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The main airline operations consist of schedule planning, fleet assignment, aircraft routing, and crew schedul-
ing. To improve profitability, we present in this paper an integrated fleet assignment model with schedule

planning by simultaneously considering optional flight legs to select along with the assignment of aircraft types
to all scheduled legs. In addition, we consider itinerary-based demands for multiple fare classes. A polyhe-
dral analysis is conducted of the proposed mixed-integer programming model to tighten its representation via
several classes of valid inequalities. Solution approaches are developed by applying Benders’ decomposition
method to the resulting lifted model, and computational results are presented using real data obtained from a
major U.S. airline to demonstrate the efficacy of the proposed procedures.
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1. Introduction
As airlines cut capacities or pursue mergers and
alliances as a result of high rising fuel costs and
weak demands, the trend is to reduce operations on
routes that are not profitable, retire older and fuel-
inefficient aircraft, and increase fares. Considering
that an increase in load factors is desirable to achieve
a balance between demand and supply, airlines need
to generate more profitable schedules and to assign
aircraft having sufficient, but not excessive, capacity
to accommodate demands based on aircraft availabil-
ities, operational costs, and potential revenues. These
aspects, respectively, relate to the schedule planning
and fleet assignment problems.
Abara (1989) limited the number of possible fea-

sible connections for each flight leg to facilitate the
fleet assignment process, whereas Subramanian et al.
(1994) implemented the Coldstart model to address
the assignment of aircraft to legs at Delta Airlines.
A fleet assignment model that is still popularly used
was formulated by Hane et al. (1995), who assumed
a repeated daily schedule and proposed several pre-
processing measures such as node aggregation and
the identification of isolated islands at stations, all
of which have proven to be critical in reducing

the network size and thus the problem complex-
ity. Clarke et al. (1996) generalized the basic fleet
assignment model by including maintenance and
crew scheduling considerations while preserving its
solvability. Rushmeier and Kontogiorgis (1997) mod-
eled the fleet assignment problem as a mixed-integer
multicommodity flow problem, where the commodi-
ties are fleets and the constraints satisfy the differ-
ent operational requirements and ensure the coverage
of flights. Kniker (1998), Jacobs et al. (1999), and
Barnhart et al. (2002) considered origin-destination
(OD) fleet assignment models, where passenger rev-
enues are accounted for each OD itinerary by using a
passenger-mix model to ascertain booking levels for
each fixed-seat capacity aircraft.
As fleet assignment decisions need to be made

well in advance of departures for the purpose of
scheduling crews (although demand is highly uncer-
tain at this point), Sherali et al. (2005) proposed a
mixed-integer programming demand-driven refleet-
ing model to be solved subsequently under more
accurate demand forecasts while considering path-
level or itinerary-level demands as in Barnhart et al.
(2002), where the reassignments of aircraft to flight
legs are limited within the same family of air-
craft so as to preserve serviceability by the same
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crew. The advantage of this approach lies in the
potential utilization of a more accurate and detailed
demand forecast as departure times approach. Fur-
thermore, Sherali and Zhu (2008) introduced a two-
stage stochastic programming approach where the
first stage performs the initial fleet assignment while
recognizing that the subsequent refleeting process can
make adjustments in the second stage in response to
the stochastic demand fluctuations. Pilla et al. (2008)
employed a similar two-stage stochastic program-
ming framework and used a statistical experimen-
tal approach along with response surface techniques
to approximate the optimal expected profit function.
Sherali et al. (2006) provided a recent and comprehen-
sive survey on airline fleet assignment models.
Integrated fleet assignment and flight scheduling

considerations can increase revenues by allowing for
improved flight connection opportunities in the fleet
assignment problem. Desaulniers et al. (1997) first
addressed this issue by permitting the departure
times of legs to vary within specified time-windows,
where the resulting model was solved using a branch-
and-price approach. If a tentative flight schedule is
at hand that includes certain optional legs, then the
decision regarding which optional legs to offer can be
made concurrently with the fleet assignment model.
However, changes in the schedule could possibly
affect demands. For example, the deletion of a leg
may increase the demands on paths having origins,
destinations, and time frames that are compatible
with the paths that contain the particular leg. Such
considerations were accommodated by Lohatepanont
and Barnhart (2004) in their integrated schedule
design and fleet assignment model, which also simul-
taneously determines how many passengers to spill
on each path using itinerary-based demands and
what proportion of these spilled passengers to recap-
ture on other compatible itineraries.
The ever-expanding literature on airline opera-

tional problems variously demonstrates the benefits
of examining integrated models and, in particular,
applying Benders’ decomposition method to solve
such large-scale problems. Jacobs et al. (1999) pro-
posed an OD fleet assignment problem and solved
it using Benders’ decomposition while incorporat-
ing passenger flow considerations. In generating
schedules from scratch, Lettovsky et al. (1999) used
Benders’ methodology to solve a model for coor-
dinating the travel itineraries of multiple travel-
ers coming from multiple origin locations. Benders’
decomposition has also been used to solve an inte-
grated aircraft routing and crew scheduling prob-
lem by Cordeau et al. (2001), Mercier et al. (2005),
and Mercier and Soumis (2007), whereas Li et al.
(2006) used it for a simultaneous fleet assignment
and cargo routing problem. Sandhu and Klabjan

(2007) integrated all airline scheduling stages and pro-
posed two solution approaches: Benders’ decomposi-
tion and a combination of Lagrangian relaxation and
column generation. Alternative Benders’ decomposi-
tion and branch-and-price algorithms were designed
by Haouari et al. (2009) to solve an integrated
aircraft fleeting and routing problem. More recently,
Papadakos (2009) presented several integrated models
for airline scheduling, which were solved by apply-
ing a Benders’ decomposition method combined with
column generation.
In this paper, we develop and analyze a model

that integrates flight scheduling and fleet assign-
ment, while considering optional legs, path- and
itinerary-based demands, and multiple fare classes.
In the model presented by Lohatepanont and Barn-
hart (2004), the different demand parameters and the
demand correction terms are estimated and revised
iteratively using a schedule evaluation package that
takes the resulting flight schedule as an input. This
requires several feedback loops between the model
and the evaluation package. In addition, they treat the
passengers accepted on different itineraries in a sepa-
rate passenger-mix model that is solved subsequently,
using the optional leg selections and fleet assignment
decisions as given by the main model. In contrast,
we integrate this latter feature within our main model
itself. Furthermore, we perform a polyhedral analy-
sis to tighten the model representation and propose
an alternative specialized solution approach based on
Benders’ decomposition and a sequential fixing pro-
cess. However, because our model is intended to serve
as an initial stand-alone evaluation tool, we assume
that the leg selections do not affect path demands,
and we also tentatively ignore the recapture effect. In
this case, instead of defining the model in terms of
the extent of spillage, it is more appropriate to define
variables that directly represent the accepted demand
for each itinerary. Having ascertained the final sched-
ule based on the prescribed selection of optional legs,
we can assess the effect this has on demand using
an appropriate schedule evaluation package as in
Lohatepanont and Barnhart (2004) and reiterate the
solution process as necessary.
Our paper makes the following specific contribu-

tions. First, we present a new mixed-integer pro-
gramming model that integrates flight scheduling
and fleet assignment, and directly incorporates mul-
tiple fare classes and the number of passengers to
accept on each active path. Second, certain classes
of valid inequalities are introduced through a poly-
hedral analysis and are either a priori accommodated
within the model or are successively generated via
suitable separation problems to tighten the model
representation and reduce its complexity. Third, we
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propose a novel Benders’ decomposition-based solu-
tion approach that is suitable for handling large-scale
problems. Finally, we present computational results
using real data provided by a major U.S. airline
carrier. Our computational study demonstrates the
efficacy of the proposed procedures and reveals a sub-
stantial potential increase in profitability.
The remainder of this paper is organized as follows.

