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Abstract

This paper considers the efficient exact computation of the counterpart of the Gittins index for a
finite-horizon discrete-state bandit, which measures for each initial state the average productivity, given
by the maximum ratio of expected total discounted reward earned to expected total discounted time
expended that can be achieved through a number of successive plays stopping by the given horizon.
Besides characterizing optimal policies for the finite-horizon one-armed bandit problem, such an index
provides a suboptimal heuristic index rule for the intractable finite-horizon multiarmed bandit problem,
which represents the natural extension of the Gittins index rule (optimal in the infinite-horizon case).
Although such a finite-horizon index was introduced in classic work in the 1950s, investigation of its
efficient exact computation has received scant attention. This paper introduces a recursive adaptive-
greedy algorithm using only arithmetic operations that computes the index in (pseudo-)polynomial time
in the problem parameters (number of project states and time horizon length). In the special case of
a project with limited transitions per state, the complexity is either reduced or depends only on the
length of the time horizon. The proposed algorithm is benchmarked in a computational study against
the conventional calibration method.
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1. Introduction

This paper deals with a class of finite-horizon discrete-state bandit problems, whose optimal policy is known
to be of index type. In contrast to the existing literature, where such an index is computed approximately
via the so-called calibration method, this paper provides an efficient and exact algorithm to compute the
index.

1.1 Finite-horizon multiarmed bandits

In the classic finite-horizon multiarmed bandit problem (FHMABP), a decision maker aims to maximize
the expected total discounted reward earned from a finite collection of M dynamic and stochastic projects,
one of which must be engaged at each of a finite number T of discrete time periods t = 0, 1, . . . , T − 1.
Project m = 1, . . . , M is modeled as a discrete-time bandit, i.e., a binary-action (active: am(t) = 1; passive:
am(t) = 0) Markov decision process (MDP) whose state Xm(t) moves through the discrete (finite or countably
infinite) state space Xm. If the project is engaged (am(t) = 1) at time t < T when it occupies state
Xm(t) = im, it yields an expected active reward R1

m(im) ≡ Rm(im) and its state evolves to jm with
probability pm(im, jm). Otherwise, it neither yields reward (i.e., the passive reward is R0

m(im) ≡ 0) nor
changes state. Rewards are discounted with factor 0 < β ≤ 1, where the term “discounted” is abused to
include the undiscounted case β = 1.

Decisions as to which project to engage at each time are based on adoption of a scheduling policy π, to
be drawn from the class Π of admissible policies, which engage one project at each time before time T , and
are nonanticipative (with respect to the history of elapsed time periods, states and actions) and possibly
randomized.

The FHMABP is to find an admissible policy that maximizes the expected total discounted reward
earned. Denoting by E

π

i
[·] the expectation under policy π conditioned on the initial joint state being equal

to i = (im), we can formulate such a problem as

max
π∈Π

E
π

i

[
T −1∑

t=0

M∑

m=1

βtRam(t)
m

(
Xm(t)

)
]

. (1)

The problem has its roots in the seminal works of Robbins (1952) and Bradt et al. (1956), who focused on
the much-studied case where engaging a project corresponds to sampling from a Bernoulli population with
unknown success probability, the goal being to maximize the expected number of successes over T plays.
An MDP formulation is obtained by a Bayesian approach, where a project/population state is its posterior
distribution.

The above FHMABP and some of its variants have since drawn extensive research attention, due to their
theoretical and practical interest. See, e.g., the monograph by Berry and Fristedt (1985) and references
therein. More recently, Caro and Gallien (2007) address a problem extension where K < M projects are to
be engaged at each time, motivated by a dynamic assortment problem in the fashion retail industry.

1.2 The average-productivity index policy

Finding an optimal policy for such a problem through numerical solution of its dynamic programming (DP)
equations quickly becomes computationally intractable as the time horizon or the projects’ state spaces
grow, which has led researchers to investigate a variety of tractable, though suboptimal, heuristic scheduling
rules. Simple examples include the “play the winner/switch from a loser” rule (for Bernoulli bandits) and
the myopic policy, which engages at each time a project of currently highest expected reward.

Yet, for a special case of (1), the two-armed bandit problem with one arm known — also known as the
one-armed bandit problem— where there are two projects and one (the known arm or standard project) has
a single state with reward λ, the structure of optimal policies is well known, being characterized by an index
λ∗(d, i) attached to states i ∈ X and times-to-go d = 1, . . . , T for the other project (the unknown arm,
for which the label m is henceforth dropped from the notation). Note that in such a setting, to be used
throughout the paper, time is counted backwards, i.e., d is the number of remaining periods at which the
project can be engaged. It turns out that it is optimal to engage the latter project when it occupies state i
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and d periods remain iff λ∗(d, i) ≥ λ, i.e., iff its current index is greater than or equal to the standard project’s
reward. Such a result was first established for an undiscounted Bayesian Bernoulli bandit in Bradt et al.
(1956, Sect. 4). For an overview and extensions see Berry and Fristedt (1985, Ch. 5).

An economically insightul alternative representation of such an index is

λ∗(d, i) = max
1≤τ≤d

E
τ
i

[
τ−1∑

t=0

βtR
(
X(t)

)
]

E
τ
i

[
τ−1∑

t=0

βt

] , (2)

where the right-hand-side is an optimal-stopping problem, with τ denoting a stopping-time rule for abandoning
the project provided it is engaged at least once starting at i with d remaining periods. Thus, λ∗(d, i) is an
average productivity (AP) index, measuring the maximum rate of expected discounted reward that can be
earned per unit of expected discounted time expended by successively engaging the project no more than d
times starting at i.

Besides characterizing optimal policies for the finite-horizon two-armed bandit problem with one arm
known, λ∗(d, i) also serves as a dynamic priority index for engaging a project, furnishing a heuristic index
policy for the general FHMABP (1) that engages at each time a project of currently highest index value.
In the problem variant where at most K < M projects are to be engaged at each time, the resulting index
policy engages the project(s) with larger positive index values, if any, up to a maximum of K. Such a variant
is particularly relevant when observation costs or activity charges are incorporated into the model. Thus,
note that it follows immediately from (2) that, if the aforementioned project model is modified to include

a charge λ to be incurred each time the project is engaged, so the active reward is R̃(i) , R(i) − λ, the

corresponding index becomes λ̃∗(d, i) = λ∗(d, i) − λ.
The empirical performance of the index rule based on λ∗(d, i) for the case of two Bernoulli projects with

Beta priors is investigated in Ginebra and Clayton (1999), where it is shown to be very close to optimal
for small time horizons. In Caro and Gallien (2007), such an index rule is also considered, although the

authors introduce and use instead an approximation λ̂∗(d, i) for λ∗(d, i) based on approximate DP, which is
less costly to evaluate.

The index λ∗(d, i) is monotone nondecreasing in the remaining time d. Hence, for a project with bounded
rewards it has a finite limit λ∗(i) as d → ∞. Bellman (1956) showed that λ∗(i) characterizes optimal policies
for the infinite-horizon two-armed Bernoulli bandit problem with one arm known and β < 1. The resulting
index rule was shown in Gittins and Jones (1974) to be optimal for the infinite-horizon multiarmed bandit
problem with one project engaged at each time, which has led to λ∗(i) being known as the Gittins index.

Although efficient algorithms to compute the Gittins index of a finite-state project are available, the
currently lowest time complexity — counting the number of arithmetic operations (AOs) — for a general
n-state project being (2/3)n3 +O(n2) (as Gaussian elimination) for the algorithm given in Niño-Mora (2007),
the Gittins index λ∗(i) of a countably-infinite state project can only be approximated, using the AP index
λ∗(d, i) for a large horizon d. Wang (1997) shows the rate of convergence of λ∗(d, i) to λ∗(i) to be linear for
β < 1.

In contrast, scant research attention has been given to the efficient computation of the AP index λ∗(d, i)
for a general project. The limited previous work, which we review in Section 2, typically focuses on specific
models, and either uses DP to obtain approximate index values, or draws on the optimal-stopping repre-
sentation (2) to obtain exact index values. The latter approach, however, has not yielded an exact index
algorithm of general applicability with polynomial time complexity in both the horizon T and in the number
of states n.

A one-pass exact index algorithm with O(T 3n3) time complexity was presented in Niño-Mora (2005),
using the adaptive-greedy restless-bandit index algorithm introduced in Niño-Mora (2001, 2002). The term
“adaptive-greedy” refers to the fact that such an algorithm finds a local maximizer for a certain vector at
each step in an adaptive fashion, meaning that such a vector is updated after the step. A recursive version
with an improved O(T 2n3) time complexity, using O(T 2n2) memory locations, was presented in Niño-Mora
(2008), by exploiting the structure of the restless bandit formulation of a finite-horizon bandit.

