
This article was downloaded by: [128.173.125.76] On: 21 February 2014, At: 12:06
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Computing

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

An Algorithm for Fast Generation of Bivariate Poisson
Random Vectors
Kaeyoung Shin, Raghu Pasupathy,

To cite this article:
Kaeyoung Shin, Raghu Pasupathy, (2010) An Algorithm for Fast Generation of Bivariate Poisson Random Vectors. INFORMS
Journal on Computing 22(1):81-92. http://dx.doi.org/10.1287/ijoc.1090.0332

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2010, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
http://dx.doi.org/10.1287/ijoc.1090.0332
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

INFORMS Journal on Computing
Vol. 22, No. 1, Winter 2010, pp. 81–92
issn 1091-9856 �eissn 1526-5528 �10 �2201 �0081

informs ®

doi 10.1287/ijoc.1090.0332
©2010 INFORMS

An Algorithm for Fast Generation of
Bivariate Poisson Random Vectors

Kaeyoung Shin, Raghu Pasupathy
Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia 24061 {pman93@vt.edu, pasupath@vt.edu}

We present the “trivariate reduction extension” (TREx)—an exact algorithm for the fast generation of bivari-
ate Poisson random vectors. Like the normal-to-anything (NORTA) procedure, TREx has two phases:

a preprocessing phase when the required algorithm parameters are identified, and a generation phase when
the parameters identified during the preprocessing phase are used to generate the desired Poisson vector. We
prove that the proposed algorithm covers the entire range of theoretically feasible correlations, and we pro-
vide efficient-computation directives and rigorous bounds for truncation error control. We demonstrate through
extensive numerical tests that TREx, being a specialized algorithm for Poisson vectors, has a preprocessing phase
that is uniformly a hundred to a thousand times faster than a fast implementation of NORTA. The generation
phases of TREx and NORTA are comparable in speed, with that of TREx being marginally faster. All code is
publicly available.

Key words : statistics; simulation; random variable generation; multivariate distribution; correlation
History : Accepted by Marvin Nakayama, Area Editor for Simulation; received March 2008; revised
September 2008, March 2009; accepted March 2009. Published online in Articles in Advance August 18, 2009.

1. Introduction
The problem of generating random variables from a
Poisson distribution with given parameter � > 0 is
well studied, and there currently exist very fast gen-
eral procedures for implementation on a digital com-
puter. See Schmeiser and Kachitvichyanukul (1981)
and Devroye (1986) for overviews, and Chen (1994),
Kronmal and Peterson (1979), Atkinson (1979a, b),
and Kemp and Kemp (1991) for specific algorithms.
In this paper, a preliminary version of which was

published as Shin and Pasupathy (2007), we consider
the bivariate generalization of the above problem—
given � > 0, �′ > 0, and −1 ≤ � ≤ 1, generate a
bivariate Poisson random vector �X1�X2� with the
stipulation that X1�X2 are Poisson distributed with
means ���′, respectively, and Corr�X1�X2� = �. Our
motivation is a setting where there is a need for a
Poisson random vector generation algorithm that is
exact, exhibits fast setup and generation times, and is
able to handle any “fair” problem. Applications seem
widespread—see Johnson et al. (2005, Chapter 4) and
Johnson et al. (1997, Chapter 37) for a long list of ref-
erences on Poisson models.
We will use the following measures in assessing

the quality of our solution procedure: (i) exactness
of the procedure; (ii) the fraction of the feasible
set of correlations that can be handled by the pro-
cedure; (iii) execution time for the preprocessing

phase, if any, within the procedure; and (iv) execu-
tion time for the generation phase within the pro-
cedure. Whereas the measures (i), (iii), and (iv) are
self-explanatory, what we mean by (ii) will become
clear in §2, where we elaborate on the notion of
the set of feasible correlations for a given pair of
marginal distributions. For now, it suffices to note
that specifying the marginal distributions of X1 and
X2 automatically imposes a maximum feasible cor-
relation �+����′�, and a minimum feasible correla-
tion �−����′�, that is achievable between X1 and X2.
The interval ��−����′���+����′�	⊆ �−1�1	 is thus the
largest set of correlations that any procedure can hope
to handle. Therefore, (ii) is measured as the fraction
of the set of correlations ��−����′���+����′�	 that can
be handled by the given procedure.

1.1. Traditional Solutions
Traditionally, the problem of generating bivariate
Poisson random vectors is approached using one of
two methods: (i) trivariate reduction (TR) or (ii) the
“normal-to-anything” (NORTA) procedure. In what
follows, we provide a brief discussion of each of these.

1.1.1. Trivariate Reduction. TR (Mardia 1970) is
a well-known procedure where three independent
Poisson random variables are combined appropriately
to form two correlated random variables. Specifically,
to generate the Poisson random variables X1�X2 with
the respective parameters ���′, and correlation �> 0,

81

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

2:
06

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

borrego
Typewritten Text
Copyright by INFORMS. Shin, Kaeyoung; Pasupathy, Raghu. An Algorithm for Fast Generation of Bivariate Poisson Random Vectors. INFORMS Journal on Computing 2010 22:1, 81-92. doi: 10.1287/ijoc.1090.0332

Shin and Pasupathy: An Algorithm for Fast Generation of Bivariate Poisson Random Vectors
82 INFORMS Journal on Computing 22(1), pp. 81–92, © 2010 INFORMS

TR first generates three independent Poisson random
variables Y1, Y2, and Y12, with parameters �1, �2,
and �12, respectively. The generated random variables
are then combined as

X1 = Y1+Y12�

X2 = Y2+Y12�

to obtain X1 and X2. Because the sum of indepen-
dent Poisson random variables is itself a Poisson ran-
dom variable, the resulting random variables X1�X2

are each Poisson with parameters �1+�12 and �2+�12,
respectively. The parameters �1, �2, and �12 are cho-
sen to match the target means ���′, and the target
correlation �, by solving the following system:

�= �1+�12�

�′ = �2+�12�

�= �12√
��1+�12���2+�12�

�

(1)

Solving the system (1) gives us

�12 = �
√
��′� �1 = �−�12� �2 = �′ −�12� (2)

Although elegant, TR has two important drawbacks
that frequently render it unusable:
D.1. TR cannot be used when the target correlation

� is negative; and
D.2. Even when the target correlation � is positive,

the vector �X1�X2� obtained through TR may not be
able to attain the target correlation while also achiev-
ing the specified marginal distributions.
The disadvantage D.1 is evident since the covari-

ance Cov�X1�X2� = Var�Y12� = �12 > 0. To see disad-
vantage D.2, we notice that the solution (2), to the
system of equations in (1), implies that �, �′, and �
should satisfy � ≥ �

√
��′ and �′ ≥ �

√
��′, or equiv-

alently, � ≤ √
k where k = Min����′�/Max����′�.

Otherwise, one of �1 and �2 will be negative, imply-
ing that TR cannot be used to generate the vector
�X1�X2� with the desired marginal distributions and
correlation. This points to a rather serious problem
in TR: as the discrepancy between the desired means
� and �′ increases, the range of correlations that can
be handled by TR shrinks. For example, if �1 = 0�9
and �2 = 9, the maximum possible correlation that
can be handled by TR is

√
0�9/9 = 0�316. The region

� ∈ �0�0�316� that can be handled by TR for this partic-
ular example is depicted in Figure 1 as the dotted line
segment joining B and C. The entire feasible region is
� ∈ �−0�8733�0�9187� and is depicted in Figure 1 as
the dotted line segment joining A and D.