In §2, we present the basic integrated mixed-integer
programming model. Section 3 introduces several
classes of valid inequalities along with accompanying
separation routines to generate them for tightening
the model representation. In §4, we discuss two dif-
ferent algorithmic approaches using Benders’ decom-
position to efficiently optimize the developed model.
Results from our computational experiments using
real airline data are reported and analyzed in §5, and
finally, §6 provides a summary of the paper along
with some concluding remarks.

2. Model Description and Notation
Prior to describing our model, we present the fol-
lowing notation that is based on a standard time-
space network representation for all the fleet types
(for example, see Berge and Hopperstad 1993, Hane
et al. 1995, Sherali et al. 2005).

Sets
AT: set of aircraft types, indexed by a.

L: set of flight legs in the flight schedule,
indexed by j .

LM ⊆ L: set of mandatory legs, indexed by j .
LO ⊆ L: set of optional legs that are candidates for

deletion, indexed by j .
Na: set of nodes in aircraft type a’s network, a ∈

AT; indexed by n.
Ga: set of ground arcs in aircraft type a’s net-

work, a ∈AT; indexed by g.
CSa: set of arcs passing forward in time through

a counting time line in aircraft type a’s net-
work, a ∈AT.


: set of all paths (related to considered
itineraries), indexed by p.


O ⊆
: set of paths containing any of the optional
legs (hence, subject to deletion), indexed
by p.


�j
: set of paths in 
 that contain leg j� ∀ j ∈ L
(
O�j
 is defined similarly).

L�p
: set of legs belonging to path p� ∀p ∈
.
LO�p
: set of optional legs belonging to path p� ∀p ∈


O�LO�p
= L�p
∩LO
.
H : set of all fare classes, indexed by h.

Hp ⊆H : set of all fare classes on path p� ∀p ∈ 
;
indexed by h.

Parameters
caj : cost of assigning fleet type a to leg j� ∀a ∈AT,

j ∈ L.
NAa: number of available aircraft for fleet type

a� ∀a ∈AT.
Capah: capacity of aircraft type a to accommodate

passengers for fare class h� ∀a ∈AT, h ∈H .
�ph: mean demand for fare class h on path

(or itinerary) p� ∀p ∈
, h ∈Hp.
fph: estimated price for fare class h on path p,

∀p ∈
, h ∈Hp.

bfjn:



1� if flight j begins at node n
(in aircraft type a’s network);

−1� if flight j ends at node n
(in aircraft type a’s network);

0� otherwise� ∀ j ∈ L�n ∈Na�a ∈AT�

bggn:



1� if ground arc g begins at node n
(in aircraft type a’s network);

−1� if ground arc g ends at node n
(in aircraft type a’s network);

0� otherwise� ∀g ∈Ga�n ∈Na�a ∈AT�

Decision Variables

xaj :

{
1� if fleet type a covers leg j�

0� otherwise� ∀a ∈AT� j ∈ L�

wg : number of aircraft (of type a) on ground arc g in
aircraft type a’s network, ∀g ∈Ga, a ∈AT.

zp:

{
1� if path p is included in the flight network;
0� otherwise� ∀p ∈
O�

�ph: number of passengers in fare class h accepted
on path p, p ∈
, h ∈Hp (undefined �-values are
assumed to be zero).

Accordingly, we formulate an initial, simple inte-
grated flight scheduling, and fleet assignment model
(FSFAM1) as follows:

�FSFAM1
 Maximize
∑
p∈


∑
h∈Hp

fph�ph −
∑
a∈AT

∑
j∈L

cajxaj (1)

subject to∑
a∈AT

xaj = 1� ∀ j ∈ LM� (2)

∑
a∈AT

xaj ≤ 1� ∀ j ∈ LO� (3)

∑
j∈L

bfjnxaj +
∑
g∈Ga

bggnwg = 0� ∀n ∈Na� ∀a ∈AT� (4)

∑
j∈CSa

xaj +
∑

g∈CSa

wg ≤NAa� ∀a ∈AT� (5)

∑
p∈
�j


�ph ≤
∑
a∈AT

Capahxaj� ∀ j ∈ L� ∀h ∈H� (6)
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�ph ≤�ph� ∀p ∈
� ∀h ∈Hp� (7)

x� binary, �w��
≥ 0� (8)

The objective function (1) is to maximize the net
revenue considering multiple fare classes for each
path or itinerary. The cover constraints (2) and (3) dis-
tinguish between the set of mandatory and optional
legs. Constraints (4) and (5) are, respectively, the
conservation of flow and the aircraft resource count
restrictions. Constraint (6) requires that the number
of passengers flown on each leg does not violate the
capacity of the aircraft type assigned to that leg for
each fare class. Note that this constraint also ensures
that if

∑
a∈AT xaj = 0 in (3) for any j ∈ LO , then �ph = 0,

∀p ∈ 
�j
. Constraint (7) restricts the number of pas-
sengers accepted on each path to be no more than
the expected demand on that path for each fare class.
Finally, constraint (8) imposes logical restrictions on
the decision variables.
We assume that aircraft turn times in (4) and avail-

abilities in (5) are suitably adjusted to permit rou-
tine scheduled maintenance requirements, given any
feasible solution to model FSFAM1 (see Clarke et al.
1996, Talluri 1998, Gopalan and Talluri 1998). To be
more specific, if maintenance requires a short period
of time, for example, on a daily basis, it is conducted
following each flight and built into the turn times
with respect to constraint (4). This can be realized
by linking any maintenance requirement with a par-
ticular flight leg. Furthermore, maintenance requiring
four to five hours every three to five days (type A)
can be assumed to be conducted overnight, as is typ-
ically done in practice when short-haul aircraft are
inactive. This would involve requiring a minimum
number of aircraft of each type to overnight at a
maintenance station. For this purpose, as in Barnhart
et al. (1998) or Clarke et al. (1996), a maintenance
arc or leapfrog arc can be generated connecting an
end of day flight arrival time at a maintenance sta-
tion to a ground arc node for each aircraft type, with
an associated time equal to the maintenance time.
On the other hand, more extensive scheduled main-
tenance activities that require aircraft to be taken out
of service for a long period of time can be accom-
modated by appropriately decreasing the number of
available aircraft of each type with respect to con-
straint (5). However, because the fleet assignment
model assigns aircraft types, instead of individual air-
craft, to flight legs, it can only provide a desired num-
ber of maintenance opportunities but cannot ensure
that the interval between maintenance visits can sub-
sequently be appropriately spaced for each aircraft.
Although aggregate maintenance constraints as dis-
cussed above are typically incorporated within the
fleet assignment submodel, to assure a proper main-
tenance schedule, it is necessary to construct an actual

routing of individual aircraft, which is usually con-
ducted subsequently at the aircraft routing step.
Although FSFAM1 is a mathematically correct

model, it can be significantly improved by incor-
porating the z-variables defined above along with
an accompanying set of constraints that link the z-
variables to the (x��)-variables. As we shall see in
our computational experiments, this augmentation
(as well as the further polyhedral analysis conducted
in §3) substantially enhances the solvability of the
model by tightening its linear programming (LP)
relaxation. Toward this end, consider the following
constraints:

zp −
∑
a∈AT

xaj ≤ 0� ∀p ∈
O� ∀ j ∈ LO�p
� (9)

zp −
∑
a∈AT

∑
j∈LO�p


xaj ≥ 1− �LO�p
�� ∀p ∈
O� (10)

∑
a∈AT

xaj ≤
∑

p∈
O�j


zp� ∀ j ∈ LO� (11)

�ph ≤�phzp� ∀p ∈
O� ∀h ∈Hp� (12)

�ph ≤�ph� ∀p ∈
\
O� ∀h ∈Hp� (13)

�x� z
� binary, �w��
≥ 0� (14)

Constraint (9) ensures that if any leg is excluded
from the network, then all paths that contain this leg
will also be excluded; constraint (10) ensures that if
all the legs contained in a path are included in the
network, then the path that contains them is also
included. Constraint (11) relates the optional legs to
the corresponding paths, asserting that if an optional
leg is selected, then at least one path that includes
this optional leg must also be activated. In con-
text, this complements constraint (9), which implies
that if an optional path is activated, then an aircraft
must be assigned to every optional leg that belongs
to this path. In an algorithmic process that decom-
poses the problem by considering fixed values of the
zp-variables as we shall adopt, such a valid inequality
(11) can help reduce the number of corresponding
surviving xaj -variables in the resulting subproblem.
Constraints (12) and (13) partition (7) into restric-
tions for optional and mandatory paths, respectively,
tightening this relationship for the optional paths by
asserting that if zp = 0 for any p ∈
O , then no demand
can be accepted on this path. Finally, (14) replaces (8)
to include the binary restrictions on the z-variables.
We shall refer to the model defined by (1)–(6) and
(9)–(14) as FSFAM2, and we proceed now to further
analyze and improve this augmented model.

