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Abstract. Unit two-variable-per-inequality (UTVPI) constraints form
one of the largest class of integer constraints which are polynomial time
solvable (unless P=NP). There is considerable interest in their use for
constraint solving, abstract interpretation, spatial databases, and theo-
rem proving. In this paper we develop a new incremental algorithm for
UTVPI constraint satisfaction and implication checking that requires
O(m+ n log n+ p) time and O(n+m+ p) space to incrementally check
satisfiability of m UTVPI constraints on n variables and check implica-
tion of p UTVPI constraints.

1 Introduction

The unit two-variable-per-inequality (UTVPI) constraints form one of the largest
class of integer constraints which are polynomial time solvable (unless P=NP).
There is considerable interest in their use for constraint solving [7,6], abstract
interpretation [9], spatial databases [11] and theorem proving [8]. In this paper
we develop new incremental algorithms for UTVPI constraint satisfaction and
implication.

A UTVPI constraint has the form ax+by ≤ d where x, y are integer variables,
d ∈ Z and a, b ∈ {−1, 0, 1}. For example x+y ≤ 2, x−y ≤ −1, 0 ≤ −1 and x ≤ 2
are UTVPI constraints. UTVPI constraint solving is based on transitive closure:
A constraint ax−y ≤ d1 and y+bz ≤ d2 implies the constraint ax+bz ≤ d1+d2.
We can determine all the UTVPI consequences of a set of UTVPI constraints by
transitive closure, but we need to tighten some constraints. The transitive closure
procedure can generate constraints of the form x+x ≤ d and −x−x ≤ d, which
need to be tightened to x ≤

⌊

d
2

⌋

and −x ≤
⌊

d
2

⌋

respectively.
Jaffar et al. [7] and Harvey et al. [6] present incremental consistency checking

algorithms for adding a UTVPI constraint c to a set φ of UTVPI constraints.
They are based on maintaining the transitive and tight closure of the set of
UTVPI constraints φ involving n variables. Both algorithms require O(n2) time
and O(n2) space for an incremental satisfaction check. Both algorithms can also
be used to incrementally check implication of UTVPI constraints by φ ∪ {c}.
These algorithms require O(n2+p) time and O(n2+p) space for an incremental
implication checking, where p is the number of constraints we need to check
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for implication. In order to (non-incrementally) check satisfiability of m UTVPI
constraints on n variables these approaches require O(n2m) time, and to check
implication they require O(n2m+ p) time.

An improvement on the complexity of (non-incremental) satisfiability for
UTVPI constraints was devised by Lahiri and Musuvathi [8]. They define a
non-incremental satisfiability algorithm requiring O(nm) time and O(n + m)
space. The key behind their approach is to map UTVPI constraints to difference
constraints (also called separation theory constraints) of the form x − y ≤ d,
where x and y are integer variables and d ∈ Z.

The difference constraints are a well studied class of constraints because
of their connection to shortest path problems. We can consider the constraint
x − y ≤ d as a directed edge x → y with weight d. Satisfiability of difference
constraints corresponds to the problem of negative weight cycle detection, and
implication of difference constraints corresponds to finding shortest paths (see
e.g. [3] for details).

The mapping of UTVPI to difference constraints by Lahiri and Musuvathi [8]
is a relaxation of the problem. The relaxed problem is solved by a negative
(weight) cycle detection algorithm but it guarantees only the satisfiability in
Q for the UTVPI problem. In order to check satisfiability in Z they need to
construct an auxiliary graph and check for certain paths in this graph.

In this paper we first extend Lahiri and Musuvathi’s algorithm [8] to check
satisfaction incrementally in O(n log n+m) and O(n+m) space. Then we show
how to build an incremental satisfiability and implication algorithm using the
relaxation of Lahiri and Musuvathi and incremental approaches to implication
for difference constraints of Cotton and Maler [3], which can incrementally check
implication in O(n log n+m+ p) time and O(n+m+ p) space.

2 Preliminaries

In this section we given notation and preliminary concepts.

