ...242424 332313322212312111 ≥++≥++≥++ ttttttttt yyyyyyyyy

We continue this reasoning for the next items. This comes down to assigning a unique

number to each possible configuration of setups on a machine, and next order the

machines by decreasing value of this number. We use coefficients which are powers of

two in order to ensure the uniqueness of the assigned number. We investigated three

ways of implementing these lexicographic constraints. First of all, we impose all the

lexicographic ordering constraints:

(SBC1) ∑∑
=

−

=
−

− ≥
i

j
jkt

ji
i

j
tkj

ji yy
1

)(

1
,1,

)(22 TtMkPi ∈∀∈∀∈∀ },1{\,

We can also only use the final ordering constraint, which includes all the items. This

constraint suffices to impose a unique ordering as it assigns a unique number to each

possible setup configuration on a machine.

(SBC2) ∑∑
=

−

=
−

− ≥
n

i
ikt

in
n

i
tki

in yy
1

)(

1
,1,

)(22 TtMk ∈∀∈∀ },1{\

We can also impose only a subset of the lexicographic ordering constraints. Using only

the first constraints involving only item one, will impose a partial ordering.

(SBC3) kttk yy 1,1,1 ≥− TtMk ∈∀∈∀ },1{\

Other ways of imposing a partial ordering can be obtained by assigning a number to

each machine that is not necessarily unique. This can be achieved by using the structure

of SBC2, but with different coefficients. The idea of imposing a hierarchy on the sum of

the product indices or the sum of the squares of the product indices is similar to an idea

used by Sherali et al. (2001) for a network design problem.

(SBC4) ∑∑
==

− ≥
n

i
ikt

n

i
tki yiyi

11
,1, TtMk ∈∀∈∀ },1{\

(SBC5) ∑∑
==

− ≥
n

i
ikt

n

i
tki yiyi

1

2

1
,1,

2 TtMk ∈∀∈∀ },1{\

Yet other ways of breaking the symmetry can be achieved by ordering the machines

according to some natural logic such as a decreasing total setup cost per machine

(SBC6), decreasing total cost per machine (SBC7) or decreasing capacity utilization

(SBC8):

 11

(SBC6) ∑∑
==

− ≥
n

i
ikti

n

i
tkii yscysc

11
,1,

TtMk ∈∀∈∀ },1{\

(SBC7)

∑∑∑∑ ∑∑
= === = =

−− +≥+
n

i

m

tl
iktlitl

n

i
ikti

n

i

n

i

m

tl
tlkiitltkii zvcvysczvcvysc

111 1
,1,,1,

TtMk ∈∀∈∀ },1{\

(SBC8)

∑∑∑∑ ∑∑
= === = =

−− +≥+
n

i

m

tl
iktlitli

n

i
ikti

n

i

n

i

m

tl
tlkiitlitkii zvsdvtysczvsdvtyst

111 1
,1,,1,

TtMk ∈∀∈∀ },1{\

The effectiveness of these eight symmetry breaking constraints (SBC) will be tested in a

computational experiment.

5. Computational Experiments

5.1. Discussion of the data sets used

As far as we know, no standard data test sets are available for the big bucket, parallel

machine lotsizing problem. Therefore, we adapted an existing standard data set which

was originally set up to test the single machine capacitated lotsizing problem with setup

times (Trigeiro et al. 1989). This standard set is used in many computational

experiments as a benchmark test set. We used the problem set F1 to F40. These

problems all have 6 products and 15 periods. For F1 to F20 and F21 to F40, the original

capacity level was set at 728 and 1064 respectively. For each of the 40 problem

instances we created parallel machine problems with various capacity levels and

number of machines available. The choice of the capacity levels was based on

preliminary tests to have a broad range of easy and difficult problems. As such, each

original single machine test problem resulted in 46 parallel machine test problems for

the set F1-F20 and 61 test problems for the F21-F40 set. As a result, 2140 different test

problems were created. The machine (M) and capacity (CAP) levels can be found in

Table 1 and 2. Each of the 920 test problems in F1-F20 was solved with the 8 different

symmetry breaking formulations (SBC1 to SBC8) and the base case (SBC0) where no

symmetry breaking constraints are present. Based on the results from this first

experiment, we decided to solve the 1220 test problems from F21-F40 only with the

best 3 models (SBC1 to 3) and the base case (SBC0). The experiments required 200

days of computing in total.