This paper develops, simplifies, and extends such work, as it does not rely on restless bandit indexation
and extends the algorithm’s scope to countably-infinite state projects. For a project with limited transitions
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per state, the time complexity is reduced to O(T 2n2), and in such a case the algorithm is further extended
to countably-infinite state projects with an O(T 6) time complexity and an O(T 5) memory complexity. A
computational study demonstrates the index algorithm’s practical tractability for moderate-size instances.

For comparison, the paper includes in Section 2.1 an assessment of the complexity of approximate index
computation via the conventional calibration method, which solves by DP a collection of finite-horizon optimal
stopping problems at a finite grid of λ-values (from which the approximate index values are taken). The
complexity of such a method grows linearly in the grid size L, being O(LT n2) time and O(LT n) space.
Hence, if L is taken equal to the number T n of index values to be evaluated, one obtains time and space
complexities of O(T 2n3) and O(T 2n2), as in the exact algorithm proposed herein.

The remainder of the paper is organized as follows. Section 2 reviews previous approaches to the finite-
horizon AP index’ computation. Section 3 develops the recursive index algorithm for finite-state projects.
Section 4 extends the algorithm’s scope to countably-infinite state projects. Section 5 presents an efficient
block implementation (see Dongarra and Eijkhout (2000)) of the algorithm, which is necessary for making it
useful in practice. Section 6 reports the results of a computational study. Section 7 concludes.

Ancillary material is available in an online supplement.

2. Previous approaches to the AP index computation

Two approaches have been proposed, as discussed below.

2.1 The calibration method for approximate index computation

The first, known as the calibration method, uses DP to obtain approximate index values, adapting to the
finite-horizon setting the method in Gittins (1979, Sec. 8) for approximate Gittins index calculation, as
outlined in Berry and Fristedt (1985, Ch. 5). Denoting by v∗

d(i; λ) the optimal value of the two-armed
bandit problem with one arm known, where the unknown project starts at i with d remaining periods,
λ∗(d, i) is the smallest root in λ of

v∗
d(i; λ) = λhd, (3)

where hd , (1 − βd)/(1 − β) if β < 1 and hd , d if β = 1. Note that, for a fixed λ, v∗
d(i; λ) is recursively

characterized by the DP equations

v∗
d(i; λ) =

{
max

{
λhd, R(i) + β

∑
j∈X

p(i, j)v∗
d−1(j; λ)

}
, d ≥ 2

max
{

λ, R(i)
}

, d = 1,
(4)

which use the result, first proven in Bradt et al. (1956, Lemma 4.1), that, if the standard project is optimal
at any stage, then it is also optimal thereafter.

The calibration method solves such DP equations for a grid of increasing λ-values {λl : 1 ≤ l ≤ L},

with λ1 = mini R(i) and λL = maxi R(i), which gives index approximations λ̂∗(d, i) with the desired degree
of accuracy. Table 1 shows an efficient block implementation (see Dongarra and Eijkhout (2000)) of the
calibration method, where V∗

d is the n × L matrix [v∗
d(λl)]1≤l≤L, with v∗

d(λl) =
(
v∗

d(i; λl)
)

i∈X
, and 1 is an n-

vector of ones. Note that the “max" shown in Table 1 are to be read componentwise. As discussed in Section
5, block implementations achieve economies of scale in computation by rearranging bottleneck calculations
as operations on large data blocks. In Table 1, this is achieved with the matrix-update V∗

d := βPV∗
d−1 .

The required minimization can be carried out using bisection search.
The following result assesses both the time (AOs) and the memory complexities (the latter measuring

intermediate floating-point storage locations, i.e., excluding input and output) of the calibration method.
Since it appears reasonable to deploy such an approach using a grid contaning a number L of λ-values that
is at least as large as the number of index values, i.e., L ≥ T n, Proposition 2.1(c) estimates the complexity
in the case L = T n.

Proposition 2.1 For an n-state project with horizon T :

(a) For a fixed λ, the v∗
d(λ) for 1 ≤ d ≤ T can be computed in 2(T − 1)

[
n(n + 1) + 1

]
+ n = O(T n2) time

and O(T n) space.
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Table 1: Block implementation of the calibration method.

ALGORITHM BlockCAL:
Input: {λl : 1 ≤ l ≤ L}
Output: {λ̂∗(d, i) : 1 ≤ d ≤ T, i ∈ X}

λ̂∗(1, i) := R(i), i ∈ X; v∗
1(λl) := max

{
λl1, R

}
, l = 1, . . . , L

for d := 2 to T do
V∗

d := βPV∗
d−1 { note: V∗

d = [v∗
d(λl)]1≤l≤L }

v∗
d(λl) := max

{
hdλl1, R + v∗

d(λl)
}

, l = 1, . . . , L

λ̂∗(d, i) := min
{

λl : v∗
d(i; λl) = λlhd, 1 ≤ l ≤ L

}
, i ∈ X

end { for }

(b) Using a size-L grid, the calibration method uses 2(T − 1)L
[
n(n + 1) + 1

]
+ Ln = O(LT n2) time and

O(LT n) space.

(c) If L = T n, then the calibration method uses O(T 2n3) time and O(T 2n2) space.

Proof. (a) Computing v∗
1(·; λ) involves the n subtractions required to obtain max

{
λ, R(i)

}
for every i. For

d ≥ 2, in order to compute v∗
d(i; λ) given v∗

d−1(·; λ) and h̃d−1 = λhd−1, one first computes
∑

j p(i, j)v∗
d−1(j; λ),

which takes 2n−1 AOs. Multiplying the result by β, adding it to R(i), and then subtracting h̃d to determine
the “max” takes 3 AOs. Repeating for every i takes 2n(n+1) AOs. The h̃d is computed from h̃d = λ+βh̃d−1,
which takes 2 additional AOs. Repeating for d = 2, . . . , T gives the 2(T − 1)

[
n(n + 1) + 1

]
term. Further,

storage of the v∗
d(·; λ) uses T n floating-point memory locations.

Parts (b) and (c) follow immediately from parts (a) and (b), respectively. ✷

Note further that the calibration method is immediately parallelizable, as the computations for nonover-
lapping ranges of λ-values can be split among different processors. Hence, its time complexity scales linearly
with the number of processors.

2.2 The direct method for exact index computation

In contrast to the calibration method, which is presently the preferred approach, the direct method computes
exact index values and is relatively unexplored. It was introduced in Bradt et al. (1956, Sec. 4), and has
been extended in Berry and Fristedt (1985, Ch. 5) to more general discount sequences. The direct method
draws on the representation in (2), calling for the solution of the corresponding optimal stopping problems.

In Gittins (1979, Sec. 7), such a method is deployed to compute the index λ∗(T, i) for a Bernoulli bandit
with Beta priors, with the goal of approximating its Gittins index λ∗(i). Two key results, which reduce
the complexity of the optimal stopping problems of concern, and give a recursive index computation, are
Corollaries 1 and 2 in that paper.

Proposition 2.2 (Corollary 1 in Gittins (1979)) An optimal stopping time for (2) is

τ∗
d , min

{
d, min

{
t : 1 ≤ t ≤ d − 1, λ∗

(
d − t, X(t)

)
< λ∗(d, i)

}}
. (5)

Proposition 2.3 (Corollary 2 in Gittins (1979)) In order to solve optimal-stopping problem (2), it suf-
fices to consider stopping times of the form

τd(λ) , min
{

d, min
{

t : 1 ≤ t ≤ d − 1, λ∗
(
d − t, X(t)

)
< λ

}}
, λ ∈ R, (6)

where the “min” of an empty set is taken to be ∞.
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The direct method outlined in Gittins (1979, Sec. 7) draws on Proposition 2.2, reducing optimal-stopping
problem (2) to the one-dimensional continuous optimization problem

λ∗(d, i) = max
λ∈R

E
τd(λ)
i




τd(λ)−1∑

t=0

βtR
(
X(t)

)



E
τd(λ)
i




τd(λ)−1∑

t=0

βt




, (7)

which corresponds to formula (11) in that paper.
However, in Gittins (1979) it is not discussed how to solve exactly the right-hand-side optimization

problem over λ ∈ R in (7), although in the review of such an approach in Gittins (1989, p. 140) it appears to
be suggested to use a grid of λ-values and interpolation for such a purpose, which would render the method
approximate rather than exact.