A weighted directed graph G = (V,E) is made up vertices V and a set E of
weighted directed edges (u, v, d) from vertex u ∈ V to vertex v ∈ V with weight

d. We also use the notation u
d
→ v to denote the edge (u, v, d).

A path P from v0 to vk in graph G, denoted v0  vk, is a sequence of
edges e1, . . . , ek where ei = (vi−1, vi, di) ∈ E. A simple path P is a path where
vi 6= vj , 0 ≤ i < j ≤ k.

A (simple) cycle P is a path P where v0 = vk and vi 6= vj , 0 ≤ i < j∧k∧(i 6=
0 ∨ j 6= k).

The path weight of a path P , denoted w(p) is Σk
i=1di.

Let G be a graph without negative weight cycles, that is without a cycle P
where w(P ) < 0. Then we can define the shortest path from v0 to vk, which we
denote by SP (v0, vk), as the (simple) path P from v0 to vk such that w(P ) is
minimized.

Let wSP (x, y) = w(SP (x, y)) or +∞ if no path exists from x to y.



Given a graph G and vertex x define the functions δ←x , δ→x : V → R as

δ←x (y) = wSP (y, x) and δ→x (y) = wSP (x, y) .

Let G be a graph without negative weight cycles. Then π is a valid potential
function for G if π(u) + d− π(v) ≥ 0 for every edge (u, v, d) in G.

There are many algorithms (see e.g. [2]) for detecting negative weight cycles
in a weighted directed graph, which either detect a cycle or determine a valid
potential function for the graph.

Given a valid potential function π for graph G = (V,E) we can define the
reduced cost graph rc(G) as (V, {(x, y, π(x)+d−π(y) | (x, y, d) ∈ E}). All weights
in the reduced cost graph are non-negative and we can recover the original path
length w(P ) for path P from x to y from paths in the reduced cost graph since
w(P ) = w+ π(y)− π(x) where w is the weight of the corresponding path in the
reduced cost graph.

Since edges in the reduced cost graph are non-negative we can use Dijkstra’s
algorithm to calculate the shortest paths in the reduced cost graph in time
O(n logn+m) instead of O(nm).

2.1 Difference constraints

Difference constraints have the form x−y ≤ d where x and y are integer variables
and d ∈ Z. We can map difference constraints to a weighted directed graph.

Definition 1. Let C be a set of difference constraints and let G = (V,E) be the

graph comprised of one weighted edge x
d
→ y for every constraint x − y ≤ d in

C. We call G the constraint graph of C.

The following well-known result characterizes how the constraint graph can
be used for satisfiability and implication checking of difference constraints.

Theorem 1 ([3]). Let C be a set of difference constraints and G its corre-
sponding graph. C is satisfiable iff G has no negative weight cycles, and if C is
satisfiable then C |= x− y ≤ d iff wSP (x, y) ≤ d.

2.2 UTVPI constraints

A UTVPI constraint is of the form ax + by ≤ d, where x and y are integer
variables, a, b ∈ {−1, 0, 1}, c ∈ {−1, 1} and d ∈ Z.

Definition 2. The transitive closure TC(φ) of a set of UTVPI constraints φ is
defined as the smallest set S containing φ such that

ax− cy ≤ d1 ∈ S ∧ cy + bz ≤ d2 ∈ S ⇒ ax+ bz ≤ d1 + d2 ∈ S

The tightened closure TI(φ) of a set of UTVPI constraints φ is defined as the
smallest set S containing φ such that

ax+ ax ≤ d ∈ S ⇒ ax ≤

⌊

d

2

⌋

∈ S, a ∈ {−1, 1}



Table 1. Transformation from UTVPI constraint c to associated difference constraints
D(c) to edges in the constraint graph E(c).

UTVPI c Diff. Constr. D(c) Edges E(c)

x− y ≤ d
x+ − y+ ≤ d y+ d

→ x+

y− − x− ≤ d x−
d
→ y−

x+ y ≤ d
x+ − y− ≤ d y−

d
→ x+

y+ − x− ≤ d x−
d
→ y+

−x− y ≤ d
x− − y+ ≤ d y+ d

→ x−

y− − x+ ≤ d x+ d
→ y−

x ≤ d x+ − x− ≤ 2d x−
2d
→ x+

−x ≤ d x− − x+ ≤ 2d x+ 2d
→ x−

The tightened transitive closure TTC(φ) of φ is the smallest set containing φ
that satisfies both conditions.