3. Valid Inequalities via a Polyhedral
Analysis

In this section, we tighten certain existing constraints
within model FSFAM2, and further propose the
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generation of additional valid inequalities via suitable
separation problems and partial convex hull charac-
terizations, also exploring their facet-defining proper-
ties. Our computational results in §5 strongly justify
the utility of these valid inequalities by demonstrat-
ing that they help to significantly improve the perfor-
mance of the proposed algorithm.

3.1. Tightening Inequalities Within Model
FSFAM2

This section addresses the lifting of constraints (6) and
(12) within model FSFAM2 via Propositions 1 and 2
below, respectively.

Proposition 1. The following is a valid inequality that
can be used to replace constraint (6):∑

p∈
�j


�ph ≤
∑
a∈AT

C̃apahjxaj� ∀ j ∈ L� h ∈H� (15)

where

C̃apahj ≡min
{
Capah�

∑
p∈
�j


�ph

}
� ∀a ∈AT� h ∈H� j ∈ L�

Proof. Consider any feasible solution (x̄� z̄� �w� ��)
to model FSFAM2 and examine any j ∈ L, h ∈ H .
If

∑
a∈AT x̄aj = 0 (for the case of j ∈ LO), then (15) is

valid by (6). Else, we have x̄a∗j = 1 for some a∗ ∈ AT
and x̄aj = 0�∀a ∈ AT� a �= a∗. In this case, (6) implies
that

∑
p∈
�j
 ��ph ≤Capa∗h, and (12) and (13) imply that∑

p∈
�j
 ��ph ≤ ∑
p∈
�j
 �ph, which yields

∑
p∈
�j
 ��ph ≤

C̃apa∗hj , or that (15) is again valid. Moreover, (15)
implies (6), even in the continuous sense, and hence
can be used to replace it. �

Henceforth, we shall assume that (6) has been
replaced by the tighter inequality (15), which can par-
ticularly be useful when capacity exceeds demand in
the sense that Capah >

∑
p∈
�j
 �ph for some a ∈AT,

h ∈H , j ∈ L. On the other hand, when demand
exceeds capacity in the sense that �ph >maxa∈AT Capah

for some p ∈ 
O , h ∈ Hp, then the following result
offers a tightening of (12).

Proposition 2. The following valid inequalities can be
used to replace constraint (12):

�ph ≤ �̃phzp� ∀p ∈
O� h ∈Hp� (16)

where

�̃ph ≡min
{
�ph�max

a∈AT
Capah

}
� ∀p ∈
O� h ∈Hp�

Proof. For any feasible solution (x̄, z̄, �w, ��) to
model FSFAM2 and for any p ∈ 
O , h ∈ Hp, if z̄p = 0,
then (16) is valid by (12), and if z̄p = 1, then (12)
implies that ��ph ≤ �ph, and (6) along with (2) and (3)
implies that ��ph ≤maxa∈AT Capah, so that (16) is again
valid. �

3.2. Additional Valid Inequalities and Separation
Routines

We now propose certain additional classes of valid
inequalities where suitable members of such classes
can be generated via separation routines as discussed
below to further tighten the model representation.

Proposition 3. The following are valid inequalities for
model FSFAM2:

�ph ≤ ∑
a∈AT

min��ph�Capah xaj�

∀p ∈
�j
� j ∈ L� h ∈Hp� (17)

Proof. Let (x̄� z̄� �w� ��) be any feasible solution to
model FSFAM2 and examine any p ∈ 
�j
, j ∈ L, h ∈
Hp. If

∑
a∈AT x̄aj = 0, then (17) is valid from (6). Other-

wise, from (2) and (3) we have that x̄a∗j = 1 for some
a∗ ∈ AT and x̄aj = 0� ∀a ∈ AT� a �= a∗. In this case, (6)
implies that ��ph ≤Capa∗h and (12) and (13) imply that
��ph ≤�ph, which yields ��ph ≤min��ph�Capa∗h or that
(17) holds true. �

The next class of valid inequalities lifts (10) for any
p ∈ 
O based on an alternative optional path q ∈ 
O

that shares at least two optional legs with it.

Proposition 4. The following are valid inequalities for
model FSFAM2:

zp −
∑
a∈AT

∑
j∈LO�p
\LO�q


xaj ≥ zq − �LO�p
\LO�q
��

∀p ∈
O� q ∈
O� �LO�p
∩LO�q
� ≥ 2� (18)

Moreover, (18) is implied by (9), (10), and 0 ≤ zq ≤ 1
when �LO�p
∩LO�q
� ≤ 1.

Proof. When zq = 0 or
∑

a∈AT xaj = 0 for any j ∈
LO�p
\LO�q
, then (18) is implied by (3) and zp ≥ 0.
When zq = 1 and

∑
a∈AT xaj = 1� ∀ j ∈ LO�p
\LO�q
, then

(18) asserts that zp = 1, which is again valid. Hence,
(18) is valid for all p ∈ 
O , q ∈ 
O . However, when
�LO�p
∩LO�q
� ≤ 1, we have from (10) and (9) that

zp −
∑
a∈AT

∑
j∈LO�p
\LO�q


xaj ≥
∑
a∈AT

∑
j∈LO�p
∩LO�q


xaj + 1− �LO�p
�

≥ zq�LO�p
∩LO�q
� + 1− �LO�p
�
= "zq − �LO�p
\LO�q
�#

+ "1− �LO�p
∩LO�q
�#�1− zq


≥ zq − �LO�p
\LO�q
��
where the first inequality simply rewrites (10), the sec-
ond inequality uses (9) (written for q ∈ 
O), and the
final inequality follows from the nonnegativity of the
second term in the preceding equation. Hence, (18) is
implied by the continuous relaxation to FSFAM2 in
this case. �
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Remark 1. It is not likely useful to incorporate all
the inequalities (17) or (18) a priori within model
FSFAM2. Rather, we can solve the LP relaxation of
model FSFAM2 and then include members of (17) and
(18) that are violated at the resulting solution, if any,
within the model at the root node before proceeding
further with the algorithmic process.
Next, prompted by (9) and (11), we describe another

class of valid inequalities. Let

LO+ ≡ �j ∈ LO� �LO�p
� ≥ 2� ∀p ∈
O�j
 �

and for any j∗ ∈ LO+, define

Sj∗
p ≡ LO�p
\�j∗ � ∀p ∈
O�j∗


and compute
$j∗ = min

p∈
O�j∗

�Sj∗

p �� (19)

Note that because j∗ ∈ LO+, we have $j∗ ≥ 1.

Proposition 5. For any j∗ ∈ LO+, let Sj∗ ⊆ S
j∗
∪ ≡⋃

p∈
O�j∗
 S
j∗
p be such that �Sj∗ ∩ S

j∗
p � ≥ $j∗�∀p ∈ 
O�j∗
.