Varaiya et al. (1985, Sec. IV) gives a Gittins-index algorithm that exploits the corresponding result in
Proposition 2.2 for the Gittins index, as stated in the lemma on p. 154 of Gittins (1979). The Varaiya et al.
(1985) algorithm avoids solving the corresponding continuous optimization problem (7), as it only involves
discrete maximizations.

In fact, Proposition 2.2 ensures that the continuous optimization problem in the right-hand-side of (7)
can be reduced to the discrete optimization problem

λ∗(d, i) = max
λ∈{λ∗(s,j) : 1≤s≤d−1,j∈X}

E
τd(λ)
i




τd(λ)−1∑

t=0

βtR
(
X(t)

)



E
τd(λ)
i




τd(λ)−1∑

t=0

βt




. (8)

Yet, this observation does not directly yield an adaptive-greedy algorithm for the AP index λ∗(d, i) analogous
to that of Varaiya et al. for the Gittins index λ∗(i).

3. Recursive index computation

This section develops the recursive adaptive-greedy index algorithm that is the main contribution of this
paper, for a project with a finite number n of states.

3.1 Reduction to a modified Gittins index

Let us first prepare the ground for computing a project’s finite-horizon AP index λ∗(d, i), by showing that
such an index can be reduced to a modified Gittins index, which allows use of the adaptive-greedy algorithm
available for the latter index to compute the former.

Consider an auxiliary infinite-horizon project, whose state Y (t) evolves over time periods t ≥ 0 through

the state space YT , Y
{0,1}
T ∪ Y

{0}, where Y
{0,1}
T , {1, . . . , T } × X is the set of controllable states where

both actions (active and passive) are allowed, and Y
{0} , {(0, Ω)} is the (singleton) set of uncontrollable

states where the passive action must be taken, with (0, Ω) denoting a terminal absorbing state. Under the
active action a(t) = 1, the project’s transition probabilities are p1

(
(d, i), (d − 1, j)

)
, p(i, j) for 2 ≤ d ≤ T

and p1
(
(1, i), (0, Ω)

)
, 1, while its rewards are R1(d, i) , R(i). Under the passive action a(t) = 0, the

project remains frozen, its transition probabilities being p0
(
(d, i), (d, i)

)
≡ 1, while its immediate rewards

are R0(d, i) ≡ 0. Further, all other transition probabilities are zero.
The idea of forcing a project to be passive in certain states, termed uncontrollabe, was introduced in

Niño-Mora (2002) in the setting of restless bandits, where a project’s index is only defined for its controllable
states. This is relevant in the present setting, as shown next. Suppose we allow the active action to be taken at
the absorbing state (0, Ω) in the auxiliary infinite-horizon project described above, with the same dynamics
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and rewards as the passive action. Let G(d, i) be the corresponding conventional Gittins index, which is
defined by

G(d, i) , max
τ≥1

E
τ
(d,i)

[
τ−1∑

t=0

βtR1
(
Y (t)

)
]

E
τ
(d,i)

[
τ−1∑

t=0

βt

] , (d, i) ∈ YT , (9)

where τ ≥ 1 is a stopping time under which the project is engaged at least once starting at (d, i). Now, let
G′(d, i) be the modified Gittins index of the project with state Y (t) and uncontrollable state (0, Ω), which is

defined only for its controllable states (d, i) ∈ Y
{0,1}
T by

G′(d, i) , max
τ≥1 : a(t)=0 if Y (t)=(0,Ω)

E
τ
(d,i)

[
τ−1∑

t=0

βtR1
(
Y (t)

)
]

E
τ
(d,i)

[
τ−1∑

t=0

βt

] = max
1≤τ≤d

E
τ
(d,i)

[
τ−1∑

t=0

βtR1
(
Y (t)

)
]

E
τ
(d,i)

[
τ−1∑

t=0

βt

] . (10)

Note that, unlike (9), optimal-stopping problem (10) only considers stopping times τ ≥ 1 that idle
the project at (0, Ω), i.e., τ ≤ d. Such a distinction between the conventional and the modified Gittins
index is significant, since in some cases the two may differ. Thus, e.g., for a state (1, i) with R(i) < 0,
G′(1, i) = R(i) < G(1, i) = (1 − β)R(i).

The interest of introducing such an auxiliary project and its modified Gittins index G′(d, i) is that the
latter is precisely the finite-horizon AP index λ∗(d, i) of concern here.

Proposition 3.1 λ∗(d, i) = G′(d, i) for (d, i) ∈ Y
{0,1}
T .

Proof. The result follows by noting that, under a stopping time 1 ≤ τ ≤ d for the original project’s
state process X(t) starting at i with d remaining periods, the process defined by Y (t) ,

(
d − t, X(t)

)
for

t = 0, . . . , τ − 1 has the same (active) dynamics and rewards as that used to define G′(d, i) above, and
therefore

λ∗(d, i) , max
1≤τ≤d

E
τ
i

[
τ−1∑

t=0

βtR
(
X(t)

)
]

E
τ
i

[
τ−1∑

t=0

βt

] = max
1≤τ≤d

E
τ
(d,i)

[
τ−1∑

t=0

βtR1
(
Y (t)

)
]

E
τ
(d,i)

[
τ−1∑

t=0

βt

] = G′(d, i).

✷

3.2 Adaptive-greedy index algorithm

The representation in Proposition 3.1 of the finite-horizon index λ∗(d, i) as the modified Gittins index of
an infinite-horizon project allows us to use available algorithms for the latter type of index to compute the
former. Note, however, that the classic adaptive-greedy Gittins-index algorithm of Varaiya et al. (1985)
should not be directly used, since it computes the conventional Gittins index G(d, i) which, as argued above,
can differ from the modified Gittins index G′(d, i) = λ∗(d, i). Also, such an algorithm does not exploit special
structure.

We will use instead an extension of such an algorithm introduced in Niño-Mora (2001) for restless bandits,
and further extended in Niño-Mora (2002) to a wider setting. A key feature of such an algorithm is that it
exploits special structure to reduce the computational burden. Rather than describing the algorithm in full
generality, for which the reader is referred to the aforementioned papers, we present it next as it applies to
the model of concern.
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To prepare the ground, we start by introducing two measures to evaluate a stopping-time rule 0 ≤ τ ≤ d
for the project (refer to the discussion in Section 3.1): a reward measure

f τ
d (i) , E

τ
(d,i)

[
τ−1∑

t=0

βtRa(t)
(
Y (t)

)
]

= E
τ
i

[
τ−1∑

t=0

βtR
(
X(t)

)
]

,

giving the expected total discounted reward earned starting at i with d remaining periods; and the work
measure

gτ
d(i) , E

τ
(d,i)

[
τ−1∑

t=0

βt

]
,

giving the corresponding expected total discounted time that the project is active.
Due to the optimality of deterministic Markov policies for finite-state and -action MDPs, it suffices to

consider stopping times τ given by a continuation (or active) set A ⊆ Y
{0,1}
T , consisting of those controllable

states at which the project is active under τ . We will find it convenient to represent each such continuation
set in a more explicit fashion, writing

A = (A1, . . . , AT ) , {1} × A1 ∪ · · · ∪ {T } × AT , (11)

where Ad ∈ X is the continuation set when d periods remain. Thus, the stopping rule having continuation
set A engages the original project in state i when d periods remain (or the modified project in state (d, i))
iff i ∈ Ad. We will write fA

d (i) and gA
d (i) to denote the reward measures and work measures, respectively,

under such a stopping rule.
Further, we will use the modified reward and work measures defined by

rA
d (i) , f

A∪{(d,i)}
d (i), and wA

d (i) , g
A∪{(d,i)}
d (i), (12)

respectively, along with the productivity rate measure defined by

λA
d (i) ,

rA
d (i)

wA
d (i)

. (13)

Now, the classic result referred to in Section 1, whereby if it is optimal to stop the project when d periods
remain, then it is also optimal to do so when less periods remain, allows us to restrict the continuation
sets that need be considered to those consistent with such a property, which constitute the continuation-set
family

FT ,
{

A = (A1, . . . , AT ) : A1 ⊆ · · · ⊆ AT ⊆ X
}

. (14)

We are now ready to present the adaptive-greedy index algorithm AG(FT ), which is shown in Table 2.