The fundamental result for UTVPI constraints solving is:

Theorem 2 ([7]). Let φ be a set of UTVPI constraints. Then φ is unsatisfiable
iff exists 0 ≤ d ∈ TTC(φ) where d < 0.

We can extend this for implication checking straightforwardly:

Corollary 1. Let φ be a satisfiable set of UTVPI constraints. Then φ |= ax +
by ≤ d iff ax+ by ≤ d′ ∈ TTC(φ) with d′ ≤ d or {ax ≤ d1, by ≤ d2} ⊆ TTC(φ)
with d1 + d2 ≤ d.

Example 1. Consider the UTVPI constraints φ ≡ {x − y ≤ 2, x + y ≤ −1,
−x − z ≤ −4}, Then TC(φ) includes in addition {x + x ≤ 1, −y − z ≤ −2,
y − z ≤ −5,−z − z ≤ −7, x − z ≤ −3}. And TI(TC(φ)) includes in addition
{x ≤ 0,−z ≤ −4} and TTC(φ) = TI(TC(φ)) in this case. The constraint
−z ≤ −3 is implied by φ as is y − z ≤ 0.

3 Lahiri and Musuvathi’s approach

Lahiri and Musuvathi map UTVPI constraints φ to difference constraints or
equivalently a weighted directed graph Gφ, and they use graph algorithms to
detect satisfiability.

We denote the constraint graph arising from φ as Gφ = (V,E). The graph G
contains two vertices x+ and x− for every variable x. These variables are used to
convert UTVPI constraints into difference constraints. The vertex x+ represents
+x and x− represents −x.

Let φ be a set of UTVPI constraints. Each UTVPI constraint c ∈ φ is mapped
to a set of difference constraints D(c), or equivalently a set of weighted edges
E(c). The mapping is shown in the Table 1. Each UTVPI constraint on two
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Fig. 1. (a) Gφ′ for φ′ of Example 2 which is Q feasible but not Z feasible. (b) a zero
length cycle in Gφ′ . (c) Gφ for φ of Example 1.

variables generates two difference constraints and accordingly two edges in the
constraint graph. Each UTVPI constraint on a single variable generates a single
constraint, and hence a single edge.

Let −v denote the counterpart of a vertex v ∈ V , i.e. −x+ := x− and
−x− := x+. Clearly, for each edge (x, y, d) ∈ E the graph Gφ also includes the
edge (−y,−x, d) with equal weight. This correspondence extends to paths.

Lemma 1 ([8]). If there is a path P from u to v in the constraint graph Gφ,
then there is a path P ′ from −v to −u such that w(P ) = w(P ′).

If we relax the restriction on variables to take values in Z and allow them to
take values in Q we can check satisfiability in Q using Gφ.

Lemma 2 ([8]). A set of UTVPI constraints φ is unsatisfiable in Q if and only
if the constraint graph Gφ = (V,E) contains a negative weight cycle.

The reason why the feasibility in Z cannot be tested with Gφ arises from the
possible implication of constraints of the form x+ x ≤ d or −x− x ≤ d through
the transitivity of constraints in φ. If d is odd (equivalently d/2 ∈ Q \Z) then φ
may be satisfiable with x = d/2 but not with x = ⌊d/2⌋.

Example 2. Consider the UTVPI problem φ′ ≡ {x−y ≤ 2, x+y ≤ −1, −x−z ≤
−4, −x + z ≤ 3}, then a transitive consequence of the first two is x + x ≤ 1,
while a consequence of the second two is −x − x ≤ −1. Together these require
x = 1

2
.

The graph Gφ′ is shown in Figure 1(a). A zero length cycle is extracted in
Figure 1(b). This cycle has solutions in Q but not in Z. ✷

The satisfiability algorithm of Lahiri and Musuvathi [8] is based on Lemma 2
and the following result.