Then the following is a valid inequality:∑
j∈Sj∗

∑
a∈AT

xaj ≥ $j∗ ∑
a∈AT

xaj∗ � (20)

Proof. Note that if
∑

a∈AT xaj∗ = 0 then (20) is triv-
ially valid. Else, from (3), we have that

∑
a∈AT xaj∗ = 1,

and so from (11), there exists a p∗ ∈
O�j∗
 for which
zp∗ = 1. This in turn implies from (3) and (9) that∑

a∈AT xaj = 1� ∀ j ∈ S
j∗
p∗ . Because �Sj∗ ∩ S

j∗
p∗ � ≥ $j∗ by

the given hypothesis, we therefore have (20) holding
true. �

To generate a strong version of (20) for any given
j∗ ∈ LO+, where $j∗ is then computed via (19), we
would like to utilize a set Sj∗ as per Proposition 5
for which �Sj∗ � is as small as possible. This can
be accomplished by preferentially selecting legs to
include within Sj∗ that repeatedly appear within the
sets S

j∗
p for p ∈ 
O�j∗
. With this motivation, a rou-

tine was designed to a priori generate inequalities of
the type (20) (see the Online Supplement available at
http://joc.pubs.informs.org/ecompanion.html); how-
ever, our computations revealed that a better alterna-
tive was to solve the following separation problem to
generate a valid inequality (20) that deletes a com-
puted optimal solution (x̄, z̄, �w, ��) to the LP relax-
ation of model FSFAM2, if possible. Toward this end,
for a selected j∗ ∈ LO+ and its corresponding value $j∗

given by (19), let

% ≡ $j∗ ∑
a∈AT

x̄aj∗ � (21)

We would now like to select Sj∗ ⊆ S
j∗
∪ as per Proposi-

tion 5 that minimizes the left-hand side of (20) for the
current LP solution. Hence, defining binary variables

yj =
1� if j ∈ Sj∗

0� otherwise
∀j ∈ S

j∗
∪ �

we can formulate the following separation problem
(SEP1) to generate (20), where the objective function
determines the left-hand side of (20) at the given LP
solution, and the constraints represent the restrictions
on Sj∗ as per Proposition 5.

�SEP1
 Minimize
∑
j∈S

j∗
∪

[ ∑
a∈AT

x̄aj

]
yj (22)

subject to
∑
j∈S

j∗
p

yj ≥ $j∗� ∀p ∈
O�j∗
� (23)

y� binary. (24)

If the optimal objective value to problem SEP1 (or
any heuristic feasible solution value) is less than % as
given by (21), then the corresponding cut (20) gen-
erated via the corresponding y-solution will delete
the current LP solution. Several rounds of such cuts
(based on different j∗ ∈ LO+) can be generated and
appended to the model.
Example 1. Suppose that for a given j∗ = 1 and


O�j∗
 = �1�2�3�4 , with S
j∗
1 = �5�6 , S

j∗
2 = �5�7�8�9 ,

S
j∗
3 = �7�10�12 , and S

j∗
4 = �6�7�15 , we have

∑
a∈AT x̄aj∗

= 1, with z̄p = 1/4� ∀p = 1� � � � �4, and that
∑

a∈AT x̄aj =
1/4� ∀ j ∈ S

j∗
∪ . Hence, this continuous solution satisfies

the relevant subset of constraints (3) and (9)–(11) in
model FSFAM2. Note that we have % = $j∗ = 2 and
S

j∗
∪ = �5� 6, 7, 8, 9, 10, 12, 15 in this example. The
separation problem (22)–(24) is then given as follows:

�SEP1
 Minimize
{ ∑

j∈S
j∗
∪

�1/4
yj � y5+ y6 ≥ 2�

y5+ y7 + y8+ y9 ≥ 2� y7 + y10+ y12 ≥ 2�

y6+ y7 + y15 ≥ 2� y� binary
}
�

An optimal solution to this problem is given by
y∗
5 = y∗

6 = y∗
7 = y∗

10 = 1, and y∗
j = 0� ∀ j ∈ S

j∗
∪ \�5�6�7�10 ,

with the optimal objective value being 1, which is less
than % = 2. Hence, y∗ generates the same cut (see the
Online Supplement) as for Example 1, which happens
to delete the given LP solution.
The following section explores conditions under

which (20) is facet defining with respect to a particu-
lar substructure of model FSFAM2.
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3.3. Partial Convex Hull Representations and
Related Facets and Separation Routines

Given any j∗ ∈ LO+, define $j∗ as in (19). Consider the
set of constraints defined by (3), (9), and (11). Noting
the appearance of the x-variables in these constraints,
let us define the aggregate variables

(j ≡
∑
a∈AT

xaj� ∀ j ∈ LO� (25)

Now, for the given j∗, consider the substructure
defined by (3), (9), and (11) under the change of vari-
ables (25) as given by

zp − (j ≤ 0� ∀p ∈
O�j∗
� ∀ j ∈ LO�p
 (26)

(j∗ ≤
∑

p∈
O�j∗

zp (27)

0≤ (j ≤ 1� ∀ j ∈ LO�p
� p ∈
O�j∗
�

zp binary� ∀p ∈
O�j∗
�
(28)

Note that by virtue of (3), (14), and (25), although
the (j -variables are binary valued, we have declared
them to be continuous on "0�1# in (26)–(28) because
it is easily verified that these variables are auto-
matically binary valued at extreme point solu-
tions to (26)–(28) for any fixed binary values for
zp� ∀p ∈ 
O�j∗
. Also, observe that if (j∗ = 0, then
zp = 0� ∀p ∈ 
O�j∗
 by (26) because j∗ ∈ LO�p
�
∀p ∈ 
O�j∗
 by the definition of 
O�j∗
. Moreover,
if (j∗ = 1, then the system (26)–(28) asserts that
�(j ≥ 1� ∀ j ∈ S

j∗
p  holds true for at least one p ∈


O�j∗
. Hence, we can equivalently restate (26)–(28)
as the following disjunction in terms of just the
(j -variables:∨

p∈
O�j∗


{
(j ≥(j∗�∀j ∈Sj∗

p �0≤(j ≤1�∀j ∈Sj∗
p ∪�j∗ 

}
� (29)

where we have explicitly written S
j∗
p ∪ �j∗ in lieu of

LO�p
 for the sake of clarity.

Proposition 6. The convex hull of (29) is given by

C�j∗
 =
{
�(j� j ∈S

j∗
∪ ∪�j∗ 
�

(
p
j ≥(

p
j∗� ∀j ∈Sj∗

p �∀p∈
O�j∗
� (30)

0≤(
p
j ≤)p� ∀j ∈Sj∗

p ∪�j∗ �∀p∈
O�j∗
� (31)∑
p∈
O�j∗


)p=1� (32)

(j =
∑

p∈
O�j∗

(

p
j � ∀j ∈S

j∗
∪ ∪�j∗ 

}
� (33)

Proof. Follows directly from Balas (1998) (or see
Sherali and Shetty 1980). �

Proposition 7. The facet-defining inequalities (or sim-
ply, facets) of C�j∗
 are of the type∑

j∈S
j∗
∪

*j(j ≥ *j∗(j∗ +*o� (34)

where the vector (*, *o) along with the vector (,, -) corre-
spond to extreme directions of the following pointed poly-
hedral cone:

*j ≥ ,
p
j −-

p
j � ∀ j ∈ Sj∗

p � p ∈
O�j∗
� (35)

*j∗ ≤
∑
j∈S

j∗
p

,
p
j +-

p
j∗� ∀p ∈
O�j∗
� (36)

∑
j∈S

j∗
p ∪�j∗ 

-
p
j +*o = 0� ∀p ∈
O�j∗
� (37)

�,�-
≥ 0� (38)