Such an algorithm builds up in T n steps (note that T n = T |X| = |Y
{0,1}
T | is the number of controllable states)

an increasing nested chain of adjacent continuation sets (i.e., differing by one state) A0 = ∅ ⊂ A1 ⊂ . . . ⊂

AT n = Y
{0,1}
T in FT connecting the empty set to the full controllable state space, proceeding at each step in a

greedy fashion. Thus, once the continuation set Ak−1 ∈ FT has been constructed, the next continuation set

Ak is obtained by adding to Ak−1 a controllable state (sk, ik) ∈ Y
{0,1}
T \Ak−1 that maximizes the productivity

rate λAk−1

s (i) over augmented states (s, i) ∈ Y
{0,1}
T \ Ak−1 for which the next active set remains in FT , i.e.,

with Ak = Ak−1 ∪ {(s, i)} ∈ FT . Ties are broken arbitrarily.

Note that in Table 2 we write, for notational convenience, λAk−1

s (i) as λk−1
s (i). The algorithm’s output

consists of an augmented-state sequence (sk, ik) spanning Y
{0,1}
T , along with a corresponding nonincreasing

sequence of index values λ∗(sk, ik).
We next use the definition of FT in (14) to obtain the more explicit reformulation of algorithm AG(FT )

shown in Table 3, breaking down the choice at step k of the augmented state to be added to the current
continuation set Ak−1 = (Ak−1

1 , . . . , Ak−1
T ).
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Table 2: Adaptive-greedy index algorithm AG(FT ).

ALGORITHM AG(FT ):
Output: {(sk, ik), λ∗(sk, ik) : 1 ≤ k ≤ T n}

A0 := ∅
for k := 1 to T n do

pick (s∗, i∗) ∈ arg max
{

λk−1
s (i) : (s, i) ∈ Y

{0,1}
T \ Ak−1, Ak−1 ∪ {(s, i)} ∈ FT

}

λ∗(s∗, i∗) := λk−1
s∗ (i∗); Ak := Ak−1 ∪ {(s∗, i∗)}; (sk, ik) := (s∗, i∗)

end { for }

Table 3: More explicit reformulation of index algorithm AG(FT ).

ALGORITHM AG(FT )
Output: {(sk, ik), λ∗(sk, ik) : 1 ≤ k ≤ T n}

A0
1 := · · · := A0

T := ∅; A0
T +1 := X

for k := 1 to T n do { note: Ak−1 = (Ak−1
1 , . . . , Ak−1

T ) }

pick (s∗, i∗) ∈ arg max
{

λk−1
s (i) : 1 ≤ s ≤ T, Ak−1

s ⊂ Ak−1
s+1 , i ∈ Ak−1

s+1 \ Ak−1
s

}

λ∗(s∗, i∗) := λk−1
s∗ (i∗); Ak

s∗ := Ak−1
s∗ ∪ {i∗}; Ak

s := Ak−1
s , s 6= s∗; (sk, ik) := (s∗, i∗)

end { for }

3.3 Reward and work measure recursions

The above algorithms do not specify how to compute the required modified reward and work measures (see
(13)) to calculate productivity rates λk−1

d (i). This section presents recursions that will be used for such a
purpose in the next section.

Let A = (A1, . . . , AT ) be a continuation set in FT . Note first that, from the stopping-rule interpretation
of A, it is clear that the reward measure fA

d (i) does not depend on As for s > d, which allows us to write

fA
d (i) as f

(A1,...,Ad)
d (i) for d ≥ 1, while fA

0 (Ω) ≡ 0. Further, the definition of modified reward measure rA
d (i)

in (12) ensures that it does not depend on As for s ≥ d, which allows us to write rA
d (i) as r

(A1,...,Ad−1)
d (i) for

d ≥ 2, while rA
1 (i) = R(i).

In the following result, part (a) shows how to recursively evaluate modified reward measures rA
d (i) for

a fixed A. The remaining parts show how to evaluate the modified reward measure for an augmented

continuation set, r
A∪{(d,i∗)}
d (i), based on knowledge of the rA

d (i). While the base continuation set is written
as A, the reduction discussed in the previous paragraph should be taken into account, as it plays a key role
in the proof. Also, note that A ∪ {(d, i∗)} = (A1, . . . , Ad ∪ {i∗}, . . . , AT ).

Lemma 3.2 For 1 ≤ d ≤ T , i ∈ X:

(a) rA
d (i) =





R(i) + β
∑

j∈Ad−1

p(i, j)rA
d−1(j) if 2 ≤ d ≤ T

R(i) if d = 1.

(b) r
A∪{(d,i∗)}
d (i) = rA

d (i), for i∗ ∈ X \ Ad.

(c) r
A∪{(d−1,i∗)}
d (i) = rA

d (i) + βp(i, i∗)rA
d−1(i∗), for i∗ ∈ Ad \ Ad−1.

(d) r
A∪{(s,i∗)}
d (i) = R(i) + β

∑

j∈Ad−1

p(i, j)r
A∪{(s,i∗)}
d−1 (j), for 1 ≤ s ≤ d − 2, i∗ ∈ As+1 \ As.
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Proof. (a) This part follows immediately from the definition of rA
d (i) in (12) and the project’s dynamics and

rewards under the stopping rule induced by continuation set A.
(b) The result follows from

r
A∪{(d,i∗)}
d (i) = r

(A1,...,Ad−1)
d (i) = rA

d (i).

(c) The result, which draws on part (a), follows from

r
A∪{(d−1,i∗)}
d (i) = r

(A1,...,Ad−1∪{i∗})
d (i) = R(i) + β

∑

j∈Ad−1

p(i, j)r
(A1,...,Ad−1∪{i∗})
d−1 (j)

+ βp(i, i∗)r
(A1,...,Ad−1∪{i∗})
d−1 (i∗)

= R(i) + β
∑

j∈Ad−1

p(i, j)r
(A1,...,Ad−2)
d−1 (j) + βp(i, i∗)r

(A1,...,Ad−2)
d−1 (i∗)

= rA
d (i) + βp(i, i∗)rA

d−1(i∗).

(d) The result, which also draws on part (a), follows from

r
A∪{(d,i∗)}
d (i) = r

(A1,...,As∪{i∗},...,Ad−1)
d (i) = R(i) + β

∑

j∈Ad−1

p(i, j)r
(A1,...,As∪{i∗},...,Ad−2)
d−1 (j)

= R(i) + β
∑

j∈Ad−1

p(i, j)r
A∪{(s,i∗)}
d−1 (j).

✷

The following result is the counterpart of Lemma 3.2 for modified work measures wA
d (i). It follows

immediately from the above by taking R(i) ≡ 1, and hence we omit its proof.

Lemma 3.3 For 1 ≤ d ≤ T , i ∈ X:

(a) wA
d (i) =





1 + β
∑

j∈Ad−1

p(i, j)wA
d−1(j) if d ≥ 2

1 if d = 1.

(b) w
A∪{(d,i∗)}
d (i) = wA

d (i), for i∗ ∈ X \ Ad,

(c) w
A∪{(d−1,i∗)}
d (i) = wA

d (i) + βp(i, i∗)wA
d−1(i∗), for i∗ ∈ Ad \ Ad−1;

(d) w
A∪{(s,i∗)}
d (i) = 1 + β

∑

j∈Ad−1

p(i, j)w
A∪{(s,i∗)}
d−1 (j), for 1 ≤ s ≤ d − 2, i∗ ∈ As+1 \ As.

3.4 A T -stage O(T 2n3) recursive adaptive-greedy index algorithm

This section draws on the above results to reformulate the one-pass adaptive-greedy index algorithm AG(FT )
in Table 3 into a T -stage recursive adaptive-greedy (RAG) algorithm.

Consider the algorithm’s dth stage, RAGd, for a given remaining time 2 ≤ d ≤ T , which is shown in Table
4, where B =

(
b(i, j)

)
i,j∈X

, βP. The input to RAGd consists of (i) the index values λ∗(s, i) for smaller

horizons 1 ≤ s ≤ d − 1; and (ii) sequences labeled by l = 1, . . . , Ld−1 (with Ld−1 < (d − 1)n being part of the
input) of augmented states (sl

d−1, il
d−1), and of modified work and reward measures wl−1

d−1 =
(
wl−1

d−1(i)
)

i∈X

and rl−1
d−1 =

(
rl−1

d−1(i)
)

i∈X
from the previous stage. The output of RAGd gives the input to the next stage.

Algorithm RAGd performs Ld steps, labeled by k = 1, . . . , Ld, to build up the first Ld continuation sets
Ak−1 = (Ak−1

1 , . . . , Ak−1
d ) of those constructed by algorithm AG(Fd) in Table 3, using its input to avoid

redundant computations. Note that |Ak−1| =
∑d

s=1 |Ak−1
s |, |Ak−1| = k − 1, and |Ak−1

s | = ks for 1 ≤ s ≤ d.