Lemma 3 ([8]). Suppose Gφ has no negative cycles and φ is unsatisfiable in
Z. Then Gφ contains a zero weight cycle containing vertices u and −u such that
wSP (u,−u) is odd.

The algorithm first checks Q feasibility using a negative cycle detection al-
gorithm, and then checks that no such zero weight cycles exists in Gφ.



Algorithm 1: LaMu

Input: φ a set of UTVPI constraints
Output: SAT if φ is satisfiable, UNSAT otherwise
Construct the constraint graph Gφ = (V,E) from φ;1

Run a negative cycle detection algorithm on Gφ;2

if Gφ contains a negative cycle then3

return UNSAT4

else5

let π be a valid potential function for Gφ6

E′ := {(u, v) | (u, v, d) ∈ E, π(u) + d = π(v)};7

G′φ := (V,E′);8

Group the vertices in G′φ into strongly connected components (SCCs). Vertices9

u and v are in the same SCC if and only if there is a path from u to v and a
path from v to u in G′φ. u and v are in the same SCC exactly when there is a
zero-weight cycle in Gφ containing u and v.;
for all u ∈ V do10

if −u is in the same SCC as u and π(−u)− π(u) is odd then11

return UNSAT12

return SAT13

Example 3. A valid potential function for the graph shown in Figure 1(a) is
π(y+) = 0, π(x+) = 2, π(z+) = 5, π(y−) = 3, π(x−) = 1, π(z−) = −2. Each of
the arcs is tight, so E′ contains all edges, and all nodes are in the same SCC.
Both x+ and x− occur in the same SCC and SP (x+, x−) = π(x−)−π(x+) = −1
is odd, hence the system is unsatisfiable.

The complexity is O(nm) time and O(n + m) space assuming we use a
Bellman-Ford single source shortest path algorithm [1,4] for negative cycle de-
tection.

4 Incremental UTVPI Satisfaction

The incremental satisfiability problem is: Given a satisfiable set of UTVPI φ
(with n variables andm constraints) and UTVPI constraint c, determine if φ∪{c}
is satisfiable. In this section we define an incremental satisfiability checker for
UTVPI constraints that requiresO(n log n+m) time andO(n+m) space. It relies
on simply making incremental the algorithm LaMu of Lahiri and Musuvathi.

The key is to incrementalize the negative cycle detection. We use an algorithm
due to Frigioni et al. [5], using the simplified form (Algorithm 2: IncConDiff)
of Cotton and Maler [3] (since we are not interested in edge deletion). Given

a graph G = (V,E) and valid potential function π for G and edge e = u
d
→

v, this algorithm returns G′ = (V,E ∪ {e}) and a valid potential function π′

for G′ or determines a negative cycle and returns UNSAT. The complexity is
O(n logn + m) time and O(n +m) space using Fibonacci heaps to implement
argmin.



Algorithm 2: IncConDiff

Input: Gφ = (V,E) a graph, π a valid potential function for Gφ, edge (u, v, d) a
new constraint to add to Gφ.

Output: UNSAT if φ ∪ {u− v ≤ d} is unsatisfiable, or Gφ∪{u−v≤d} and a valid
potential function π′ for Gφ∪{u−v≤d}.

γ(v) := π(u) + d = π(v);1

γ(w) := 0 for all w 6= v;2

while min(γ) < 0 ∧ γ(u) = 0 do3

s := argmin(γ) ;4

π′(s) := π(s) + γ(s) ;5

γ(s) := 0 ;6

for all s
d′

→ t ∈ G do7

if π′(t) = π(t) then8

γ(t) := min{γ(t), π′(s) + d′ − π′(t)}9

if γ(u) < 0 then10

return UNSAT11

return ((V,E ∪ {(u, v, d)}), π′)12

The incremental UTVPI satisfiability algorithm simply runs IncConDiff

at step 2 of LaMu, the remainder of the algorithm is unchanged. Since the
remainder of the the LaMu algorithm requires O(n + m) time and space, the
complexity bounds are the same as for the incremental negative cycle detection
algorithm.