 12

5.2. Numerical Results

The experiments were performed on a 3.0 GHz computer with an Intel Pentium 4

processor. CPLEX 9.1.3 was used with the default setting. Only the MIP optimality gap

was strengthened from 0.01% to 0.001%. We solved all the test problems using the

network reformulation (6)-(12). All computation times are reported in seconds. We

report two decimals for times below 1 second and 1 decimal for times below 100

seconds. We set a maximum time of 3600 seconds for each problem. In Tables 1 and 2,

we present the CPU times for each combination of machine (M) and capacity (CAP)

level and for various formulations (SBC0 to SBC8). The capacity level refers to the

capacity available on each machine. For each machine-capacity combination, the CPU

times are averaged over 20 problem instances. The smallest CPU time per level is

indicated in bold.

Table 1: Average CPU times in seconds for the F1-F20 set for different machine and
capacity levels

M CAP SBC0 SBC1 SBC2 SBC3 SBC4 SBC5 SBC6 SBC7 SBC8
2 525 38,6 3,7 3,6 7,6 50,5 8,9 23,3 67,1 201
2 500 226 9,2 9,0 26,2 75,7 27,8 48,7 87,3 110
2 475 363 33,9 33,0 202 259 126 231 398 679
2 450 1722 511 509 756 936 591 954 1332 2116
2 425 2422 972 1149 1609 1991 1425 1722 1825 2991
2 400 3562 2473 2253 2599 2772 2433 2899 2905 3493
2 375 3509 3009 3105 3273 3328 3012 3276 3272 3600
3 525 7,4 1,6 1,8 1,6 6,7 3,5 6,2 46,3 182
3 500 5,3 1,7 2,5 2,0 4,5 2,2 2,4 43,2 31,2
3 475 9,1 2,5 3,2 1,6 14,3 4,7 4,8 73,2 117
3 450 62,7 3,1 4,6 3,9 28,1 13,3 36,5 310 459
3 425 700 34,4 16,3 79,7 379 255 249 735 1250
3 400 901 58,8 289 405 702 401 370 1083 1924
3 375 2008 430 341 862 1189 704 959 1552 2713
3 350 2911 779 637 1807 1962 1827 1707 2152 3424
3 325 3528 2321 2566 3033 2900 2712 2903 3213 3450
3 300 3600 3080 3083 3477 3517 3015 3387 3438 3600
3 275 3600 3120 3371 3600 3600 3450 3507 3600 3600
3 250 3600 3600 3600 3600 3600 3600 3600 3600 3600
4 525 0,3 1,3 1,6 0,3 13,0 5,7 1,8 51,0 198
4 500 0,4 2,6 2,1 0,4 4,2 3,2 3,6 185 208
4 475 0,5 2,3 3,5 0,6 5,9 3,9 3,2 196 26,5
4 450 3,1 3,0 3,7 1,6 18,0 10,0 19,8 298 417
4 425 187 8,0 10,4 4,9 115 128 379 681 1004
4 400 385 31,9 51,1 55,5 418 374 302 621 1596
4 375 287 146 104 57,8 433 322 497 1000 1350
4 350 1253 415 523 684 1751 718 1268 1541 2680
4 325 2024 1193 1301 1779 2247 1867 1868 2252 3600
4 300 3290 2416 2437 2776 3137 2651 2791 2973 3531

 13

4 275 3426 2731 2798 3120 3427 3161 2928 3270 3600
4 250 3600 3600 3600 3600 3600 3600 3600 3600 3600
4 225 3600 3600 3600 3600 3600 3600 3600 3600 3600
5 525 1,3 2,6 2,8 0,4 14,4 5,9 34,9 42,3 206
5 500 0,6 3,4 5,4 1,0 24,7 7,7 21,8 426 189
5 475 25,8 3,8 7,3 0,8 24,7 6,5 5,3 204 241
5 450 4,0 4,9 6,5 3,6 188 39,0 25,5 452 500
5 425 11,0 13,2 17,8 4,3 530 109 299 1053 852
5 400 366 85 364 32,1 640 395 335 972 1375
5 375 223 330 565 30,9 939 448 484 1322 2009
5 350 859 594 852 637 1734 1039 1182 1752 2584
5 325 2114 1370 1687 1670 2364 1866 1902 2193 3600
5 300 2820 2166 2117 2536 3163 2743 2677 3023 3600
5 275 3432 2750 2690 2885 3462 2983 3134 3351 3600
5 250 3600 3600 3600 3600 3600 3600 3490 3600 3600
5 225 3600 3600 3600 3600 3600 3600 3600 3600 3600
5 200 3600 3600 3600 3600 3600 3600 3600 3600 3600