0 2 4 6 8 10
–1.0

–0.5

0

0.5

1.0
A

B

C

D

λ

M
in

. p
os

si
bl

e
co

rr
.

k = 0.7
k = 0.4 k = 0.1

k = 0.7

k = 0.4
k = 0.1

M
ax

. p
os

si
bl

e
co

rr
.

Figure 1 Maximum and Minimum Achievable Correlations Between
Two Poisson Random Variables

Note. In the figure, � is the larger of the two desired means, and k is the
ratio of the smaller desired mean to the larger desired mean.

1.1.2. NORTA Procedure. NORTA is, by far, the
most general and popular method of generating cor-
related random vectors. The general principle at work
in NORTA is to first generate the “appropriate” nor-
mal random variables and then transform them to
obtain the required random variables. Specifically,
to generate a random vector X = �X1�X2� � � � �Xd� hav-
ing marginals �F1� F2� � � � � Fd� and correlation matrix
�= ��ij �d×d, use the following procedure.
1. Generate a multivariate normal random vec-

tor Z��∗� = �Z1��
∗��Z2��∗�� � � � �Zd��

∗��, where Zi��
∗�,

i = 1�2� � � � � d, are standard normal random vari-
ables, and the vector Z��∗� has the correlation matrix
�∗ = ��∗

ij �d×d.
2. Deliver X = �X1�X2� � � � �Xd� through Xi =

F −1
i ���Zi��

∗���, where F −1
i �u�= inf�u� F �x�≥ u� and �

is the univariate standard normal distribution.
The preprocessing phase in NORTA thus involves

the identification of the correlation matrix �∗ =
��∗

ij �d×d, to be used in Step 1 of the NORTA proce-
dure, so that the correlation matrix of the returned
vector X in Step 2 is �= ��ij �d×d. For the current con-
text, d= 2 and the marginal distributions are Poisson
with parameters �1 and �2. Therefore, the preprocess-
ing phase in NORTA amounts to finding a scalar �∗

such that

Corr�F −1
1 ���Z1��

∗���� F −1
2 ���Z2��

∗����

= E�F −1
1 ���Z1��

∗���F −1
2 ���Z2��

∗���	−�1�2√
�1�2

= �� (3)

The NORTA procedure is very general and works
particularly well when the support of the required
marginals is continuous (Chen 2001; Cario and Nelson
1997, 1998). However, when the support of one or
more of the random variables Xi = F −1

i ���Zi��
∗���,

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

2:
06

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Shin and Pasupathy: An Algorithm for Fast Generation of Bivariate Poisson Random Vectors
INFORMS Journal on Computing 22(1), pp. 81–92, © 2010 INFORMS 83

i= 1�2, is denumerable (countably infinite) as in the
current context, the root-finding problem (3) turns
out to be nontrivial and difficult to solve efficiently.
As elaborated in Avramidis et al. (2009), the main
difficulty lies in efficiently and accurately computing
the function g��∗� = E�F −1

1 ���Z1��
∗���F −1

2 ���Z2��
∗���	,

which, in the denumerable case, turns out to be
an infinite double sum with the summand being a
bivariate normal tail probability. We say more on this
in §5.2, where we discuss a fast implementation of
NORTA and compare it with that of the proposed
algorithm.

1.2. Contributions
In this paper, we extend TR appropriately to propose
TREx—a tailored algorithm for generating bivariate
Poisson random vectors. The following are specific
contributions of this work.
1. We characterize and depict the theoretical limits

of the feasible range of correlations for a given pair of
Poisson distributions (§2, Propositions 1–5).
2. We describe and list TREx, an algorithm for gen-

erating correlated Poisson random vectors (§3). The
algorithm is exact and covers all theoretically feasible
correlations in two dimensions. We detail a fast algo-
rithm for solving the preprocessing phase in TREx,
along with directives on implementation (§4).
3. We provide rigorous bounds for truncation error

control (§4.2, Propositions 9 and 10) useful for TREx
implementation.
4. A minor contribution is obtaining bounds for the

error incurred in truncating the double infinite sum
when computing E�F −1

1 ���Z1��
∗���F −1

2 ���Z2��
∗���	

within NORTA (Proposition 11). Although we present
this bound for the Poisson case in §5, it may be
useful in other NORTA contexts where the marginal
distributions are denumerable.
5. All code is available at https://filebox.vt.edu/

users/pasupath/pasupath.htm. Specifically, the web-
site provides (i) a fast module (“maxcorr”) that calcu-
lates the maximum and minimum allowable correla-
tion between any two Poisson random variables, and
(ii) an implementation of TREx that incorporates the
error bounds detailed in the paper.

1.3. Organization
The remainder of the paper is organized as fol-
lows. In §2 we characterize the structure of the
feasible region of correlations between two Poisson
random variables as a function of the Poisson param-
eters �1��2. In §3, we present a detailed description
and listing of the TREx algorithm. This is followed
by §4, where we provide an algorithm for executing
the preprocessing phase of TREx, including directives
on implementation. Section 5 describes results from
extensive numerical tests on the preprocessing phases
of TREx and NORTA. We provide concluding remarks
in §6.

2. Structure of the Feasible Region
In this section, we depict the feasible set of correla-
tions between two Poisson random variables X1�X2
with respective parameters ���′. We first present
the following definition introduced by Ghosh and
Henderson (2003).
Definition 1. A product-moment (rank) correla-

tion matrix � is feasible for a given set of marginal
distributions F1� F2� � � � � Fd if there exists a random vec-
tor X with marginal distributions F1� F2� � � � � Fd and
product-moment (rank) correlation matrix �.
To illustrate feasible correlation matrices, consider

two Poisson random variables X1 and X2 having
respective means � = 0�5 and �′ = 0�5. It can be
shown that the largest achievable positive correla-
tion between X1 and X2 is 1, and the largest achiev-
able negative correlation between X1 and X2 is −0�5.
Therefore, any correlation matrix

�=
(
1 r
r 1

)
�

with r values in the interval �−0�5�1	 is a feasible cor-
relation matrix for the vector �X1�X2�. The matrix �
is a correlation matrix, but not feasible, if r lies in the
interval �−1�−0�5�.
More generally, as shown in Whitt (1976), if ran-

dom variables X1 and X2 have cumulative distri-
bution functions (cdfs) F �x� and G�x�, respectively,
and U is a random variable that is uniformly dis-
tributed between 0 and 1, then Corr�F −1�U��G−1�U��
is the maximum achievable and Corr�F −1�U��G−1�1−
U�� the minimum achievable correlations between X1
and X2, respectively. Therefore the feasible set of cor-
relations between the random variables X1 and X2 is
�Corr�F −1�U��G−1�1−U���Corr�F −1�U��G−1�U��	.
Figure 1 depicts this feasible set when X1 and X2 are

Poisson random variables. The figure is plotted as a
function of the larger desired mean � (assumed with-
out loss of generality) of X1 and X2, and the ratio k of
the smaller to the larger desired means of X1 and X2.
Thus, for a given � and k, a vertical line between
the corresponding upper and lower curves depicts the
range of feasible correlations.
Five properties of the curves depicted in Figure 1

are noteworthy.
—Each curve is continuous everywhere in � ∈ �0��

(Proposition 1). Furthermore, the set of points where
each curve is nondifferentiable has Lebesgue measure
zero (Proposition 7).
—There is an initial linear region for every negative

correlation curve (see the bottom half of Figure 1).
This corresponds to the region ��� F −1

� �u�F −1
k� �1−u�= 0

for all u ∈ �0�1	}.
—For a given ratio of the two parameters, i.e., for

fixed k, the maximum positive andmaximum negative
correlations tend to 1 and −1, respectively, as �→
(Proposition 3).