As before, in the algorithm’s notation wk−1
s (i) and rk−1

s (i) stand for wAk−1

s (i) and rAk−1

s (i), respectively. For

a continuation set Ak−1 as above, we write Âl−1 = (Ak−1
1 , . . . Ak−1

d−1), with l = k−kd. Note that |Âl−1| = l−1.
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Table 4: Stage 2 ≤ d ≤ T of the RAG index algorithm.

ALGORITHM RAGd

Input:
{

λ∗(s, i) : 1 ≤ s ≤ d − 1, i ∈ X
}

,
{

(sl
d−1, il

d−1), wl−1
d−1, rl−1

d−1 : 1 ≤ l ≤ Ld−1}

Output:
{

λ∗(s, i) : 1 ≤ s ≤ d, i ∈ X
}

,
{

(sk
d, ik

d), wk−1
d , rk−1

d : 1 ≤ k ≤ Ld

}

k := 1; l := 1; Ad−1 := Ad := ∅; kd := 0;
[
w0

d r0
d

]
:=

[
1 R

]

repeat { note: Ak−1 = (Ak−1
1 , . . . , Ak−1

d ) = (A1, . . . , Ad) }

λk−1
d (i) := rk−1

d (i)/wk−1
d (i), i ∈ X \ Ad; pick i∗ ∈ arg max

{
λk−1

d (i) : i ∈ X \ Ad

}

if λk−1
d (i∗) ≥ λ∗(sl

d−1, il
d−1) then

s∗ := d; λ∗(d, i∗) := λk−1
d (i∗); Ad := Ad ∪ {i∗}; kd := kd + 1

if kd < n then
[
wk

d rk
d

]
:=

[
wk−1

d rk−1
d

]

else
(s∗, i∗) := (sl

d−1, il
d−1)

if s∗ = d − 1 then[
wk

d rk
d

]
:=

[
wk−1

d rk−1
d

]
+ B(·, i∗)

[
wl−1

d−1(i∗) rl−1
d−1(i∗)

]
; Ad−1 := Ad−1 ∪ {i∗}

else { s∗ ≤ d − 2 }[
wk

d(i) rk
d(i)

]
:=

[
1 R(i)

]
+

∑
j∈Ad−1

b(i, j)
[
wl

d−1(j) rl
d−1(j)

]
, i ∈ X

end { if }
l := l + 1

end { if }
(sk

d, jk
d ) := (s∗, i∗); k := k + 1

until kd = n { repeat }
Ld := k − 1

The key insight on which the design of algorithm RAGd is based is that the successive continuation
sets Âl−1, for l = 1, 2, . . ., corresponding to the Ak−1 constructed by algorithm RAGd, are precisely those
constructed by the previous stage’s algorithm, RAGd−1. Exploiting such an insight allows us to simplify
algorithm AG(Fd) in Table 3, as follows. Consider step k of algorithm RAGd, which corresponds to step
k of AG(Fd). Such a step identifies the augmented state (s∗, i∗) ∈ arg max

{
λk−1

s (i) : 1 ≤ s ≤ d, Ak−1
s ⊂

Ak−1
s+1 , i ∈ Ak−1

s+1 \ Ak−1
s

}
that will be added to the current continuation set Ak−1 = (Ak−1

1 , . . . Ak−1
d ) to

obtain the next one, Ak = Ak−1 ∪ {(s∗, i∗)}, with the index of augmented state (s∗, i∗) being then given
by λ∗(s∗, i∗) = λk−1

s∗ (i∗) = rk−1
s∗ (i∗)/wk−1

s∗ (i∗). Such a maximization of λk−1
s (i) is now broken down into

two parts: that for horizon s = d, and that for smaller horizons s < d, with the first being the only one
that requires actual computations, since the second was already evaluated in previous stages, having as
maximizing argument (sl

d−1, il
d−1), with l = k − kd. Algorithm RAGd stops as soon as Ak

d = X, i.e., kd = n,
performing Ld < dn steps.

As the step counter k advances, algorithm RAGd constructs the required modified work and reward
measures wk

d(i) and rk
d(i) using the recursions obtained in Section 3.3. The update formulae to use depend

on the value of s∗. Three cases need to be considered. In the first case, s∗ = d, we use Lemmas 3.2(b) and
3.3(b) to conclude that [

rk
d(i) wk

d(i)
]

=
[
rk−1

d (i) wk−1
d (i)

]
, i ∈ X.

In the second case, s∗ = d − 1, Lemmas 3.2(c) and 3.3(c) yield that, with l = k − kd:

[
wk

d(i) rk
d(i)

]
=

[
wk−1

d (i) rk−1
d (i)

]
+ b(i, i∗)

[
wl−1

d−1(i) rl−1
d−1(i)

]
, i ∈ X. (15)

Finally, in the third case, s∗ < d − 1, we use Lemmas 3.2(d) and 3.3(d) to obtain

[
wk

d(i) rk
d(i)

]
=

[
1 R(i)

]
+

∑

j∈Ad−1

b(i, j)
[
wl

d−1(j) rl
d−1(j)

]
, i ∈ X, (16)

where again l = k − kd. Such recursions are initialized by setting w0
d(i) ≡ 1 and r0

d(i) ≡ R(i).
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The above applies to a stage 2 ≤ d ≤ T . As for the initial stage d = 1, the required quantities are
obtained by setting λ∗(1, i) = R(i), wl

1(i) ≡ 1, and rl
1(i) ≡ R(i).

The following result establishes the validity of the resulting T -stage index algorithm RAG, which succes-
sively runs the stages RAG1, RAG2, . . . , RAGT , and assesses its time and memory complexity.

Theorem 3.4 Algorithm RAG computes all index values
{

λ∗(d, i) : 1 ≤ d ≤ T, i ∈ X
}

in O(T 2n3) time and
O(T n2) space.

Proof. The result that algorithm RAG computes index λ∗(d, i) is already proven by the above discussion.
Regarding the time complexity, let us focus on a given stage d (with 2 ≤ d ≤ T ), i.e., on algorithm RAGd.
The description of RAGd as given in Table 4 shows that the bulk of the computational work corresponds to
the update in (16), which entails

4|Ad−1|n + O(n) ≤ 4n2 + O(n)

AOs. Adding up such an upper bound over steps k = 1, . . . , dn gives 4dn3 + O(dn2) for stage d. Then,
adding up over stages d = 2, . . . , T gives the upper bound O(T 2n3).

As for memory, the bulk of the storage requirements at the last, more expensive stage T , corresponds to
quantities {wk

T (i), rk
T (i) : i ∈ X, 1 ≤ k ≤ LT }, and {wl

T −1(i), rl
T −1(i) : i ∈ X, 1 ≤ l ≤ LT −1}, with Ld < dn,

which use O(T n2) floating-point locations. Since memory can be reused from one stage to the next, this
gives the overall memory complexity. ✷

Since T n index values are computed, Theorem 3.4 ensures that the average complexity per index value
of algorithm RAG is O(T n2) time and O(n) space.

3.5 Limited transitions per state: O(T 2n2) index algorithm

The O(T 2n3) time complexity of the RAG index algorithm holds for a general project. Yet, in many models
arising in applications, the state transition probability matrix is sparse, as only a limited number N of states,
which remains fixed as the total number n of states varies, can be reached from any given state. Namely,
the following condition holds.

Assumption 3.5 For every state i ∈ X,
∣∣{j ∈ X : p(i, j) > 0}

∣∣ ≤ N .

In such cases, the time complexity of the RAG algorithm given in the previous section is reduced by an
order of magnitude in the total number n of states.

Proposition 3.6 Under Assumption 3.5, the RAG algorithm computes all index values
{

λ∗(d, i) : 1 ≤ d ≤

T, i ∈ X
}

in O(T 2n2) time.

Proof. As in Theorem 3.4, the bottleneck computation for any stage d and step k corresponds to the update
in (16), which now entails no more than 2(2N + 1)n = O(n) AOs. Adding up such an upper bound over
steps k = 1, . . . , dn gives O(dn2) AOs for stage d. Then, adding up over stages d = 2, . . . , T gives O(T 2n2)
AOs. ✷

4. Computing the relevant index values of a countable-state project

For a finite-state project, the RAG algorithm computes index values λ∗(d, i) for every intermediate horizon
1 ≤ d ≤ T and state i ∈ X combination. Yet, to deploy the resulting priority-index policy in a particular
instance of the FHMABP (1), the index of each project need not be evaluated at each such (d, i) pair,
but only at the typically smaller subset of relevant (d, i), i.e., those that can be reached from the initial
state within the allotted time. Even for a project with a countably infinite state space, provided it satisfies
Assumption 3.5 — such as the classic Bernoulli bandit with Beta priors, for which N = 2 — the set of
relevant (d, i) pairs is finite. This section presents a modified version of the RAG algorithm that computes
the index values only at such relevant (d, i) pairs.