Table 2: Average CPU times in seconds for the F21-F40 set for different machine and

capacity levels

M CAP SBC0 SBC1 SBC2 SBC3 M CAP SBC0 SBC1 SBC2 SBC3
2 700 63,6 22,7 4,9 4,5 4 575 29,6 4,7 6,6 15,6
2 675 48,6 5,0 6,8 5,7 4 550 22,1 3,1 6,6 35,3
2 650 224 13,0 9,5 27,4 4 525 87,1 14,1 20,9 3,0
2 625 169 16,8 15,6 55,9 4 500 522 10,6 15,0 64,1
2 600 257 116 26,1 60,1 4 475 771 217 239 443
2 575 1173 169 106 818 4 450 1330 406 390 1282
2 550 2933 1348 974 1862 4 425 1640 580 748 1387
2 525 3348 2309 2024 2467 4 400 2076 1246 1285 1529
2 500 3421 2890 2732 3077 4 375 3255 1826 2035 2838
2 475 3600 3373 3405 3600 4 350 3522 2965 2903 3315
2 450 3600 3600 3600 3600 4 325 3600 3600 3600 3600
3 700 0,1 0,4 0,5 0,2 5 700 0,2 1,5 1,5 0,2
3 675 0,2 0,5 0,5 0,2 5 675 0,2 1,5 1,7 0,2
3 650 2,0 0,8 1,2 0,8 5 650 0,2 1,5 2,2 0,3
3 625 1,8 1,2 1,8 1,6 5 625 0,3 1,9 2,7 0,3
3 600 9,7 1,3 1,3 4,2 5 600 0,3 2,1 2,9 0,4
3 575 252 10,8 22,5 57,5 5 575 2,0 3,3 7,2 1,0
3 550 521 8,9 7,3 19,5 5 550 2,1 13,5 8,6 1,1
3 525 696 36,7 29,6 264 5 525 2,6 53,9 36,0 1,8
3 500 1107 31,8 66,7 231 5 500 133 36,7 41,5 182
3 475 2330 352 433 1377 5 475 234 248 503 268
3 450 2482 951 965 1755 5 450 663 473 518 564
3 425 3373 1504 1492 2721 5 425 933 546 609 774
3 400 3600 2534 2526 3282 5 400 1296 1089 1242 1091
3 375 3600 3232 3186 3600 5 375 2645 2182 2050 2325
3 350 3600 3462 3600 3600 5 350 2958 2579 2688 2914
4 700 0,1 0,9 0,9 0,2 5 325 3426 3411 3416 3423
4 675 0,1 0,9 1,0 0,2 5 300 3526 3422 3422 3423
4 650 0,2 1,1 1,1 0,3 5 275 3600 3600 3600 3600
4 625 0,3 1,1 1,1 0,2 5 250 3600 3600 3600 3600
4 600 0,3 1,3 1,7 0,3

 14

In order to obtain a better overall view, we summarize these numbers in Tables 3 and 4

by grouping machine-capacity levels according to their average CPU times for SBC0

and then taking the average. It is not possible to group the various machine-capacity

levels according to their capacity tightness. In the presence of setup times, measuring

the a priori tightness of the capacity constraint is not possible, as this would require a

decision concerning the production and number of setups. When setup times are present,

even the feasibility problem becomes NP-complete (Trigeiro et al. 1989).

Table 3: F1-F20 CPU time averages, grouped according to average time for SBC0

 Time
 SBC0 SBC1 SBC2 SBC3 SBC4 SBC5 SBC6 SBC7 SBC8
0-1 s 0,43 2,4 3,2 0,58 12,0 5,1 7,6 215 155
1-10 s 5,0 2,7 3,4 1,8 41,0 10,9 15,6 159 242
10-100 s 34,6 5,9 8,3 4,2 158 34,5 91,0 409 438
100-1000 s 450 133 229 153 570 352 408 865 1388
1000-3600 s 2716 1681 1722 2099 2473 2050 2214 2490 3286
3600 s 3600 3475 3507 3585 3590 3508 3548 3580 3600