Proof. See the Online Supplement.
Remark 2. Propositions 6 and 7 can be used in

one of two ways (or in a combination of these two
strategies as discussed below). First, we could directly
include the partial convex hull representation C�j∗

given by Proposition 6 (with the (j -variables replaced
by the x-variables using (25)) for some particular
indices j∗ ∈ LO+, e.g., those for which the disjunction
(29) is violated at the optimum obtained for the LP
relaxation. Alternatively, given x̄ as this LP relaxation
solution, we can compute (̄ from (25), and if this (̄
violates any disjunction given by (29), we can solve
the following separation problem to possibly delete x̄,
based on Proposition 7:

�SEP2
 Minimize
∑
j∈S

j∗
∪

(̄j*j − (̄j∗*j∗ −*o (39)

subject to (35)–(38) (40)∑
j∈S

j∗
∪

(̄j*j − (̄j∗*j∗ −*o ≥−1� (41)

where (41) is a normalization constraint added by
way of bounding SEP2. Whenever SEP2 yields an
optimum having a negative objective value (which
would then equal −1 by virtue of (41)), we will have
actually generated a facet of C�j∗
 (by Proposition 7),
which deletes the current LP solution.
Finally, we address the issue raised in Remark 1 and

identify certain sufficient conditions under which the
valid inequality (20) given by Proposition 5 would be
facet-defining for C�j∗
 as per Proposition 7.

Proposition 8. Consider the inequality (20) given by
Proposition 5, which under (25), is restated as follows:∑

j∈Sj∗
(j ≥ $j∗(j∗ � (42)
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Suppose that

�Sj∗ ∩ S
j∗
p � = $j∗� ∀p ∈
O�j∗
 and that

�Sj∗ � = �
O�j∗
��
(43)

Moreover, suppose that the following equations are lin-
early independent:∑

j∈S
j∗
p ∩Sj∗

*j = $j∗� ∀p ∈
O�j∗
� (44)

Then (42) defines a facet of C�j∗
.

Proof. See the Online Supplement.
Example 2. Consider the data of Example 1 and

the inequality (20) generated via Routine R1 (see the
Online Supplement), which in the form of (42), is
given by

(5+ (6+ (7 + (10 ≥ 2(1� (45)

where Sj∗ ≡ �5�6�7�10 and $j∗ = 2. Furthermore, (43)
holds true, and (44) is given by *5 + *6 = 2�*5 + *7 =
2�*7 +*10 = 2, and *6+*7 = 2, which uniquely yields
*5 = *6 = *7 = *10 = 1. Hence, by Proposition 8, (45) is
facet-defining for C�1
. �

4. Solution Algorithms
We now propose two algorithmic approaches for
optimizing model FSFAM2. The first (denoted Algo-
rithm A1 below) begins by tightening the represen-
tation of model FSFAM2 using the valid inequalities
proposed in §3 and then applies Benders’ decom-
position to a suitable relaxation of this lifted model
in order to prescribe the set of optional legs to
include within the schedule. Finally, the resulting fleet
assignment problem is solved after fixing the optional
leg selections as determined above. Note that the
advantage of adopting this decomposed approach,
aside from making the model more computation-
ally tractable, is that having ascertained the complete
schedule at the final step, we can reuse the impli-
cation this has on demands as in Lohatepanont and
Barnhart (2004) by using an appropriate schedule
evaluation package to readjust the �-parameters, and
we can then reiterate this process as needed.

Algorithm A1
Step A1.1. Tighten Model Representation. We begin

by tightening model FSFAM2 by replacing (6) and (12)
with (15) and (16) using Propositions 1 and 2, respec-
tively, and adding cuts of the type (20) via Routine R1.
Next, we solve the LP relaxation of resulting model
and use rounds of cuts given by Propositions 3–7, using
the separation problems SEP1 and SEP2 for the cases
of Propositions 5 and 6–7, respectively, as well as pos-
sibly including the higher-dimensional partial convex
hull representations of Proposition 6.

Using ( ≡ �(j� j ∈ LO
 as defined in (25), let us
denote the cuts of the type (20) and (34) generated via
SEP1 and SEP2, respectively, jointly as A( ≤ b. Also,
denote the generated valid inequalities of the type
(17) via Proposition 3 as Dx+E� ≤ 0.
Then, we can rewrite the enhanced model FSFAM2

as follows:

�FSFAM+


Maximize
∑
p∈


∑
h∈Hp

fph�ph −
∑
a∈AT

∑
j∈L

cajxaj

subject to∑
a∈AT

xaj = 1� ∀ j ∈ LM�

∑
a∈AT

xaj ≤ 1� ∀ j ∈ LO� (46)

∑
j∈L

bfjnxaj +
∑
g∈Ga

bggnwg = 0� ∀n ∈Na� ∀a ∈AT�

∑
j∈CSa

xaj +
∑

g∈CSa

wg ≤NAa� ∀a ∈AT� (47)

zp −
∑
a∈AT

xaj ≤ 0� ∀p ∈
O� ∀ j ∈ LO�p
�

zp −
∑
a∈AT

∑
j∈LO�p


xaj ≥ 1− �LO�p
�� ∀p ∈
O�

∑
a∈AT

xaj ≤
∑

p∈
O�j


zp� ∀ j ∈ LO�

∑
p∈
�j


�ph ≤
∑
a∈AT

C̃apahjxaj� ∀ j ∈ L� ∀h ∈H�

�ph ≤ �̃phzp� ∀p ∈
O� ∀h ∈Hp�

�ph ≤�ph� ∀p ∈
\
O� ∀h ∈Hp�

A( ≤ b�

Dx+E� ≤ 0�

(j =
∑
a∈AT

xaj� ∀ j ∈ LO� (48)

�x� z
� binary� �w��
≥ 0�

Step A1.2. Apply Benders’ Decomposition to a Relax-
ation of Model FSFAM+. Let model FSFAM

+
denote

model FSFAM+ in which the binary restrictions on
the x-variables are relaxed but the (-variables are then
explicitly required to be binary valued (actually, as
shown in Proposition 9 in the Online Supplement, it is
sufficient to simply restrict (j ≤ 1� ∀ j ∈ LO , and ( will
automatically turn out to be binary valued for any
feasible solution). Hence, (46) can then be eliminated
in light of (48).
We next apply Benders’ decomposition to model

FSFAM
+
, where the variables �z� (
 ≡ �zp� ∀p ∈ 
O�

and (j� ∀j ∈ LO
 are used in the master program as
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binary restricted variables (as mentioned above, the (-
variables are equivalently relaxed to satisfy 0≤ (j ≤ 1�
∀j ∈ LO), and the variables (x�w��) are used in the
subproblem as continuous variables. (See the Online
Supplement for explicit formulations of the master
program and the primal and dual subproblems.)
Step A1.3. Optimize a Restriction of Model FSFAM+.

Having obtained an optimal (partial) solution (z∗� (∗)
to model FSFAM

+
, we next fix zp = z∗p� ∀p ∈ 
O in

model FSFAM2, label as mandatory all legs j in 
O

for which (∗
j = 1, and delete all the remaining legs in


O from the model (i.e., we delete the legs j in 
O

for which (∗
j = 0). Let �
 ⊆ 
 denote the set of paths

resulting from fixing the zp-variables, ∀p ∈ 
O , and
let L̂ ⊆ L denote the set of legs resulting from fixing
the (j -variables, ∀j ∈ LO . This yields the following ver-
sion of the lifted model FSFAM2 (using Proposition 1,
which remains valid):

Maximize
∑
p∈ �


∑
h∈Hp

fph�ph −
∑
a∈AT

∑
j∈L̂

cajxaj (49)

subject to∑
a∈AT

xaj = 1� ∀ j ∈ L̂�

∑
j∈L̂

bfjnxaj +
∑
g∈Ga

bggnwg = 0� ∀n ∈Na� ∀a ∈AT�

∑
j∈CSa∩L̂

xaj +
∑

g∈CSa

wg ≤NAa� ∀a ∈AT�

∑
p∈ �
�j


�ph ≤
∑
a∈AT

C̃apahjxaj� ∀ j ∈ L̂� ∀h ∈H�

�ph ≤�ph� ∀p ∈ �
� ∀h ∈Hp�

x� binary, �w��
≥ 0�

Algorithm A2
We adopt an identical approach to Algorithm A1,
except that at step A1.2, we solve the relaxed mixed-
integer program (MIP) given by model FSFAM

+

directly in lieu of applying Benders’ decomposition to
this problem.