Consider a project whose state X(t) moves through the countable (finite or infinite) state space X, with
its transition probabilities satisfying Assumption 3.5. Suppose the project starts at X(0) = i0 with horizon
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T . Then, the project’s index λ∗(d, i) need be evaluated only at pairs (d, i) such that: (i) 1 ≤ d ≤ T ; and (ii)
state i belongs to the finite set XT −d(i0) of states that can be reached within T − d periods starting at i0.

Note that nd(i0) , |XT −d(i0)| ≤
∑T −d

s=0 Ns, and that

{i0} = X0(i0) ⊆ X1(i0) ⊆ · · · ⊆ XT (i0).

Let Y
{0,1}
T (i0) ,

{
(d, i) : 1 ≤ d ≤ T, i ∈ XT −d(i0)

}
be the finite set of such relevant (d, i) pairs, and let

YT (i0) , Y
{0,1}
T (i0)∪{(0, Ω)}. Note that Y

{0,1}
T (i0) contains LT (i0) , |Y

{0,1}
T (i0)| =

∑T
d=1 nd(i0) augmented

states (d, i).
Consider now an auxiliary finite-state infinite-horizon project, whose state Y (t) evolves over time periods

t ≥ 0 through the state space YT (i0), defined as in Section 3.1 but using YT (i0) and Y
{0,1}
T (i0) in place of

YT and Y
{0,1}
T . Now, let G′(d, i) be the modified Gittins index of such an auxiliary project, as defined by

(10). The interest of introducing such an auxiliary project and its modified Gittins index G′(d, i) is, as in
Section 3.1, that the latter is precisely the finite-horizon index λ∗(d, i). The proof of the next result follows
along the same lines as that of Proposition 3.1, and is hence omitted.

Proposition 4.1 λ∗(d, i) = G′(d, i) for (d, i) ∈ Y
{0,1}
T (i0).

As in Section 3.2, Proposition 4.1 allows us to obtain the finite set of relevant index values λ∗(d, i) for

(d, i) ∈ Y
{0,1}
T (i0) by running the adaptive-greedy algorithm AG(FT ) in Table 2. Yet, note that the definition

of active-set family FT in (14) used in Section 3.2 must be modified in the present setting to FT , 2Y
{0,1}

T
(i0).

We can now use the recursionspresented in Section 3.3, along the lines in Section 3.4, to reformulate the
one-pass algorithm AG(FT ) into a T -stage recursive algorithm, which we denote by RAG(i0) to emphasize
its dependence on the initial project state i0. Table 5 shows stage d of such an algorithm, which we denote
by RAGd(i0), for 2 ≤ d ≤ T .

The next result ensures the validity of the resulting T -stage index algorithm RAG(i0), which successively
runs the stages RAG1(i0), RAG2(i0), . . . , RAGT (i0), and assesses its complexity. For the latter purpose, we
further assume a quadratic growth rate for |Xs(i0)| in the remaining time s, as this is common in applications.

Assumption 4.2 |Xs(i0)| = O(s2).

Under Assumption 4.2, algorithm RAG(i0) computes LT (i0) = O(T 3) index values λ∗(d, i).

Theorem 4.3 Algorithm RAG(i0) computes index values
{

λ∗(d, i) : (d, i) ∈ Y
{0,1}
T (i0)

}
in O(T 6) time and

O(T 5) space.

Proof. The result that algorithm RAG(i0) computes the stated values of index λ∗(d, i) is already proven
by the above discussion. Regarding the time complexity, let us focus on a given stage d (with 2 ≤ d ≤ T ),
i.e., on algorithm RAGd(i0). The description of RAGd(i0) as given in Table 5 shows that the computational
bottleneck is the update

[
wk

d(i) rk
d(i)

]
:=

[
1 R(i)

]
+

∑

j∈Ad−1

b(i, j)
[
wl

d−1(j) rl
d−1(j)

]
, i ∈ XT −d(i0),

which entails no more than 2(2N +1)nd(i0) AOs. Adding up such an upper bound over steps k = 1, . . . , Ld ≤
Ld(i0) gives no more than 2(2N + 1)nd(i0)Ld(i0) for stage d. Then, adding up over stages d = 2, . . . , T and
using Assumption 4.2, gives an upper bound of O(T 6) AOs.

As for memory, the bulk of storage at stage d corresponds to the wk−1
s (i) and rk−1

s (i) for 1 ≤ k ≤ Ls(i0),
i ∈ XT −s(i0), and s = d − 1, d. Now, for every s, 2ns(i0)Ls(i0) = O(T 5) (see Assumption 4.2) floating-point
memory locations are needed. ✷

To illustrate, in the case of the Bernoulli bandit model with Beta priors, where the state is a pair
(i, j) ∈ {1, 2, . . .}2 giving the parameters of the corresponding posterior Beta distribution, suppose one
wants to compute the index values λ∗

(
d, (i, j)

)
for states (i, j) that can be reached from a given initial state

(i0, j0) within T periods. For such a model, Assumption 3.5 holds with N = 2 and, since

Xs(i0, j0) =
{

(i, j) ≥ (i0, j0) : (i − i0) + (j − j0) ≤ s
}

,
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Table 5: Stage 2 ≤ d ≤ T of index algorithm RAG(i0).

ALGORITHM RAGd(i0)
Input: {λ∗(s, i) : 1 ≤ s ≤ d − 1, i ∈ XT −s(i0)}, {(sl

d−1, il
d−1), wl−1

d−1, rl−1
d−1 : 1 ≤ l ≤ Ld−1}

Output: {λ∗(s, i) : 1 ≤ s ≤ d, i ∈ XT −s(i0)}, {(sk
d, ik

d), wk−1
d , rk−1

d : 1 ≤ k ≤ Ld}

k := 1; l := 1; Ad−1 := Ad := ∅; kd := 0;
[
w0

d r0
d

]
:=

[
1 R

]

repeat { note: Ak−1 = (Ak−1
1 , . . . , Ak−1

d ) = (A1, . . . , Ad) }

λk−1
d (i) := rk−1

d (i)/wk−1
d (i), i ∈ XT −d(i0) \ Ad

pick i∗ ∈ arg max
{

λk−1
d (i) : i ∈ XT −d(i0) \ Ad

}

if λk−1
d (i∗) ≥ λ∗(sl

d−1, il
d−1) then

s∗ := d; λ∗(d, i∗) := λk−1
d (i∗); Ad := Ad ∪ {i∗}; kd := kd + 1

if kd < nd(i0) then
[
wk

d(i) rk
d(i)

]
:=

[
wk−1

d (i) rk−1
d (i)

]
, i ∈ XT −d(i0)

else
(s∗, i∗) := (sl

d−1, il
d−1)

if s∗ = d − 1 then[
wk

d(i) rk
d(i)

]
:=

[
wk−1

d (i) rk−1
d (i)

]
+ b(i, i∗)

[
wl−1

d−1(i∗) rl−1
d−1(i∗)

]
, i ∈ XT −d(i0)

Ad−1 := Ad−1 ∪ {i∗}
else { s∗ ≤ d − 2 }[

wk
d(i) rk

d(i)
]

:=
[
1 R(i)

]
+

∑
j∈Ad−1

b(i, j)
[
wl

d−1(j) rl
d−1(j)

]
, i ∈ XT −d(i0)

end { if }
l := l + 1

end { if }
(sk

d, jk
d ) := (s∗, i∗); k := k + 1

until kd = nd(i0) { repeat }
Ld := k − 1

Assumption 4.2 also holds, since |Xs(i0, j0)| = 1 + · · · + (s + 1) = (s + 1)(s + 2)/2 = O(s2). Hence, the total
number of index values that is computed by algorithm RAG(i0, j0) is LT (i0, j0) = T (T +1)(T +2)/6 = O(T 3).

The reader may wonder how the complexity results in Theorem 4.3, as applied to the Bernoulli bandit
model with Beta priors, compare with those reported in Gittins (1989, p. 139), which might appear better
at first glance, being O(T 4) AOs and O(T 2) memory. The answer is that both complexity counts cannot be
meaningfully compared, for the following reasons: (i) the purpose of the algorithm in Gittins (1979, Sec. 7)
is to approximate the Gittins index λ∗(i0, j0) at a single state (i0, j0) by λ∗

(
T, (i0, j0)

)
, for which only the

subset of 1+· · ·+T = O(T 2) index values of the form λ∗
(
d, (i, j)

)
, for 1 ≤ d ≤ T and (i−i0)+(j−j0) = T −d,

needs to be evaluated; and (ii) the Gittins algorithm calls for solving a continuous optimization problem of
the form (7) at each step, which is not an elementary operation, whereas the RAG algorithm herein performs
only arithmetic operations.