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

2:
06

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Shin and Pasupathy: An Algorithm for Fast Generation of Bivariate Poisson Random Vectors
84 INFORMS Journal on Computing 22(1), pp. 81–92, © 2010 INFORMS

—The curves are in the form of “scallops” with the
ends of the scallops corresponding to the points of
nondifferentiability.
—The curves become “approximately linear” when

multiplied by the factor �
√
k.

Propositions 1 through 5 characterize the limiting
behavior of these curves rigorously. As stated ear-
lier, assume X1 and X2 are Poisson random vari-
ables with means � and �′. Also assume, without loss
in generality, that � ≥ �′. Denote the maximum and
minimum achievable correlation between X1 and X2
as �+����′� and �−����′�, respectively. Also, denote
k= �′/�. Proofs for Propositions 1 through 5 are
provided in the Online Supplement (available at
http://joc.pubs.informs.org/ecompanion.html).

Proposition 1. Functions �+���k��, �−���k�� are
continuous in ���k� ∈ �0��× �0�1	.

Proposition 2. For fixed k,

lim
�→0

�+���k��=√
k� lim

�→0
�−���k��= 0�

Proposition 3. For fixed k,

lim
�→

�+���k��= 1� lim
�→

�−���k��=−1�

Proposition 4. For fixed �,

lim
k→0

�+���k��= 0� lim
k→0

�−���k��= 0�

Proposition 5. For fixed �,

lim
k→1

�+���k��= �+������ lim
k→1

�−���k��= �−������

3. TREx—Algorithm Description
Recall that the objective is to generate the random
vector �X1�X2� such that X1 has a Poisson distribu-
tion with mean �, X2 has a Poisson distribution with
mean �′, and Corr�X1�X2� = �, where ���′ > 0 and
� ∈ �−1�1� are given.
Our assumption about � ∈ �−1�1� creates the pos-

sibility of the desired correlation being infeasible; i.e.,
� > �+���k�� or � < �−���k��. This problem of infea-
sibility is not a complication because it is automat-
ically detected at the end of the preprocessing step.
In other words, the proposed algorithm is such that
nothing special needs to be done to check for an infea-
sible problem.
Denote F −1

� �y�= inf�x � F��x� > y�, where F��x� is the
Poisson cdf with mean �. Let U be a random variable
that is uniformly distributed between 0 and 1. Then
the proposed algorithm takes the following form:

X1=Y1+F −1
�∗ �U�� X2=Y2+F −1

k�∗�U� if �>0�

X1=Y1+F −1
�∗ �U�� X2=Y2+F −1

k�∗�1−U� if �<0�
(4)

We draw attention to three aspects of the proposed
operations. First, when �> 0, i.e., when positive corre-
lation between X1 and X2 is sought, we use common
random numbers as in TR. When � < 0, we use anti-
thetic variates to induce negative correlation between
X1 and X2. Second, we note that for both cases, �> 0
and � < 0, unlike TR, there is no “common random
variable.” Instead, the random variables inducing cor-
relation are obtained through inversion of two differ-
ent Poisson cdfs. The means of these Poisson cdfs are
in the same ratio as the target means � and �′. Third,
the value of �∗ needs to be determined as part of the
preprocessing step so that the resulting random vari-
ables X1, X2 attain the target means and the target
correlation.

3.1. TREx—Algorithm Listing
We list the operations involved in TREx as Algo-
rithm 1. We discuss Step 7 (preprocessing step) in
detail in §4. Inverting a Poisson cdf, required in
various steps, can be done efficiently through exist-
ing random variate generation routines (Kemp and
Kemp 1991, Schmeiser and Kachitvichyanukul 1981,
Devroye 1986).

Algorithm 1 (TREx)
Require: �> 0��′ > 0�� ∈ �−1�1�
1: if �= 0 then
2: Generate U1 ∼U�0�1�, U2 ∼U�0�1�,

independently
3: X1 ← F −1

� �U1�
4: X2 ← F −1

�′ �U2�
5: return �X1�X2�
6: end if
7: Solve for �∗ {preprocessing step}
8: Generate U1 ∼U�0�1�, U2 ∼U�0�1�, U3 ∼U�0�1�
independently

9: Y1 ← F −1
�−�∗�U1�

10: Y2 ← F −1
�′−k�∗�U2�

11: Y12 ← F −1
�∗ �U3�

12: if �> 0 then
13: Y ′

12 ← F −1
k�∗�U3�

14: else
15: Y ′

12 ← F −1
k�∗�1−U3�

16: end if
17: X1 ← Y1+Y12
18: X2 ← Y2+Y ′

12
19: return �X1�X2�

3.2. Rationale
It is clear that TREx addresses the disadvantage D.1
in TR. What is not immediately evident is the fact that
TREx fully addresses disadvantage D.2 as well. To see
this, consider the �> 0 operation in (4). It is clear from
construction that the random variables Y1, Y2, F −1

�∗ �U�,
and F −1

k�∗�U� are each Poisson distributed with respec-
tive means � − �∗, �′ − k�∗, �∗, and k�∗. Therefore,

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

2:
06

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Shin and Pasupathy: An Algorithm for Fast Generation of Bivariate Poisson Random Vectors
INFORMS Journal on Computing 22(1), pp. 81–92, © 2010 INFORMS 85

the random variables X1 and X2 will have the correct
marginal distributions, provided the quantities �−�∗

and �′ − k�∗ remain positive. This, however, can be
ensured by restricting �∗ to the interval �0��	, after
recalling that � ≥ �∗ and k ≤ 1. A similar argument
holds for the �< 0 case as well.
What range of correlations are covered if we restrict

�∗ to the interval �0��	? To answer this question, again
consider the � > 0 case in (4). As �∗ → 0, we have
Corr�X1�X2� → 0, giving us the trivial uncorrelated
case. On the other extreme, as �∗ → �, we have � −
�∗ → 0, �′ − k�∗ → 0, and k�∗ → �′. These three
implications together mean that Y1 and Y2 vanish,
and Corr�X1�X2�→Corr�F −1

� �U�� F −1
k� �U��= �+���k��.

Furthermore, it can be shown that Corr�X1�X2� is
a continuous function of �∗. These three facts—
Corr�X1�X2�→ 0 as �∗ → 0, Corr�X1�X2�→ �+���k��
as �∗ → �, and the continuity of Corr�X1�X2� as a func-
tion of �∗—ensure that the entire range of positive
correlations �0��+���k��	 can be achieved through
TREx. Similar arguments for the �< 0 case imply that
TREx achieves the entire range of negative correlations
��−���k���0	 as well.
Before we state the above arguments formally

through Proposition 6, we also note in passing that we
can achieve a similar effect, i.e., obtaining the entire
range of feasible correlations, through

X1=Y1+F −1
�∗1

�U�� X2=Y2+F −1
�∗2

�U� if �>0�

X1=Y1+F −1
�∗1

�U�� X2=Y2+F −1
�∗2

�1−U� if �<0�
(5)

instead of (4). The operation (5), however, provides
no advantages over (4), at least in two dimensions.
It does have the disadvantage of making the prepro-
cessing step a two-dimensional search, as opposed
to the one-dimensional search afforded by (4). The
proof of Proposition 6 is a simple consequence of
Proposition 1.