5. Computational Experiments
The algorithms proposed in §4 were implemented
in AMPL CPLEX 10.1 on a Precision PWS690 com-
puter having an Intel Xeon 2.33 GHz processor with
3.25 GB of RAM and running Windows XP. Two sets
of computational experiments were performed. First,
while limiting the computational run-time to 12 CPU
hours, we compared the results of three cases; where
we (a) apply neither valid inequalities nor Benders’
decomposition, (b) utilize only valid inequalities, and
(c) incorporate both of these features. In a second set

of runs, for the model enhanced by the proposed valid
inequalities that were found to be beneficial in the
foregoing experiment, we applied Benders’ decompo-
sition and studied its computational performance for
different optimality gap tolerance levels.
For test purposes, we used seven data sets based on

real data provided by United Airlines. These are des-
ignated as follows, with respective numbers of flights
and itineraries (paths) specified within parentheses:
D1 (314 flights and 4,780 paths), D2 (428 flights, 2,282
paths), D3 (572 flights, 3,646 paths), D4 (690 flights,
4,888 paths), D5 (1,016 flights and 10,726 paths), D6
(1,238 flights, 14,103 paths), and D7 (1,476 flights,
17,121 paths). All the legs (flights) used in these
data sets were initially designated to be optional legs
to render the problem more challenging to solve so as
to adequately test the proposed solution strategies.
Remark 3. Typically, there are several feasibility

issues that arise in data sets, which are addressed as
follows. First, the (selected) outgoing and incoming
arcs need to be coordinated for each station to con-
serve flows. In context, because of the nature of hub-
and-spoke network systems, the practical data sets
used in the experiments show that flights occur in
pairs; i.e., if there is a flight from station A to sta-
tion B, then a subsequent corresponding return flight
from station B to station A coexists in the data set.
This facilitates feasible solutions. However, in gen-
eral, to accommodate a wider set of feasible solutions,
we can create deadhead arcs for each aircraft type
network from the last flight node at each station to
an appropriate time-advanced node for every other
station where a deadhead flight can reach this sta-
tion before the end of the day. Similar to the ground
arcs, such deadhead arcs would have nonnegatively
restricted flows but would inherit a suitable cost term
in the objective function. Another feasibility issue
may occur when the fleet size is insufficient to serve
all the mandatory legs. In this case, we can incor-
porate an artificial variable in the right-hand side of
constraint (5) (to represent a chartered aircraft) along
with an appropriate cost or penalty in the objective
function. �

As a preliminary investigation motivated by the
discussion in §2, we compared results from FSFAM1
and FSFAM2 using the data set D1 (with 188 manda-
tory legs and 126 optional legs) to assess the tight-
ening effect of the additional constraints used in
FSFAM2. Both models produced an optimal solu-
tion, but the CPU time required for model FSFAM1
was about 8.4 hours, whereas the CPU time for model
FSFAM2 was about 7.2 hours, thus reducing the solu-
tion time by about 15%. Next, we solved FSFAM1,
FSFAM2, and FSFAM+ using the data set D4 (with
104 mandatory legs and 586 optional legs) with a
24-hour time limit. Both FSFAM2 and FSFAM+ were
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solved to optimality, with FSFAM2 consuming 22.8
hours and FSFAM+ taking 20.2 hours, thus demon-
strating the tightening effect of the additional cuts
used in FSFAM+. On the other hand, the solution of
FSFAM1 terminated after the run-time limit with an
optimality gap of 3.2%, where the objective function
value of the best solution detected was 0.9% less than
the optimal value found by FSFAM2 and FSFAM+.
As a point of interest, the LP relaxation of FSFAM1
was solved in 1.7 seconds and yielded an objective
value of 2,265,177.9; that of FSFAM2 required 122.7
seconds but substantially reduced the resulting upper
bound by 81.3%, and FSFAM+ consumed 316.3 sec-
onds, additionally tightening the LP relaxation value
further by 0.84%.

5.1. Effect of Valid Inequalities and
Benders’ Methodology

To examine the benefits of utilizing the proposed
valid inequalities and the Benders’ decomposition
approach, we first ran the MIP model FSFAM2 using
the CPLEX 10.1 solver without the foregoing enhance-
ments (Case I). Next, we ran the model using different
sets of valid inequalities to ascertain their tightening
effect and to assess which valid inequalities benefi-
cially contribute toward reducing the computational
effort (Case II using Algorithm A2). For this case, four
different sets of valid inequalities were added sequen-
tially, and are referred to as Cases II-1, II-2, II-3(a),
and II-3(b). Case II-1 implements the valid inequal-
ities (15), (16), (17), and (18) from Propositions 1, 2,
3, and 4, respectively. Case II-2 additionally imple-
ments the valid inequalities (20) from Proposition 5
that are generated via Routine R1 and the separa-
tion problem SEP1 (see (22)–(24)). Case II-3 investi-
gates the cuts of Propositions 6 and 7 in addition
to the valid inequalities of Case II-2, either directly
including suitable partial convex hull representations
(Case II-3(a)) or generating cuts via the separation
problem SEP2 given by (39)–(41) (Case II-3(b)). More
specifically, in generating cuts of type (17) and (18),
we selected the 10 most violated cuts at each round
of the LP relaxation solution. Similarly, cuts of type
(20) and (34) were, respectively, generated via SEP1
and SEP2 (both solved using CPLEX) by selecting the
indices j∗ that yielded the 10 most violated inequali-
ties in each case based on the LP relaxation solution.
This was repeated for three rounds after re-solving
the LP relaxation at the root node with the new cuts.
Then CPLEX was directly used to solve the resulting
augmented models. Finally, we implemented both the
valid inequalities and Benders’ decomposition and
ran the model FSFAM+ to assess the effect of this
strategy on the best objective function value achieved
as well as on the CPU run time (Case III using Algo-
rithm A1). All cases were run with a time limit of 12

CPU hours and the CPLEX default optimality toler-
ance of 1 = 10−6.
Table 1 presents the results obtained. In the second

column, we report the LP objective function value of
FSFAM+ in relative terms (Rel LP) as a ratio with
respect to the LP objective function value of FSFAM2,
along with the corresponding actual CPU time in
hours. On average, the LP relaxation of FSFAM2
took 0.08 CPU hours to solve (in comparison with
0.13 hours for FSFAM+). Furthermore, for ease in
assessment and comparisons, Table 1 reports the best
integer solutions obtained in 12 hours of computa-
tion using the different model cases and the CPU
effort in relative terms as follows. For the objective
value, we present the % gap for each case defined
as 100�F ∗ − F 
/F ∗, where F is the particular objective
value attained and F ∗ is the best (maximum) objective
value found across all cases. For CPU times, we use
Case I as the baseline and present its (actual) CPU
effort in hours, although for the other cases, we pro-
vide the relative CPU time (Rel CPU) as a fraction of
the CPU time for Case I.
Cases I and II-1 passed the 12-hour CPU time

limit for all the test instances, whereas Case III was
solved within the run-time limit for instances D1–D4.
The models for cases that incorporate the proposed
valid inequalities performed better than that for Case
I. Among these models enhanced by different valid
inequalities, the best objective function value was
achieved by Case II-2 for the instances D2–D5 and by
Case II-3(b) for the instance D1. Hence, we used the
model from Case II-2 and applied Benders’ decom-
position to it in Case III. Case III consumed the
least CPU time on average (Rel CPU factor of 0.83)
and provided the best solutions for the largest test
cases D6 and D7 and a second-best quality solution
on average (average % gap value of 1.17% versus
1.01% for Case II-2). The total number of Benders’
cuts that were generated for Case III was limited to
100 based on some preliminary runs, where it was
observed that the objective value improved no more
than 0.01% when the number of Benders’ cuts was
permitted to be greater than 100. The CPU time for
Case III includes the times required to generate Ben-
ders’ cuts and to solve the lifted model FSFAM2 after
fixing the optional legs and paths that were obtained
and selected from model FSFAM