Table 4: F21-F40 CPU time averages, grouped according to average time for SBC0

 Time
 SBC0 SBC1 SBC2 SBC3
0-1 s 0,21 1,2 1,5 0,24
1-10 s 3,4 12,3 9,4 1,8
10-100 s 50,2 9,9 9,2 12,8
100-1000 s 448 144 170 232
1000-3600 s 2547 1626 1610 2102
3600 s 3600 3375 3390 3560

From Tables 3 and 4, we see that for easy problems, i.e. the ones that take less than 1

second on average using model SBC0, it is better not to add any symmetry breaking

constraints, as this only increases the formulation size and slows down the optimization

process. For these easy problems, adding the few constraints in SBC3 only increases the

CPU slightly, but adding other symmetry breaking constraints increases the times

substantially. These easy problems correspond to the problems where a lot of capacity is

available. Next we look at the problems that take on average between 1 and 10 seconds

without any symmetry breaking constraints. For these problems, adding a small amount

of symmetry breaking constraints (SBC3) improves the SBC substantially. For these

problems, adding SBC1 and SBC2 reduces the time for data set F1-F20, but increases it

for F21-F40. For all other problems, i.e. the ones taking more than 10 seconds on

average with SBC0, adding SBC1, 2 or 3 results in large decreases in CPU time.

 15

From Table 3, it is also clear that SBC4 to 8 are not effective in speeding up the CPU

time. For the easy problems which take up to 10 seconds on average in the base case,

adding these symmetry breaking constraints actually substantially increases the CPU

time. Especially SBC 7 and 8 show an enormous increase in CPU time for the easier

problems, compared to SBC0. These two symmetry breaking constraints almost always

result in much larger CPU times for the complete data set. These two symmetry

breaking constraints are the only ones from the proposed set that combine binary and

continuous variables. Apparently, this leads to extra difficulties in the branch-and-

bound, rather than speeding it up. For the more difficult problems, which take over 10

seconds on average in the base case, SBC5, and to a lesser extent SBC6 as well, seem to

help to reduce the CPU time. As we concluded that the symmetry breaking constraints

SBC4 to SBC8 are clearly inferior to SBC1 to SBC3, we decided not to include them in

the experiments for data sets F21-F40.

Table 5: F1-F20 node averages, grouped according to average time for SBC0

 Nodes
 SBC0 SBC1 SBC2 SBC3 SBC4 SBC5 SBC6 SBC7 SBC8
0-1 s 81 365 627 117 3015 1209 1576 57128 44352
1-10 s 3377 523 803 881 10171 2902 3768 41838 73748
10-100 s 25557 1450 2226 2468 34501 7686 18670 104949 165006
100-1000 s 279190 27701 52603 85546 117502 75691 82287 206309 425895
1000-3600 s 1468208 353855 389211 902469 492944 415743 435490 575332 1047993
3600 s 1212347 360813 382936 947468 349636 340480 340528 349403 631663

Table 6: F21-F40 node averages, grouped according to average time for SBC0

 Nodes
 SBC0 SBC1 SBC2 SBC3
0-1 s 8 74 138 7
1-10 s 2191 2609 2141 927
10-100 s 41173 4924 3485 7988
100-1000 s 268890 30269 34997 114857
1000-3600 s 1318845 307035 308861 872390
3600 s 1284799 447127 494424 1015179

The symmetry leads to duplication of nodes in the branch-and-bound algorithm. In

Tables 5 and 6, we provide the data on the average number of nodes. Just as in Table 3

and 4, the machine-capacity levels are grouped according to the average CPU time for

SBC0. We observe that SBC3 is effective in reducing the number of nodes for some of

 16

the smaller problems, while SBC1 and SBC2 are effective in reducing the number of

nodes in the more difficult problems. Clearly there is a trade-off in using symmetry

breaking constraints: adding symmetry breaking constraints might result in fewer nodes,

but the models grow larger and this might lead to a longer CPU time per node.

Therefore, the total CPU times presented in Tables 3 and 4 provide the best overall

indication of the effectiveness of the symmetry breaking constraints.