Proposition 6. Let Y1, Y2 be Poisson random variables
with means �− �∗ and �′ − k�∗, respectively, where 0 <
�∗ ≤ � and k = �′/� ≤ 1. Let U be a random variable
that is mutually independent of Y1 and Y2, and uniformly
distributed between 0 and 1. Then
(i) the functions Corr�Y1 + F −1

�∗ �U��Y2 + F −1
k�∗�U��,

Corr�Y1 + F −1
�∗ �U��Y2 + F −1

k�∗�1 − U�� are continuous in
�∗ ∈ �0��	;
(ii) lim�∗→�Corr�Y1 + F −1

�∗ �U��Y2 + F −1
k�∗�U�� =

�+���k��� and
(iii) lim�∗→�Corr�Y1 + F −1

�∗ �U��Y2 + F −1
k�∗�1 − U�� =

�−���k���

4. TREx Preprocessing Step
(Solving for �∗)

We see from (4) that X1 and X2 have the cor-
rect marginal distributions. The more challenging

0 5 10 15 20 25
–25

–20

–15

–10

–5

5

10

15

20

25

x

k = 0.7

k = 0.4

k = 0.1

k = 0.7

k = 0.4

k = 0.1

x = λ*

ρ

ρ

x = λ*

C
ov

(F
λ–1

(U
),

F k
λ–1

C
ov

(F
λ–1

(U
),

F k
λ

(1
–U

))
–1

(U
))

Figure 2 Preprocessing Through One-Dimensional Root-Finding
Search on the Covariance Function h�x�

question is that of identifying �∗ so that the target cor-
relation � is attained. In this section, we detail a fast
numerical procedure that can be used to identify �∗.
From (4), the correlation Corr�X1�X2� as a function

of �, k, and �∗ is given by

Corr�X1�X2�=

1

�
√
k
�E�F −1

�∗ �U�F −1
k�∗�U�	− k�∗2�

if �> 0,

1

�
√
k
�E�F −1

�∗ �U�F −1
k�∗�1−U�	− k�∗2�

if �< 0.

From the above expression for Corr�X1�X2�, iden-
tifying �∗ satisfying Corr�X1�X2� = � amounts to
solving the following generic root-finding problem,
as depicted in Figure 2. Given �, k, �,

find x= �∗ satisfying h�x�= ��
√
k� (6)

where

h�x�=
{
E�F −1

x �U �F −1
kx �U �	− kx2 if �> 0,

E�F −1
x �U �F −1

kx �1−U�	− kx2 if �< 0.
(7)

The existence of a solution to the problem in (6) is
evident from the following facts and the intermediate
value theorem (Bartle 1976, p. 153): (i) h�x� is continu-
ous (see Proposition 1), (ii) limx→0 h�x�= 0 (see Propo-
sition 2), and (iii) limx→ h�x� = if � > 0 and −
if � < 0 (see Proposition 3). There is overwhelming
numerical evidence in support of h�x� being strictly
monotone. We have, however, been unable to prove
this rigorously.

4.1. Recursion, Function, and
Derivative Computation

In this section, we present a solution for the root-
finding problem in (6). After noting that the function

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

2:
06

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Shin and Pasupathy: An Algorithm for Fast Generation of Bivariate Poisson Random Vectors
86 INFORMS Journal on Computing 22(1), pp. 81–92, © 2010 INFORMS

h is differentiable almost everywhere through Propo-
sition 7, we detail the efficient computation of h�x�
and its derivative h′�x�, and provide rigorous direc-
tives on safely truncating the summations that appear
during their computation.

Proposition 7. The real-valued function

h�x�=
{
E�F −1

x �U �F −1
kx �U �	− kx2 if �> 0,

E�F −1
x �U �F −1

kx �1−U�	− kx2 if �< 0

is differentiable almost everywhere.

Proof. Since the products F −1
x �U �F −1

kx �U � and
F −1
x �U �F −1

kx �1 − U� are each nondecreasing in x
(for fixed U), the functions E�F −1

x �U �F −1
kx �U �	 and

E�F −1
x �U �F −1

kx �1 − U�	 are both nondecreasing in x.
This implies, however, that E�F −1

x �U �F −1
kx �U �	 and

E�F −1
x �U �F −1

kx �1− U�	 are differentiable almost every-
where (Royden 1988, p. 100). Conclude that h�x� is
differentiable almost everywhere. �

For solving the root-finding problem (6), we use a
Newton recursion on h�x�:

x= x+ 1
h′�x�

���
√
k−h�x��� (8)

In what follows, we elaborate on the efficient compu-
tation of h�x�, h′�x� appearing in (8).

Case � < 0: When � < 0, we note that E�F −1
x �U � ·

F −1
kx �1− U�	 = 0 when x is small enough, i.e., if Fx�0�+
Fkx�0� = e−x + e−kx ≥ 1� In such a case, h�x� = −kx2

implies that �∗ =
√
−��/

√
k. Otherwise, we compute

h�x� = ∫ 1
0 F

−1
x �u�F −1

kx �1 − u�du − kx2 starting from the
“middle region” of the integral and progressively
summing out to the tails.
To do this, we first compute mx = Min�k ∈ Z+�

Fx�k� ≥ 0�5��mkx = Min�k ∈ Z+� Fkx�k� ≥ 0�5�,
and the corresponding cumulative probabilities
Fx�mx�� Fkx�mkx�, where Z+ = �0�1�2� � � �� denotes the
set of nonnegative integers. An efficient way to
compute these is through J -fraction approximations
given in Kemp (1988). These approximations are
highly accurate analytic expressions for Fx�r�, where
r is the “round-off” value of x, i.e., the integer that
satisfies r +%= x�−0�5≤ %< 0�5. We then express

h�x� =
∫ 0�5

0
F −1
x �u�F −1

kx �1−u�du

+
∫ 0�5

0
F −1
kx �u�F −1

x �1−u�du− kx2� (9)

The first of the integrals on the right-hand side of (9)
is 0 if mx = 0. Otherwise,

∫ 0�5

0
F −1
x �u�F −1

kx �1−u�du= S+ ∑
j=mx−1�mx−2� ����1

Sj� (10)

where

lj = Min�n ∈Z+ � 1− Fkx�n�≤ Fx�j��� for j = 1�2� � � � �

Sj =

jlj �Fx�j�− Fx�j − 1��� if 1− Fkx�lj � < Fx�j − 1��

Bj +Cj +
lj−1−2∑
i=lj

Tij � otherwise�

Bj = jlj �Fx�j�− 1+ Fkx�lj ���
Cj = jlj−1�1− Fkx�lj−1− 1�− Fx�j − 1���
Tij = �i+ 1�j�Fkx�i+ 1�− Fkx�i���

S =

mxmkx�0�5− Fx�mx − 1���
if 1−Fkx�mkx�≤Fx�mx−1��

B+C +
lmx−1−2∑
i=mkx

Timx
� otherwise�

B= mxmkx�Fkx�mkx�− 0�5��
C = mxlmx−1�1− Fkx�lmx−1− 1�− Fx�mx − 1��.
The expression in (10) is obtained upon noting that
the function F −1

x �u� takes the value mx −1 in the inter-
val �Fx�mx − 1��0�5	, mx − 2 in the interval �Fx�mx − 2��
Fx�mx − 1��, mx − 3 in the interval �Fx�mx − 3��
Fx�mx−2��, and so on. Similarly, the function F −1

kx �1−u�
takes the value mkx in the interval �1− Fkx�mkx��0�5	,
mkx + 1 in the interval �1− Fkx�mkx + 1�� 1− Fkx�mkx��,
mkx+2 in the interval �1−Fkx�mkx+2�� 1−Fkx�mkx+1��,
and so on. The integral on the left-hand side of (10)
can thus be expressed as a summation by splitting the
interval �0�0�5	 into sub-intervals starting from 0�5 and
obtained by arranging the numbers 0�5� Fx�mx−1�� 1−
Fkx�mkx�� Fx�mx−2�� 1−Fkx�mkx+1�� � � � � in descending
order. The first such subinterval gives rise to the sum-
mand S as defined, and the (j + 1)th subinterval gives
rise to the summand Sj as defined. (The summation on
the right-hand side of (10) has only a finite number of
terms because F −1

x �u� = 0 for u ∈ �0� Fx�0�	.) A similar
calculation applies to the second integral appearing on
the right-hand side of (9) and for the expressions in
(12) and (13) below.

Case � > 0: For this case, unlike the � < 0 case,
there exists no linear portion of the curves in Figure 1.
Again, we first compute mx = Min�k ∈ Z+� Fx�k� ≥
0�5��mkx = Min�k ∈ Z+� Fkx�k� ≥ 0�5�, and the cor-
responding cumulative probabilities Fx�mx�� Fkx�mkx�
using the J -fraction approximations in Kemp and
Kemp (1991). We again express h�x� in two parts as

h�x� =
∫ 0�5

0
F −1
x �u�F −1

kx �u�du

+
∫ 1

0�5
F −1
x �u�F −1

kx �u�du− kx2� (11)

The first of the integrals in (11) is 0 if either mx = 0 or
mkx = 0. Otherwise,∫ 0�5

0
F −1
x �u�F −1

kx �u�du= S+ ∑
j=mx−1�mx−2� ����1

Sj� (12)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

2:
06

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Shin and Pasupathy: An Algorithm for Fast Generation of Bivariate Poisson Random Vectors
INFORMS Journal on Computing 22(1), pp. 81–92, © 2010 INFORMS 87

where

lj = Max�n∈Z+� Fkx�n�≤Fx�j��� for j=1�2�����

Sj =

j�lj+1��Fx�j�−Fx�j−1��� if Fkx�lj �<Fx�j−1��

Bj+Cj+
lj−1+2∑
i=lj

Tij � otherwise�

Bj = j�lj+1��Fx�j�−Fkx�lj ���

Cj = j�lj−1+1��Fkx�lj−1+1�−Fx�j−1���
Tij = ji�Fkx�i�−Fkx�i−1���

S =

mxmkx�0�5−Fx�mx−1���
if Fkx�mkx−1�≤Fx�mx−1��

B+C+
lmx−1+2∑
i=mkx−1

Timx
� otherwise�

B = mxmkx �0�5−Fkx�mkx−1���
C = mx�lmx−1+1��Fkx�lmx−1+1�−Fx�mx−1���

Similarly, the second integral on the right-hand side
of (11) can be written as

∫ 1

0�5
F −1
x �u�F −1

kx �u�du= S+
∑

j=mx+1
Sj� (13)

where

lj = Max�n ∈Z+� Fkx�n�≤ Fx�j��� for j = 1�2� � � � �

Sj =

j�lj + 1��Fx�j�− Fx�j − 1��� if Fkx�lj � < Fx�j − 1��

Bj +Cj +
lj−1∑

i=lj−1+1
Tij� otherwise�

Bj = j�lj + 1��Fx�j�− Fkx�lj ���

Cj = j�lj−1+ 1�
(
Fkx�lj−1+ 1�− Fx�j − 1�

)
�

Tij = j�i+ 1��Fkx�i+ 1�− Fkx�i���

S =

mxmkx�Fx�mx�− 0�5�� if Fkx�mkx�≥ Fx�mx��

B+C +
lmx

−1∑
i=mkx

Timx
� otherwise�

B = mx�lmx
+ 1��Fx�mx�− Fkx�lmx���

C = mxmkx�Fkx�mkx�− 0�5��

The derivative h′�x� can be obtained through direct
differentiation of the summation expressions for
h�x�, after noting the derivatives (with respect to x)

F ′
x�0� = −e−x, F ′

kx�0� = −ke−kx, and F ′
x�i� =

−Px�i�� F
′
kx�i�=−kPkx�i� for i= 1�2� � � � �

4.2. Bounds on Truncation Error
As described in §4.1, computing h�x� is based on a
summation involving a potentially large number of
tail probabilities from specified Poisson distributions.
From a computational standpoint, it would be useful
to truncate this summation, while making sure that
the terms excluded add to less than a prespecified tol-
erance -. In this section, we present results that pro-
vide directives for such safe truncation. We first note
the following identities related to the moments of the
Poisson distribution. See the Online Supplement for a
proof.

Proposition 8. Let Px and Fx denote the probabil-
ity mass function and cumulative distribution function,
respectively, of the Poisson distribution with mean x. Then,
(i)

∑
j=s jPx�j�= x�1− Fx�s− 2��� s ∈Z;

(ii)
∑

j=s j
2Px�j�= x2�1− Fx�s− 3��+ x�1− Fx�s− 2���

s ∈Z;
(iii)

∑s
j=0 j

2Px�j�= x2�Fx�s− 2��+ x�Fx�s− 1��� s ∈Z.

Recall that when � < 0, we wrote h�x� =∫ 0�5
0 F −1

x �u�F −1
kx �1 − u�du + ∫ 0�5

0 F −1
kx �u�F −1

x �1 − u�du. We
also expressed each of these integrals through a dou-
ble summation (10) that starts from the center, i.e.,
from u = 0�5, and sums outward to u = 0. Proposi-
tion 9, proved in the Online Supplement, provides a
bound on the error because of truncating each of these
summations.

Proposition 9. Let Fx and Fkx represent Poisson cdfs
with respective means x and kx. Then,∣∣∣∣

∫ 0�5

0
F −1
x �u�F −1

kx �1−u�du−
∫ 0�5

/
F −1
x �u�F −1

kx �1−u�du

∣∣∣∣
≤ F −1

x �/�kx�1− Fkx�F
−1
kx �1− /�− 3��� (14)

In illustrating the usefulness of Proposition 9, sup-
pose that we have summed to u = / > 0 and that
our required tolerance in computing h�x� is -. Then,
apply the error bound in (14) to each integral com-
prising h�x� individually by stopping the summa-
tion when the right-hand side of (14) falls below -/2.
Because every term in the right-hand side of (14) is
known, checking the error bound is also computation-
ally cheap.
We next present a similar truncation error bound

for the �> 0 case. Recall that for the �> 0 case, h�x�=∫ 0�5
0 F −1

x �u�F −1
kx �u�+ ∫ 1

0�5 F
−1
x �u�F −1

kx �u�, with the individ-
ual integrals being expressed as double summations
shown in (12) and (13). Proposition 10 provides sep-
arate truncation error bounds for these, with a proof
in the Online Supplement.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

2:
06

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Shin and Pasupathy: An Algorithm for Fast Generation of Bivariate Poisson Random Vectors
88 INFORMS Journal on Computing 22(1), pp. 81–92, © 2010 INFORMS