5 Incremental UTVPI Implication

The incremental implication problem is given a set P of p UTVPI constraints and
a satisfiable set φ of m UTVPI constraints on n variables, where φ 6|= c′, ∀c′ ∈ P ,
as well as a single new UTVPI constraint c, check for each c′ ∈ P if φ ∧ c |= c′.

Incremental implication is important if we wish to use UTPVI constraints in
a Satisfiability Modulo Theories (SMT) solver [10], as well as for uses in abstract
interpretation and spatial databases. Our approach to incremental implication
is similar to the approach of Cotton and Maler [3] for incremental implication
for difference constraints.

The key to the algorithm are the following three results.

Lemma 4. Let ax + by ≤ d ∈ TTC(φ) where {a, b} ⊆ {−1, 1}, then ax+ by ≤
d ∈ TC(φ).

The result holds since tightening introduces constraints involving a single
variable and any further transitive closure involving them can only create new
constraints involving a single variable.

Lemma 5. Let ax ≤ d ∈ TTC(φ) where a ∈ {−1, 1} then ax ≤ d ∈ TI(TC(φ)).



The result holds since any result of transitive closure on a new UTVPI con-
straint by ≤ d′ introduced by tightening, can be mimicked using the constraint
by + by ≤ {2d′, 2d′ + 1} that introduced it, and tightening the end result.

The above two results show that TC(φ) is the crucial set of interest for
UTVPI implication checking. The following result shows how we can use the
constraint graph to reason about TC(φ).

Lemma 6. c ∈ TC(φ) iff there is a cycle of length d, in the case of c ≡ 0 ≤ d,
or a path u v of length d in Gφ where (u, v, d) ∈ E(c).

Proof. This lemma follows straightforward of the definition of TC(φ) and the
transformation of the set of UTVPI constraints to its constraint graph. It can be
prove easily by induction over the number of transitive closure steps in TC(φ)
resp. the length of cycle or path in Gφ. ✷

Example 4. Consider φ of Example 1. Then for example x + x ≤ 1 ∈ TC(φ)
and there is a path x−  x+ of length 1 in Gφ shown in Figure 1(c). Similarly
y − z ≤ −5 ∈ TC(φ) and there are paths y−  z− and z+  y+ of length −5
in Gφ.

We can use paths (in particular shortest paths) in Gφ to reason about most
constraints in TTC(φ). In order to handle tightening we introduce a bounds
function ρ which records the upper and lower bounds for each variable x, on the
vertices x+ and x−. It is defined as:

ρ(u) =

⌊

wSP (u,−u)

2

⌋

.

We can show that ρ(x−) computes the the upper bound of x and −ρ(x+) is
the lower bound of x. Using Lemmas 5 and 6 we have.

Lemma 7. For UTVPI constraints φ,

ρ(x−) = min{d | x ≤ d ∈ TTC(φ)}

ρ(x+) = min{d | − x ≤ d ∈ TTC(φ)}

where we assume min ∅ = +∞.

Example 5. Consider the graph in Figure 1(c) for constraints φ of Example 1.
Then ρ(x−) = 0 since wSP (x−, x+) equals to 1 and x ≤ 0 ∈ TTC(φ), while
ρ(z+) = −4 since wSP (z+, z−) = −7 and −z ≤ −4 ∈ TTC(φ). Note e.g.
ρ(x+) = +∞ and there is no constraint of the form −x ≤ d in TTC(φ).

The key to incremental satisfaction is the following result.

Theorem 3. If the constraint graph Gφ contains no negative weight cycle (i.e.
φ is satisfiable in Q) then φ is unsatisfiable in Z iff a vertex v ∈ V exists with
ρ(v) + ρ(−v) < 0.



Proof. Let φ be a satisfiable set of UTVPI constraints in Q. Because of the
Lemma 6 it applies the non-existence of a constraint 0 < d ∈ TC(φ) where d < 0.
Therefore φ is unsatisfiable in Z iff such a constraint belongs to TTC(φ)\TC(φ)
(Theorem 2), i.e. a possible unsatisfiability is caused by tightening.