6. Conclusion

In this paper, we combine two important issues which need to be taken into

consideration when modeling and solving Mixed Integer Programming problems. We

specifically look at the lotsizing problem with identical parallel machines. The first

issue relates to finding tight formulations for the problem. This issue is well discussed

in the OR literature for various problems. For the lotsizing problem, a tighter

formulation has been proposed by Eppen and Martin (1986) representing the lotsizing

decisions in a network formulation. We extend this formulation to the case of multiple

machines. Using a tighter formulation allows us to solve lotsizing problems from a

standard test set, which otherwise would have been too time-consuming to solve with

the regular formulation. The second issue we consider for the lotsizing problem on

identical parallel machines is the issue of symmetry. This issue is generally not well

covered in the discussion on good MIP modeling. However, we demonstrate that

removing symmetry from the formulation is very helpful in speeding up computational

times for our problem. This research is in line with previous research on symmetry in

MIP formulations (Sherali and Smith 2001). We conclude that the lexicographic

ordering constraints are quite effective and lead on average to a substantial decrease in

computational time. Other symmetry breaking constraints that impose an ordering

which is not necessarily unique are less effective and often even lead to higher CPU

times due to the increase in model size. Symmetry breaking constraints that include both

binary and continuous decision variables lead on average to a substantial increase in

computational time.

Interesting areas for future research include the exploration of symmetry issues in other

applications such as parallel machine job scheduling. For small bucket lotsizing models

 17

with identical machines, it would also be interesting to compare formulations with

general integer variables versus binary assignment variables complemented with

symmetry breaking constraints. More generally, it is worth investigating whether

symmetry can be automatically detected and consequently whether these types of

symmetry breaking constraints can be automatically generated within a branch-and-

bound algorithm. Such symmetry breaking constraints should be used in addition to

other reformulation and cutting planes.

References

Ahmadi, R.H., Dasu, S., Tang, C.S., 1992. The dynamic line allocation problem.

Management Science, 38 (9), 1341-1353.

Belvaux, G., Wolsey, L.A., 2001. Modelling Practical Lot-Sizing Problems as Mixed-

Integer Programs. Management Science, 47 (7), 993-1007.

Clark, A.R., Clark, S.J., 2000. Rolling-horizon lot-sizing when set-up times are

sequence-dependent. International Journal of Production Research, 38 (10),

2287-2307.

Clark, A.R., 2003. Optimization approximation for capacity constrained material

requirements planning. International Journal of Production Economics, 84, 115-

131.

Dastidar, S.G., Nagi, R., 2005. Scheduling injection molding operations with multiple

resource constraints and sequence dependent setup times and costs. Computers &

Operations Research, 32, 2987-3005.

Degraeve, Z., Gochet, W., Jans, R., 2002. Alternative Formulations for a Layout

Problem in the Fashion Industry. European Journal of Operational Research,

Vol. 143 (1), 80-93.

De Matta, R., Guignard, M., 1994a. Dynamic production scheduling for a process

industry. Operations Research, 42 (3), 492-503.

De Matta, R., Guignard, M., 1994b. Studying the effects of production loss due to setup

in dynamic production scheduling. European Journal of Operational Research,

72, 62-73.

De Matta, R., Guignard, M., 1995. The performance of rolling production schedules in a

 18

process industry. IIE Transactions, 27, 564-573.

Dillenberger, C., Escudero, L.F., Wollensak, A., Zhang, W., 1994. On practical resource

allocation for production planning and scheduling with period overlapping setups.

European Journal of Operational Research, 75, 275-286.

Dos Santos-Meza, E., Dos Santos, M.O., Arenales, M.N., 2002. A lot-sizing problem in

an automated foundry. European Journal of Operational Research, 139, 490-500.

Dumoulin, A., Vercellis, C., 2000. Tactical models for hierarchical capacitated lot-

sizing problems with set-ups and changeovers. International Journal of

Production Research, 38 (1), 51-67.

Eppen, G.D., Martin, R.K., 1987. Solving Multi-Item Capacitated Lot-Sizing Problems

Using Variable Redefinition. Operations Research 35 (6), 832-848.

Hung, Y.F., Cheng, G.J., 2002. Hybrid capacity modeling for alternative machine types

in linear programming production planning. IIE Transactions, 34, 157-165.

Jans, R. Degraeve, Z., 2004. Improved lower bounds for the capacitated lot sizing

problem with setup times. Operations Research Letters, 32, 185-195.

Jans, R., Degraeve, Z., 2004. An Industrial Extension of the Discrete Lot Sizing and

Scheduling Problem. IIE Transactions 36 (1), 47-58.

Jans, R., Degraeve, Z., 2007a. Modeling Industrial Lot Sizing Problems: A Review.

accepted for publication in International Journal of Production Research.