Proposition 10. Let Fx and Fkx represent Poisson cdfs
with respective means x and kx. Then,
(i) ∣∣∣∣

∫ 0�5

0
F −1
x �u�F −1

kx �u�du−
∫ 0�5

/
F −1
x �u�F −1

kx �u�du

∣∣∣∣
≤
√
I�x� F −1

x �/��I�kx� F −1
kx �/���

where I�x�y�= x2Fx�y− 2�+ xFx�y− 1�.
(ii)∣∣∣∣

∫ 1

0�5
F −1
x �u�F −1

kx �u�du−
∫ 1−/

0�5
F −1
x �u�F −1

kx �u�du

∣∣∣∣
≤
√
I ′�x� F −1

x �1− /�− 1�I ′�kx� F −1
kx �1− /�− 1��

where I ′�x�y�= x2�1− Fx�y− 3��+ x�1− Fx�y− 2��.
Proposition 10, in a fashion similar to Proposi-

tion 9, suggests that we do not have to include all
the summands appearing in (12) and (13). Instead, if
- is the prescribed tolerance, stop the summation for∫ 0�5
0 F −1

x �u�F −1
kx �u�duwhen I�x� F −1

x �/�� and I�kx� F −1
kx �/��

each fall below
√
-/2. Similarly, stop the summation

for
∫ 1
0�5 F

−1
x �u�F −1

kx �u�du when I ′�x� F −1
x �1−/� − 1� and

I ′�kx� F −1
kx �1− /�− 1� each fall below √

-/2.

4.3. Initial Guess
Motivated by Figure 2, the initial guess x0 for the
recursion (8) is obtained through a linear approxi-
mation l�x� to the function h�x�. From Proposition 3,
we see that for fixed k,

lim
x→

E�F −1
x �U �F −1

kx �U �	− kx2

x
=√

k�

lim
x→

E�F −1
x �U �F −1

kx �1−U�	− kx2

x
=−√

k�

Thus, for a given problem instance, the initial guess x0
for the recursion (8) is obtained by solving for x from
the equation l�x�= sign���

√
k x+ c = ��

√
k, to obtain

x0 = ���
√
k−c�/�sign���

√
k�. The intercept c of the lin-

ear approximation l�x� is set heuristically. For instance,
we recommend c = 0 for � > 0, and c = √

kbm − kb2m
for � < 0, where bm is the boundary of the “initial lin-
ear region” for the negative correlation case. Recall
that the boundary bm is the solution to the equation
e−bm +e−kbm = 1 and can be obtained rapidly through a
Newton search.
We conclude this section with Algorithm 2—a for-

mal algorithm listing of the preprocessing step in
TREx.

Algorithm 2 (TREx preprocessing step)

Require: �1 > 0��2 > 0�−1≤ �≤ 1� - > 0
1: if ��� ≤ - then
2: return 0 {i.e., generate independently}

3: end if
4: �←Max��1��2�
5: k←Min��1��2�/�
6: s← sign���

√
k

7: if �< 0 then
8: Solve for bm to within tolerance - {i.e., find bm

satisfying e−bm + e−kbm = 1}
9: if �

√
k�≥−kb2m then

10: return
√
−��/

√
k {solution lies in the initial

linear region}
11: end if
12: c←√

kbm − kb2m
13: else
14: c← 0
15: end if
16: �∗ = ��

√
k�− c�/s {initial guess}

17: �̂← 0
18: while ��̂−��> - do
19: Calculate �∗��∗

1

�∗ = �+��∗� k�∗� if �> 0�
= �−��∗� k�∗� if �< 0�

�∗
1 =

d�∗

d�
.

20: �̂= �∗�∗/�
21: h′−1 ← �∗

1

√
k�∗ +�∗√k

22: �∗←�∗+h′−1��
√
k�−�̂

√
k�∗� {Newton update}

23: end while

5. Computational Experience
Recall that both TREx and NORTA have two phases:
(i) a preprocessing phase where the parameters
required within the algorithm are identified, and (ii) a
generation phase where the identified parameters are
used appropriately to generate the required Poisson
random vector. In this section, we report detailed
results on execution times for (i). Our emphasis is
on (i) because, as Table 1 demonstrates, TREx and
NORTA are quite comparable in terms of execution
times for (ii), with TREx being slightly faster.
Recall from §1 that the Poisson random variate

generation problem has three problem parameters:
the means �1��2 of the marginal distributions, and
a desired correlation �. A problem is thus charac-
terized uniquely by the three parameters ��1��2���,
or equivalently by ���k���, where � = Max��1��2�
and k = Min��1��2�/Max��1��2�. In assessing per-
formance, a large number of pairs ����� were ran-
domly generated at each of a set of fixed k values
in �0�1	, and phase (i) of both TREx and NORTA
were executed in MATLAB. The stipulated tolerance
was set at 10−4, and the tests were performed on an
Intel 1.67 GHz processor. CPU execution times were
recorded using the “tic toc” function in MATLAB.
All MATLAB code used in the numerical experiments

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

2:
06

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Shin and Pasupathy: An Algorithm for Fast Generation of Bivariate Poisson Random Vectors
INFORMS Journal on Computing 22(1), pp. 81–92, © 2010 INFORMS 89

Table 1 A Brief Comparison of the Generation Phases in the TREx and
NORTA Algorithms

��1� �2� � TREx NORTA ��1� �2� � TREx NORTA

�1�1� 0	01 0	96 1	93 �10�25� 0	01 0	90 1	88
0	20 0	89 1	85 0	20 1	13 1	88
0	50 1	11 1	86 0	50 1	13 1	88
0	90 0	89 1	85 0	90 1	13 1	88

�1�10� 0	01 0	89 1	86 �10�100� 0	01 1	02 1	89
0	20 1	01 1	86 0	20 1	14 1	89
0	50 1	01 1	86 0	50 1	14 1	89
0	90 0	89 1	87 0	90 1	14 1	89

�1�25� 0	01 1	01 1	88 �25�25� 0	01 0	90 1	88
0	20 1	01 1	87 0	20 1	12 1	88
0	50 1	01 1	88 0	50 1	13 1	88
0	90 1	01 1	91 0	90 1	13 1	88

�1�100� 0	01 1	02 1	88 �25�100� 0	01 1	02 1	90
0	20 1	02 1	88 0	20 1	14 1	90
0	50 1	02 1	88 0	50 1	14 1	90
0	90 1	02 1	88 0	90 1	14 1	89

�10�10� 0	01 0	90 1	88 �100�100� 0	01 1	12 1	89
0	20 1	11 1	88 0	20 1	14 1	89
0	50 1	11 1	88 0	50 1	14 1	92
0	90 1	11 1	88 0	90 1	13 1	89

Notes. The columns titled “TREx” and “NORTA” show the time, measured in
seconds and excluding the preprocessing phase, required to generate 10,000
two-dimensional Poisson random vectors with desired means ��1� �2� and
desired correlation �. As can be seen, both algorithms are comparable in
terms of generation times, with TREx being marginally faster. Our focus
in this paper is more on the preprocessing phases of the two algorithms.

is available for download at https://filebox.vt.edu/
users/pasupath/pasupath.htm.