+
. On average, about

8%–23% legs were deleted at Step A1.2, and then the
remaining legs and corresponding paths were used
in Step A1.3. Applying Benders’ decomposition as in
Case III displays an overall advantage of obtaining
good-quality solutions relatively fast in comparison
with the other models and approaches, with Case II-2
being competitive in deriving improved solutions. As
a point of interest, for Case II-2, the average propor-
tions of CPU times spent in Steps A2.1, A2.2, and A2.3
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Table 1 Comparative Results for a Sequential Implementation of Valid Inequalities and Benders’ Decomposition

Problem LP relax. of FSFAM+ Case I Case II-1 Case II-2 Case II-3(a) Case II-3(b) Case III

D1
Rel LP 0�92 % gap 7.85 5�97 1�07 0�87 0�00 0�78
CPU(hr) 0�03 Rel CPU 12(hr) 1�00 0�85 0�92 0�83 0�61

D2
Rel LP 0�94 % gap 8.06 3�71 0�00 1�23 1�97 1�19
CPU(hr) 0�04 Rel CPU 12(hr) 1�00 1�00 1�00 1�00 0�62

D3
Rel LP 0�94 % gap 7.34 4�28 0�00 1�71 3�75 1�06
CPU(hr) 0�06 Rel CPU 12(hr) 1�00 1�00 1�00 1�00 0�73

D4
Rel LP 0�95 % gap 8.61 3�45 0�00 4�01 2�96 1�92
CPU(hr) 0�09 Rel CPU 12(hr) 1�00 1�00 1�00 1�00 0�88

D5
Rel LP 0�93 % gap 9.71 1�89 0�00 3�62 4�12 3�27
CPU(hr) 0�26 Rel CPU 12(hr) 1�00 1�00 1�00 1�00 1�00

D6
Rel LP 0�96 % gap 9.18 5�10 1�71 5�23 3�98 0�00
CPU(hr) 0�31 Rel CPU 12(hr) 1�00 1�00 1�00 1�00 1�00

D7
Rel LP N/A % gap No integer 5�22 4�30 5�83 5�15 0�00
CPU(hr) Rel CPU solution 1�00 1�00 1�00 1�00 1�00

Average
Rel LP 0�94 % gap 8.46 4�23 1�01 3�21 3�13 1�17
CPU(hr) 0�13 Rel CPU 12(hr) 1�00 0�98 0�97 0�98 0�83

of Algorithm A2 were 2.3%, 59.8%, and 37.9%, respec-
tively, and likewise, for Case III, the average propor-
tions of CPU times spent in Steps A1.1, A1.2, and
A1.3 of Algorithm A1 were 4.1%, 28.4%, and 67.5%,
respectively.
Next, using the two best cases (Cases II-2 and III),

we experimented with a modification of the data sets
D1–D7 where 50% of the legs were set as manda-
tory and the remaining legs as optional in each data
set. This made the problems relatively easier to solve
and significantly reduced the computational effort by
a factor of 1.1 for Case II-2 and by a factor of 1.5
for Case III (see Table 2) compared with the results
in Table 1. On average, Case II-2 solved the prob-
lems in 10.5 hours and Case III solved the problems
in 6.8 hours. Case II-2 found better solutions for the

Table 2 Computational Results for Cases II-2 and III with 50%
Optional Legs

Case II-2 Case III

Problem % gap Rel CPU % gap Rel CPU

D1 0�00 0�63 2�55 0�39
D2 0�00 0�72 1�32 0�40
D3 0�00 0�89 0�29 0�48
D4 0�00 0�86 1�24 0�52
D5 1�04 1�00 0�00 0�67
D6 0�00 1�00 0�35 0�73
D7 2�47 1�00 0�00 0�79
Average 0�50 0�87 0�85 0�57

instances D1-D4 and D6, whereas Case III achieved
a better objective function value for the remaining
instances, with the average % gaps for Cases II-2 and
III being 0.50 and 0.85, respectively. This experiment
reveals two important points: first, having a subset of
legs as mandatory reduces the computational effort,
because it diminishes the burden of simultaneously
deciding on selecting a profitable mix of optional legs;
second, Case III can be more effective in analyzing
relatively larger instances.

5.2. Computational Performance Using
Different Optimality Tolerances

Using the best-performing cases from the previous
subsection (Cases II-2 and III), we next investigated
the effect of employing different levels of the optimal-
ity tolerance 1% at both the Steps 2 and 3 of Algo-
rithms A1 and A2 on the relative percentage gap (%
gap) and the CPU effort. Table 3 presents the results
obtained using a 24-hour time limit for solving the
data set D5, in particular, by way of illustration. Here,
the baseline results refer to using 1 = 10−6 �10−4%
,
for which we specify the % gap attained and the
(actual) CPU time in hours for comparative purposes.
The columns pertaining to using an optimality toler-
ance 1% equal to 1%, 5%, and 10% record the % gap
attained relative to the overall best-known solution
and the relative CPU time as a fraction of the respec-
tive baseline CPU time.
As evident from Table 3, increasing the optimal-

ity tolerance gradually deteriorated the quality of
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Table 3 Computational Results with Different Optimality Tolerances

Optimality tolerances with baseline case

�= 10−4% �= 1% �= 5% �= 10%

Problem % gap CPU % gap Rel CPU % gap Rel CPU % gap Rel CPU

Case II-2 0�00 24 0�41 0�90 0�77 0�27 2�20 0�02
Case III 0�00 19 0�92 0�55 1�32 0�19 2�04 0�02

the solution produced and significantly shortened the
CPU run-times. For Case II-2, the run with 1 = 5%
reduced the CPU time relative to that with 1 = 1% by
a factor of 3.34, and the CPU effort corresponding to
1 = 10% as compared with that for 1 = 5% was further
reduced by a factor of 13.5 (from 6.48 hours to 0.48
hours). For Case III, the CPU time consumed in the
run with 1 = 5% decreased by a factor of 2.89 rela-
tive to that with 1 = 1%, and the CPU effort required
for 1 = 10% was further reduced by a factor of 9.5
(0.38 hours versus 3.67 hours) compared with that
for 1 = 5%. Meanwhile, the optimality gap values for
Cases II-2 and III steadily increased with an increase
in the optimality tolerance, but not substantially, dis-
playing a % gap of 2.20% and 2.04%, respectively, for
1 = 10%. This suggests that both algorithmic options
produce good-quality solutions relatively early and
then slowly converge toward optimality, with Case
III demonstrating an overall better efficiency with
respect to the CPU effort.