Jans, R., Degraeve, Z., 2007b. Meta-heuristics for lot sizing problems: review and

comparison of solution approaches. accepted for publication in the European

Journal of Operational Research.

Kang, S., Malik, K., Thomas, L.J., 1999. Lotsizing and Scheduling on Parallel

Machines with Sequence-Dependent Setup Costs. Management Science, 45 (2),

273-289.

Kimms, A., Drexl, A., 1998. Proportional Lot Sizing and Scheduling: Some

Extenstions. Networks, 32, 85-101.

Leachman, R.C., Carmon, T.F., 1992. On capacity modeling for production planning

with alternative machine types. IIE Transactions, 24 (4), 62-72.

Madan, M.S., Gilbert, K.C., 1992. An exact solution algorithm for a class of production

planning and scheduling problems. Journal of the Operational Research Society,

43 (10), 961-970.

 19

Meyr, H. 2002. Simultaneous lotsizing and scheduling on parallel machines. European

Journal of Operational Research, 139, 277-292.

Özdamar, L., Barbarosoğlu, G., 1999. Hybrid heuristics for the multi-stage capacitated

lot sizing and loading problem. Journal of the Operational Research Society, 50,

810-825.

Özdamar, L., Birbil, S.I., 1998. Hybrid heuristics for the capacitated lot sizing and

loading problem with setup times and overtime decisions. European Journal of

Operational Research, 110, 525-547.

Pochet, Y., Wolsey, L.A., 2006. Production Planning by Mixed Integer Programming.

Springer, New York, 499 pages.

Salomon, M., Kroon, L.G., Kuik, R., Van Wassenhove, L.N., 1991. Some Extensions of

the Discrete Lotsizing and Scheduling Problem. Management Science, Vol. 37

(7), 801-812.

Sherali, H.F., Smith, J.C., 2001. Improving Discrete Model Representations via

Symmetry Considerations. Management Science, Vol. 47 (10), 1396-1407.

Stadtler, H., 2003. Multilevel lot sizing with setup times and multiple constrained

resources: internally rolling schedules with lot-sizing windows. Operations

Research, 51 (3), 487-502.

Trigeiro, W., L.J. Thomas, McClain, J.O., 1989. Capacitated Lot Sizing with Set-Up

Times. Management Science, 35 (3), 353-366.

Vanderbeck, F., 1998. Lot-Sizing with Start-Up Times. Management Science, 1998, 44

(10), 1409-1425.

Wagner, H.M., Whitin, T.M., 1958. Dynamic version of the economic lot size model.

Management Science, 5 (1), 89-96.

Wolsey, L.A., 2002. Solving multi-item lot-sizing problems with an MIP solver using

classification and reformulation. Management Science, 48 (12), 1587-1602.

 20

Publications in the Report Series Research∗ in Management

ERIM Research Program: “Business Processes, Logistics and Information Systems”

2006

Smart Business Networks Design and Business Genetics
L-F Pau
ERS-2006-002-LIS
http://hdl.handle.net/1765/7319

Designing and Evaluating Sustainable Logistics Networks
J. Quariguasi Frota Neto, J.M. Bloemhof-Ruwaard, J.A.E.E. van Nunen and H.W.G.M. van Heck
ERS-2006-003-LIS
http://hdl.handle.net/1765/7320

Design and Control of Warehouse Order Picking: a literature review
René de Koster, Tho Le-Duc and Kees Jan Roodbergen
ERS-2006-005-LIS
http://hdl.handle.net/1765/7322

A Theoretical Analysis of Cooperative Behavior in Multi-Agent Q-learning
Ludo Waltman and Uzay Kaymak
ERS-2006-006-LIS
http://hdl.handle.net/1765/7323

Supply-Chain Culture Clashes in Europe. Pitfalls in Japanese Service Operations
M.B.M. de Koster and M. Shinohara
ERS-2006-007-LIS
http://hdl.handle.net/1765/7330

From Discrete-Time Models to Continuous-Time, Asynchronous Models of Financial Markets
Katalin Boer, Uzay Kaymak and Jaap Spiering
ERS-2006-009-LIS
http://hdl.handle.net/1765/7546

Mobile Payments in the Netherlands: Adoption Bottlenecks and Opportunities, or… Throw Out Your Wallets
Farhat Shaista Waris, Fatma Maqsoom Mubarik and L-F Pau
ERS-2006-012-LIS
http://hdl.handle.net/1765/7593