5.1. TREx Preprocessing Times
For assessing the efficiency of the preprocessing phase
in TREx, roughly 500,000 pairs ����� were gener-
ated randomly (uniformly) from the space �0�1�000	×
�−1�1� for each of the values k= 0�05�0�10� � � � �1. At
each k value, the preprocessing phase in TREx was
then executed, and the recorded CPU times were used
to estimate various quantiles. As noted earlier, we do
not report generation times here, i.e., the time taken
to execute Steps 8 through 20 in the algorithm list-
ing shown in §3.1. Results from the numerical exper-
iments on TREx are depicted in Figure 3, where the
25th, 50th, 75th, and 99th percentiles of execution
times are plotted as a function of k.
As can be seen from Figure 3, TREx exhibits uni-

formly fast preprocessing times. A majority of the
generated problems are solved to stipulated tolerance
within 8 × 10−4 CPU seconds. Among the roughly
10 million problems that we generated in total, the
preprocessing phase for no problem took more than
5 × 10−3 seconds and eight iterations. Figure 3 also
suggests that problems that are symmetric in the
means of the required marginal distributions, i.e.,
k ≈ 1, are somewhat easier to solve. This is because
the shape of the correlation function is such that for

0 0.2 0.4 0.6 0.8 1.0
2

4

6

8

10

12
× 10–4

k

C
PU

 ti
m

e
(s

ec
s.

)

Figure 3 Performance of the Preprocessing Phase in TREx
Notes. The curves show the 25th, 50th, 75th, and 99th percentile prepro-
cessing times estimated by randomly generating five hundred thousand
problems for each k = Min��1� �2�/Max��1� �2�. The reported CPU times
were obtained from execution through a MATLAB compiler on an Intel
1.67 GHz processor.

values of k close to 1, TREx’s initial guess detailed in
§4.3 turns out to be quite accurate.
Although we did not generate � values greater than

1,000, we do not see any reason why the proposed
algorithm will not work efficiently for larger � values.
In such cases, however, it is worthwhile investigating
whether a normal approximation to the Poisson is a
more efficient alternative.

5.2. NORTA Preprocessing Times
As suggested in §1.1.2, the NORTA procedure is
very general and works particularly well when the
support of the required marginal distributions is
continuous (Chen 2001; Cario and Nelson 1997,
1998). However, as elaborated in Avramidis et al.
(2009), when the support of one or more of the
marginal distributions is denumerable, the root-
finding problem (3) becomes nontrivial because of
the difficulty in efficiently computing the function
g��∗� = E�F −1

1 ���Z1��
∗���F −1

2 ���Z2��
∗���	. Avramidis

et al. (2009) alleviate this situation by noting that g��∗�
and g′��∗� can be computed as

g��∗�=
∑
i=0

∑
j=0

���∗�zi� zj ��

g′��∗�=
∑
i=0

∑
j=0

4�∗�zi� zj ��

(15)

where ��∗�x�y� is the bivariate standard normal
distribution function and ���∗�x�y� = ��∗�−x�−y�,
4�∗�x�y� is the bivariate normal density function with
correlation �∗, zi =�−1�F1�i��, zj =�−1�F2�j��, and ��x�
is the standard normal cdf.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

2:
06

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Shin and Pasupathy: An Algorithm for Fast Generation of Bivariate Poisson Random Vectors
90 INFORMS Journal on Computing 22(1), pp. 81–92, © 2010 INFORMS

Various algorithms are outlined in Avramidis et al.
(2009) for solving NORTA’s preprocessing phase.
We report results from the execution of one of
these algorithms—NI3—with which we had the most
success. The NI3 algorithm, in essence, is the Newton
iteration (Ortega and Rheinboldt 1970):

�n+1 = �n −
f ��n�

f ′��n�
� f ��n�=

g��n�− k�2√
k�

−�� (16)

with appropriate safeguards introduced to ensure
that the iterates stay within the stipulated range. We
also tried two other algorithms—NI2A and NI2B—
outlined in Avramidis et al. (2009), but we had much
less success primarily because of difficulties in reli-
ably setting parameters within the embedded numer-
ical integration procedure.
In carrying out the recursion (16), we need to safely

approximate g��∗� and g′��∗� by truncating the infi-
nite sums appearing in (15). We used the following
result in deciding the number of summands to use in
approximating g��∗�.

Proposition 11. Let ��x� denote the univariate stan-
dard normal cdf, let ��∗�x�y� denote the bivariate stan-
dard normal cdf with correlation �∗, and let ���∗�x�y� =
��∗�−x�−y�. Also, let zi = �−1�F1�i�� and zj =
�−1�F2�j��, where F1� F2 are Poisson cdfs with parameters
�1��2, respectively. Then,
(i) if �∗ < 0,

∣∣∣∣
∑
i=0

∑
j=0

���∗�zi� zj �−
N∑
i=0

N∑
j=0

���∗�zi� zj �

∣∣∣∣
≤ e−��1+�2�

sN

1− s
�ee�1 + ee�2�

for all s�N satisfying 1> s ≥Max�e�1/N�e�2/N�;
(ii) if �∗ > 0 and �1 ≥ �2 (without loss of generality),∣∣∣∣
∑
i=0

∑
j=0

���∗�zi� zj �−
N∑
i=0

N∑
j=0

���∗�zi� zj �

∣∣∣∣
≤ 2e−N

((
1
�2

�2N + 3−�2�
2+ ln�4�+ 2�1+

4
�2

)
e2�2

+�2N + 3�e2�1
)
+e�2 4

�2
e−
√

�N−1��2−2�1�2

·�1+√
�N − 1��2− 2�1�2��

A bound on truncation error has been difficult to
establish for g′��∗�, although computing g′��∗� accu-
rately is not needed for the Newton iterates in (16) to
converge. The bivariate cdf tail appearing as the sum-
mand in (15) was calculated using the algorithm by
Genz (2004), which appears to be the fastest among
those available.

0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

k

C
PU

 ti
m

e
(s

ec
s.

)

Figure 4 Performance of the Preprocessing Phase in NORTA Using the
NI3 Algorithm in Avramidis et al. (2009)

Notes. The curves show the 25th, 50th, 75th, and 99th percentile prepro-
cessing times estimated by randomly generating about a thousand problems
for each k =Min��1� �2�/Max��1� �2�. The reported CPU times were obtained
from execution through a MATLAB compiler on an Intel 1.67 GHz processor.

0 0.2 0.4 0.6
k

0.8 1.0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
× 10–3

C
PU

 ti
m

e
(s

ec
s.

)

Figure 5 The 25th, 50th, 75th, and 99th Percentile Preprocessing
Times in TREx on the Same Set of Problems Used in
Assessing NORTA, and Depicted in Figure 4

For assessing NORTA’s preprocessing step, we gen-
erated, for each k = 0�05�0�10� � � � �1, more than a
thousand pairs ����� uniformly drawn from the space
�0�100	× �−1�1�. The preprocessing step for each of
these problems was “solved” using the iteration (16),
with g��∗� approximated using the truncation bounds
specified by Proposition 11. The execution times,
again recorded using the tic toc function in MATLAB,
were used to construct the 25th, 50th, 75th, and 99th
percentiles as shown in Figure 4. The performance
of TREx on the same set of problems in shown is
Figure 5.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

2:
06

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Shin and Pasupathy: An Algorithm for Fast Generation of Bivariate Poisson Random Vectors
INFORMS Journal on Computing 22(1), pp. 81–92, © 2010 INFORMS 91

As can be seen from Figure 4, NORTA performs
reasonably well with a majority of the generated
problems being solved to stipulated tolerance within
5.0 CPU seconds. Of the roughly 20,000 problems
that we generated, the minimum and the maximum
time taken by NORTA’s preprocessing step were 0�05
and 16�14 seconds, respectively. TREx, however, per-
formed much faster on the same set of problems.
It can be seen from Figure 5 that the preprocessing
step in TREx is generally between 100 and 1,000 times
faster than in NORTA. In fact, we were unable to find
even a single problem where TREx’s preprocessing
step executed slower than that in NORTA.