The Lemma 4 implies the equivalence for each constraint c ∈ TTC(φ)\TC(φ)
to ax ≤ d where a ∈ {−1, 0, 1}. Hence, φ is unsatisfiable in Z iff two constraints
x ≤ d1 and −x ≤ d2 with d1 + d2 < 0 exist in TTC(φ) iff (Lemma 7) ρ(x+) +
ρ(x−) < 0. ✷

Effectively failure can only be caused by tightening if the bounds of a single
variable contradict.

Example 6. Consider the graph in Figure 1(a) for constraints φ′ of Example 2.
There is no negative weight cycle in Gφ′ but ρ(x−) = 0 and ρ(x+) = −1 because

of x+ −4→ z−
3
→ x−. Hence the system is unsatisfiable.

Similarly the key to incremental implication is the following rephrasing of
Corollary 1.

Theorem 4. If φ is a satisfiable set of UTVPI constraints then φ |= c iff for all
(u, v, d) ∈ E(c) either wSP (u, v) ≤ d or ρ(u) + ρ(−v) ≤ d.

Proof. Let φ be a satisfiable set of UTVPI constraints. Because of Corollary 1
it holds φ |= c and c ≡ ax + by ≤ d iff ax + by ≤ d′ ∈ TTC(φ) and d′ ≤ d or
{ax ≤ d1, by ≤ d2} ⊆ TTC(φ) and d1 + d2 ≤ d.

Now, the theorem holds straightforward due to Lemma 7 for the constraints
with one variable, and Lemma 4 and 6 for the other constraints. ✷

Example 7. Consider the graph in Figure 1(c) for constraints φ of Example 1.
φ |= −z ≤ −3 is shown since wSP (z+, z−) = −7 ≤ 2×−3.

Algorithm 3 shows the new algorithm. As input it takes the constraint graph
Gφ, a valid potential function π, the bounds function ρ, a set P of UTVPI
constraints to check for implication, as well as the UTVPI constraint c which
should be added to φ.

In the first step (line 1) the constraint c is transformed to its corresponding
edges E(c) in a constraint graph. Then each edge in E(c) is added consecutively
to the constraint graph Gφ by using the IncConDiff algorithm of Cotton and
Maler [3]. After inserting all edges in G′, the constraint graph equals to Gφ∪{c}

and π′ is its valid potential function for G′. Hence φ∪{c} is satisfiable in Q. The
remainder of the algorithm maintains the bounds function ρ′ (lines from 8 to 12)
and it is used to test the feasibility in Z (lines 13 and 14), and the implication
of constraints in P (lines 15 to 18).

By Lemma 6 to maintain ρ we need to see if the shortest path from x to −x
has changed. We only need to scan for new shortest paths using the newly added
edges. We can restrict attention to a single added edge (u, v, d) since if there is

a path from x over the edge (u, v, d) to −x (x+
 u

d
→ v  x−) then because of



Algorithm 3: ScSt – Incremental satisfiability and implication for UTVPI
constraints.
Input: Gφ = (V,E) a constraint graph representing set of UTVPI constraints φ,

π a valid potential function on Gφ, ρ the bound function of φ, P a set of
UTVPI constraints not implied by φ, and a UTVPI constraint c to be
added.

Output: Gφ∪{c}, its valid potential function π′ and the bound function ρ′ of
φ ∪ {c} and the set P ′ ⊆ P of constraints not implied by φ ∪ {c}, or
UNSAT if φ ∪ {c} is not satisfiable.