Hybrid Meta-Heuristics for Robust Scheduling
M. Surico, U. Kaymak, D. Naso and R. Dekker
ERS-2006-018-LIS
http://hdl.handle.net/1765/7644

VOS: A New Method for Visualizing Similarities between Objects
Nees Jan van Eck and Ludo Waltman
ERS-2006-020-LIS
http://hdl.handle.net/1765/7654

On Noncooperative Games, Minimax Theorems and Equilibrium Problems
J.B.G. Frenk and G. Kassay
ERS-2006-022-LIS
http://hdl.handle.net/1765/7809

http://hdl.handle.net/1765/7319
http://hdl.handle.net/1765/7320
http://hdl.handle.net/1765/7322
http://hdl.handle.net/1765/7323
http://hdl.handle.net/1765/7330
http://hdl.handle.net/1765/7546
http://hdl.handle.net/1765/7593
http://hdl.handle.net/1765/7644
http://hdl.handle.net/1765/7654
http://hdl.handle.net/1765/7809

An Integrated Approach to Single-Leg Airline Revenue Management: The Role of Robust Optimization
S. Ilker Birbil, J.B.G. Frenk, Joaquim A.S. Gromicho and Shuzhong Zhang
ERS-2006-023-LIS
http://hdl.handle.net/1765/7808

Optimal Storage Rack Design for a 3D Compact AS/RS with Full Turnover-Based Storage
Yu Yugang and M.B.M. de Koster
ERS-2006-026-LIS
http://hdl.handle.net/1765/7831

Optimal Storage Rack Design for a 3-dimensional Compact AS/RS
Tho Le-Duc, M.B.M. de Koster and Yu Yugang
ERS-2006-027-LIS
http://hdl.handle.net/1765/7839

E-Fulfillment and Multi-Channel Distribution – A Review
Niels Agatz, Moritz Fleischmann and Jo van Nunen
ERS-2006-042-LIS
http://hdl.handle.net/1765/7901

Leveraging Offshore IT Outsoutcing by SMEs through Online Marketplaces
Uladzimir Radkevitch, Eric van Heck and Otto Koppius
ERS-2006-045-LIS
http://hdl.handle.net/1765/7902

Buyer Commitment and Opportunism in the Online Market for IT Services
Uladzimir Radkevitch, Eric van Heck and Otto Koppius
ERS-2006-046-LIS
http://hdl.handle.net/1765/7903

Managing Supplier Involvement in New Product Development: A Multiple-Case Study
Ferrie E.A. van Echtelt, Finn Wynstra, Arjan J. van Weele and Geert Duysters
ERS-2006-047-LIS
http://hdl.handle.net/1765/7949

The Multi-Location Transshipment Problem with Positive Replenishment Lead Times
Yeming Gong and Enver Yucesan
ERS-2006-048-LIS
http://hdl.handle.net/1765/7947

Solving Lotsizing Problems on Parallel Identical Machines Using Symmetry Breaking Constraints
Raf Jans
ERS-2006-051-LIS

∗ A complete overview of the ERIM Report Series Research in Management:

https://ep.eur.nl/handle/1765/1

 ERIM Research Programs:
 LIS Business Processes, Logistics and Information Systems
 ORG Organizing for Performance
 MKT Marketing
 F&A Finance and Accounting
 STR Strategy and Entrepreneurship

http://hdl.handle.net/1765/7808
http://hdl.handle.net/1765/7831
http://hdl.handle.net/1765/7839
http://hdl.handle.net/1765/7901
http://hdl.handle.net/1765/7902
http://hdl.handle.net/1765/7903
http://hdl.handle.net/1765/7949
http://hdl.handle.net/1765/7947
https://ep.eur.nl/handle/1765/1

	Titelblad ERS 2006 051 LIS.pdf
	
	ERIM Report Series reference number
	Publication
	September 2006
	Number of pages
	20
	Persistent paper URL
	Email address corresponding author
	rjans@rsm.nl
	Address
	RSM Erasmus University / Erasmus School of Economics
	Phone: + 31 10 408 1182
	Fax: + 31 10 408 9640
	 Abstract and Keywords
	Abstract
	Free Keywords
	Availability
	Classifications

	overzicht LIS 2006.pdf
	ERIM Research Program: “Business Processes, Logistics and Information Systems”