6. Summary and Concluding
Remarks

In this paper, we present a specialized, exact method
for generating correlated Poisson random variables.
The proposed method TREx, like trivariate reduc-
tion, uses extra random variables to induce the
required correlation. The extra random variables use
common random numbers to induce positive corre-
lation, antithetic variates to induce negative correla-
tion, and have appropriately scaled means identified
through a preprocessing step involving a fast one-
dimensional recursive search. We also identify rig-
orous theoretical bounds for truncation error control
during implementation.
Unlike trivariate reduction, and like NORTA, TREx

has complete coverage in two dimensions. Further-
more, extensive numerical testing reveals that the
proposed preprocessing step in TREx, in an over-
whelming majority of the cases, takes less than
5× 10−3 seconds when executed through MATLAB on
an Intel 1.67 GHz processor. The corresponding step
in a fast implementation of NORTA seems signifi-
cantly slower, as revealed through experiments on a
common set of problems.
It is likely that at least a part of the speed gain

that TREx provides over NORTA may be diminished
through the use of more efficient numerical quadra-
ture within NORTA. (For instance, the times reported
in Avramidis et al. 2009 seem to be faster than those
reported here, although the test problems and stop-
ping criteria are different.) The fact remains, how-
ever, that evaluating g��∗� in NORTA is expensive—it
involves computing a double-infinite sum of bivariate
normal tail probabilities, each of whose arguments is
a normal inverse of a Poisson cdf. By contrast, the
corresponding computation in TREx involves an infi-
nite sum of Poisson cdf inverse products. Computing
each of the Poisson inverse products is made very effi-
cient through Kemp’s (1988) analytic approximation
to the Poisson median probability. The actual genera-
tion times in the two methods are comparable.

Two additional remarks relating to future research
are now in order.
(i) How should TREx be extended to higher di-

mensions? As in most random vector generation
algorithms, there is a direct extension of TREx
from two to higher dimensions by simply break-
ing the n-dimensional problem into n�n − 1�/2 two-
dimensional problems (Cario and Nelson 1997, Chen
2001). Although simple and direct, it is far from clear
that this is the most efficient way of extending TREx
to higher dimensions. The primary issue is that, since
each of the n�n− 1�/2 problems “receive” their own
extra random variables, there is wastage in terms of
computing time and also possible reduction in the
coverage area.
(ii) The negative binomial distribution can be char-

acterized as a “Poisson distribution whose parameter
� is Gamma distributed,” i.e., as a mixture of the Pois-
son and Gamma distributions. This close relationship
leads to interesting possibilities of developing spe-
cialized methods for generating correlated negative
binomial random variables, especially by exploiting
existing fast methods for Gamma random variate gen-
eration. Such methods may be particularly useful, con-
sidering that the negative binomial distribution has
become increasingly popular as a more flexible alter-
native to the Poisson distribution (Johnson et al. 1997).

Acknowledgments
The authors thank Bruce Schmeiser, whose original ideas
formed the basis of this research. They also thank the
anonymous referees, whose comments and suggestions
have significantly improved the content and presentation of
various parts of this paper. This work was supported in part
by the Office of Naval Research through Grant N00014-08-
1-0066.

References
Atkinson, A. C. 1979a. Recent developments in the computer gener-

ation of Poisson random variables. Appl. Statist. 28(3) 260–263.
Atkinson, A. C. 1979b. The computer generation of Poisson random

variables. Appl. Statist. 28(1) 29–35.
Avramidis, A. N., N. Channouf, P. L’Ecuyer. 2009. Efficient cor-

relation matching for fitting discrete multivariate distribu-
tions with arbitrary margins and normal-copula dependence.
INFORMS J. Comput. 21(1) 88–106.

Bartle, R. G. 1976. The Elements of Real Analysis. John Wiley & Sons,
New York.

Cario, M. C., B. L. Nelson. 1997. Modeling and generating ran-
dom vectors with arbitrary marginal distributions and corre-
lation matrix. Technical report, Department of Industrial Engi-
neering and Management Sciences, Northwestern University,
Evanston, IL.

Cario, M. C., B. L. Nelson. 1998. Numerical methods for fitting and
simulating autoregressive-to-anything processes. INFORMS J.
Comput. 10(1) 72–81.

Chen, H. 1994. Stochastic root finding in system design. Ph.D.
thesis, School of Industrial Engineering, Purdue University,
West Lafayette, IN.

Chen, H. 2001. Initialization for NORTA: Generation of random
vectors with specified marginals and correlations. INFORMS J.
Comput. 13(4) 312–331.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

2:
06

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Shin and Pasupathy: An Algorithm for Fast Generation of Bivariate Poisson Random Vectors
92 INFORMS Journal on Computing 22(1), pp. 81–92, © 2010 INFORMS

Devroye, L. 1986. Non-Uniform Random Variate Generation. Springer,
New York.

Genz, A. 2004. Numerical computation of rectangular bivariate and
trivariate normal t probabilities. Statist. Comput. 14(3) 251–260.

Ghosh, S., S. G. Henderson. 2003. Behavior of the NORTA method
for correlated random vector generation as the dimension
increases. ACM TOMACS 13(3) 276–294.

Johnson, N. L., A. W. Kemp, S. Kotz. 2005. Univariate Discrete Dis-
tributions. John Wiley & Sons, New York.

Johnson, N. L., S. Kotz, N. Balakrishnan. 1997. Discrete Multivariate
Distributions. John Wiley & Sons, New York.

Kemp, A. W. 1988. Simple algorithms for the Poisson modal
cumulative probability. Comm. Statist.: Simulation Comput. 17(4)
1495–1508.

Kemp, C. D., A. W. Kemp. 1991. Poisson random variate generation.
Appl. Statist. 40(1) 143–158.

Kronmal, R. A., A. V. Peterson Jr. 1979. On the alias method for
generating random variables from a discrete distribution. Amer.
Statistician 33(4) 214–218.

Mardia, K. V. 1970. Families of Bivariate Distributions. Griffin,
London.

Ortega, J. M., W. C. Rheinboldt. 1970. Iterative Solution of Nonlinear
Equations in Several Variables. Academic Press, New York.

Royden, H. 1988. Real Analysis. Prentice Hall, New York.
Schmeiser, B. W., V. Kachitvichyanukul. 1981. Poisson random vari-

ate generation. Technical report, School of Industrial Engineer-
ing, Purdue University, West Lafayette, IN.

Shin, K., R. Pasupathy. 2007. A method for fast generation of bivari-
ate Poisson random vectors. S. G. Henderson, B. Biller, M.-H.
Hsieh, J. Shortle, J. D. Tew, R. R. Barton, eds. Proc. 2007 Win-
ter Simulation Conf., Institute of Electrical and Electronics Engi-
neers, Piscataway, NJ, 472–479.

Whitt, W. 1976. Bivariate distributions with given marginals. Ann.
Statist. 4(6) 1280–1289.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

2:
06

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