5. Block implementation of the RAG index algorithm

This section presents an efficient implementation of the RAG index algorithm. A naive implementation
which directly codes the algorithm’s update formulae will be found to be rather slow and inefficient, even for
instances with a moderate number of states or horizon. The reason is that the bottleneck computation, which
is the update in (16), involves repeated multiplications of large matrices with noncontiguous memory-access
patterns, requiring expensive gather and scatter memory operations. Such patterns cause severe inefficiencies
in linear algebra algorithms, due to the mismatch between the speeds of processors (fast) and of memory
access (slow) in contemporary computers. The main approach to reduce such inefficiencies, exploiting both
vectorization and parallelism features of advanced computer architectures, is to design block implementations.
These aim to maximize the arithmetic operations performed per memory access, by rearranging bottleneck
computations as linear algebra operations on contiguous blocks of data (e.g., matrix-matrix multiplications),
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thus attaining a sort of economies of scale in computation. See Dongarra and Eijkhout (2000).

Table 6: Block implementation of stage 2 ≤ d ≤ T of the RAG index algorithm.

ALGORITHM BlockRAGd

Input:
{

λ∗(s, i)
}

1≤s≤d−1,i∈X
,
{

(sl
d−1, il

d−1), ŵl−1
d−1, r̂l−1

d−1}1≤l≤Ld−1
, w∗

d−1, r∗
d−1

Output:
{

λ∗(s, i)
}

1≤s≤d,i∈X
,
{

(sk
d, ik

d), ŵk−1
d , r̂k−1

d

}
1≤k≤Ld

, w∗
d, r∗

d

k := 1; l := 1; Ad := ∅; kd := 0;
[
ŵ0

d r̂0
d

]
:=

[
1 R

]

repeat { note: Ak−1 = (Ak−1
1 , . . . , Ak−1

d ) = (A1, . . . , Ad) }

λk−1
d (i) := rk−1

d (i)/wk−1
d (i), i ∈ X \ Ak−1

d ; pick i∗ ∈ arg max
{

λk−1
d (i) : i ∈ X \ Ad

}

if λk−1
d (i∗) ≥ λ∗(sl

d−1, il
d−1) then

s∗ := d; λ∗(d, i∗) := λk−1
d (i∗); Ad := Ad ∪ {i∗}; kd := kd + 1; k∗(i∗) := k − 1

if kd < n then[
wd(i∗) rd(i∗)

]
:=

[
wk−1

d (i∗) rk−1
d (i∗)

]
;

[
ŵk

d r̂k
d

]
:=

[
ŵk−1

d r̂k−1
d

]

end { if }
else

(s∗, i∗) := (sl
d−1, il

d−1)
if s∗ = d − 1 then[

ŵk
d r̂k

d

]
:=

[
ŵk−1

d r̂k−1
d

]
+ B(·, i∗)

[
wd−1(i∗) rd−1(i∗)

]

else { s∗ ≤ d − 2 }[
ŵk

d r̂k
d

]
:=

[
1 R

]
+

[
ŵl

d−1 r̂l
d−1

]

end { if }
l := l + 1

end { if }
(sk

d, jk
d ) := (s∗, i∗); k := k + 1

until kd = n { repeat }
Ld := k − 1

for i ∈ X do: ŵk′

d (i) := r̂k′

d (i) := 0, k′ = 0, . . . , k∗(i); end { for }[
ŵk′−1

d r̂k′−1
d

]Ld

k′=1
:= B

[
ŵk′−1

d r̂k′−1
d

]Ld

k′=1

Table 6 presents a block implementation of stage d of the RAG algorithm, denoted by BlockRAGd. The
input to BlockRAGd differs from that to RAGd in that (i) it takes a matrix of vectors ŵl−1

d−1 and r̂l−1
d−1 instead

of the wl−1
d−1 and rl−1

d−1, where ŵl−1
d−1(i) ,

∑
j∈A

l−1

d−1

b(i, j)wl−1
d−1(j) and r̂l−1

d−1(i) ,
∑

j∈A
l−1

d−1

b(i, j)rl−1
d−1(j), where

Al−1
d−1 corresponds to the continuation sets Al−1 = (Al−1

1 , . . . , Al−1
d−1) generated by algorithm BlockRAGd−1;

and (ii) it incorporates vectors w∗
d−1 =

(
w∗

d−1(i)
)

i∈X
and r∗

d−1 =
(
r∗

d−1(i)
)

i∈X
, where w∗

d−1(i) , wl−1
d−1(i) and

r∗
d−1(i) , rl−1

d−1(i), with Al
d−1 being the first continuation set for horizon d − 1 in algorithm BlockRAGd−1

that contains state i. The output of algorithm BlockRAGd differs accordingly from that of RAGd.
Algorithm BlockRAGd implements the stage-d update in (16) as

[
ŵk

d r̂k
d

]
:=

[
1 R

]
+

[
ŵl

d−1 r̂l
d−1

]

(note that, at this point in the algorithm,
[
ŵk

d r̂k
d

]
=

[
wk

d rk
d

]
). As for the bottleneck computation, it

has been moved out of the loop, to the last line in Table 6, as a block matrix-matrix multiplication that
computes the

[
ŵk

d r̂k
d

]
to be used in the next stage.

A straightforward modification of algorithm BlockRAGd gives a corresponding block implementation of
algorithm RAGd(i0) (see Table 5), which we denote by BlockRAGd(i0). The author has coded in Fortran the
resulting block algorithms BlockRAG and BlockRAG(i0), which have been used in the experiments reported
in Section 6.
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6. Computational experiments

This section reports the results of a computational study, based on the author’s Fortran implementations
of the algorithms discussed above (which are available for download at http://alum.mit.edu/www/jnimora,
under the link “Original software codes"), which benchmarks the actual runtime and memory performance
of the proposed RAG algorithm against the calibration method, and fits the measured performance to the
theoretical complexity.

6.1 Index computation for finite-state projects

This experiment benchmarks the RAG index algorithm against the calibration method on finite-state projects,
measuring actual runtime performance and storage requirements. Recall that Theorem 3.4 establishes an
O(T 2n3) time complexity and an O(T 2n2) memory complexity for the RAG algorithm on an n-state T -
horizon project, whereas Proposition 2.1(b) shows that the time and memory complexities for the calibration
method, when used with a grid of L λ-values, are O(LT n2) and O(LT n), respectively.

The experiment uses the block implementations (see Sections 2.1 and 5) designed and coded in Fortran
by the author of the calibration method and the RAG algorithm. The codes were compiled using the latest
release at the time of writing of the Intel Visual Fortran Compiler Professional Ed. 11.1 (Update 6). Such
implementations use high-performance threaded routines from the Intel Math Kernel Library for bottleneck
computations (in particular the BLAS Level 3 DGEMM subroutine for matrix-matrix multiplication), which
can harness to a substantial extent the parallel processing power of the platform employed: an HP z800
workstation with two quad-core 3.33 GHz Intel Xeon processors w5590 and 48 GB of memory, under Windows
7 x64. Both methods were tested on 20 project instances, with state-space sizes n = 100, 200, . . . , 2000, and
a horizon of 50. The transition probability matrix of the n-state instance was obtained by scaling an n × n
matrix with pseudorandom Uniform(0, 1) entries, dividing each row by its sum. Immediate rewards were
also drawn from a pseudorandom Uniform(0, 1) distribution. The discount factor used was β = 1. For each
instance, the index values λ∗(T, i) for 1 ≤ i ≤ n and 1 ≤ T ≤ 50 were evaluated using the RAG algorithm
and the calibration method, the latter for 3, 4, and 5 significant digits of accuracy (partitioning the unit
interval [0, 1] with a grid of L = 10m + 1 equally-spaced λ-values, for m = 3, 4, 5). For each method and
intermediate horizon T = 1, . . . , 50, the wall-clock cumulative runtime y(T, n) to compute the index values
λ∗(d, i) for 1 ≤ d ≤ T and i = 1, . . . , n was measured using the Fortran intrinsic subroutine system_clock.