G′ := Gφ, π
′ := π, ρ′ = ρ, compute E(c);1

for all e ∈ E(c) do2

res := IncConDiff(G′, π′, e);3

if res = UNSAT then4

return UNSAT5

else6

(G′, π′) := res7

let (u, v, d) be any edge in E(c);8

compute δ←u and δ→v by using the reduced cost graph for G′ via π′;9

for all x ∈ V do10

sp := δ←u (x) + d+ δ→v (−x);11

ρ′(x) := min{ρ(x), ⌊ sp

2
⌋};12

for all x ∈ V do13

if ρ′(x) + ρ′(−x) < 0 then return UNSAT ;14

P ′ := ∅;15

for all c′ ∈ P do16

(x, y, d′) := first element in E(c′);17

if δ←u (x) + d+ δ→v (y) > d′ and δ←u (−y) + d+ δ→v (−x) > d′ and18

ρ′(x) + ρ′(−y) > d′ then P ′ := P ′ ∪ {c′};
return (G′, π′, ρ′, P ′)19

Lemma 1 there is equal-weight path from x via the “counter-edge” (−v,−u, d)

to −x (x+ ≡ −x−  −v
d
→ −u −x+ ≡ x−).

We calculate the shortest paths in Gφ∪{c} from each vertex x to u (δ←u (x))
and from v to each vertex x (δ→v (x)) (line 9). The shortest path for δ←u can be
computed like δ→u by simply reversing the edges in the graph.

We can then calculate the shortest path from x to −x via the edge u
d
→ v

using the path x+
 u

d
→ v  x− as δ←u (x) + d + δ→v (−x). We update ρ′ if

required (line 12).

We can now check satisfiability of φ ∪ {c} in Z using Theorem 3 (lines 13
and 14). Finally we check implications using Theorem 4.

Using the above results, it is not difficult to show that the algorithm is correct
with the desired complexity bounds.

Theorem 5. Algorithm 3 (ScSt) is correct and runs in O(n logn + m + p)
time and O(n+m+ p) space.



Proof. The algorithm is correct if it returns UNSAT in the case of unsatisfiability
of φ ∪ {c} or the constraint graph Gφ∪{c}, its valid potential function π′, its
bounds function ρ′ and the set of constraints P ′ ⊆ P not implied by φ ∪ {c}.

The Lemma 2 and the Algorithm IncConDiff (see Cotton and Maler [3])
guarantee that after termination of IncConDiff G′ = Gφ∪{c} and π′ is its valid
potential function if φ∪ {c} is satisfiable in Q; otherwise φ∪ {c} is unsatisfiable
and the algorithm returns UNSAT.

After application of IncConDiff the algorithm maintains the bounds func-
tion (lines 8 to 12) by calculation of the shortest path x  u → v  −x via
one added edge (u, v, d) ∈ E(c) for each node x in Gφ∪{c}. Remark: we only
have to considered the shortest paths via the added edges ρ give us the length
of a shortest path without those added edges. Due to Theorem 3 the algorithm
checks φ ∪ {c} for unsatisfiability in Z in the next two lines. If it is unsatisfiable
ScSt terminates and returns UNSAT.

The remainder of the algorithm computes the set of non-implied constraints
P ′ ⊆ P by testing for all constraints c′ ∈ P if the length of both paths x u →
v  y, −y  u → v  −x are longer than d′ and the sum of the upper bounds
ρ′(x) + ρ′(−y) is greater than d′ where (x, y, d′) ∈ E(c′). If all three cases hold
then c′ is not implied by φ ∪ {c} thanks to Theorem 4.

The run-time is determine by the run-time of IncConDiff, the calculation
of δ←u , δ→v which are O(n log n + m), and the implication check O(p). All the
other computations can be done in constant or linear time with respect to n and
m. So the overall run-time is O(n log n+m+ p). ✷

The cost of IncConDiff and the shortest path computations are each
O(n logn+m), while the implication checking is O(p). The space required simply
stores the graph and implication constraints.

6 Experimental Results

We present empirical comparisons of the algorithms discussed herein, first on
satisfaction and then on implication questions.

For both experiments we generate 60 UTVPI instances φ in each problem
class with the following specifications: the values d range uniformly in from −15
to 100. approximately 10% are negative, each variable appears in at least one
UTVPI constraint, each constraint involves exactly two variables, and there is
at most one constraint between any two variables two variables are allowed.

In addition, for the implication benchmarks 10 implication sets P of size p
were created for each n using the same restrictions as defined above. On average
over all benchmarks, 65% of the constraint P were implied by the corresponding
φ.

The experiments were run on a Sun Fire T2000 running SunOS 5.10 and a
1 GHz processor. The code was written in C and compiled with gcc 3.2.