5.3. Assessing the Impact of Integration
In the integrated model, the optional legs are selected
to maximize profits based on a look-ahead perspec-
tive of considering the subsequent fleet assignment
with respect to all activated legs. To study the impact
of this look-ahead feature in the proposed integrated
model, we considered the best-performing algorithm
above (Case II-2), and for each test instance, denoting
LO∗ as the set of optional legs selected, we defined
FAM∗ as the fleet assignment model that considers the
mandatory legs plus the most profitable �LO∗� optional
legs. Here, the latter were selected as the first �LO∗�
legs from the list of optional legs arranged in order of
potential profit given by maxa∈AT�Raj − caj  , where Raj

is the maximum possible revenue obtained by solv-
ing the bounded variable multidimensional knapsack
problem:

Raj =Maximize
∑

p∈
O�j


∑
h∈Hp

fph�ph

subject to
∑

p∈
O�j


�ph ≤Capah� ∀h ∈ ⋃
p∈
O�j


Hp�

0≤�ph ≤�ph� ∀p ∈
O�j
� h ∈Hp�

In addition, we constructed FAM∗∗ as a fleet assign-
ment model based on optional legs selected via

the following enhanced 0–1 MIP model that consid-
ers itinerary-based demands and the activation of
paths induced by the selected legs, where again, we
restricted the number of optional legs selected to pre-
cisely �LO∗�:
Maximize

∑
p∈
O

∑
h∈Hp

fph�ph −
∑
a∈AT

∑
j∈LO

cajxaj

subject to �3
� �6
� �9
� �10
� �11


for j ∈ LO� h ∈H� and �12
�∑
j∈LO

xaj ≤NAa� ∀a ∈AT�

∑
a∈AT

∑
j∈LO

xaj = �LO∗��

�x� z
� binary, � ≥ 0�

Table 4 presents the (relative) % gap and CPU times
for Case II-2 versus FAM∗ and FAM∗∗, using the larger
practical test instances D5, D6, and D7.
The results in Table 4 indicate that the objec-

tive function values for both the sequentially solved
models FAM∗ and FAM∗∗ worsened in comparison
with the integrated model FSFAM+ (using Case II-2),
yielding % gaps of 11.4% and 5.5%, respectively, on
average. Note that the more sophisticated approach
adopted by FAM∗∗ narrowed the % gap by a factor of
2.07 compared with that of FAM∗. On the other hand,
to find the most profitable �LO∗� legs, about 4% of the
total CPU time was used on average for the case of
FAM∗, whereas 26% of the total effort was used on
average for the case of FAM∗∗. Although each case
reached the 24-hour time limit, the % gap between
FSFAM+ and either FAM∗ or FAM∗∗ clearly demon-
strates the advantage of solving the integrated flight
scheduling and fleet assignment problems over the
sequential approach. This translates to an estimated
improvement in annual profits of $28.3 million and
$13.7 million for FSFAM+ over FAM∗ and FAM∗∗,
respectively.

5.4. A Sequential Fixing Heuristic
In this section, we provide comparisons with a spe-
cially designed sequential fixing heuristic to assess its
effect on solution quality and computational effort.
This heuristic sequentially fixes the x-variables based

Table 4 Effect of Integration

FSFAM+(Case II-2) FAM∗ FAM∗∗

Problem % gap CPU % gap Rel CPU % gap Rel CPU

D5 0�00 24 14�03 1�00 5�28 1�00
D6 0�00 24 9�53 1�00 6�51 1�00
D7 0�00 24 10�65 1�00 4�76 1�00
Average 0�00 24 11�40 1�00 5�52 1�00
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on the LP relaxations solved at Step 3 within Algo-
rithms A1 and A2. More specifically, whenever we
solve the LP relaxation at Step 3 of Algorithm A1
and A2, we fix the x-variables that have fractional
values exceeding 0.9 to 1, but we keep free the x-
variables that result in values of 1. We then resolve
the LP relaxation and repeat this process for a max-
imum of 50 iterations (or until no additional frac-
tional variables can be fixed), after which we solve
the resulting problem as a mixed-integer program.
For experimental purposes, we used all the data sets,
D1–D7, and implemented Cases II-2 and III with and
without using the aforementioned heuristic.
The results in Table 5 demonstrate that, whereas

running Cases II-2 and III without applying the heuris-
tic frequently passed the 12-hour run-time limit, the
CPU effort with the heuristic sequential fixing pro-
cess was reduced, on average, by 21% for Case III
and by 18% for Case II-2. For the relatively larger test
instances D6 and D7, Case III without the heuristic
step achieved the best overall objective function value,
which indicates that using the Benders’ decomposi-
tion approach is effective in finding better solutions
with reasonable effort as the problem size increases.
In addition, using the heuristic sequential fixing step
within Case III did not deteriorate the quality of the
solution more than 2% on average. On the other hand,
using the heuristic sequential fixing within Case II-2

Table 5 Effect of the Sequential Fixing Heuristic for Cases II-2 and III

Case II-2 Case III

Problem w/ Heuristic w/o Heuristic w/ Heuristic w/o Heuristic

D1
% gap 3�60 0�29 3�28 0�00
Rel CPU 0�75 0�85 0�54 0�61

D2
% gap 3�11 0�00 3�86 1�19
Rel CPU 0�75 1�00 0�57 0�62

D3
% gap 2�33 0�00 2�74 1�06
Rel CPU 0�77 1�00 0�61 0�73

D4
% gap 1�26 0�00 2�49 1�92
Rel CPU 0�78 1�00 0�65 0�88

D5
% gap 1�08 0�00 3�31 3�27
Rel CPU 0�83 1�00 0�70 1�00

D6
% gap 1�13 1�71 1�15 0�00
Rel CPU 0�85 1�00 0�72 1�00

D7
% gap 3�45 4�30 0�77 0�00
Rel CPU 0�88 1�00 0�81 1�00

Average:
% gap 2�28 0�90 2�51 1�06
Rel CPU 0�80 0�98 0�66 0�83

provided better outcomes than otherwise by permit-
ting this relatively more intense procedure to focus
on exploring a promising subset of the feasible region
within the set time limit, thereby improving the objec-
tive function value by 0.72% on average in compar-
ison with not using the heuristic step. Overall, Case
III (with or without the heuristic step) is a preferred
option for solving relatively large-scale problems.

6. Conclusions
We have proposed an integrated schedule plan-
ning and fleet assignment model by simultaneously
considering optional legs, itinerary-based demands,
and multiple fare classes. The basic mixed-integer
programming model developed was enhanced by
using various valid inequalities generated through a
polyhedral analysis and the construction of partial
convex hull representations along with suitable sep-
aration routines, and a Benders’ decomposition solu-
tion approach was designed to facilitate the solution
process. Computational results were presented using
real data obtained from United Airlines to demon-
strate the efficacy of the modeling and algorithmic
strategies as well as the benefits of integration. A com-
parison of the experimental results related to the orig-
inal model and different levels of the enhanced model
revealed that the best modeling strategy among those
tested is to use Case II-2 (which utilizes a variety of
five types of valid inequalities) for moderately large-
sized problems and to use Case III (which further
implements a Benders’ decomposition approach) for
relatively larger problems. In addition, Case III can
be further augmented with a heuristic sequential fix-
ing step for even larger-sized problems (in our runs,
this resulted in less than a 2% deterioration in solu-
tion quality and reduced the effort by about 21%). An
experiment was also conducted to assess the impact
of integration by comparing the proposed integrated
model with a sequential implementation in which the
schedule planning is performed separately before the
fleet assignment stage by selecting a limited number
(the same number as designated by our model) of
optional legs based on two alternative profit maxi-
mizing submodels. The results demonstrated a clear
advantage of utilizing the integrated model in terms
of the percent increase in profits (11.4% and 5.5%
in comparison with using the latter two sequential
models, which translates to an estimated increase
in annual profits of $28.3 million and $13.7 million,
respectively).
It would be of interest, and is the subject of a

follow-up paper, to incorporate in this model addi-
tional features such as flexible flight times (i.e., depar-
ture time windows), schedule balance, and recapture
issues. In addition, given the interdependence of
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the airline operations including schedule planning,
fleet assignment, aircraft routing, and crew schedul-
ing, further research is necessary for developing suit-
able integrated models and designing efficient and
tractable solution approaches. The consideration of
several such integrated airline operational models is
part of our ongoing research.
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