Figure 1 plots the recorded cumulative runtimes (in minutes) versus the number n of states for horizon
T = 50. The gray solid lines shown are polynomial least-squares (LS) fits for the predicted runtimes, of 3rd
order for the RAG algorithm, and of 2nd order for the calibration method, corresponding to the theoretical
complexities. In the case of the RAG algorithm, the 3rd-order LS fit ŷ(n, 50) for the predicted runtime of an
instance with n states and horizon 50 is ŷ(n, 50) = 10−10(7.82 n3 + 2.18 × 103 n2 + 1.26 × 106 n − 1.89108).
To measure of the quality of fit, we use the root mean square error (RMSE). In this case, the RMSE is 0.04
min., which indicates that the fit is rather tight, considering the range of runtimes. To assess the validity of
the theoretical cubic complexity on n, the data were also fitted by polynomials of one order less and of one
order more than 3. The 4th-order polynomial fit has a spurious negative leading coefficient −10−10 × 1.67,
with its RMSE being about the same as that for the 3rd-order fit. As for the 2nd-order LS fit, the RMSE
degrades significantly, to 0.13 min. These results show that the 3rd-order polynomial gives the best fit. Note
further that, despite its higher complexity, the RAG algorithm is actually faster than the calibration method
with 5 significant digits up to and including n = 1800 states.

Figure 2 plots the measured cumulative runtimes versus the intermediate horizon or stage T = 1, 2, . . . , 49
for the instance with n = 2000 states. Cumulative runtimes for the final stage T = 50 are not included,
since the RAG algorithm does not perform the bottleneck update at the last stage, and hence the latter’s
cumulative runtime is about the same as that for the previous stage T = 49. The solid lines shown are
polynomial LS fits for the predicted cumulative runtimes, of 2nd order for the RAG algorithm, and of 1st
order (linear fit) for the calibration method, as predicted by the theoretical complexities. In the case of the
RAG algorithm, the 2nd-order LS fit ŷ(2000, T ) for the predicted cumulative runtime of a 2000-state instance
up to and including stage T is ŷ(2000, T ) = 10−3(3.16 T 2 −6.68 T +49.14). The RMSE is 0.015 min., slightly
under 1 sec., a very small value relative to the range of runtimes. To test the validity of the theoretical
quadratic complexity on T , the data were also fitted by a polynomial with one order less and of one order
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Figure 1: Runtimes vs. number of states n for horizon T = 50.

more than 2. While the linear LS fit is clearly inadequate, using a polynomial of order 3 gives the predicted
cumulative runtime fit ŷ(2000, T ) = 10−3(0.0063 T 3 + 2.68 T 2 + 2.89 T + 7.25), with the RMSE dropping to
0.003 min. Since the RMSE for the 2nd-order fit is already very small, and the leading coefficient of the
3rd-order fit is rather small, we conclude that the cumulative runtime performance is best fittedted by a
2nd-order polynomial, consistently with the theoretical complexity in T . Still, despite its higher complexity,
the RAG algorithm is faster than the calibration method with 5 significant digits up to and including a
horizon of T = 44.
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Figure 2: Cumulative runtimes vs. horizon (stage) T for n = 2000 states.

Figure 3 plots the required memory storage for floating-point local variables (in GB, excluding input and
output, and using 8-byte double-precision numbers) versus n for T = 50. In the author’s implementations,
the RAG algorithm uses (4T + 1)n2 + 5n floating-point storage locations for local variables, whereas the
calibration method with a grid of size L uses 2Ln+L locations. Note that, despite its higher complexity, the
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RAG algorithm uses less memory than the calibration method with 5 significant digits up to and including
n = 900 states. Note further that the local memory storage of the RAG algorithm grows linearly in the
horizon T , whereas that of the calibration method remains constant as T varies.
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Figure 3: Memory usage vs. number of states for horizon T = 50.

6.2 Index computation for an infinite-state project

The next experiment aims to assess the actual runtime and memory performance of the index algorithm
in Section 4 for a countably-infinite state project, for which the classic Bernoulli bandit model with Beta
priors is chosen, by benchmarking it against the calibration method. Recall from Section 4 that Theorem
4.3 establishes an O(T 6) time complexity and an O(T 5) memory complexity for such a version of the RAG
algorithm, which in the case of a Bernoulli bandit starting at (i0, j0) with a horizon T computes T (T +
1)(T + 2)/6 relevant index values. For fairness of comparison, the calibration method was modified to
compute approximately only such relevant index values. To improve runtimes and exploit the reduced
arithmetic and memory operations due to sparsity of the transition probability matrix, the author developed
Fortran implementations that use threaded routines from the Intel Math Kernel Library, in particular the
Sparse BLAS Level 3 MKL_DCOOMM subroutine for sparse matrix multiplication.

Taking (1, 1) as the initial state, the algorithm RAG(1, 1) in Section 4 was run on instances with horizons
T = 20, 25, . . . , 90, computing all relevant index values in each case. As before, the calibration method (with
3 to 5 significant digits) was used for comparison.

Figure 4 plots the measured runtimes versus the horizon T . The solid lines shown were obtained by
polynomial least-squares (LS) fit, of order 4 for the RAG(1, 1) algorithm, and of order 2 for the calibration
method. In the case of the RAG(1, 1) algorithm, the 6th-order LS fit for the predicted runtime ŷ(T ) of an
instance with T remaining periods is ŷ(T ) = 10−10(1.71 T 6 − 4.58 × 102 T 5 + 5.21 × 104 T 4 − 3.04 × 106 T 3 +
9.61 × 107 T 2 − 1.55 × 109 T + 9.89 × 109). The RMSE is very small: 0.006 min. To test the validity of
the theoretical 6th-order complexity on T , the data were also fitted by polynomials of orders 7, 5, 4, and 3.
Using a 7th-order polynomial does not improve the RMSE. A 5th-order polynomial fit gives still a very small
RMSE of 0.01 min. (under 1 sec.), while a 4th-order polynomial fit has a small RMSE of 0.03 min. (about
2 sec.), and a 3rd-order fit has a much larger RMSE of 0.12 min. These results suggest that the predicted
runtime of the RAG(1, 1) algorithm is best fitted by a polynomial of lower order than the theoretical 6th-
order complexity, with the 4th-order fit ŷ(T ) = 107(6.8 T 4 −1.09×103 T 2 +6.7×104 T −1.8×106) appearing
to be best. As for the calibration method with 5 significant digits, the 2nd- and 3rd-order fits have roughly
equal RMSEs of about 0.02 min., whereas the 1st-order fit has a large RMSE of 0.22 min. Hence, the best
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fit for the predicted runtime of the calibration method is O(T 2). Yet, note that the RAG(1, 1) algorithm is
faster than the calibration method with 5 significant digits up to and including horizon T = 70.
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Figure 4: Runtimes vs. horizon T .

As for the actual memory usage of each algorithm (for local variables, excluding input and output), Figure
5 plots the required memory storage for floating-point local variables (excluding input and output, and using
8-byte double-precision numbers) versus T . In the author’s implementations, the RAG(1, 1) algorithm uses
T 5/3 + 2T 4 + (13/3)T 3 + (15/2)T 2 + (65/6)T + 6 floating-point storage locations for local variables, whereas
the calibration method with a grid of size L uses L(T + 1)(T + 2) + L storage locations. Note that, despite
its higher complexity, the RAG algorithm uses less memory than the calibration method with 5 significant
digits up to and including horizon T = 65.
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Figure 5: Memory usage vs. horizon T .

Figure 6 plots index λ∗
(
s, (1, 1)

)
versus the horizon s = 1, . . . , 80, for discount factors β = 0.7, . . . , 1. For
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each discount factor, the plotted index values were obtained from a single run of algorithm RAG(1, 1) with
a horizon of T = 80.
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Figure 6: Values of index λ∗
(
s, (1, 1)

)
vs. horizon s.

7. Conclusions

This paper has introduced a recursive adaptive-greedy (RAG) algorithm for the efficient exact computation
of a classic index for finite-horizon bandits, which performs only arithmetic operations. The algorithm has
been compared with the standard calibration method, which computes approximate index values. When the
latter method is used with a grid having the same size as the number of index values to be evaluated, both
methods have the same time and memory complexities. Yet, for a fixed grid, the calibration method’s time
and memory complexity are one order of magnitude lower than those of the RAG algorithm. Complementing
such theoretical results, the computational study reported above shows that, if 3 or 4 significant digits of
accuracy suffice, or if the number of states or the horizon are rather large, the calibration method is the best
choice. Yet, the results also show that the RAG algorithm outperforms (with respect to both runtimes and
memory) the calibration method with 5 significant digits of accuracy in instances of moderately large size.
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