We run incremental satisfiability on a system of m constraints in n variables,
adding the constraints one at a time. We compare: IncLaMu the incremen-
talization of LaMu presented in Section 4, ScSt the incremental implication



Table 2. Average run-time in seconds of the satisfiability algorithms

examples IncLaMuScStmLaMuHaSt

n = 100 feasible 0.32 0.85 1.06 2.17
m = 1000 Z-inf. 0.21 0.59 0.59 1.98
d = 5% Q-inf. 0.10 0.25 0.27 1.12

all (32, 8, 20) 0.23 0.62 0.74 1.79

n = 100 feasible 1.10 2.48 3.96 2.76
m = 2000 Z-inf. 0.41 1.06 1.30 2.36
d = 10% Q-inf. 0.08 0.20 0.22 0.94

all (31, 9, 20) 0.66 1.50 2.32 2.09

n = 100 feasible 4.02 7.35 12.62 3.22
m = 4000 Z-inf. 0.40 1.06 1.21 2.54
d = 20% Q-inf. 0.09 0.24 0.26 1.10

all (28, 12, 20) 1.98 3.72 6.2 2.37

n = 200 feasible 4.42 10.59 17.47 22.94
m = 4000 Z-inf. 1.08 3.15 3.30 18.29
d = 5% Q-inf. 0.34 0.88 0.95 8.70

all (30, 11, 19) 2.51 6.15 9.64 17.42

n = 200 feasible 16.22 31.10 55.75 26.30
m = 8000 Z-inf. 1.36 3.94 4.20 20.42
d = 10% Q-inf. 0.28 0.72 0.82 6.60

all (29, 11, 20) 8.18 16.00 27.99 18.66

n = 200 feasible 61.69 98.71 196.82 28.52
m = 16000 Z-inf. 1.86 5.20 5.82 24.94
d = 20% Q-inf. 0.31 0.79 0.88 7.10

all (28, 12, 20) 29.26 47.37 93.03 20.67

checking algorithm of Section 5 where p = 0, mLaMu running LaMu m times
for m satisfaction checks, and HaSt the algorithm of [6]. The results are shown
in Table 2, where d represent the density of a UTVPI instance. We split the ex-
amples into cases that are feasible, Z infeasible, and Q infeasible. Moreover, the
table entry “all” shows the overall average run-time and the number of exam-
ples for each case in the same ordering as above written. Interestingly for dense
satisfiable systems HaSt is best, but overall IncLaMu is the clear winner.

The incremental implication checked satisfiability and the implications of
constraints P incrementally as each of the m constraints were added one at
a time. A run was terminated if there were no more constraints to add, all
constraints in P were implied, or unsatisfiability was detected. We compare the
two algorithms that can check implication: ScSt versusHaSt. Table 3 shows the
results. Overall the checks for implication are cheap compared to the satisfiability
check for each algorithm. Hence the results are similar to the satisfiability case.
Again HaSt is superior for dense systems, while ScSt is the clear winner on
sparse systems.



Table 3. Average run-time in seconds of the implication algorithms

examples ScSt HaSt

n = 100 p = 50 0.62 1.81
m = 1000 p = 100 0.63 1.82
d = 5% p = 200 0.65 1.84

n = 200 p = 100 6.18 17.52
m = 4000 p = 200 6.24 17.56
d = 5% p = 400 6.36 17.66

n = 800 p = 400 14.20* 521.6*

m = 12800 p = 800 14.67* 522.2*

d = 1% p = 1600 15.60* 523.3*

* Average run-time of Q infeasible
problems.

7 Conclusion

We have presented new incremental algorithms for UTVPI constraint satisfaction
and implication checking which improve upon the previous asymptotic complex-
ity, and perform better in practice for sparse constraint systems.

We can easily adapt the algorithms herein to provide non-incremental im-
plication checking in O(n2 logn + nm + p) time and O(n +m + p) space, and
generate all implied constraints in O(n2 logn + nm) time and O(n + m + p)
space, where p is the number of implied constraints generated.
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